Compositional Coinduction with Sized Types

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

13th International Workshop on
Coalgebraic Methods in Computer Science (CMCS'16)
Eindhoven, The Netherlands
3 April 2016

Andreas Abel (GU) Compositional Coinduction CMCS’'16 1/22

Questions

How to reason by coinduction informally?

How to represent coinductive definitions and proofs in a proof
assistant?

Popularity of Coq and Agda: How to do coinduction in type theory?

What are the problems with the state-of-the-art (e.g. Coq's
guardedness checker)?

How to get compositional coinduction?

Andreas Abel (GU) Compositional Coinduction CMCS’'16 2/ 22

Contents

@ (Martin-L5f) Type Theory

© Coinductive Types and Copatterns
© Bisimilarity

@ Sized Coinductive Types

© Conclusions

Andreas Abel (GU) Compositional Coinduction CMCS’'16 3/ 22

(Martin-L8f) Type Theory

(Martin-Lof) Type Theory

Meta-language for mathematics, logics, and computer science.

Functional programming language based on typed A-calculus.

Dependent types allow natural formalizations and rich specifications.

divide : (n:N)—>(d:N)—= (p:d#0)—>3gr.n=d-q+r
divide = Andp — ...

Propositions-as-types:
Prop = Type

o A proposition is a type (the set of its proofs).
e An empty type denotes a false proposition.
e To prove a proposition, construct an inhabitant of the type.

Andreas Abel (GU) Compositional Coinduction CMCS’'16 4 /22

(Martin-L8f) Type Theory

Type Theory — Computability and Decidability

(]

Constructive: All functions are computable.

@ Excluded middle does not hold for all propositions.
JF(A:Prop) > A+ (A— 1)
@ It holds for exactly the decidable propositions.

DecA=A+(A— 1)

Sets are modeled by predicates, e.g., Prime : N — Prop.

Decidable sets can be modeled by their characteristic functions into
Bool or Dec.

Andreas Abel (GU) Compositional Coinduction CMCS’'16 5/ 22

(Martin-L8f) Type Theory

Type Theory — Equality

Built-in definitional equality F t = t' : A (same (3 normal form).

Propositional equality x = y (where x,y : A) is the least type closed
und the single introduction rule
Fx=y:A
Frefl: x=y
o Extensional only for types of finite trees, i.e., types built from
1 (aka 0), T (aka 1), W (aka +), x and p (least fixed point).

Intensional for types involving —, v, and universes.

For function types, we might add the axiom of function extensionality.
(Vx. fx=gx)—>f=g

@ For coinductive types, we define coinductive equality (bisimilarity).

Andreas Abel (GU) Compositional Coinduction CMCS’'16 6 /22

(Martin-L8f) Type Theory

Coinductive Definition and Reasoning

@ How to reason about coinductive equality in Type Theory?
Literature: bisimulations, up-to techniques.

@ Can we reason with coinductive equality directly in a modular way in
Type Theory?

Can we define corecursive functions in a modular way?

How to extend Type Theory to do this?

What is a coinductive definition anyway?

Andreas Abel (GU) Compositional Coinduction CMCS’'16 7/ 22

Final Coalgebras

o (Weakly) final coalgebra.

S— 1 L F(©S)

coit f F(coit f)

vF — "~ F(uF)
e Coiteration = finality witness.
force o coit f = F (coitf) o f
o Copattern matching defines coit by corecursion:
force (coit f s) = F (coit f) (f's)
Compositional Coinduction CMCS'16 8 /22

Coinductive Types and Copatterns

Streams as Final Coalgebra

e Output automaton is coalgebra (0,t) : S - A x S.
@ Final coalgebra = automaton unrolling = stream: vS5. A x S.

(0,t)

S AxS
coit(o,t) id x coit(o,t)
Stream A (head.tal) A x Stream A
@ Termination by induction on observation depth:
head (coit (o,t)s) = os
tail (coit(o,t)s) = coit(o,t)(ts)

Andreas Abel (GU) Compositional Coinduction CMCS’'16 9 /22

Coinductive Types and Copatterns

Automata as Coalgebra

@ Arbib & Manes (1986), Rutten (1998), Traytel (2016).

@ Automaton structure over set of states S:

o : S — Bool “output’: acceptance
t : S—=(A=Y9) transition

e Automaton is coalgebra with F(S) = Bool x (A — S).

(o,t) : S — Bool x(A—S)

Andreas Abel (GU) Compositional Coinduction CMCS’'16 10 / 22

Coinductive Types and Copatterns

Formal Languages as Final Coalgebra

s ©8 . Bool x (A S)
£:=coit{o,t) idx (coit{o,t) o)
(v,9)
Lang Bool x (A — Lang)
vol = o “nullable”
v(ls) = os
dol = (Lo)ot (Brzozowski) derivative
b (fs) = Lo(ts)

d(fs)a = ((tsa)

Andreas Abel (GU) Compositional Coinduction CMCS’'16 11 / 22

Coinductive Types and Copatterns

Languages — Rule-Based

e Coinductive tries Lang defined via observations/projections and ¢:
@ Lang is the greatest type consistent with these rules:
I : Lang /I : Lang a:A
vl : Bool dla:Lang
e Empty language) : Lang.
o Language of the empty word ¢ : Lang defined by copattern matching:
ve = true : Bool
dea = 0 : Lang

Andreas Abel (GU) Compositional Coinduction CMCS’'16 12 / 22

Coinductive Types and Copatterns

Corecursion

o Empty language () : Lang defined by corecursion:

v = false
dha = 0
@ Language union k U [is pointwise disjunction:
vkUul) = vkvuvl
d(kul)a = dkaUodla

@ Language composition k - | A la Brzozowski:

vik-1) = vkAvl
on [(Gka-hUGdla if vk
O(k-Na = { (0ka-1) otherwise

@ Not accepted because U is not a constructor.

Andreas Abel (GU) Compositional Coinduction CMCS’'16 13 / 22

Bisimilarity

Bisimilarity
@ Equality of infinite tries is defined coinductively.
@ = s the greatest relation consistent with

| = k | =k a:A
vli=vk 0la=dka

@ Equivalence relation via provable =refl, =2sym, and “trans.

trans o (pil=Zk)= (g k=Zm)—>1=m
=y (Ztranspq) = =trans(=vp)(=rq) vi=vk
~)(Ztranspg)a = Ztrans(=dpa)(=oga) : ola=oma

Congruence for language constructions.

k=K 1=/
(kUK)= (U

=U

Andreas Abel (GU) Compositional Coinduction CMCS’'16 14 / 22

Proving bisimilarity
@ Composition distributes over union.
dist : VkIm. k-(lUm)=(k-1)U (k-m)

@ Proof. Observation ¢ _ a, case k nullable, / not nullable.

d(k-(lum))a

= |oka-(lUm) Uo(lum)a by definition

= ((Ska~IU(5ka~m)‘U(5/aU(5ma) by coind. hyp. (wish)
= (Jka-l1Udla)U(dka-mUdma) by union laws

= 0((k-)U(k-m))a by definition

e Formal proof attempt.
~§ dist a = trans (2U [dist] ...) ...

e Not coiterative / guarded by constructors!

Andreas Abel (GU) Compositional Coinduction CMCS’'16 15 / 22

Sized Coinductive Types

Construction of greatest fixed-points

@ lteration to greatest fixed-point.

T2FM2FT) 2 2 F(T) = (| F'(T

n<w
e Naming v'F = Fi(T).
N F = T
v F = F(V"F)
W F = e V"F
@ Deflationary iteration.

Vi F = ﬂj<iF(yfF)

Andreas Abel (GU) Compositional Coinduction CMCS’'16

16 / 22

Sized Coinductive Types

Sized coinductive types

@ Add to syntax of type theory

Size type of ordinals

i ordinal variables

V' F sized coinductive type
Size< | type of ordinals below i

e Bounded quantification Vj<i. A= (j : Size< i) — A.
@ Well-founded recursion on ordinals, roughly:
fovi(Vj<i.F) = vF
fixf :Vi.viF

Andreas Abel (GU) Compositional Coinduction CMCS’'16

17 / 22

Sized Coinductive Types

Sized coinductive type of languages

Lang i = Bool x (Vj<i. A — Lang)

I: Langi I : Langi J<i a:A

v 1 Bool d1{j}a:Langj

() : Vi.Lang i by copatterns and induction on i:

v(0{i}) = false : Bool
s@{iN{ta = 04} - Langj

Note j < /.

On right hand side, () : Vj<i.Lang (coinductive hypothesis).

Andreas Abel (GU) Compositional Coinduction CMCS’'16

18 / 22

Sized Coinductive Types

Type-based guardedness checking

@ Union preserves size/guardeness:

k : Langi l:Langi
kU /l:Langi

v(kUl) = vkVvuvl
d(kuh{jta = dk{jjaudl{j;a

e Composition is accepted and also guardedness-preserving:

k : Langi l:Langi

k-I:Langi

vik-1) = vkAvl

i , (Gk{jta-NUdl{jla ifvk
!

O(k-N1{jta { (Ok{jta-1) otherwise

Andreas Abel (GU) Compositional Coinduction CMCS’'16

19 / 22

Sized Coinductive Types

Guardedness-preserving bisimilarity proofs

@ Sized bisimilarity = is greatest family of relations consistent with

I~k I~k j<i a:A _
vi=vk dlazy dka N

@ Equivalence and congruence rules are guardedness preserving.

=trans (Pl k)= (g kEm) 12 m
=~y (Ztrans p q) = =trans(Z=vp)(=rq) vi=vk
=5 (Ztranspq)ja = Ztrans(=0pja)(=iqja) : dla= ima

@ Coinductive proof of dist accepted.

=~§ dist j a = =trans j (=U | (dist j) | (=refl) ...

Andreas Abel (GU) Compositional Coinduction CMCS’'16 20 / 22

Conclusions

Conclusions

Tracking guardedness in types allows

e natural modular corecursive definition
e natural bisimilarity proof using equation chains

Implemented in Agda (ongoing)
Abel et al (POPL 13): Copatterns
Abel/Pientka (ICFP 13): Well-founded recursion with copatterns

Andreas Abel (GU) Compositional Coinduction CMCS’'16 21 /22

Related work

e Hagino (1987): Coalgebraic types
o Cockett et al.: Charity

@ Dmitriy Traytel (PhD TU Munich, 2015): Languages coinductively in
Isabelle

e Kozen, Silva (2016): Practical coinduction
@ Hughes, Pareto, Sabry (POPL 1996)
e Papers on sized types (1998-2015): e.g. Sacchini (LICS 2013)

Andreas Abel (GU) Compositional Coinduction CMCS’'16 22 /22

	(Martin-Löf) Type Theory
	Coinductive Types and Copatterns
	Bisimilarity
	Sized Coinductive Types
	Conclusions

