
Irrelevance in Type Theory with a
Heterogeneous Equality Judgement

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

andreas.abel@ifi.lmu.de

Abstract. Dependently typed programs contain an excessive amount of static
terms which are necessary to please the type checker but irrelevant for computa-
tion. To obtain reasonable performance of not only the compiled program but also
the type checker such static terms need to be erased as early as possible, prefer-
ably immediately after type checking. To this end, Pfenning’s type theory with
irrelevant quantification, that models a distinction between static and dynamic
code, is extended to universes and large eliminations. Novel is a heterogeneously
typed implementation of equality which allows the smooth construction of a uni-
versal Kripke model that proves normalization, consistency and decidability.
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1 Introduction and Related Work

Dependently typed programming languages such as Agda [9], Coq [13], and Epigram
[15] allow the programmer to express in one language programs, their types, rich in-
variants, and even proofs of these invariants. Besides code executed at run-time, depen-
dently typed programs contain much code needed only to pass the type checker, which
is a the same time the verifier of the proofs woven into the program.

Program extraction takes type-checked terms and discards parts that are irrelevant
for execution. Augustsson’s dependently typed functional language Cayenne [6] erases
types using a universe-based analysis. Coq’s extraction procedure has been designed
by Paulin-Mohring and Werner [21] and Letouzey [14] and discards not only types
but also proofs. The erasure rests on Coq’s universe-based separation between proposi-
tional (Prop) and computational parts (Set/Type). The rigid Prop/Set distinction has
the drawback of code duplication: A structure which is sometimes used statically and
sometimes dynamically needs to be coded twice, once in Prop and once in Set.

An alternative to the fixed Prop/Set-distinction is to let the usage context decide
whether a term is a proof or a program. Besides whole-program analyses such as data
flow, some type-based analyses have been put forward. One of them is Pfenning’s modal
type theory of Intensionality, Extensionality, and Proof Irrelevance [22] which intro-
duces functions with irrelevant arguments that play the role of proofs. Not only can
these arguments be erased during extraction, they can also be disregarded in type con-
version tests during type checking. This relieves the user of unnecessary proof burden



(proving that two proofs are equal). Furthermore, proofs can not only be discarded dur-
ing program extraction but directly after type checking, since they will never be looked
at again during type checking subsequent definitions.

In principle, we have to distinguish “post mortem” program extraction, let us call
it external erasure, and proof disposal during type checking, let us call it internal era-
sure. External erasure deals with closed expressions, programs, whereas internal erasure
deals with open expressions that can have free variables. Such free variables might be
assumed proofs of (possibly false) equations and block type casts, or (possibly false)
proofs of well-foundedness and prevent recursive functions from unfolding indefinitely.
For type checking to not go wrong or loop, those proofs can only be externally erased,
thus, the Prop/Set distinction is not for internal erasure. In Pfenning’s type theory,
proofs can never block computations even in open expressions (other than computa-
tions on proofs), thus, internal erasure is sound.

Miquel’s Implicit Calculus of Constructions (ICC) [17] goes further than Pfenning
and considers also parametric arguments as irrelevant. These are arguments which are
irrelevant for function execution but relevant during type conversion checking. Such
arguments may only be erased in function application but not in the associated type
instantiation. Barras and Bernardo [8] and Mishra-Linger and Sheard [19] have build
decidable type systems on top of ICC, but both have not fully integrated inductive types
and types defined by recursion (large eliminations). Barras and Bernardo, as Miquel,
have inductive types only in the form of their impredicative encodings, Mishra-Linger
[20] gives introduction and elimination principles for inductive types by example, but
does not show normalization or consistency.

Our long-term goal is to equip Agda with internal and external erasure. To this end, a
type theory for irrelevance is needed that supports user-defined data types and functions
and types defined by pattern matching. Experiments with my prototype implementation
MiniAgda [2] have revealed some issues when combining Miquel-style irrelevance with
large eliminations (see Ex. 2 in Sec. 2). Since it is unclear whether these issues can be
resolved, I have chosen to scale Pfenning’s notion of proof irrelevance up to inductive
types.

In this article, we start with the “extensionality and proof irrelevance” fragment
of Pfenning’s type theory in Reed’s version [23, 24]. We extend it by a hierarchy of
predicative universes, yielding Irrelevant Intensional Type Theory IITT (Sec. 2). Based
on a heterogeneous algorithmic equality which compares two expressions, each in its
own context at its own type (Sec. 3), we smoothly construct a Kripke model that is both
sound and complete for IITT (Sec. 4). It allows us to prove soundness and completeness
of algorithmic equality, normalization, subject reduction, consistency, and decidability
of typing in one go (Sec. 5). The model is ready for data types, large eliminations, types
with extensionality principles, and internal erasure (Sec. 6).

The novel technical contributions of this work are a heterogeneous formulation of
equality in the specification of type theory, and the universal Kripke model that yields
all interesting meta-theoretic results at once.

The Kripke model is inspired by previous work on normalization by evaluation [3].
There we have already observed that a heterogeneous treatment of algorithmic equality
solves the problem of defining a Kripke logical relation that shows completeness of



algorithmic equality. Harper and Pfenning [12] hit the same problem, and their fix was
to erase dependencies in types. In weak type theories like the logical framework erasure
is possible, but it does not scale to large eliminations.

Related to our present treatment of IITT is Goguen’s Typed Operational Semantics
[11]. He proves meta-theoretic properties such as normalization, subject reduction, and
confluence by a Kripke logical predicate of well-typed terms. However, his notion of
equality is based on reduction and not a step-wise algorithm.

Awodey and Bauer [7] give a categorical treatment of proof irrelevance which is
very similar to Pfenning and Reed’s. However, they work in the setting of Extensional
Type Theory with undecidable type checking, I could not directly use their results for
this work.

Due to lack of space, proofs have been mostly omitted; more proofs are available in
an extended version of this article on the author’s home page.

2 Irrelevant Intensional Type Theory

In this section, we present Irrelevant Intensional Type Theory IITT which features two
of Pfenning’s function spaces [22], the ordinary “extensional” (x : U) → T and the
proof irrelevant (x÷U) → T . The main idea is that the argument of a (x÷U) → T
function is counted as a proof and can neither be returned nor eliminated on, it can
only be passed as argument to another proof irrelevant function or data constructor.
Technically, this is realized by annotating variables as relevant, x : U , or irrelevant,
x÷U , in the typing context, to restrict the use of irrelevant variables to use in irrelevant
arguments.

Expression and context syntax. We distinguish between relevant (t :u or simply t u) and
irrelevant application (t÷u). Accordingly, we have relevant (λx : U. T ) and irrelevant
abstraction (λx÷U. T ). Our choice of typed abstraction is not fundamental; a bidirec-
tional type-checking algorithm [10] can reconstruct type and relevance annotations at
abstractions and applications.

Var 3 x, y, X, Y
Sort 3 s ::= Setk (k ∈ N) universes
Ann 3 ? ::= ÷ | : annotation: irrelevant, relevant
Exp 3 t, u, T, U ::= s | (x?U)→ T sort, (ir)relevant function type

| x | λx?U. t | t ?u lambda-calculus
Cxt 3 Γ, ∆ ::= ¦ | Γ. x?T empty, (ir)relevant extension

Expressions are considered modulo α-equality, we write t ≡ t′ when we want to stress
that t and t′ identical (up to α).

Sorts. IITT is a pure type system (PTS) with infinite hierarchy of predicative universes
Set0 : Set1 : .... The universes are not cumulative. We have the PTS axioms Axiom =
{(Seti, Seti+1) | i ∈ N} and the rules Rule = {(Seti, Setj , Setmax(i,j)) | i, j ∈ N}. As
customary, we will write the side condition (s, s′) ∈ Axiom just as (s, s′) and likewise
(s1, s2, s3) ∈ Rule just as (s1, s2, s3). IITT is a full and functional PTS, which means



that for all s1, s2 there is exactly one s3 such that (s1, s2, s3). As a consequence, there
is no subtyping, types are unique up to equality.

Substitutions σ are maps from variables to expressions. We require that the domain
dom(σ) = {x | σ(x) 6= x} is finite. We write id for the identity substitution and [u/x]
for the singleton substitution σ with dom(σ) = {x} and σ(x) = u. Capture avoiding
parallel substitution of σ in t is written as juxtaposition tσ.

Contexts Γ feature two kinds of bindings, relevant (x : U ) and irrelevant (x ÷ U )
ones. Only relevant variables are in scope in an expression. Resurrection Γ⊕ turns all
irrelevant bindings x ÷ T into relevant x :T ones [22]. It is the tool to make irrelevant
variables, also called proof variables, available in proofs. Extending context Γ by some
bindings to context ∆ is written ∆ ≤ Γ .

Judgements of IITT.

` Γ context Γ is well-formed
` Γ = ` Γ ′ contexts Γ and Γ ′ are well-formed and equal
Γ ` t : T in context Γ , expression t has type T
Γ ` t : T = Γ ′ ` t′ : T ′ typed expressions t and t′ are equal

Derived judgements.

Γ ` t÷ T ⇐⇒ Γ⊕ ` t : T
Γ ` t÷ T = Γ ′ ` t′ ÷ T ′ ⇐⇒ Γ ` t÷ T and Γ ′ ` t′ ÷ T ′

Γ ` t = t′ ? T ⇐⇒ Γ ` t ? T = Γ ` t′ ? T
Γ ` T ⇐⇒ Γ ` T : s for some s
Γ ` T = Γ ′ ` T ′ ⇐⇒ Γ ` T : s = Γ ′ ` T ′ : s′ for some s, s′

Γ ` T = T ′ ⇐⇒ ` Γ and T ≡ s ≡ T ′ or Γ ` T = Γ ` T ′

Context well-formedness and typing ` Γ and Γ ` t : T , extending Reed [23] to PTS
style. Note that there is no variable rule for irrelevant bindings (x÷ U) ∈ Γ .

` ¦
` Γ Γ ` T : s

` Γ. x?T

` Γ

Γ ` s : s′
(s, s′)

Γ ` U : s1 Γ. x?U ` T : s2

Γ ` (x?U)→ T : s3
(s1, s2, s3)

` Γ (x :U) ∈ Γ

Γ ` x : U

Γ. x?U ` t : T

Γ ` λx?U. t : (x?U)→ T

Γ ` t : (x?U)→ T Γ ` u ? U

Γ ` t ?u : T [u/x]
Γ ` t : T Γ ` T = T ′

Γ ` t : T ′

When we apply an irrelevant function Γ ` t : (x÷U) → T to u, the argument u is
typed in the resurrected context Γ⊕ ` u : U . This means that u is treated as a proof
and the proof variables become available.



Parallel computation (β) and extensionality (η).

Γ. x?U ` t : T = Γ ′. x?U ′ ` t′ : T ′ Γ ` u ? U = Γ ′ ` u′ ? U ′

Γ ` (λx?U. t) ?u : T [u/x] = Γ ′ ` t′[u′/x] : T ′[u′/x]

Γ ` t : (x?U) → T = Γ ′ ` t′ : (x?U ′) → T ′

Γ ` t : (x?U) → T = Γ ′ ` λx?U ′. t′ ?x : (x?U ′) → T ′

Equivalence rules.

Γ ` t : T

Γ ` t : T = Γ ` t : T

Γ ` t : T = Γ ′ ` t′ : T ′

Γ ′ ` t′ : T ′ = Γ ` t : T

Γ1 ` t1 : T1 = Γ2 ` t2 : T2 Γ2 ` t2 : T2 = Γ3 ` t3 : T3

Γ1 ` t1 : T1 = Γ3 ` t3 : T3

Compatibility rules.

` Γ = ` Γ ′

Γ ` s : s′ = Γ ′ ` s : s′
(s, s′)

(x :U) ∈ Γ Γ ` U : s = Γ ′ ` U ′ : s′ (x :U ′) ∈ Γ ′

Γ ` x : U = Γ ′ ` x : U ′

Γ ` U : s1 = Γ ′ ` U ′ : s′1
Γ. x?U ` T : s2 = Γ ′. x?U ′ ` T ′ : s′2

Γ ` (x?U) → T : s3 = Γ ′ ` (x?U ′) → T ′ : s′3

Γ. x?U ` t : T = Γ ′. x?U ′ ` t′ : T ′

Γ ` λx?U. t : (x?U) → T = Γ ′ ` λx?U ′. t′ : (x?U ′) → T ′

Γ ` t : (x :U) → T = Γ ′ ` t′ : (x :U ′) → T ′

Γ ` u : U = Γ ′ ` u′ : U ′

Γ ` t u : T [u/x] = Γ ′ ` t′ u′ : T ′[u′/x]

Γ ` t : (x÷U) → T = Γ ′ ` t′ : (x÷U ′) → T ′

Γ⊕ ` u : U Γ ′⊕ ` u′ : U ′

Γ ` t÷u : T [u/x] = Γ ′ ` t′ ÷u′ : T ′[u′/x]

Conversion rule.

Γ1 ` t1 : T1 = Γ2 ` t2 : T2 Γ2 ` T2 = T ′2
Γ1 ` t1 : T1 = Γ2 ` t2 : T ′2

Fig. 1. Rules of heterogeneous equality

Equality. Figure 1 presents the rules to construct the judgement Γ ` t : T = Γ ′ `
t′ : T ′. The novelty is the heterogeneous typing: we do not locally enforce that equal
terms must have equal types, but we will show it globally in Sec. 5. Note that in the
compatibility rule for irrelevant application, the function arguments may be completely
unrelated.



In heterogeneous judgements such as equality, we maintain the invariant that the
two contexts Γ and Γ ′ have the same shape, i. e., bind the same variables with the same
irrelevance status. Only the types bound to the variables maybe different in Γ and Γ ′.

Context equality ` Γ = ` Γ ′ is a partial equivalence relation (PER), i. e., a
symmetric and transitive relation, given inductively by the following rules:

` ¦ = ` ¦
` Γ = ` Γ ′ Γ ` U = Γ ′ ` U ′

` Γ. x?U = ` Γ ′. x?U ′

Typing and equality are closed under weakening. Typing enjoys the usual inversion
properties. To show substitution we introduce judgements ∆ ` σ : Γ for substitution
typing and ∆ ` σ : Γ = ∆′ ` σ : Γ ′ for substitution equality which are given
inductively by the following rules:

` ∆

∆ ` σ : ¦
∆ ` σ : Γ Γ ` U ∆ ` σ(x) ? Uσ

∆ ` σ : Γ. x?U

` ∆ = ` ∆′

∆ ` σ : ¦ = ∆′ ` σ′ : ¦

∆ ` σ : Γ = ∆′ ` σ′ : Γ ′ Γ ` U = Γ ′ ` U ′

∆ ` σ(x) ? Uσ = ∆′ ` σ′(x) ? U ′σ′

∆ ` σ : Γ. x?U = ∆ ` σ′ : Γ ′. x?U ′

Lemma 1 (Substitution). Substitution equality is a PER. Further:

1. If ∆ ` σ : Γ and Γ ` t : T then ∆ ` tσ : Tσ.
2. If ∆ ` σ : Γ = ∆′ ` σ′ : Γ ′. and Γ ` t : T = Γ ′ ` t′ : T ′ then ∆ ` tσ : Tσ =

∆′ ` t′σ′ : T ′σ′.

Example 1 (Algebraic structures). 1 In type theory, we can model an algebraic structure
over a carrier set A by a record of operations and proofs that the operations have the
relevant properties. Consider an extension of IITT by tuples and Leibniz equality:

(x?A)×B : Setmax(i,j) for A : Seti and x ? A ` B : Setj
(a, b) : (x?A)×B for a : A and b : B[a/x]
let (x, y) = p in t : C for p : (x?A)×B and x ? A, y :B ` t : C

a ≡ b : Seti for A : Seti and a, b : A
refl : a ≡ a for A : Seti and a : A
sym p : b ≡ a for p : a ≡ b

In the presence of a unit type 1 : Seti with constructor () : 1, the class SemiGrp of
semigroups over a fixed A : Set0 can be defined as

Assoc : (A→ A→ A)→ Set0
Assoc m = (a, b, c : A)→ m (m a b) c ≡ m a (m b c)

SemiGrp : Set0
SemiGrp = (m : A→ A→ A)× (assoc ÷ Assoc m)× 1.

1 Inspired by the 2010-09-23 message of Andrea Vezzosi on the Agda mailing list.



We have marked the component assoc as irrelevant which means that two SemiGrp
structures over A are already equal when they share the operation m; the shape of the
associativity proofs might differ. For instance, consider the flip operator (in a slightly
sugared definition):

flip : SemiGrp→ SemiGrp
flip (m, (assoc, u)) = (λa :A.λb :A. mb a, (sym assoc, ())

thm : (s : SemiGrp)→ flip (flip s) ≡ s
thm s = refl

A proof thm that flip cancels itself is now trivial, since λa b. (λa b. m b a) b a = m by
βη-equality and the assoc-component is irrelevant. This saves us from constructing a
proof of sym (sym assoc) ≡ assoc and the type checker from validating it. While the
saving is small for this small example, it illustrates the principle.

Example 2 (Large Eliminations). 2 The ICC∗ [8] or EPTS [19] irrelevant function type
(x ÷ A) → B allows x to appear relevantly in B. This extra power raises some issues
with large eliminations. Consider

T : Bool→ Set0
T true = Bool→ Bool
T false = Bool

t = λF : (b÷Bool)→ (T b→ T b)→ Set0.
λg : F false (λx : Bool. x)→ Bool.
λa : F true (λx : Bool→ Bool.λy : Bool. x y). g a.

The term t is well-typed in ICC∗ + T because the domain type of g and the type of a
are βη-equal after erasure (−)∗ of type annotations and irrelevant arguments:

(F false (λx : Bool. x))∗ = F (λxx)
=βη F (λxλy. x y) = (F true (λx : Bool→ Bool.λy : Bool. x y))∗

While a Curry view supports this, it is questionable whether identity functions at dif-
ferent types should be viewed as one. It is unclear how a type-directed equality algo-
rithm (see Sec. 3) should proceed here; it needs to recognize that x : Bool is equal to
λy : Bool. x y : Bool → Bool. This situation is amplified by a unit type 1 with exten-
sional equality. When we change T true to 1 and the type of a to F true (λx : 1. ())
then t should still type-check, because λx. () is the identity function on 1. However,
η-equality for 1 cannot be checked without types, and a type-directed algorithm would
end up checking x : Bool for equality with () : 1. This can never work, because by
transitivity we would get that any two booleans are equal.

Summarizing, we may conclude that the type of F bears trouble and needs to be
rejected. IITT does this because it forbids the irrelevant b in relevant positions such as
T b; ICC∗ lacks T altogether. Extensions of ICC∗ should at least make sure that b is
never eliminated, such as in T b. Technically, T would have to be put in a separate class
of recursive functions, those that actually compute with their argument. We leave the
interaction of the three different function types to future research.

2 Inspired by discussions with Ulf Norell during the 11th Agda Implementor’s Meeting.



3 Algorithmic Equality

The algorithm for checking equality in IITT is inspired by Harper and Pfenning [12].
Like theirs, it is type-directed, but in our case each term comes with its own type in
its own typing context. The algorithm proceeds stepwise, by alternating weak head
normalization and head symbol comparison. Weak head normal forms (whnfs) are given
by the following grammar:

Whnf 3 a, b, f, A, B, F ::= s | (x?U)→ T | λx?U. t | n whnf
Wne 3 n,N ::= x | n ?u neutral whnf

Weak head evaluation. t ↘ a and active application f @? u ↘ a are given by the
following rules.

t↘ f f @? u↘ a

t ?u↘ a a↘ a

t[u/x]↘ a

(λx?U. t)@? u↘ a n @? u↘ n ?u

Instead of writing the propositions t ↘ a and P [a] we will sometimes simply write
P [↓t]. Similarly, we might write P [f @? u] instead of f @? u↘ a and P [a]. In rules, it
is understood that the evaluation judgement is always an extra premise, never an extra
conclusion.

Type equality ∆ ` A ⇐⇒ ∆′ ` A′, for weak head normal forms, and ∆ `
T ⇐̂⇒ ∆′ ` T ′, for arbitrary well-formed types, checks that two given types are
equal in their respective contexts.

∆ ` s ⇐⇒ ∆′ ` s

∆ ` N : s ←→ ∆′ ` N ′ : s′

∆ ` N ⇐⇒ ∆′ ` N ′
∆ ` ↓T ⇐⇒ ∆′ ` ↓T ′
∆ ` T ⇐̂⇒ ∆′ ` T ′

∆ ` U ⇐̂⇒ ∆′ ` U ′ ∆.x :U ` T ⇐̂⇒ ∆′. x :U ′ ` T ′

∆ ` (x?U)→ T ⇐⇒ ∆′ ` (x?U ′)→ T ′

Structural equality ∆ ` n : A ←→ ∆′ ` n′ : A′ and ∆ ` n : T ←̂→ ∆′ ` n′ : T ′

checks the neutral expressions n and n′ for equality and at the same time infers their
types, which are returned as output.

∆ ` n : T ←̂→ ∆′ ` n′ : T ′

∆ ` n : ↓T ←→ ∆′ ` n′ : ↓T ′
(x :T ) ∈ ∆ (x :T ′) ∈ ∆′

∆ ` x : T ←̂→ ∆′ ` x : T ′

∆ ` n : (x :U)→ T ←→ ∆′ ` n′ : (x :U ′)→ T ′

∆ ` u : U ⇐̂⇒ ∆′ ` u′ : U ′

∆ ` n u : T [u/x] ←̂→ ∆′ ` n′ u′ : T ′[u′/x]

∆ ` n : (x÷U)→ T ←→ ∆′ ` n′ : (x÷U ′)→ T ′

∆ ` n÷u : T [u/x] ←̂→ ∆′ ` n′ ÷u′ : T ′[u′/x]

Note that the inferred types T [u/x] and T ′[u′/x] in the last rule are a priori different,
even if T is equal to T ′. This motivates a heterogeneously-typed algorithmic equality.



Type-directed equality ∆ ` t : A ⇐⇒ ∆′ ` t′ : A′ and ∆ ` t : T ⇐̂⇒ ∆′ ` t′ : T ′

checks terms t and t′ for equality and proceeds by the common structure of the supplied
types, to account for η.

∆ ` T ⇐̂⇒ ∆′ ` T ′

∆ ` T : s ⇐⇒ ∆′ ` T ′ : s′

∆.x?U ` t ?x : T ⇐̂⇒ ∆′. x?U ′ ` t′ ?x : T ′

∆ ` t : (x?U)→ T ⇐⇒ ∆′ ` t′ : (x?U ′)→ T ′

∆ ` ↓t : T ←̂→ ∆′ ` ↓t′ : T ′

∆ ` t : N ⇐⇒ ∆′ ` t′ : N ′
∆ ` t : ↓T ⇐⇒ ∆′ ` t′ : ↓T ′
∆ ` t : T ⇐̂⇒ ∆′ ` t′ : T ′

Note that in the but-last rule we do not check that the inferred type T of ↓t equals
the ascribed type N . Since algorithmic equality is only invoked for well-typed t, we
know that this must always be the case. Skipping this test is a conceptually important
improvement over Harper and Pfenning [12].

Lemma 2 (Algorithmic equality is a Kripke PER). ←→, ←̂→, ⇐⇒, and ⇐̂⇒ are
symmetric and transitive and closed under weakening.

Extending structural equality to irrelevance, we let

∆⊕ ` n : A ←→ ∆⊕ ` n : A ∆′⊕ ` n′ : A′ ←→ ∆′⊕ ` n′ : A′

∆ ` n÷A ←→ ∆′ ` n′ ÷A′

and analogously for ∆ ` n÷ T ←̂→ ∆′ ` n′ ÷ T ′.

4 A Universal Kripke Model for IITT

In this section we build, based on algorithmic equality, a universal Kripke model of
typed terms that is both sound and complete for IITT. Following Goguen [11] and
previous work [3], we first define a semantic universe hierarchy Ti whose sole purpose
is to provide a measure for defining a logical relation and proving some of its properties.
The limit Tω corresponds to the proof-theoretic strength or ordinal of IITT.

4.1 An Induction Measure

We denote sets of expressions byA,B and functions from expressions to sets of expres-
sions byF . Let Â = {t | ↓t ∈ A} denote the closure ofA by weak head expansion. De-
pendent function space is defined as Π AF = {f ∈Whnf | ∀u ∈ Â. f @? u ∈ F(u)}.

By recursion on i ∈ N we define inductively sets Ti ⊆Whnf×P(Whnf) as follows
[3, Sec. 5.1]:

(N, Wne) ∈ Ti (Setj , |Tj |) ∈ Ti
(Setj , Seti) ∈ Axiom

(U,A) ∈ T̂i ∀u ∈ Â. (T [u/x],F(u)) ∈ T̂i

((x?U)→ T, Π AF) ∈ Ti



Herein, T̂i = {(T,A) | (↓T,A) ∈ Ti} and |Tj | = {A | (A,A) ∈ Tj for some A}.
The induction measure A ∈ Seti shall now mean the minimum height of a derivation
of (A,A) ∈ Ti for some A. Note that due to universe stratification, A ∈ Seti is smaller
than Seti ∈ Setj .

4.2 A Heterogeneously Typed Kripke Logical Relation

By induction on the maximum of the measures A ∈ Seti and A′ ∈ Seti′ we define two
Kripke relations

∆ ` A : Seti s ∆′ ` A′ : Seti′
∆ ` a : A s ∆′ ` a′ : A′.

together with their respective closures ŝ and the generalization to ?. The clauses are
given in rule form.

∆ ` N ⇐⇒ ∆′ ` N ′

∆ ` N : Seti = ∆′ ` N ′ : Seti′

∆ ` N : Seti s ∆′ ` N ′ : Seti′

∆ ` n : ←̂→ ∆′ ` n′ :
∆ ` n : N = ∆′ ` n′ : N ′

∆ ` n : N s ∆′ ` n′ : N ′

∆ ` Seti : Seti+1 = ∆′ ` Seti : Seti+1

∆ ` Seti : Seti+1 s ∆′ ` Seti : Seti+1

∆ ` U : Seti ŝ ∆′ ` U ′ : Seti′

∀(Γ, Γ ′) ≤ (∆,∆′), Γ ` u ? U ŝ Γ ′ ` u′ ? U ′ =⇒
Γ ` T [u/x] : Seti ŝ Γ ′ ` T ′[u′/x] : Seti′

∆ ` (x?U)→ T : Seti = ∆′ ` (x?U ′)→ T ′ : Seti′

∆ ` (x?U)→ T : Seti s ∆′ ` (x?U ′)→ T ′ : Seti′

∀(Γ, Γ ′) ≤ (∆,∆′), Γ ` u ? U ŝ Γ ′ ` u′ ? U ′ =⇒
Γ ` f ?u : T [u/x] ŝ Γ ′ ` f ′ ?u′ : T ′[u′/x]

∆ ` f : (x?U)→ T = ∆′ ` f ′ : (x?U ′)→ T ′

∆ ` f : (x?U)→ T s ∆′ ` f ′ : (x?U ′)→ T ′

t↘ a ∆ ` t = a : ↓T ∆′ ` t′ = a′ : ↓T ′ t′ ↘ a′

∆ ` a : ↓T s ∆′ ` a′ : ↓T ′
∆ ` t : T ŝ ∆′ ` t′ : T ′

∆⊕ ` a : A s ∆⊕ ` a : A ∆′⊕ ` a′ : A′ s ∆′⊕ ` a′ : A′

∆ ` a÷A s ∆′ ` a′ ÷A′

∆⊕ ` t : T ŝ ∆⊕ ` t : T ∆′⊕ ` t′ : T ′ ŝ ∆′⊕ ` t′ : T ′

∆ ` t÷ T ŝ ∆′ ` t′ ÷ T ′

It is immediate that the logical relation contains only well-typed terms, is symmetric,
transitive, and closed under weakening.



Lemma 3 (Type and context conversion). If ∆ ` t : T ŝ ∆′ ` t′ : T ′ and ∆′ `
T ′ : s′ ŝ ∆′′ ` T ′′ : s′′ then ∆ ` t : T ŝ ∆′′ ` t′ : T ′′.

Lemma 4 (Escape from the logical relation). Let ∆ ` T : Seti ŝ ∆′ ` T ′ : Seti′

1. ∆ ` T ⇐̂⇒ ∆ ` T ′.
2. If ∆ ` t : T ŝ ∆′ ` t′ : T ′ then ∆ ` t : T ⇐̂⇒ ∆′ ` t′ : T ′.
3. If ∆ ` n ? T ←̂→ ∆′ ` n′ ? T ′ and ∆ ` n ? T = ∆ ` n′ ? T ′ then

∆ ` n ? T ŝ ∆ ` n′ ? T ′.

4.3 Validity in the Model

Simultaneously and by induction on the length of Γ we define the PERs ° Γ = ° Γ ′

and ∆ ` σ : Γ ŝ ∆′ ` σ′ : Γ ′ which presupposes the former. In rule notation this
reads:

° ¦ = ° ¦
° Γ = ° Γ ′ Γ ° U = Γ ′ ° U ′

° Γ. x?U = ° Γ ′. x?U ′

∆ ` σ : ¦ ŝ ∆′ ` σ′ : ¦

∆ ` σ : Γ ŝ ∆′ ` σ′ : Γ ′ ∆ ` σ(x) ? Uσ ŝ ∆′ ` σ′(x) ? U ′σ′

∆ ` σ : Γ. x?U ŝ ∆′ ` σ′ : Γ ′. x?U ′

Again at the same time, we define the following abbreviations, also given in rule nota-
tion:

Γ ° s = Γ ′ ° s

Γ ° T : s = Γ ′ ° T ′ : s′

Γ ° T = Γ ′ ° T ′

° Γ = ° Γ ′ Γ ° T = Γ ′ ° T ′

∀∆ ` σ : Γ ŝ ∆′ ` σ′ : Γ ′ =⇒ ∆ ` tσ : Tσ ŝ ∆′ ` t′σ′ : T ′σ′

Γ ° t : T = Γ ′ ° t′ : T ′

Finally, let Γ ° t : T ⇐⇒ Γ ° t : T = Γ ° t : T and ° Γ ⇐⇒ ° Γ = ° Γ .

Lemma 5 (Context satisfiable). For the identity substitution id and ° Γ = ° Γ ′ we
have Γ ` id : Γ ŝ Γ ′ ` id : Γ ′.

Theorem 1 (Completeness of IITT rules). If Γ ° t : T = Γ ′ ° t′ : T ′ then Γ ` t :
T = Γ ′ ` t′ : T ′ and Γ ` T = Γ ′ ` T ′.

Theorem 2 (Fundamental theorem of logical relations).

1. If ` Γ then ° Γ .
2. If ` Γ = ` Γ ′ then ° Γ = ° Γ ′.
3. If Γ ` t : T then Γ ° t : T .
4. If Γ ` t : T = Γ ′ ` t′ : T ′ then Γ ° t : T = Γ ′ ° t′ : T ′.



5 Meta-theoretic Consequences of the Model Construction

After doing hard work in the construction of a universal model, the rest of the meta-
theory of IITT falls into our lap like a ripe fruit.

Normalization and subject reduction. An immediate consequence of the model con-
struction is that each term has a weak head normal form and that typing and equality is
preserved by weak head normalization.

Theorem 3 (Normalization and subject reduction). If Γ ` t : T then t ↘ a and
Γ ` t = a : T .

Correctness of algorithmic equality. Algorithmic equality is correct, i. e., sound, com-
plete, and terminating. Together, this entails decidability of equality in IITT. Algorith-
mic equality is built into the model at every step, thus, completeness is immediate:

Theorem 4 (Completeness of algorithmic equality). If Γ ` t : T = Γ ′ ` t′ : T ′

then Γ ` t : T ⇐̂⇒ Γ ′ ` t′ : T ′.

Termination of algorithmic equality is a consequence of full normalization, which
we have not defined explicitly, but which is implicit in the model.

Theorem 5 (Termination of algorithmic equality). If ∆ ` t : T and ∆′ ` t′ : T ′

then the query ∆ ` t : T ⇐̂⇒ ∆′ ` t′ : T ′ terminates.

Soundness of the equality algorithm is a consequence of subject reduction.

Theorem 6 (Soundness of algorithmic equality). Let ∆ ` t : T and ∆′ ` t′ : T ′ and
∆ ` T = ∆′ ` T ′. If ∆ ` t : T ⇐̂⇒ ∆′ ` t′ : T ′ then ∆ ` t : T = ∆′ ` t′ : T ′.

Homogeneity. Although we defined IITT-equality heterogeneously, we can now show
that the heterogeneity was superficial, i. e., in fact do equal terms have equal types. This
was already implicit in the formulation of the equality algorithm which only compares
terms at types of the same shape. By rather than building homogeneity into the defini-
tion of equality, we obtain it as a global result.

Theorem 7 (Homogeneity). If Γ ` t : T = Γ ′ ` t′ : T ′ then ` Γ = ` Γ ′ and
Γ ` T = Γ ′ ` T ′.

Consistency. Importantly, not every type is inhabited in IITT, thus, it can be used as
a logic. A prerequisite is that types can be distinguished, which follows immediately
from completeness of algorithmic equality.

Theorem 8 (Consistency). X :Set0 6 ` t : X .

Decidability. To round off, we show that typing in IITT is decidable. Type checking
algorithms such as bidirectional checking [10] rely on injectivity of function type con-
structors, which is built into the definition of s:

Theorem 9 (Function type injectivity). If Γ ` (x?U) → T : s = Γ ′ ` (x?U ′) →
T ′ : s′ then Γ ` U : s = Γ ′ ` U ′ : s′ and Γ. x?U ` T : s = Γ ′. x?U ′ ` T ′ : s′.

Theorem 10 (Decidability of IITT). Equality Γ ` t : T = Γ ′ ` t′ : T ′ and typing
Γ ` t : T are decidable.



6 Extensions

Data types and recursion. The semantics of IITT is ready to cope with inductive data
types like the natural numbers and the associated recursion principles. Recursion into
types, aka known as large elimination, is also accounted for since we have universes
and a semantics which does not erase dependencies (unlike Pfenning’s model [22]).

Types with extensionality principles. The purpose of having a typed equality algo-
rithm is to handle η-laws that are not connected to the shape of the expression (like
η-contraction for functions) but to the shape of the type only. Typically these are types
T with at most one inhabitant, i. e., the empty type, the unit type, singleton types or
propositions.3 For such T we have the η-law

Γ ` t, t′ : T

Γ ` t = t′ : T

which can only be checked in the presence of type T . Realizing such η-laws gives addi-
tional “proof” irrelevance which is not covered by Pfenning’s irrelevant quantification
(x÷U)→ T .

Internal erasure. Terms u ÷ U in irrelevant position are only there to please the type
checker, they are ignored during equality checking. This can be inferred from the sub-
stitution principle: If Γ. x÷U ` T and Γ ` u, u′ ÷ U , then Γ ` T [u/x] = T [u′/x];
the type T has the same shape regardless of u, u′. Hence, terms like u serve the sole
purpose to prove some proposition and could be replaced by a dummy • immediately
after type-checking. This is an optimization which in the first place saves memory, but
if expressions are written to interface files and reloaded later, it also saves disk space
and execution time of saving and loaded. First experiments with an implementation of
internal erasure in Agda [9] shows that savings are huge, like in formalizing category
theory and algebra which uses structures with embedded proofs (see Example 1).

Internal erasure can be realized by making Γ ` t ÷ T a judgement (as opposed to
just a notation for Γ⊕ ` t : T ) and adding the rule

Γ ` t÷ T

Γ ` • ÷ T
.

The rule states that if there is already a proof t of T , then • is a new proof of T . This
preserves provability while erasing the proof terms. Conservativity of this rule can be
proven as in joint work of the author with Coquand and Pagano [4].

Proof modality. Pfenning [22] suggests a modality4 formed by the rule

Γ ` t÷ T

Γ ` t : 4T
.

which for instance allows the definition of the subset type {x : U | T x} as Σx :
U.4(T x). Such a modality has been present in Nuprl as Squash type [20] and it is
also known as the type of proofs of (proposition) T [4, 8]. Using the extensions of
Example 1, we can encode it as4T = ( ÷T )× 1.

3 Some care is necessary for the type of Leibniz equality [1, 25].



7 Conclusions

We have extended Pfenning’s notion of irrelevance to a type theory IITT with universes
that accommodates types defined by recursion. A heterogeneous algorithmic equality
judgement has allowed a smooth construction of a universal Kripke model that is both
sound and complete for IITT, yielding normalization, consistency and decidability of
IITT. Inspired by a heterogeneously typed semantics, we have formulated the declara-
tive system with a heterogeneous equality judgement as well and demonstrated that this
also yields a sound specification of type theory.

Integrating irrelevance and data types in dependent type theory does not seem with-
out challenges. We have succeeded to treat Pfenning’s notion of irrelevance, but our
proof does not scale directly to parametric function types, a stronger notion of irrelevant
function types called implicit quantification by Miquel [18].4 Two more type theories
build on Miquel’s calculus [17], Barras and Bernardo’s ICC∗ [8] and Mishra-Linger
and Sheard’s Erasure Pure Type Systems (EPTS) [19], but none has offered a satisfying
account of large eliminations yet. Miquel’s model [16] features data types only as im-
predicative encodings. For irrelevant, parametric, and recursive functions to coexist it
seems like three different function types are necessary, e. g., in the style of Pfenning’s
irrelevance, extensionality and intensionality. We would like to solve this puzzle in
future work, not least to implement high-performance languages with dependent types.
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