Compositional Coinduction with Sized Types

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

13th International Workshop on
Coalgebraic Methods in Computer Science (CMCS'16)
Eindhoven, The Netherlands
3 April 2016

Questions

- How to reason by coinduction informally?
- How to represent coinductive definitions and proofs in a proof assistant?
- Popularity of Coq and Agda: How to do coinduction in type theory?
- What are the problems with the state-of-the-art (e.g. Coq's guardedness checker)?
- How to get compositional coinduction?

Contents

(1) (Martin-Löf) Type Theory
(2) Coinductive Types and Copatterns
(3) Bisimilarity
(4) Sized Coinductive Types
(5) Conclusions

(Martin-Löf) Type Theory

- Meta-language for mathematics, logics, and computer science.
- Functional programming language based on typed λ-calculus.
- Dependent types allow natural formalizations and rich specifications.
divide $:(n: \mathbb{N}) \rightarrow(d: \mathbb{N}) \rightarrow(p: d \not \equiv 0) \rightarrow \exists q r . n \equiv d \cdot q+r$ divide $=\lambda n d p \rightarrow \ldots$
- Propositions-as-types:
Prop = Type
- A proposition is a type (the set of its proofs).
- An empty type denotes a false proposition.
- To prove a proposition, construct an inhabitant of the type.

Type Theory - Computability and Decidability

- Constructive: All functions are computable.
- Excluded middle does not hold for all propositions.

$$
\nvdash(A: \text { Prop }) \rightarrow A+(A \rightarrow \perp)
$$

- It holds for exactly the decidable propositions.

$$
\operatorname{Dec} A=A+(A \rightarrow \perp)
$$

- Sets are modeled by predicates, e.g., Prime : $\mathbb{N} \rightarrow$ Prop.
- Decidable sets can be modeled by their characteristic functions into Bool or Dec.

Type Theory - Equality

- Built-in definitional equality $\vdash t=t^{\prime}: A$ (same β normal form).
- Propositional equality $x \equiv y$ (where $x, y: A$) is the least type closed und the single introduction rule

$$
\frac{\vdash x=y: A}{\vdash \operatorname{refl}: x \equiv y}
$$

- Extensional only for types of finite trees, i.e., types built from \perp (aka 0), \top (aka 1), $\uplus($ aka +$), \times$ and μ (least fixed point).
- Intensional for types involving \rightarrow, ν, and universes.
- For function types, we might add the axiom of function extensionality.

$$
(\forall x . f x \equiv g x) \rightarrow f \equiv g
$$

- For coinductive types, we define coinductive equality (bisimilarity).

Coinductive Definition and Reasoning

- How to reason about coinductive equality in Type Theory? Literature: bisimulations, up-to techniques.
- Can we reason with coinductive equality directly in a modular way in Type Theory?
- Can we define corecursive functions in a modular way?
- How to extend Type Theory to do this?
- What is a coinductive definition anyway?

Final Coalgebras

- (Weakly) final coalgebra.

- Coiteration $=$ finality witness.

$$
\text { force } \circ \operatorname{coit} f=F(\operatorname{coit} f) \circ f
$$

- Copattern matching defines coit by corecursion:

$$
\text { force }(\operatorname{coit} f s)=F(\operatorname{coit} f)(f s)
$$

Streams as Final Coalgebra

- Output automaton is coalgebra $\langle o, t\rangle: S \rightarrow A \times S$.
- Final coalgebra $=$ automaton unrolling $=$ stream: $\nu S . A \times S$.

- Termination by induction on observation depth:

$$
\begin{aligned}
& \text { head }(\operatorname{coit}\langle o, t\rangle s)=o s \\
& \text { tail }(\operatorname{coit}\langle o, t\rangle s)=\operatorname{coit}\langle o, t\rangle(t s)
\end{aligned}
$$

Automata as Coalgebra

- Arbib \& Manes (1986), Rutten (1998), Traytel (2016).
- Automaton structure over set of states S :

$$
\begin{array}{l:ll}
o: S \rightarrow \text { Bool } & \text { "output": acceptance } \\
t: S \rightarrow(A \rightarrow S) & \text { transition }
\end{array}
$$

- Automaton is coalgebra with $F(S)=$ Bool $\times(A \rightarrow S)$.

$$
\langle o, t\rangle: S \longrightarrow \operatorname{Bool} \times(A \rightarrow S)
$$

Formal Languages as Final Coalgebra

Languages - Rule-Based

- Coinductive tries Lang defined via observations/projections ν and δ :
- Lang is the greatest type consistent with these rules:

$$
\frac{l: \text { Lang }}{\nu l: \text { Bool }} \quad \frac{l: \text { Lang } a: A}{\delta / a: \text { Lang }}
$$

- Empty language \emptyset : Lang.
- Language of the empty word ε : Lang defined by copattern matching:

$$
\begin{array}{llll}
\nu \varepsilon & =\text { true } & : & \text { Bool } \\
\delta \varepsilon a & =\emptyset & : & \text { Lang }
\end{array}
$$

Corecursion

- Empty language \emptyset : Lang defined by corecursion:

$$
\begin{aligned}
\nu \emptyset & =\text { false } \\
\delta \emptyset a & =\emptyset
\end{aligned}
$$

- Language union $k \cup l$ is pointwise disjunction:

$$
\begin{array}{ll}
\nu(k \cup I) & =\nu k \vee \nu l \\
\delta(k \cup I) a & =\delta k a \cup \delta l a
\end{array}
$$

- Language composition $k \cdot /$ à la Brzozowski:

$$
\begin{aligned}
\nu(k \cdot l) & =\nu k \wedge \nu l \\
\delta(k \cdot l) a & = \begin{cases}(\delta k a \cdot l) \cup \delta l a & \text { if } \nu k \\
(\delta k a \cdot l) & \text { otherwise }\end{cases}
\end{aligned}
$$

- Not accepted because \cup is not a constructor.

Bisimilarity

- Equality of infinite tries is defined coinductively.
- _ \cong _ is the greatest relation consistent with

$$
\frac{I \cong k}{\nu I \equiv \nu k} \cong \nu \quad \frac{I \cong k}{\delta l a \cong \delta k a} \cong \delta
$$

- Equivalence relation via provable \cong refl, \cong sym, and \cong trans.

$$
\begin{array}{ll}
\cong \operatorname{trans} & :(p: I \cong k) \rightarrow(q: k \cong m) \rightarrow I \cong m \\
\cong \nu(\cong \operatorname{trans} p q) & =\equiv \operatorname{trans}(\cong \nu p)(\cong \nu q): \nu / \equiv \nu k \\
\cong \delta(\cong \operatorname{trans} p q) a \quad=\cong \operatorname{trans}(\cong \delta p a)(\cong \delta q a): \quad \delta / a \cong \delta m a
\end{array}
$$

- Congruence for language constructions.

$$
\frac{k \cong k^{\prime} \quad I \cong I^{\prime}}{\left(k \cup k^{\prime}\right) \cong\left(I \cup I^{\prime}\right)} \cong \cup
$$

Proving bisimilarity

- Composition distributes over union.

$$
\operatorname{dist}: \forall k / m \cdot k \cdot(I \cup m) \cong(k \cdot l) \cup(k \cdot m)
$$

- Proof. Observation $\delta_{-} a$, case k nullable, I not nullable.

$$
\begin{aligned}
\delta & (k \cdot(I \cup m)) a & & \\
& =\delta k a \cdot(I \cup m) & & \text { by definition } \\
& \cong(\delta k a \cdot l \cup \delta k a \cdot m) \cup(\delta I \cup \cup \delta) a & & \text { by coind. hyp } \\
& \cong(\delta k a \cdot l \cup \delta l a) \cup(\delta k a \cdot m \cup \delta m a) & & \text { by union laws } \\
& =\delta((k \cdot l) \cup(k \cdot m)) a & & \text { by definition }
\end{aligned}
$$

- Formal proof attempt.

$$
\cong \delta \text { dist } a=\cong \text { trans }(\cong \cup \text { dist } \ldots) \ldots
$$

- Not coiterative / guarded by constructors!

Construction of greatest fixed-points

- Iteration to greatest fixed-point.

$$
\top \supseteq F(\top) \supseteq F^{2}(\top) \supseteq \cdots \supseteq F^{\omega}(\top)=\bigcap_{n<\omega} F^{n}(\top)
$$

- Naming $\nu^{i} F=F^{i}(\top)$.

$$
\begin{aligned}
& \nu^{0} F=\top \\
& \nu^{n+1} F=F\left(\nu^{n} F\right) \\
& \nu^{\omega} F=\bigcap_{n<\omega} \nu^{n} F
\end{aligned}
$$

- Deflationary iteration.

$$
\nu^{i} F=\bigcap_{j<i} F\left(\nu^{j} F\right)
$$

Sized coinductive types

- Add to syntax of type theory

Size	type of ordinals
i	ordinal variables
$\nu^{i} F$	sized coinductive type
Size $<i$	type of ordinals below i

- Bounded quantification $\forall j<i . A=(j:$ Size $<i) \rightarrow A$.
- Well-founded recursion on ordinals, roughly:

$$
\frac{f: \forall i .\left(\forall j<i . \nu^{j} F\right) \rightarrow \nu^{i} F}{\text { fix } f: \forall i . \nu^{i} F}
$$

Sized coinductive type of languages

- Lang $i \cong$ Bool $\times(\forall j<i . A \rightarrow$ Lang $j)$
$\frac{l: \text { Lang } i}{\nu l: \text { Bool }} \quad \frac{l: \text { Lang } i \quad j<i \quad a: A}{\delta l\{j\} a: \operatorname{Lang} j}$
- $\emptyset: \forall i$. Lang i by copatterns and induction on i :

$$
\begin{array}{ll}
\nu(\emptyset\{i\}) & =\text { false }: \text { Bool } \\
\delta(\emptyset\{i\})\{j\} \boldsymbol{a} & =\emptyset\{j\}: \text { Lang }
\end{array}
$$

- Note $j<i$.
- On right hand side, $\emptyset: \forall j<i$. Lang j (coinductive hypothesis).

Type-based guardedness checking

- Union preserves size/guardeness:

$$
\begin{aligned}
& \frac{k: \text { Lang } i \quad l: \text { Lang } i}{k \cup l: \text { Lang } i} \\
& \begin{array}{ll}
\nu(k \cup I) \quad= & \nu k \vee \nu I \\
\delta(k \cup I)\{j\} a & =\delta k\{j\} a \cup \delta I\{j\} a
\end{array}
\end{aligned}
$$

- Composition is accepted and also guardedness-preserving:

$$
\begin{aligned}
& \frac{k: \text { Lang } i \quad l: \text { Lang } i}{k \cdot l: \text { Lang } i} \\
& \nu(k \cdot l) \quad=\nu k \wedge \nu l \\
& \delta(k \cdot l)\{j\} a= \begin{cases}(\delta k\{j\} a \cdot l) \cup \delta I\{j\} a & \text { if } \nu k \\
(\delta \boldsymbol{k}\{j\} \boldsymbol{a} \cdot l) & \text { otherwise }\end{cases}
\end{aligned}
$$

Guardedness-preserving bisimilarity proofs

- Sized bisimilarity \cong is greatest family of relations consistent with

$$
\frac{I \cong i k}{\nu I \equiv \nu k} \cong \nu \quad \frac{I \cong_{i} k \quad j<i \quad a: A}{\delta l a \cong j k a} \cong \delta
$$

- Equivalence and congruence rules are guardedness preserving.

$$
\begin{aligned}
& \cong \text { trans } \quad: \quad(p: I \cong i k) \rightarrow(q: k \cong i m) \rightarrow I \cong^{i} m \\
& \cong \nu(\cong \operatorname{trans} p q) \quad=\operatorname{trans}(\cong \nu p)(\cong \nu q) \quad: \nu I \equiv \nu k \\
& \cong \delta(\cong \operatorname{trans} p q) j a=\cong \operatorname{trans}(\cong \delta p j a)(\cong \delta q j a): \delta / a \cong j m a
\end{aligned}
$$

- Coinductive proof of dist accepted.

$$
\cong \delta \operatorname{dist} j a=\cong \text { trans } j(\cong \cup(\text { dist } j)(\cong \operatorname{refl} j)) \ldots
$$

Conclusions

- Tracking guardedness in types allows
- natural modular corecursive definition
- natural bisimilarity proof using equation chains
- Implemented in Agda (ongoing)
- Abel et al (POPL 13): Copatterns
- Abel/Pientka (ICFP 13): Well-founded recursion with copatterns

Related work

- Hagino (1987): Coalgebraic types
- Cockett et al.: Charity
- Dmitriy Traytel (PhD TU Munich, 2015): Languages coinductively in Isabelle
- Kozen, Silva (2016): Practical coinduction
- Hughes, Pareto, Sabry (POPL 1996)
- Papers on sized types (1998-2015): e.g. Sacchini (LICS 2013)

