
Compositional Coinduction with Sized Types

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

13th International Workshop on
Coalgebraic Methods in Computer Science (CMCS’16)

Eindhoven, The Netherlands
3 April 2016

Andreas Abel (GU) Compositional Coinduction CMCS’16 1 / 22



Questions

How to reason by coinduction informally?
How to represent coinductive definitions and proofs in a proof
assistant?
Popularity of Coq and Agda: How to do coinduction in type theory?
What are the problems with the state-of-the-art (e.g. Coq’s
guardedness checker)?
How to get compositional coinduction?

Andreas Abel (GU) Compositional Coinduction CMCS’16 2 / 22



Contents

1 (Martin-Löf) Type Theory

2 Coinductive Types and Copatterns

3 Bisimilarity

4 Sized Coinductive Types

5 Conclusions

Andreas Abel (GU) Compositional Coinduction CMCS’16 3 / 22



(Martin-Löf) Type Theory

(Martin-Löf) Type Theory

Meta-language for mathematics, logics, and computer science.
Functional programming language based on typed λ-calculus.
Dependent types allow natural formalizations and rich specifications.

divide : (n : N)→ (d : N)→ (p : d 6≡ 0)→ ∃ q r . n ≡ d · q + r
divide = λ n d p → . . .

Propositions-as-types:
Prop = Type

A proposition is a type (the set of its proofs).
An empty type denotes a false proposition.
To prove a proposition, construct an inhabitant of the type.

Andreas Abel (GU) Compositional Coinduction CMCS’16 4 / 22



(Martin-Löf) Type Theory

Type Theory – Computability and Decidability

Constructive: All functions are computable.
Excluded middle does not hold for all propositions.

6 ` (A : Prop)→ A+ (A→ ⊥)

It holds for exactly the decidable propositions.

DecA = A+ (A→ ⊥)

Sets are modeled by predicates, e.g., Prime : N→ Prop.
Decidable sets can be modeled by their characteristic functions into
Bool or Dec.

Andreas Abel (GU) Compositional Coinduction CMCS’16 5 / 22



(Martin-Löf) Type Theory

Type Theory – Equality

Built-in definitional equality ` t = t ′ : A (same β normal form).
Propositional equality x ≡ y (where x , y : A) is the least type closed
und the single introduction rule

` x = y : A

` refl : x ≡ y

Extensional only for types of finite trees, i.e., types built from
⊥ (aka 0), > (aka 1), ] (aka +), × and µ (least fixed point).
Intensional for types involving →, ν, and universes.
For function types, we might add the axiom of function extensionality.

(∀x . f x ≡ g x)→ f ≡ g

For coinductive types, we define coinductive equality (bisimilarity).

Andreas Abel (GU) Compositional Coinduction CMCS’16 6 / 22



(Martin-Löf) Type Theory

Coinductive Definition and Reasoning

How to reason about coinductive equality in Type Theory?
Literature: bisimulations, up-to techniques.
Can we reason with coinductive equality directly in a modular way in
Type Theory?
Can we define corecursive functions in a modular way?
How to extend Type Theory to do this?
What is a coinductive definition anyway?

Andreas Abel (GU) Compositional Coinduction CMCS’16 7 / 22



Coinductive Types and Copatterns

Final Coalgebras

(Weakly) final coalgebra.

S
f //

coit f

��

F (S)

F (coit f )

��
νF

force // F (νF )

Coiteration = finality witness.

force ◦ coit f = F (coit f ) ◦ f

Copattern matching defines coit by corecursion:

force (coit f s) = F (coit f ) (f s)

Andreas Abel (GU) Compositional Coinduction CMCS’16 8 / 22



Coinductive Types and Copatterns

Streams as Final Coalgebra

Output automaton is coalgebra 〈o, t〉 : S → A× S .
Final coalgebra = automaton unrolling = stream: νS .A× S .

S
〈o,t〉 //

coit〈o,t〉

��

A× S

id×coit〈o,t〉

��
StreamA

〈head,tail〉 // A× StreamA

Termination by induction on observation depth:

head (coit 〈o, t〉 s) = o s
tail (coit 〈o, t〉 s) = coit 〈o, t〉 (t s)

Andreas Abel (GU) Compositional Coinduction CMCS’16 9 / 22



Coinductive Types and Copatterns

Automata as Coalgebra

Arbib & Manes (1986), Rutten (1998), Traytel (2016).
Automaton structure over set of states S :

o : S → Bool “output”: acceptance
t : S → (A→ S) transition

Automaton is coalgebra with F (S) = Bool× (A→ S).

〈o, t〉 : S −→ Bool× (A→ S)

Andreas Abel (GU) Compositional Coinduction CMCS’16 10 / 22



Coinductive Types and Copatterns

Formal Languages as Final Coalgebra

S
〈o,t〉 //

` := coit〈o,t〉

��

Bool× (A→ S)

id×(coit〈o,t〉 ◦_)

��
Lang

〈ν,δ〉 // Bool× (A→ Lang)

ν ◦ ` = o “nullable”
ν (` s) = o s

δ ◦ ` = (` ◦_) ◦ t (Brzozowski) derivative
δ (` s) = ` ◦ (t s)
δ (` s) a = ` (t s a)

Andreas Abel (GU) Compositional Coinduction CMCS’16 11 / 22



Coinductive Types and Copatterns

Languages – Rule-Based

Coinductive tries Lang defined via observations/projections ν and δ:
Lang is the greatest type consistent with these rules:

l : Lang
ν l : Bool

l : Lang a : A

δ l a : Lang

Empty language ∅ : Lang.
Language of the empty word ε : Lang defined by copattern matching:

ν ε = true : Bool
δ ε a = ∅ : Lang

Andreas Abel (GU) Compositional Coinduction CMCS’16 12 / 22



Coinductive Types and Copatterns

Corecursion

Empty language ∅ : Lang defined by corecursion:

ν ∅ = false
δ ∅ a = ∅

Language union k ∪ l is pointwise disjunction:

ν (k ∪ l) = ν k ∨ ν l
δ (k ∪ l) a = δ k a ∪ δ l a

Language composition k · l à la Brzozowski:

ν (k · l) = ν k ∧ ν l

δ (k · l) a =

{
(δ k a · l) ∪ δ l a if ν k
(δ k a · l) otherwise

Not accepted because ∪ is not a constructor.

Andreas Abel (GU) Compositional Coinduction CMCS’16 13 / 22



Bisimilarity

Bisimilarity

Equality of infinite tries is defined coinductively.
_∼=_ is the greatest relation consistent with

l ∼= k

ν l ≡ ν k
∼=ν

l ∼= k a : A

δ l a ∼= δ k a
∼=δ

Equivalence relation via provable ∼=refl, ∼=sym, and ∼=trans.

∼=trans : (p : l ∼= k)→ (q : k ∼= m)→ l ∼= m
∼=ν (∼=trans p q) = ≡ trans (∼=ν p) (∼=ν q) : ν l ≡ ν k
∼=δ (∼=trans p q) a = ∼=trans (∼=δ p a) (∼=δ q a) : δ l a ∼= δma

Congruence for language constructions.

k ∼= k ′ l ∼= l ′

(k ∪ k ′) ∼= (l ∪ l ′)
∼=∪

Andreas Abel (GU) Compositional Coinduction CMCS’16 14 / 22



Bisimilarity

Proving bisimilarity

Composition distributes over union.

dist : ∀ k l m. k · (l ∪ m) ∼= (k · l) ∪ (k ·m)

Proof. Observation δ_ a, case k nullable, l not nullable.

δ (k · (l ∪ m)) a

= δ k a · (l ∪ m) ∪ δ (l ∪ m) a by definition
∼= (δ k a · l ∪ δ k a ·m) ∪ (δ l a ∪ δma) by coind. hyp. (wish)
∼= (δ k a · l ∪ δ l a) ∪ (δ k a ·m ∪ δma) by union laws
= δ ((k · l) ∪ (k ·m)) a by definition

Formal proof attempt.

∼=δ dist a = ∼=trans (∼=∪ dist . . . ) . . .

Not coiterative / guarded by constructors!

Andreas Abel (GU) Compositional Coinduction CMCS’16 15 / 22



Sized Coinductive Types

Construction of greatest fixed-points

Iteration to greatest fixed-point.

> ⊇ F (>) ⊇ F 2(>) ⊇ · · · ⊇ Fω(>) =
⋂
n<ω

F n(>)

Naming ν iF = F i (>).

ν0 F = >
νn+1 F = F (νnF )
νω F =

⋂
n<ω ν

nF

Deflationary iteration.

ν i F =
⋂

j<i F (ν jF )

Andreas Abel (GU) Compositional Coinduction CMCS’16 16 / 22



Sized Coinductive Types

Sized coinductive types

Add to syntax of type theory

Size type of ordinals
i ordinal variables
ν iF sized coinductive type
Size< i type of ordinals below i

Bounded quantification ∀j<i .A = (j : Size< i)→ A.
Well-founded recursion on ordinals, roughly:

f : ∀ i . (∀ j<i . ν jF )→ ν iF

fix f : ∀ i . ν iF

Andreas Abel (GU) Compositional Coinduction CMCS’16 17 / 22



Sized Coinductive Types

Sized coinductive type of languages

Lang i ∼= Bool× (∀j<i . A→ Lang j)

l : Lang i
ν l : Bool

l : Lang i j < i a : A

δ l {j} a : Lang j

∅ : ∀i . Lang i by copatterns and induction on i :

ν (∅ {i}) = false : Bool
δ (∅ {i}) {j} a = ∅ {j} : Lang j

Note j < i .
On right hand side, ∅ : ∀j<i . Lang j (coinductive hypothesis).

Andreas Abel (GU) Compositional Coinduction CMCS’16 18 / 22



Sized Coinductive Types

Type-based guardedness checking

Union preserves size/guardeness:

k : Lang i l : Lang i
k ∪ l : Lang i

ν (k ∪ l) = ν k ∨ ν l
δ (k ∪ l) {j} a = δ k {j} a ∪ δ l {j} a

Composition is accepted and also guardedness-preserving:

k : Lang i l : Lang i
k · l : Lang i

ν (k · l) = ν k ∧ ν l

δ (k · l) {j} a =

{
(δ k {j} a · l) ∪ δ l {j} a if ν k
(δ k {j} a · l) otherwise

Andreas Abel (GU) Compositional Coinduction CMCS’16 19 / 22



Sized Coinductive Types

Guardedness-preserving bisimilarity proofs

Sized bisimilarity ∼= is greatest family of relations consistent with

l ∼=i k

ν l ≡ ν k
∼=ν

l ∼=i k j < i a : A

δ l a ∼=j δ k a
∼=δ

Equivalence and congruence rules are guardedness preserving.

∼=trans : (p : l ∼=i k)→ (q : k ∼=i m)→ l ∼=i m
∼=ν (∼=trans p q) = ≡ trans (∼=ν p) (∼=ν q) : ν l ≡ ν k
∼=δ (∼=trans p q) j a = ∼=trans (∼=δ p j a) (∼=δ q j a) : δ l a ∼=j δma

Coinductive proof of dist accepted.

∼=δ dist j a = ∼=trans j (∼=∪ (dist j) (∼=refl j)) . . .

Andreas Abel (GU) Compositional Coinduction CMCS’16 20 / 22



Conclusions

Conclusions

Tracking guardedness in types allows
natural modular corecursive definition
natural bisimilarity proof using equation chains

Implemented in Agda (ongoing)
Abel et al (POPL 13): Copatterns
Abel/Pientka (ICFP 13): Well-founded recursion with copatterns

Andreas Abel (GU) Compositional Coinduction CMCS’16 21 / 22



Conclusions

Related work

Hagino (1987): Coalgebraic types
Cockett et al.: Charity
Dmitriy Traytel (PhD TU Munich, 2015): Languages coinductively in
Isabelle
Kozen, Silva (2016): Practical coinduction
Hughes, Pareto, Sabry (POPL 1996)
Papers on sized types (1998–2015): e.g. Sacchini (LICS 2013)

Andreas Abel (GU) Compositional Coinduction CMCS’16 22 / 22


	(Martin-Löf) Type Theory
	Coinductive Types and Copatterns
	Bisimilarity
	Sized Coinductive Types
	Conclusions

