Irrelevance in Type Theory with a
Heterogeneous Equality Judgement

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich
andr eas. abel @fi .| mu. de

Abstract. Dependently typed programs contain an excessive amourtati€ s
terms which are necessary to please the type checker Hevare for computa-
tion. To obtain reasonable performance of not only the ctedgirogram but also
the type checker such static terms need to be erased as s@tgsible, prefer-
ably immediately after type checking. To this end, Pfenisiigoe theory with
irrelevant quantification, that models a distinction bedwestatic and dynamic
code, is extended to universes and large eliminations. IN®aeheterogeneously
typed implementation of equality which allows the smoothstauction of a uni-
versal Kripke model that proves normalization, consisgeartd decidability.

Keywords: dependent types, proof irrelevance, heteragesie typed equality,
algorithmic equality, logical relation, universal Kripkeodel.

1 Introduction and Related Work

Dependently typed programming languages such as Agda@b@][14], and Epigram
[16] allow the programmer to express in one language progyémeir types, rich in-
variants, and even proofs of these invariants. Besides&dsmited at run-time, depen-
dently typed programs contain much code needed only to pagype checker, which
is a the same time the verifier of the proofs woven into the fznog

Program extraction takes type-checked terms and discarts fhat are irrelevant
for execution. Augustsson’s dependently typed functiterajuage Cayenne [7] erases
typesusing a universe-based analysis. Coq's extraction praeeuas been designed
by Paulin-Mohring and Werner [22] and Letouzey [15] and diss not only types
but also proofs. The erasure rests on Coq’s universe-bapagation between proposi-
tional (Prop) and computational part§€t /Type). The rigidProp/Set distinction has
the drawback of code duplication: A structure which is somes used statically and
sometimes dynamically needs to be coded twice, on&dp and once irbet.

An alternative to the fixedProp/Set-distinction is to let the usage context decide
whether a term is a proof or a program. Besides whole-progir@atyses such as data
flow, some type-based analyses have been put forward. Onherofis Pfenning’s modal
type theory ofintensionality, Extensionality, and Proof Irrelevan&3] which intro-
duces functions with irrelevant arguments that play the adfl proofs. Not only can
these arguments be erased during extraction, they can eldistegarded in type con-
version tests during type checking. This relieves the uannecessary proof burden



(proving that two proofs are equal). Furthermore, proofsmat only be discarded dur-
ing program extraction but directly after type checkinggcsi they will never be looked
at again during type checking subsequent definitions.

In principle, we have to distinguish “post mortem” progrartraction, let us call
it external erasureand proof disposal during type checking, let us cadlhiernal era-
sure External erasure deals with closed expressions, prograneseas internal erasure
deals with open expressions that can have free variables. f&ee variables might be
assumed proofs of (possibly false) equations and block ¢gsés, or (possibly false)
proofs of well-foundedness and prevent recursive funstfoom unfolding indefinitely.
For type checking to not go wrong or loop, those proofs cag balexternally erased,
thus, theProp/Set distinction is not for internal erasure. In Pfenning’s tytheory,
proofs can never block computations even in open expresgmher than computa-
tions on proofs), thus, internal erasure is sound.

Miquel’s Implicit Calculus of Constructions (ICC) [18] geéurther than Pfenning
and considers alsparametricarguments as irrelevant. These are arguments which are
irrelevant for function execution but relevant during tygenversion checking. Such
arguments may only be erased in function application butiméhe associated type
instantiation. Barras and Bernardo [9] and Mishra-Lingsdl &heard [20] have build
decidable type systems on top of ICC, but both have not fatlggrated inductive types
and types defined by recursion (large eliminations). Baaras Bernardo, as Miquel,
have inductive types only in the form of their impredicatarecodings, Mishra-Linger
[21] gives introduction and elimination principles for inctive types by example, but
does not show normalization or consistency.

Our long-term goal is to equip Agda with internal and extéemasure. To thisend, a
type theory for irrelevance is needed that supports usinetbdata types and functions
and types defined by pattern matching. Experiments with rajopype implementation
MiniAgda [2] have revealed some issues when combining Migtide irrelevance with
large eliminations (see Ex. 2 in Sec. 2). Since it is uncleaetiver these issues can be
resolved, | have chosen to scale Pfenning’s notion of proefevance up to inductive

types.

In this article, we start with the “extensionality and praotlevance” fragment
of Pfenning’s type theory in Reed’s version [24,25]. We exté by a hierarchy of
predicative universes, yieldirigelevant Intensional Type TheotyT T (Sec. 2). Based
on a heterogeneous algorithmic equality which comparesetxpoessions, each in its
own context at its own type (Sec. 3), we smoothly constructipke€ model that is both
sound and complete for IITT (Sec. 4). It allows us to provensimess and completeness
of algorithmic equality, normalization, subject reducati@consistency, and decidability
of typing in one go (Sec. 5). The model is ready for data tylaege eliminations, types
with extensionality principles, and internal erasure (3¢

The novel technical contributions of this work are a hetermpus formulation of
equality in the specification of type theory, and the unigkkgipke model that yields
all interesting meta-theoretic results at once.

The Kripke model is inspired by previous work on normaliaatby evaluation [4].
There we have already observed that a heterogeneous treathaégorithmic equality
solves the problem of defining a Kripke logical relation teabws completeness of



algorithmic equality. Harper and Pfenning [13] hit the sgmneblem, and their fix was
to erase dependencies in types. In weak type theories Edegfical framework erasure
is possible, but it does not scale to large eliminations.

Related to our present treatment of IITT is Goguédlyped Operational Semantics
[12]. He proves meta-theoretic properties such as norat#dia, subject reduction, and
confluence by a Kripke logical predicate of well-typed tertdswever, his notion of
equality is based on reduction and not a step-wise algorithm

Awodey and Bauer [8] give a categorical treatment of proafl@vance which is
very similar to Pfenning and Reed'’s. However, they work ia $letting of Extensional
Type Theory with undecidable type checking, | could notdiseuse their results for
this work.

2 Irrelevant Intensional Type Theory

In this section, we preseftrelevant Intensional Type TheotyT T which features two
of Pfenning’s function spaces [23], the ordinary “extensid (z : U) — T and the
proof irrelevant(x+U) — T'. The main idea is that the argument of@-U) — T
function is counted as a proof and can neither be returnectlimainated on, it can
only be passed as argument to another proof irrelevantiimor data constructor.
Technically, this is realized by annotating variables dsvant,z : U, or irrelevant,
x -+ U, in the typing context, to restrict the use of irrelevaniahles to use in irrelevant
arguments.

Expression and context syntaWle distinguish between relevamt{ or simplyt u) and
irrelevant applicationt(* ). Accordingly, we have relevanig : U. T') and irrelevant
abstraction {z=-U.T'). Our choice of typed abstraction is not fundamental; arbidi
tional type-checking algorithm [11] can reconstruct typel aelevance annotations at
abstractions and applications.

Var 3 z,y, X, Y
Sort 3 s = Sety, (k€ N) universes
Ann > % n= annotation: irrelevant, relevant

Exp 2 ¢,u,T,U ==s| (xxU) — T  sort, (ir)relevant function type
| z | AaxU.t | t*u lambda-calculus
Cxt 5IA n=o | LoaxT empty, (ir)relevant extension

Expressions are considered modakequality, we writet = ¢’ when we want to stress
thatt andt’ identical (up too).

Sorts. lITT is a pure type system (PTS) with infinite hierarchy of gigative universes
Setg : Set; : .... The universes are not cumulative. We have the PTS axiotiven =
{(Set;, Set; 1) | i € N} and the ruleRule = {(Set;, Set;, Setiax(i,j)) | 4,7 € N}. As
customary, we will write the side conditiq, s’) € Axiom just as(s, s’) and likewise
(s1,52,83) € Rule just as(s, s2, s3). ITT is a full and functional PTS, which means
that for all s1, so there is exactly ones such that(sq, s2, s3). As a consequence, there
is no subtyping, types are unique up to equality.



Substitutionso are maps from variables to expressions. We require that dheath
dom(c) = {z | o(z) # z} is finite. We writeid for the identity substitution and:/ x|
for the singleton substitutiom with dom(c) = {z} ando(x) = u. Capture avoiding
parallel substitution of in ¢ is written as juxtapositiot.

Contexts I" feature two kinds of bindings, relevant ¢ U) and irrelevant £ = U)
ones. Only relevant variables are in scope in an expresRiesurrection”® turns all
irrelevant bindings: + 7" into relevantz : T ones [23]. It is the tool to make irrelevant
variables, also called proof variables, available in pso&fiktending context’ by some
bindings to context is written A < I'.

Judgementof IITT.

I contextl” is well-formed
FI=F1 contextsl” andI" are well-formed and equal
ret:T in contextl”, expression has typel’

rre:T=I"+t:T typed expressionsandt’ are equal

Derived judgements.

IrFt=T = [P Fr¢t:T

I'Ft+=T=I"+Ft' +T << I't+=Tandl" ' =T’
I'Ft=t%T = ['FtxT=IFt%xT

r+rT <= I' =T :sforsomes

r-T=1r"+1" — I'+T:5s=1I"+T':s forsomes,s’
r+=T7=1" <« +FlandT =s=T'or ' T =1 +T'

Context well-formedness and typing " and " + ¢ : T', extending Reed [24] to PTS
style. Note that there is no variable rule for irrelevantdings(z + U) € I'.

I I'+T:s
Fo b IoaxT

FI , I'tU:s FaxU FT: s9
FFS:S’(S’S 't (xxU) = T : s3

(317 52, 33)

I (x:U) el NaxU Ft:T
I'tz:U I'EXaxUt: (axU) =T

I'tt:(xxU)—>T I'tuxU I'+t:T r+17=1
I'Ft*u:Tu/x] rt+te:. 1

When we apply an irrelevant functiail - ¢ : (z+U) — T to u, the argument is
typed in the resurrected contekf®  u : U. This means that is treated as a proof
and the proof variables become available.



Parallel computationd) and extensionalityr().

FaoxU Ft:T=T"2xU Ft' : T’ F'ruxU=T"Fu U
I'E (exU.t)*u: Tu/z) = 1" Ft'[v//z] - T'u [x]

Fbt:(axU) >T=T"+t:(xxU)—>T
Ibt:(aexU) =T =1"F AUt/ *z : (xxU') — T"

Equivalence rules.

I'+Ht:T F'Ht:T=I"F¢t:T
I'ct:T=IkFt:T "t :T"=IkFt:T

INbbt1:Ti =15 Fta: 1o IobFte:To=135Fts:Ts
I3 }_t1ZT1:[‘3 }_tBIITIi

Compatibility rules.

Fr=FTI' (5.5') (z:U)el’ THFU:s=T"+FU :s (z:U)el'
TFs:s=I"Fs:5 % I'rFx:U=I"+Fz:U

I'U:s;=1"+FU' :5)
FaxU FT:so=I".2xU FT : 54
'k (zxU) =T :s3=1I"F (zxU") = T" : s}

FaoxU Ft:T=T"2xU +t' :T'
I FoxxUt: (axU) > T =1" F daxU' .t 2 (xxU’) — T'

'tt(z:U)->T=I+rt:(x:U)>T TI'ktt:(z+U)->T=I"+t:(zU")—->T
Fru:U=T"+Fu:U I'®Fu:U ' Lo U
'ttu:Tu/zl=T"+Ftw :T'w/x] T Ftiu:Tu/zl=1I"Ft' v T /x]

Conversion rule.

INNbt1:Ti =15 Fta: T I }—TQZTQI
INFt1:T1 =15 }—tQITQ/

Fig. 1. Rules of heterogeneous equality

Equality. Figure 1 presents the rules to construct the judgementt : T = I’ +

t’ : T'. The novelty is the heterogeneous typing: we do not locaifpree that equal
terms must have equal types, but we will show it globally ic.Se3. Note that in the
compatibility rule for irrelevant application, the funati arguments may be completely
unrelated. The heterogeneous definition of equality is nsgremetric and has more
degrees of liberty. Thus, closure under substitution isee&s prove (cf. [13, 3]).



In heterogeneous judgements such as equality, we maif@imvariant that the
two contextd” andI” have the same shape, i. ., bind the same variables withrife sa
irrelevance status. Only the types bound to the variablgdmdifferent inI” and ™.

Context equality- I = + I" is a partial equivalence relation (PER), i.e., a
symmetric and transitive relation, given inductively be flollowing rules:

FI= 1V r+-u=I1r'"vu’
Fo=Fo FLaxxU = F I xxU’

Typing and equality are closed under weakening. Typingyenjloe usual inversion
properties. To show substitution we introduce judgemehts o : I" for substitution
typingandA + o : I' = A" + o : I for substitution equality which are given
inductively by the following rules:

FA AFo:T r+u AFo(x)xUo
AlFo:o Abro: T aoxU
AbFo:I'=A" o : I r-~uv=1r"ru
FA=FA Abo(@)xUc=A"Fod'(z)*xU'd’
ArFoc:o=A"Fo 0 Abro:TaxxU=AFo : I xxU’

Lemma 1 (Substitution).Substitution equality is a PER. Further:

1. fAFo:I'andl’ Ht:TthenA Fto:To.

2 fAbro:I'=AFo' : I andl'Ht:T=I"Ft : T thenA Fto:To =
At To.

Lemma 2 (Well-formedness).

1. ¥ z:U.I"" Fthenl' - U.
2. fI' =t:TthenkT'andI’ - T.

Example 1 (Algebraic structures)In type theory, we can model an algebraic structure
over a carrier sefl by a record of operations and proofs that the operations theve
relevant properties. Consider an extension of [ITT by taled Leibniz equality:

(zxA) x B : Setiax(i,j)  for A:Set;andxr x A = B : Set;

(a,b) : (zxA) x B fora: Aandb: Bla/z]

let (z,y) =pint: C forp: (zxA) x Bandzx A,y:B +t¢:C
a=b : Set; for A : Set; anda,b: A

refl a=a for A : Set; anda : A

sym p :b=a forp:a=5b

In the presence of a unit type: Set; with constructor() : 1, the classSemiGrp of
semigroups over a fixed : Sety can be defined as

Assoc  : (A— A — A) — Setg

Assocm = (a,b,c: A) > m (mab)c=ma(mbc)

SemiGrp : Setg
SemiGrp=(m: A — A — A) X (assoc +~ Assoc m) x 1.

! Inspired by the 2010-09-23 message of Andrea Vezzosi on gjua Mailing list.



We have marked the componendsoc as irrelevant which means that tvsemiGrp
structures overl are already equal when they share the operatipthe shape of the
associativity proofs might differ. For instance, consittexflip operator (in a slightly
sugared definition):

flip : SemiGrp — SemiGrp

flip (m, (assoc,u)) = (Aa: AXb: A.mba, (sym assoc, ())
thm : (s : SemiGrp) — flip (flips) = s
thm s = refl

A proof thm thatflip cancels itself is now trivial, sincda b. (Aab. mba) ba = m by
Bn-equality and thezssoc-component is irrelevant. This saves us from constructing a
proof of sym (sym assoc) = assoc and the type checker from validating it. While the
saving is small for this small example, it illustrates thipiple.

Example 2 (Large Eliminations). The ICC' [9] or EPTS [20] irrelevant function type
(x + A) — B allowsx to appearelevantlyin B. This extra power raises some issues
with large eliminations. Consider

T : Bool — Setg

T true = Bool — Bool

T false = Bool

t = AF: (b+Bool) — (Tb — Tb) — Setg.

Ag : F false (Az : Bool. z) — Bool.
Aa : F true (Ax : Bool — Bool.\y : Bool. 2 y). g a.

The termt is well-typed in ICC + T because the domain type gfand the type of:
arefn-equal after erasure-)* of type annotations and irrelevant arguments:

(F false (A\x : Bool.z))* = F (A\zx)
=gy F' (AxAy.zy) = (F true (Az : Bool — Bool.\y : Bool. zy))*

While a Curry view supports this, it is questionable whetidentity functions at dif-
ferent types should be viewed as one. It is unclear how a dyeted equality algo-
rithm (see Sec. 3) should proceed here; it needs to recotirare : Bool is equal to
Ay : Bool. 2y : Bool — Bool. This situation is amplified by a unit typewith exten-
sional equality. When we changetrue to 1 and the type ofi to F true (Az : 1.())
thent should still type-check, because:. () is the identity function ori. However,
n-equality forl cannot be checked without types, and a type-directed #hgonivould
end up checking: : Bool for equality with() : 1. This can never work, because by
transitivity we would get that any two booleans are equal.

Summarizing, we may conclude that the typefobears trouble and needs to be
rejected. IITT does this because it forbids the irrelevaintrelevant positions such as
Tb; ICC* lacks T altogether. Extensions of ICGhould at least make sure thats
never eliminated, such as’inb. Technically,T would have to be put in a separate class
of recursivefunctions, those that actually compute with their argumeve leave the
interaction of the three different function types to futteeearch.

2 |Inspired by discussions with Ulf Norell during the 11th Addaplementor’s Meeting.



3 Algorithmic Equality

The algorithm for checking equality in IITT is inspired by g&r and Pfenning [13].
Like theirs, it is type-directed, but in our case each terrmes with its own type in
its own typing context. The algorithm proceeds stepwisealdgrnating weak head
normalization and head symbol comparison. Weak head ndonmas (whnfs) are given
by the following grammar:

Whnf 3 a,b, f,A,B,F ::=s | (xxU) —» T | AaxU.t | n whnf
Wne >n, N n=a | n*u neutral whnf

Weak head evaluationt \, a and active applicatiorf @* u \, a are given by the
following rules.

t\, f fa@u\ a tlu/z] \ a
t*u\, a a\, a AaxU.t) @*u ™\, a n@*u \, n*u

Instead of writing the propositions™, « and P[a] we will sometimes simply write
P[|t]. Similarly, we might writeP[f @* «] instead off @* » \, a andP[a]. In rules, it
is understood that the evaluation judgement is always aa exémise, never an extra
conclusion.

Type equality A - A < A" + A’, for weak head normal forms, and +
T < A kT, for arbitrary well-formed types, checks that two givendgpare
equal in their respective contexts.

AFN:s +«— AN :s AR|T & A+ |T
Abs <— A ts AFN << A N/ ART & A T

AFU & A RU AzUFT & Az U FTY
AF(xxU) =T <= A+ (xxU') = T’

StructuralequalityA +n: A «—— A’ Fn’:AandAbFn: T «— A Fn': T
checks the neutral expressiom&ndn’ for equality and at the same time infers their
types, which are returned as output.

Abn:T & A En/: T (x:T)e A (x:T) e A
Abn:|T «— A Fn/:|T Abx:T «—— A Fx: T

Abn:(z:U)—->T «— A Fn':(2:U) > T
Abu:U<= A Fud: U
Abnu:Tu/z) < A Fn/u T u ]z

Abn:(z=U)—>T «— A bFn:(z=U)—T
Abn*u:Tu/z]) < A" En'+u : T'u' /]

Note that the inferred typ€B[u/x] andT’[u’/x] in the last rule are a priori different,
even ifT is equal toI”. This motivates a heterogeneously-typed algorithmic Etyua



Type-directedequalitd Ht: A <— A Ft¢': AandA+t: T < A B¢ : T
checks termg andt’ for equality and proceeds by the common structure of thelmgp
types, to account fou.

AFT & AT
AFT:s <= A FT:§

AxxU Ft*z: T < A .oxU' Ft'*x: T’
Abt:(xxU) > T <= A Ht': (xxU") > T

AFLt:T & A [t T At |T < A" ¢ :|T
AFt:N < A ¢ : N Abt:T << A YT
Note that in the but-last rule we do not check that the infibtygoe T of |t equals
the ascribed typeV. Since algorithmic equality is only invoked for well-typedwe

know that this must always be the case. Skipping this testimnaeptually important
improvement over Harper and Pfenning [13].

Lemma 3 (Uniqueness of inferred types).

1L.IfAFR:A — A +n:AandA+n:B «— A" Fn': B thenA=1B
andA’ = B'.
2. fAFEn: T & Ao :T"andA Fn:U < A" +n':U'thenT =U
and7’ =U".
Lemma 4 (Algorithmic equality is a Kripke PER). «—, «—, <=, and<= are
symmetric and transitive and closed under weakening.

Extending structural equality to irrelevance, we let

AP Fn: A A% Fn: A A L/ A —— AD /A
AFn+A «— A Fn/ = A

and analogously foA +n =T «—— A" Fn/ =T,

4 A Universal Kripke Model for IITT

In this section we build, based on algorithmic equality, &ersal Kripke model of

typed terms that is both sound and complete for IITT. FollmyviGoguen [12] and

previous work [4], we first define a semantic universe hidraff whose sole purpose
is to provide a measure for defining a logical relation andimgsome of its properties.
The limit 7., corresponds to the proof-theoretic strength or ordinal©f |

4.1 An Induction Measure

We denote sets of expressionshy3 and functions from expressions to sets of expres-
sions byF. Let A = {¢ | |t € A} denote the closure oA by weak head expansion. De-

pendent function space is definedidsd F = {f € Whnf | Vu € A. f @* u € F(u)}.



By recursion on € N we define inductively set§; C Whnf x P(Whnf) as follows
[4, Sec. 5.1]:

(N,Wne) € 7; (Set;, |T;]) € T, (Set;, Set;) € Axiom

(U,A) €T, Vu € A. (T[u/z], F(u)) € 7;
(zxU) = T, IIAF)€T;

~

Herein,7; = {(T,A) | (1T, A) € T;} and|Z;| = {A | (4, A) € T, forsomeA}.
The induction measurd € Set; shall now mean the minimum height of a derivation
of (4, A) € 7; for someA. Note that due to universe stratificatioh,c Set; is smaller
thanSet; € Set;.

4.2 A Heterogeneously Typed Kripke Logical Relation

By induction on the maximum of the measurés Set; andA’ € Set;, we define two
Kripke relations
A I—A:Seti@)A’ I—A’:Seti/
Ara:AQ A +d : A

together with their respective closuand the generalization ta The clauses are
given in rule form.

AFN << AN Abn:_ & A bFn:_
AFN:Set; = A" N’ : Sety AFn:N=A"Fn: N
AR N :Set; ©® A’ - N’ : Sety AFn:N@A Fn/: N’

A+ Set; : Seti+1 =A Set; : Seti+1
A+ Set; : Seti+1 ®© A’ | Set; : Seti+1

AFU:Set; @A U’ : Sety

V(LT < (AA), T FuxURT Fu' U =
I'bTu/z):Set; ® I + T'[u /] : Sety

AbF (xxU) = T :Set; = A" F (axU') — T" : Sety

Al (xxU) = T :Set; ® A’ b+ (zxU’) — T' : Setys

V(LT < (AA), T FuxURT Fu' U =

b fru:T/z|@T F f'*u T /]
Abf:(aexU) =T =4 F f :(xxU") =T
A fi(zxU) =T Q@A F f/:(axU") = T’

10



t\, a Art=a:|T ARt =d T '\, a
Aba:|T®A Fd:|T

AFL:T®A Ft T

AP Fa:AQ@ AP Fa: A A Fad :AQA® o A
AFa+- AR A Fa + A

AP Ft:TRA® Ht:T A ¢ . T'QA® -t :T
A Ft+T@A’ Ft =T

It is immediate that the logical relation contains only wiglbed terms, is symmetric,
transitive, and closed under weakening.

Lemma5 (Soundness).

1. IfA Fa:A/(\S)A’ Fa :AthenAFa:A=A"+Fd: A
22 0ARt:TRA Rt :T'thenA+t:T=A"F¢:T.
Lemma6. ® and@ are PERs and closed under weakening.
Lemma 7 (Type and context conversion).

1LfAFa: AQ A Fd : AandA F A s © A” F A” : s’ then
AFa:A® A" Fa' : A", R

20AFt: TOA F¢ T andA T :s ® A" - T" : 5" then
ARt TRA" ¥ :T".

Proof. Simultaneously by induction oA’ € s and|T" € s, respectively.

Lemma 8 (Escape from the logical relation)Let A - A : Set; ©® A’ + A’ : Set;

1LAFA = AFA.

2. ARt A@QA Ft' : AthenAFt: A < A Rt :A.

33.fAFnxAd «— A Fn/xAandA FnxA = A F n xA then
AFnxAQ@ A Fn'xA.

Corollary 1. LetA T : Set; @ A" BT : Sety

LAFT & AFT,

2 0ARt:TOA Ht :T'thenA Ft:T < A+t :T.

B MAFnxT & A Fn'xT'andA FnxT = A F n' xT' then
AFnxT AR xT.

The corollary is a direct, non-inductive consequence ofehama, so we can use it in
the proof of the lemma, quoted as “IH".

Proof. Simultaneously by induction oA € Set;.

Case A+ N :Set; ® A - N’ : Set;.

11



Subcasel. A H N < A’ - N’ by assumption.

Subcase2. We haveA + [t:_ «—— A"+ |t/: _,thusAFt: N — A +
t': N

Subcase 3.

First, considerx = .. If A Fn: N =A" +n' : NandA + n :
N «— A" Fn': NthenA +n:_ < A +n': _and trivially
AFn:N@A Fn':N.

Then, takex = +. Note that if A® - n : N = A® +n: NandA® +
n: N «—— A9 -n: NthenA® n:_ & A® Fn: _and
A® Fn:N® A® Fn: N.ThisimpliesthatifA Fn+N=A" Fn’+ N’
andAtFn+N «— A +n/+-NthenAkn+_ < A Fn'+_and
AFn+NQ@A Fn +N.

Case A + Setj : Seti @ A Setj : Seti/.

Subcasel. Clearly,A I Set; <= A’ | Set;.

Subcase?2. LetA - T : Set; @A T : Set;. ThenA T < A’ +T'by
IH1,thusA T :Set; <= A’ T : Set;

Subcase 3. Forx = :letA - N : Set; «— A’ + N’ : Set;. ThenA +
N < A"+ N'andA F N :Set; ® A" - N’ : Set; by definition.
Considering- = =+, itis sufficientto observethat® + N : Set; «—— A® +
N : Set; impliesA® - N < A® - NandA® F N : Set; ® A% +
N : Set; by definition.

Case A F (zxU) - T :Set; @ A" F (zxU’) — T" : Set;.

Subcase 1. Similar to 2.

Subcase 2. By assumptionA F ¢ : (xxU) — T ® At (xxU") — T'.
It is sufficient to showA.zxU + t*z : T <= AlaxU' F t'*x : T'.
SinceA + U : Set; ® A’ = U’ : Sety, by soundnesg\ + U : Set; =
A" U : Setyr, henceA. zxU + xxU = A'.xxU’ = 2 x U'. Since also
AxxU FoxxU < A.axU FzxU',weobtainA.z+U Ft*z: [T Q)
Al xxU" Ft'*x : | T viaIH 3, which entails our goal by IH 2.

Subcase 3. First, the case for = :. We reuse variable for a different irrelevance
marker. We haved - n : (axU) - T «— A Fn/ : (axU') — T
Assume arbitraryI", I'’) < (A, A) andI” F u*xU ® I'" - o'+ U’, which
yieldsI' FuxU =T" + o/« U’ andl" + T[u/z] : Set; ® I + T'[u’ /x] :
Set;. Incasex = :we havetoapply IH2foF Fw: |U < I" b : U
Otherwise, we obtain directly” + n*u : |[(T[u/z]) «— ' F n'*d/ :
1T /2). By IH3, I’ Fn*u: [(Tu/z]) @I Fn'*u : [T [u/x].

The case foxk = + proceeds analogously.

4.3 Validity in the Model

Simultaneously and by induction on the lengthlofve define the PERS- I" = I+ I
andA Fo: ' ® A’ + ¢’ : I'" which presupposes the former. In rule notation this

12



reads:

I = IF1" rru=r"wu’
Fo=IFo b IoaxU = |- I, axU’

AFJ:O@A’FU’:O

Abo:T®A Fo : I Ato(x)«Usc® A +o'(z)xU'o’
Abo:TaxUQ A o : V. oxl’

Again at the same time, we define the following abbreviatiafso given in rule nota-
tion:
'FT:s=I"IFT":5§
I'kFs=1I"lks rv.17=r"+1"

I = I-1" r'e-T=r"+1"
VALo:T®A Fo':I" = Abrtoc:To® A Ft'o :T'0’
'kt T=I"Ft:T
Finally,letl"'l+¢t: T < I'Ft:T=Tlrt:TandlF [ < IFI'=I-T.

Lemma 9 (Context satisfiable)For the identity substitutiond and I I" = I I'" we
havel' Fid: I'® I Fid: I".

Proof. By induction onI’, using Lemma 8.3.

Theorem 1 (Completeness of ITTrules)lf I'l-¢: T =I" It : T thenl” -t :
T=I'"Frt:T"and' VT =I"FT".

Proof. Using Lemma 9 we obtaiff ¢ : T ® I + ¢ : T’, which entailsI" | ¢ :
T =TI" Ft : T Analogously, since our assumption entdils- 7' = I |- T" by
definition,wegetl’ T =1" - T".

Theorem 2 (Fundamental theorem of logical relations).

1. If - I'"then - I

2. fFI'=+FTI"thenl-I'= IFI".

. fr'+t:Tthenl'I-¢t:T.

4 fr+t:T=I"+Ft:T'thenFt:T=I"IFt:T.

Proof. By induction on the derivation.

5 Meta-theoretic Consequences of the Model Construction

After doing hard work in the construction of a universal mipdee rest of the meta-
theory of IITT falls into our lap like a ripe fruit.

13



5.1 Normalization and Subject Reduction

An immediate consequence of the model construction is tadt #2rm has a weak head
normal form and that typing and equality is preserved by wesdd normalization.

Theorem 3 (Normalization and subject reduction).If I + ¢ : T thent \, a and
I'tt=a:T.

Proof. By the fundamental theorend; + ¢ : T ® I' -t : T which by definition
contains a derivationaf -t = [¢:T.

5.2 Correctness of Algorithmic Equality

Algorithmic equality is correct, i. e., sound, completeddarminating. Together, this
entails decidability of equality in [ITT. Algorithmic eqligy is built into the model at
every step, thus, completeness is immediate:

Theorem 4 (Completeness of algorithmic equality)if I ¢ : T =17 =t : T’
then" Ht:T < I -t :T".

Proof. Sincel’ Fid: ' ® I Fid: I",wehavel' F¢: T ® I -t : T’ by the
fundamental theorem, and conclude with Lemma 8.2.

Termination of algorithmic equality is a consequence off fiwirmalization, which
we have not defined explicitly, but which is implicit in the dwel.

Lemma 10 (Termination of algorithmic equality). If A ¢ : T @ A+t:Tand
ARt :T'®A +t : T thenthequenAd Ht: T < A’ -t : T’ terminates.

Proof. Generalize to all six algorithmic equality judgements andpect the rules.
Membership oft, 7 andt’, T’ in the model guarantees that all weak head evaluations
terminate.

Theorem5. If A Ft:TandA’ ¢ : T'thenthequend Ht: T < A ' : T’
terminates.

Proof. From the lemma by the fundamental theorem.

Soundness of the equality algorithm is a consequence oéstutgiduction.
Theorem 6 (Soundness of algorithmic equality).

1. LletAF¢t:TandA ¢ :T"andA FT=A"FT' ARt T < A +
t:T'thenA Ft:T=A" ¢t :T".

2. LetA Fn:TandA' Fn':T"and- A= FA . fAFR:U & A Fn':
UthenA bn:U=A"Fn:UandA U =TandA’ FU' =1T".

Proof. Generalize the theorem to all six algorithmic equality joaignts and prove it by
induction on the algorithmic equality derivation. Since kave subject reduction, the
proof proceeds mechanically, because each algorithmecarresponds, modulo weak
head normalization, to a declarative rule.

14



Case A+T:sandA’ HT:sand
AF|T < A H|T
AFT < A T
By induction hypothesisA + |T : s = A’ + [T’ : s. By subject reduction

AFRT=|T:sandA’ =T = |T': s. By transitivityA - T : s = A" T : s.
Case

AFT &< A T
AFT:s < A FT':s
By induction hypothesisdA T :s=A" - T" : s.

5.3 Homogeneity

Although we defined IITT-equality heterogeneously, we caw show that the hetero-
geneity was superficial, i. e., in fact do equal terms haveaktypes. This was already
implicitin the formulation of the equality algorithm whignly compares terms at types
of the same shape. By rather than building homogeneity healefinition of equality,
we obtain it as a global result.

Lemmall.If = IFI"thenk I =+ TI".
Proof. By induction on the context length from Thm. 1.

Theorem 7 (Homogeneity)lf I’ -t : T =I1" -t : T'thent I' = + I'" and
r+-17=r1r'+1.

Proof. By the fundamental theoredi I+ ¢ : T'= I I ¢’ : T, which by definition
entailsI" - T = I'" I T"and I I = I+ I'". The rest follows by Thm. 1 and the last
lemma.

5.4 Consistency

Importantly, not every type is inhabited in IITT, thus, itdae used as a logic. A prereg-
uisite is that types can be distinguished, which follows iadmately from completeness
of algorithmic equality.

Lemma 12 (Type constructor discrimination).Neutral types, sorts and function types
are mutually unequal.

LITENAT Fs.
22T'ENAT"F (axU) - T.
3. I' Fs=1TI"F s impliess = s'.
4. T'Fs#I"F(xxU) —T.

Proof. Direct, by completeness of algorithmic equality.
From normalization and type constructor discrimination ce® show that not every

type is inhabited.

15



Theorem 8 (Consistency)X :Sety ¢ : X.

Proof. Let I" = (X : Setp). Assumingl” -t : X, we havel” I a : X for the whnfa

of t. We invert on the typing of. By Lemma 12X cannot be equal to a function type
or sort, thusg can neither be a nor a function type nor a sort, it can only be neutral.
The only variableX must be in the head af, but sinceX is not of function type, it
cannot be applied. Thug,= X, which is ill-typed, sinceX cannot be equal tBety.
Contradiction!

5.5 Decidability

To round off, we show that typing in IITT is decidable. Typescking algorithms such
as bidirectional checking [11] rely on injectivity of funah type constructors, which is
built into the definition ofS):

Theorem 9 (Function type injectivity). If I' - (axU) - T : s = I'" F (xxU’) —
T :s'then' FU :s=I"FU :dandlaxU v T :s=I".axU" T : ¢

Proof. Sincel’ +id : ' ® I + id : I” we have by the fundamental theorem
I'bF (axU) = T : s ® I'" + (zxU') — T’ : ¢ which by inversion yields first
r FU:S@F’ FU :s’andl’ FU :s=1" FU': 5. Sincel. zxU FI*U@
I xxU' +xz+xU',we alsoobtaid. axU - T : s @ I'". zxU’ =T’ : s’ and conclude
IFaoxU T :s=I"axU" T :5.

Theorem 10 (Decidability of IITT).

1. I'+t:T=I"+¢t:T isdecidable.
2. I' +t: Tisdecidable.

Proof. Decidability of equality follows from soundness (Thm 6, qeteness (Thm. 4,
and termination (Thm. 5). Decidability of typing followsofm decidability of type con-
version, weak head normalization, and function type inégt using the inversion
lemmata on typing derivations. Any reasonable type infeeaalgorithm will do.

6 Extensions

Data types and recursionThe semantics of IITT is ready to cope with inductive data
types like the natural numbers and the associated recupsintiples. Recursion into
types, aka known as large elimination, is also accountedifare we have universes
and a semantics which does not erase dependencies (urdikeiRg’'s model [23]).

Types with extensionality principlesThe purpose of having a typed equality algo-
rithm is to handley-laws that are not connected to the shape of the expressien (I
n-contraction for functions) but to the shape of the type ofjpically these are types

16



T with at most one inhabitant, i. e., the empty type, the urpetysingleton types or
propositions’® For suchl” we have the)-law

retet:T
I'Ht=¢t:T

which can only be checked in the presence of tJpRealizing such)-laws gives addi-
tional “proof” irrelevance which is not covered by Pfennmgrelevant quantification
(z+U) — T.

Internal erasure. Termsu = U in irrelevant position are only there to please the type
checker, they are ignored during equality checking. Thislm&inferred from the sub-
stitution principle: If . a=U + T and" + u,v’ =+ U, thenI" + T(u/x] = T[u//z];
the typeT has the same shape regardlessof’. Hence, terms like: serve the sole
purpose to prove some proposition and could be replaced lbyrany e immediately
after type-checking. This is an optimization which in thstfiplace saves memory, but
if expressions are written to interface files and reloadést |t also saves disk space
and execution time of saving and loaded. First experimeiitsam implementation of
internal erasure in Agda [10] shows that savings are hulgejriformalizing category
theory and algebra which uses structures with embeddedy(see Example 1).

Internal erasure can be realized by making- ¢t +— 7' a judgement (as opposed to
just a notation fod™® - ¢ : T) and adding the rule

I't+T
'+Hex=T'

The rule states that if there is already a proof T', thene is a new proof off". This
preserves provability while erasing the proof terms. Coratésity of this rule can be
proven as in joint work of the author with Coquand and Pag&aho [

Proof modality. Pfenning [23] suggests a modalify formed by the rule
I'+t=T
I't: AT

which for instance allows the definition of the subset tfpe: U | Tz} as Xz :
U. A(T z). Such a modality has been present in NuprSagiasttype [21] and it is
also known as the type of proofs of (propositidh)[5, 9]. Using the extensions of
Example 1, we can encode it AsI" = (_+T) x 1.

7 Conclusions

We have extended Pfenning’s notion of irrelevance to a tigpery [ITT with universes
that accommodates types defined by recursion. A heterogeradgorithmic equality
judgement has allowed a smooth construction of a universpk model that is both

8 Some care is necessary for the type of Leibniz equality [IL, 26

17



sound and complete for IITT, yielding normalization, catshcy and decidability of

IITT. Inspired by a heterogeneously typed semantics, we fiemimulated the declara-
tive system with a heterogeneous equality judgement asandldemonstrated that this
also yields a sound specification of type theory.

Integrating irrelevance and data types in dependent tygmrytdoes not seem with-
out challenges. We have succeeded to treat Pfenning’smofiarelevance, but our
proof does not scale directly fmrametricfunction types, a stronger notion of irrelevant
function types called implicit quantification by Miquel [[L® Two more type theories
build on Miquel's calculus [18], Barras and Bernardo’s fC[9] and Mishra-Linger
and Sheard'&rasure Pure Type SystefiSPTS) [20], but none has offered a satisfying
account of large eliminations yet. Miquel's model [17] fe@s data types only as im-
predicative encodings. For irrelevant, parametric, amdingve functions to coexist it
seems like three different function types are necessagy, i the style of Pfenning’s
irrelevance, extensionality and intensionalitjfe would like to solve this puzzle in
future work, not least to implement high-performance laagps with dependent types.

AcknowledgmentsThanks to Bruno Barras, Bruno Bernardo, Thierry Coquandy Da
Doel, Hugo Herbelin, Conor McBride, and Ulf Norell for dissgions on irrelevance in
type theory. Thanks to Jason Reed, Conor McBride, and theyamous referees for
suggesting improvements on the text. Work on a previousrdage been carried out
while being invited researcher at PPS, Paris, in the INRIA team headed by Pierre-
Louis Curien and Hugo Herbelin. | have benefited from preséoris at JFLA 2010,
the Agda Implementer’s Meeting in March 2010 and the DTP sbdp in 2010.

References

1. Andreas Abel. Extensional normalization in the logiaanfiework with proof irrelevant
equality. In Olivier Danvy, editor2009 Wksh. on Normalization by Evaluatj@®09.

2. Andreas Abel. MiniAgda: Integrating sized and dependgoés. In Ana Bove, Ekaterina
Komendantskaya, and Milad Niqui, editovwksh. on Partiality And Recursion in Interactive
Theorem Provers (PAR 201®010.

3. Andreas Abel and Thierry Coquand. Untyped algorithmicadity for Martin-Lof's logical
framework with surjective paird-undam. Inform.77(4):345-395, 2007. TLCA05 special
issue.

4. Andreas Abel, Thierry Coquand, and Peter Dybjer. Venifya semantign-conversion test
for Martin-Lof type theory. In Philippe Audebaud and Clirie Paulin-Mohring, editors,
Proc. of the 9th Int. Conf. on Mathematics of Program Conginn, MPC 2008 volume
5133 ofLect. Notes in Comput. Scpages 29-56. Springer, 2008.

5. Andreas Abel, Thierry Coquand, and Miguel Pagano. A meanttyipe-checking algorithm
for type theory with singleton types and proof irrelevante P.-L. Curien, editorProc. of
the 9th Int. Conf. on Typed Lambda Calculi and ApplicatioRsCA 2009 volume 5608 of
Lect. Notes in Comput. Scpages 5-19. Springer, 2009.

4 A function argument is parametric if it is irrelevant for cpating the function result while the

type of the result may depend on it. In Pfenning’s notion afgeiment must also be irrelevant
in the type.

18



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Roberto M. Amadio, editoProc. of the 11th Int. Conf. on Foundations of Software Smen

and Computational Structures, FOSSACS 20@8ume 4962 ot ect. Notes in Comput. Sci.
Springer, 2008.

. Lennart Augustsson. Cayenne - a language with depengse.t InProc. of the 3rd ACM

SIGPLAN Int. Conf. on Functional Programming (ICFP '98plume 34 ofSIGPLAN No-
tices pages 239-250. ACM Press, 1999.

. Steven Awodey and Andrej Bauer. Propositions as [Typesjog. Comput.14(4):447-471,

2004.

. Bruno Barras and Bruno Bernardo. The implicit calculusafstructions as a programming

language with dependent types. In Amadio [6], pages 365-379

Ana Bove, Peter Dybjer, and UIf Norell. A brief overviefvAagda - a functional language
with dependent types. In Stefan Berghofer, Tobias Nipkolrjsfian Urban, and Makarius
Wenzel, editorsTheorem Proving in Higher Order Logics, TPHOLs 2088lume 5674 of
Lect. Notes in Comput. Scpages 73-78. Springer, 2009.

Thierry Coquand. An algorithm for type-checking depantdtypes. InProc. of the 3rd
Int. Conf. on Mathematics of Program Construction, MPC,’96lume 26 ofSci. Comput.
Program, pages 167-177. Elsevier, May 1996.

Healfdene Goguer Typed Operational Semantics for Type The®HD thesis, University
of Edinburgh, August 1994. Available as LFCS Report ECS-8F321-304.

Robert Harper and Frank Pfenning. On equivalence andngzai forms in the LF type
theory. ACM Transactions on Computational Log(1):61-101, 2005.

INRIA. The Coq Proof Assistant Reference Manu#iNRIA, version 8.2 edition, 2008.
http://coq.inria.fr/.

Pierre Letouzey. A new extraction for Coq. In Herman @&eshand Freek Wiedijk, editors,
TYPESvolume 2646 of_ect. Notes in Comput. Scpages 200-219. Springer, 2002.
Conor McBride and James McKinna. The view from the I&fffunc. Program.2004.
Alexandre Miquel. A model for impredicative type sysgemniverses, intersection types
and subtyping. IrProc. of the 15th IEEE Symp. on Logic in Computer Science$120Q00)
pages 18-29, 2000.

Alexandre Miquel. The implicit calculus of construetio In Samson Abramsky, editor,
Proc. of the 5th Int. Conf. on Typed Lambda Calculi and Aglans, TLCA 2001volume
2044 ofLect. Notes in Comput. Scpages 344—-359. Springer, 2001.

Alexandre Miquel. Le Calcul des Constructions implicite: syntaxe et sénogeti PhD
thesis, Université Paris 7, December 2001.

Nathan Mishra-Linger and Tim Sheard. Erasure and palghiem in pure type systems. In
Amadio [6], pages 350—-364.

Richard Nathan Mishra-Lingedrrelevance, Polymorphism, and Erasure in Type Theory
PhD thesis, Portland State University, 2008.

Christine Paulin-Mohring and Benjamin Werner. Synthe$ ML programs in the system
Coqg. J. Symb. Comput15(5/6):607—640, 1993.

Frank Pfenning. Intensionality, extensionality, andop irrelevance in modal type theory.
In LICS 2001: IEEE Symposium on Logic in Computer Sciehzee 2001.

Jason Reed. Proof irrelevance and strict definitionslogigal framework, 2002. Senior
Thesis, published as Carnegie-Mellon University technigaort CMU-CS-02-153.

Jason Reed. Extending higher-order unification to sugpoof irrelevance. In David A.
Basin and Burkhart Wolff, editor§ heorem Proving in Higher Order Logics, TPHOLSs 2003
volume 2758 oL ect. Notes in Comput. Scpages 238-252. Springer, 2003.

Benjamin Werner. On the strength of proof-irrelevapetyheoriesLogical Meth. in Com-
put. Sci, 4, 2008.

19



