
Irrelevance in Type Theory with a
Heterogeneous Equality Judgement

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

andreas.abel@ifi.lmu.de

Abstract. Dependently typed programs contain an excessive amount of static
terms which are necessary to please the type checker but irrelevant for computa-
tion. To obtain reasonable performance of not only the compiled program but also
the type checker such static terms need to be erased as early as possible, prefer-
ably immediately after type checking. To this end, Pfenning’s type theory with
irrelevant quantification, that models a distinction between static and dynamic
code, is extended to universes and large eliminations. Novel is a heterogeneously
typed implementation of equality which allows the smooth construction of a uni-
versal Kripke model that proves normalization, consistency and decidability.

Keywords: dependent types, proof irrelevance, heterogeneously typed equality,
algorithmic equality, logical relation, universal Kripkemodel.

1 Introduction and Related Work

Dependently typed programming languages such as Agda [10],Coq [14], and Epigram
[16] allow the programmer to express in one language programs, their types, rich in-
variants, and even proofs of these invariants. Besides codeexecuted at run-time, depen-
dently typed programs contain much code needed only to pass the type checker, which
is a the same time the verifier of the proofs woven into the program.

Program extraction takes type-checked terms and discards parts that are irrelevant
for execution. Augustsson’s dependently typed functionallanguage Cayenne [7] erases
typesusing a universe-based analysis. Coq’s extraction procedure has been designed
by Paulin-Mohring and Werner [22] and Letouzey [15] and discards not only types
but also proofs. The erasure rests on Coq’s universe-based separation between proposi-
tional (Prop) and computational parts (Set/Type). The rigidProp/Set distinction has
the drawback of code duplication: A structure which is sometimes used statically and
sometimes dynamically needs to be coded twice, once inProp and once inSet.

An alternative to the fixedProp/Set-distinction is to let the usage context decide
whether a term is a proof or a program. Besides whole-programanalyses such as data
flow, some type-based analyses have been put forward. One of them is Pfenning’s modal
type theory ofIntensionality, Extensionality, and Proof Irrelevance[23] which intro-
duces functions with irrelevant arguments that play the role of proofs. Not only can
these arguments be erased during extraction, they can also be disregarded in type con-
version tests during type checking. This relieves the user of unnecessary proof burden

(proving that two proofs are equal). Furthermore, proofs can not only be discarded dur-
ing program extraction but directly after type checking, since they will never be looked
at again during type checking subsequent definitions.

In principle, we have to distinguish “post mortem” program extraction, let us call
it external erasure, and proof disposal during type checking, let us call itinternal era-
sure. External erasure deals with closed expressions, programs, whereas internal erasure
deals with open expressions that can have free variables. Such free variables might be
assumed proofs of (possibly false) equations and block typecasts, or (possibly false)
proofs of well-foundedness and prevent recursive functions from unfolding indefinitely.
For type checking to not go wrong or loop, those proofs can only be externally erased,
thus, theProp/Set distinction is not for internal erasure. In Pfenning’s typetheory,
proofs can never block computations even in open expressions (other than computa-
tions on proofs), thus, internal erasure is sound.

Miquel’s Implicit Calculus of Constructions (ICC) [18] goes further than Pfenning
and considers alsoparametricarguments as irrelevant. These are arguments which are
irrelevant for function execution but relevant during typeconversion checking. Such
arguments may only be erased in function application but notin the associated type
instantiation. Barras and Bernardo [9] and Mishra-Linger and Sheard [20] have build
decidable type systems on top of ICC, but both have not fully integrated inductive types
and types defined by recursion (large eliminations). Barrasand Bernardo, as Miquel,
have inductive types only in the form of their impredicativeencodings, Mishra-Linger
[21] gives introduction and elimination principles for inductive types by example, but
does not show normalization or consistency.

Our long-term goal is to equip Agda with internal and external erasure. To this end, a
type theory for irrelevance is needed that supports user-defined data types and functions
and types defined by pattern matching. Experiments with my prototype implementation
MiniAgda [2] have revealed some issues when combining Miquel-style irrelevance with
large eliminations (see Ex. 2 in Sec. 2). Since it is unclear whether these issues can be
resolved, I have chosen to scale Pfenning’s notion of proof irrelevance up to inductive
types.

In this article, we start with the “extensionality and proofirrelevance” fragment
of Pfenning’s type theory in Reed’s version [24, 25]. We extend it by a hierarchy of
predicative universes, yieldingIrrelevant Intensional Type TheoryIITT (Sec. 2). Based
on a heterogeneous algorithmic equality which compares twoexpressions, each in its
own context at its own type (Sec. 3), we smoothly construct a Kripke model that is both
sound and complete for IITT (Sec. 4). It allows us to prove soundness and completeness
of algorithmic equality, normalization, subject reduction, consistency, and decidability
of typing in one go (Sec. 5). The model is ready for data types,large eliminations, types
with extensionality principles, and internal erasure (Sec. 6).

The novel technical contributions of this work are a heterogeneous formulation of
equality in the specification of type theory, and the universal Kripke model that yields
all interesting meta-theoretic results at once.

The Kripke model is inspired by previous work on normalization by evaluation [4].
There we have already observed that a heterogeneous treatment of algorithmic equality
solves the problem of defining a Kripke logical relation thatshows completeness of

2

algorithmic equality. Harper and Pfenning [13] hit the sameproblem, and their fix was
to erase dependencies in types. In weak type theories like the logical framework erasure
is possible, but it does not scale to large eliminations.

Related to our present treatment of IITT is Goguen’sTyped Operational Semantics
[12]. He proves meta-theoretic properties such as normalization, subject reduction, and
confluence by a Kripke logical predicate of well-typed terms. However, his notion of
equality is based on reduction and not a step-wise algorithm.

Awodey and Bauer [8] give a categorical treatment of proof irrelevance which is
very similar to Pfenning and Reed’s. However, they work in the setting of Extensional
Type Theory with undecidable type checking, I could not directly use their results for
this work.

2 Irrelevant Intensional Type Theory

In this section, we presentIrrelevant Intensional Type TheoryIITT which features two
of Pfenning’s function spaces [23], the ordinary “extensional” (x : U) → T and the
proof irrelevant(x÷U) → T . The main idea is that the argument of a(x÷U) → T
function is counted as a proof and can neither be returned noreliminated on, it can
only be passed as argument to another proof irrelevant function or data constructor.
Technically, this is realized by annotating variables as relevant,x : U , or irrelevant,
x÷U , in the typing context, to restrict the use of irrelevant variables to use in irrelevant
arguments.

Expression and context syntax.We distinguish between relevant (t :u or simplyt u) and
irrelevant application (t÷u). Accordingly, we have relevant (λx : U. T) and irrelevant
abstraction (λx÷U. T). Our choice of typed abstraction is not fundamental; a bidirec-
tional type-checking algorithm [11] can reconstruct type and relevance annotations at
abstractions and applications.

Var ∋ x, y, X, Y
Sort ∋ s ::= Setk (k ∈ N) universes
Ann ∋ ⋆ ::= ÷ | : annotation: irrelevant, relevant
Exp ∋ t, u, T, U ::= s | (x⋆U)→ T sort, (ir)relevant function type

| x | λx⋆U. t | t ⋆u lambda-calculus
Cxt ∋ Γ, ∆ ::= ⋄ | Γ. x⋆T empty, (ir)relevant extension

Expressions are considered moduloα-equality, we writet ≡ t′ when we want to stress
thatt andt′ identical (up toα).

Sorts. IITT is a pure type system (PTS) with infinite hierarchy of predicative universes
Set0 : Set1 : The universes are not cumulative. We have the PTS axiomsAxiom =
{(Seti, Seti+1) | i ∈ N} and the rulesRule = {(Seti, Setj , Setmax(i,j)) | i, j ∈ N}. As
customary, we will write the side condition(s, s′) ∈ Axiom just as(s, s′) and likewise
(s1, s2, s3) ∈ Rule just as(s1, s2, s3). IITT is a full and functional PTS, which means
that for alls1, s2 there is exactly ones3 such that(s1, s2, s3). As a consequence, there
is no subtyping, types are unique up to equality.

3

Substitutionsσ are maps from variables to expressions. We require that the domain
dom(σ) = {x | σ(x) 6= x} is finite. We writeid for the identity substitution and[u/x]
for the singleton substitutionσ with dom(σ) = {x} andσ(x) = u. Capture avoiding
parallel substitution ofσ in t is written as juxtapositiontσ.

Contexts Γ feature two kinds of bindings, relevant (x : U) and irrelevant (x ÷ U)
ones. Only relevant variables are in scope in an expression.ResurrectionΓ⊕ turns all
irrelevant bindingsx ÷ T into relevantx :T ones [23]. It is the tool to make irrelevant
variables, also called proof variables, available in proofs. Extending contextΓ by some
bindings to context∆ is written∆ ≤ Γ .

Judgementsof IITT.

⊢ Γ contextΓ is well-formed
⊢ Γ = ⊢ Γ ′ contextsΓ andΓ ′ are well-formed and equal
Γ ⊢ t : T in contextΓ , expressiont has typeT
Γ ⊢ t : T = Γ ′ ⊢ t′ : T ′ typed expressionst andt′ are equal

Derived judgements.

Γ ⊢ t÷ T ⇐⇒ Γ⊕ ⊢ t : T
Γ ⊢ t÷ T = Γ ′ ⊢ t′ ÷ T ′ ⇐⇒ Γ ⊢ t÷ T andΓ ′ ⊢ t′ ÷ T ′

Γ ⊢ t = t′ ⋆ T ⇐⇒ Γ ⊢ t ⋆ T = Γ ⊢ t′ ⋆ T
Γ ⊢ T ⇐⇒ Γ ⊢ T : s for somes
Γ ⊢ T = Γ ′ ⊢ T ′ ⇐⇒ Γ ⊢ T : s = Γ ′ ⊢ T ′ : s′ for somes, s′

Γ ⊢ T = T ′ ⇐⇒ ⊢ Γ andT ≡ s ≡ T ′ or Γ ⊢ T = Γ ⊢ T ′

Context well-formedness and typing⊢ Γ andΓ ⊢ t : T , extending Reed [24] to PTS
style. Note that there is no variable rule for irrelevant bindings(x ÷ U) ∈ Γ .

⊢ ⋄

⊢ Γ Γ ⊢ T : s

⊢ Γ. x⋆T

⊢ Γ

Γ ⊢ s : s′
(s, s′)

Γ ⊢ U : s1 Γ. x⋆U ⊢ T : s2

Γ ⊢ (x⋆U)→ T : s3
(s1, s2, s3)

⊢ Γ (x :U) ∈ Γ

Γ ⊢ x : U

Γ. x⋆U ⊢ t : T

Γ ⊢ λx⋆U. t : (x⋆U)→ T

Γ ⊢ t : (x⋆U)→ T Γ ⊢ u ⋆ U

Γ ⊢ t ⋆u : T [u/x]

Γ ⊢ t : T Γ ⊢ T = T ′

Γ ⊢ t : T ′

When we apply an irrelevant functionΓ ⊢ t : (x÷U) → T to u, the argumentu is
typed in the resurrected contextΓ⊕ ⊢ u : U . This means thatu is treated as a proof
and the proof variables become available.

4

Parallel computation (β) and extensionality (η).

Γ. x⋆U ⊢ t : T = Γ ′. x⋆U ′
⊢ t′ : T ′ Γ ⊢ u ⋆ U = Γ ′

⊢ u′ ⋆ U ′

Γ ⊢ (λx⋆U. t) ⋆u : T [u/x] = Γ ′ ⊢ t′[u′/x] : T ′[u′/x]

Γ ⊢ t : (x⋆U) → T = Γ ′
⊢ t′ : (x⋆U ′) → T ′

Γ ⊢ t : (x⋆U) → T = Γ ′ ⊢ λx⋆U ′. t′ ⋆x : (x⋆U ′) → T ′

Equivalence rules.

Γ ⊢ t : T

Γ ⊢ t : T = Γ ⊢ t : T

Γ ⊢ t : T = Γ ′
⊢ t′ : T ′

Γ ′ ⊢ t′ : T ′ = Γ ⊢ t : T

Γ1 ⊢ t1 : T1 = Γ2 ⊢ t2 : T2 Γ2 ⊢ t2 : T2 = Γ3 ⊢ t3 : T3

Γ1 ⊢ t1 : T1 = Γ3 ⊢ t3 : T3

Compatibility rules.

⊢ Γ = ⊢ Γ ′

Γ ⊢ s : s′ = Γ ′ ⊢ s : s′
(s, s′)

(x :U) ∈ Γ Γ ⊢ U : s = Γ ′
⊢ U ′ : s′ (x :U ′) ∈ Γ ′

Γ ⊢ x : U = Γ ′ ⊢ x : U ′

Γ ⊢ U : s1 = Γ ′
⊢ U ′ : s′1

Γ. x⋆U ⊢ T : s2 = Γ ′. x⋆U ′
⊢ T ′ : s′2

Γ ⊢ (x⋆U) → T : s3 = Γ ′ ⊢ (x⋆U ′) → T ′ : s′
3

Γ. x⋆U ⊢ t : T = Γ ′. x⋆U ′
⊢ t′ : T ′

Γ ⊢ λx⋆U. t : (x⋆U) → T = Γ ′ ⊢ λx⋆U ′. t′ : (x⋆U ′) → T ′

Γ ⊢ t : (x :U) → T = Γ ′
⊢ t′ : (x :U ′) → T ′

Γ ⊢ u : U = Γ ′
⊢ u′ : U ′

Γ ⊢ t u : T [u/x] = Γ ′ ⊢ t′ u′ : T ′[u′/x]

Γ ⊢ t : (x÷U) → T = Γ ′
⊢ t′ : (x÷U ′) → T ′

Γ⊕
⊢ u : U Γ ′⊕

⊢ u′ : U ′

Γ ⊢ t÷u : T [u/x] = Γ ′ ⊢ t′ ÷u′ : T ′[u′/x]

Conversion rule.

Γ1 ⊢ t1 : T1 = Γ2 ⊢ t2 : T2 Γ2 ⊢ T2 = T ′
2

Γ1 ⊢ t1 : T1 = Γ2 ⊢ t2 : T ′
2

Fig. 1. Rules of heterogeneous equality

Equality. Figure 1 presents the rules to construct the judgementΓ ⊢ t : T = Γ ′ ⊢
t′ : T ′. The novelty is the heterogeneous typing: we do not locally enforce that equal
terms must have equal types, but we will show it globally in Sec. 5.3. Note that in the
compatibility rule for irrelevant application, the function arguments may be completely
unrelated. The heterogeneous definition of equality is moresymmetric and has more
degrees of liberty. Thus, closure under substitution is easier to prove (cf. [13, 3]).

5

In heterogeneous judgements such as equality, we maintain the invariant that the
two contextsΓ andΓ ′ have the same shape, i. e., bind the same variables with the same
irrelevance status. Only the types bound to the variables maybe different inΓ andΓ ′.

Context equality⊢ Γ = ⊢ Γ ′ is a partial equivalence relation (PER), i. e., a
symmetric and transitive relation, given inductively by the following rules:

⊢ ⋄ = ⊢ ⋄

⊢ Γ = ⊢ Γ ′ Γ ⊢ U = Γ ′ ⊢ U ′

⊢ Γ. x⋆U = ⊢ Γ ′. x⋆U ′

Typing and equality are closed under weakening. Typing enjoys the usual inversion
properties. To show substitution we introduce judgements∆ ⊢ σ : Γ for substitution
typing and∆ ⊢ σ : Γ = ∆′ ⊢ σ : Γ ′ for substitution equality which are given
inductively by the following rules:

⊢ ∆

∆ ⊢ σ : ⋄

∆ ⊢ σ : Γ Γ ⊢ U ∆ ⊢ σ(x) ⋆ Uσ

∆ ⊢ σ : Γ. x⋆U

⊢ ∆ = ⊢ ∆′

∆ ⊢ σ : ⋄ = ∆′ ⊢ σ′ : ⋄

∆ ⊢ σ : Γ = ∆′ ⊢ σ′ : Γ ′ Γ ⊢ U = Γ ′ ⊢ U ′

∆ ⊢ σ(x) ⋆ Uσ = ∆′ ⊢ σ′(x) ⋆ U ′σ′

∆ ⊢ σ : Γ. x⋆U = ∆ ⊢ σ′ : Γ ′. x⋆U ′

Lemma 1 (Substitution).Substitution equality is a PER. Further:

1. If ∆ ⊢ σ : Γ andΓ ⊢ t : T then∆ ⊢ tσ : Tσ.
2. If ∆ ⊢ σ : Γ = ∆′ ⊢ σ′ : Γ ′. andΓ ⊢ t : T = Γ ′ ⊢ t′ : T ′ then∆ ⊢ tσ : Tσ =

∆′ ⊢ t′σ′ : T ′σ′.

Lemma 2 (Well-formedness).

1. If Γ. x :U. Γ ′ ⊢ thenΓ ⊢ U .
2. If Γ ⊢ t : T then⊢ Γ andΓ ⊢ T .

Example 1 (Algebraic structures).1 In type theory, we can model an algebraic structure
over a carrier setA by a record of operations and proofs that the operations havethe
relevant properties. Consider an extension of IITT by tuples and Leibniz equality:

(x⋆A)×B : Setmax(i,j) for A : Seti andx ⋆ A ⊢ B : Setj
(a, b) : (x⋆A)×B for a : A andb : B[a/x]
let (x, y) = p in t : C for p : (x⋆A)×B andx ⋆ A, y :B ⊢ t : C

a ≡ b : Seti for A : Seti anda, b : A
refl : a ≡ a for A : Seti anda : A
sym p : b ≡ a for p : a ≡ b

In the presence of a unit type1 : Seti with constructor() : 1, the classSemiGrp of
semigroups over a fixedA : Set0 can be defined as

Assoc : (A→ A→ A)→ Set0
Assoc m = (a, b, c : A)→ m (m a b) c ≡ m a (m b c)

SemiGrp : Set0
SemiGrp = (m : A→ A→ A)× (assoc ÷ Assoc m)× 1.

1 Inspired by the 2010-09-23 message of Andrea Vezzosi on the Agda mailing list.

6

We have marked the componentassoc as irrelevant which means that twoSemiGrp

structures overA are already equal when they share the operationm; the shape of the
associativity proofs might differ. For instance, considertheflip operator (in a slightly
sugared definition):

flip : SemiGrp→ SemiGrp

flip (m, (assoc, u)) = (λa :A.λb :A. m b a, (sym assoc, ())

thm : (s : SemiGrp)→ flip (flip s) ≡ s
thm s = refl

A proof thm thatflip cancels itself is now trivial, sinceλa b. (λa b. m b a) b a = m by
βη-equality and theassoc-component is irrelevant. This saves us from constructing a
proof of sym (sym assoc) ≡ assoc and the type checker from validating it. While the
saving is small for this small example, it illustrates the principle.

Example 2 (Large Eliminations).2 The ICC∗ [9] or EPTS [20] irrelevant function type
(x ÷ A) → B allowsx to appearrelevantlyin B. This extra power raises some issues
with large eliminations. Consider

T : Bool→ Set0
T true = Bool→ Bool

T false = Bool

t = λF : (b÷Bool)→ (T b→ T b)→ Set0.
λg : F false (λx : Bool. x)→ Bool.
λa : F true (λx : Bool→ Bool.λy : Bool. x y). g a.

The termt is well-typed in ICC∗ + T because the domain type ofg and the type ofa
areβη-equal after erasure(−)∗ of type annotations and irrelevant arguments:

(F false (λx : Bool. x))∗ = F (λxx)

=βη F (λxλy. x y) = (F true (λx : Bool→ Bool.λy : Bool. x y))∗

While a Curry view supports this, it is questionable whetheridentity functions at dif-
ferent types should be viewed as one. It is unclear how a type-directed equality algo-
rithm (see Sec. 3) should proceed here; it needs to recognizethatx : Bool is equal to
λy : Bool. x y : Bool → Bool. This situation is amplified by a unit type1 with exten-
sional equality. When we changeT true to 1 and the type ofa to F true (λx : 1. ())
thent should still type-check, becauseλx. () is the identity function on1. However,
η-equality for1 cannot be checked without types, and a type-directed algorithm would
end up checkingx : Bool for equality with () : 1. This can never work, because by
transitivity we would get that any two booleans are equal.

Summarizing, we may conclude that the type ofF bears trouble and needs to be
rejected. IITT does this because it forbids the irrelevantb in relevant positions such as
T b; ICC∗ lacksT altogether. Extensions of ICC∗ should at least make sure thatb is
never eliminated, such as inT b. Technically,T would have to be put in a separate class
of recursivefunctions, those that actually compute with their argument. We leave the
interaction of the three different function types to futureresearch.

2 Inspired by discussions with Ulf Norell during the 11th AgdaImplementor’s Meeting.

7

3 Algorithmic Equality

The algorithm for checking equality in IITT is inspired by Harper and Pfenning [13].
Like theirs, it is type-directed, but in our case each term comes with its own type in
its own typing context. The algorithm proceeds stepwise, byalternating weak head
normalization and head symbol comparison. Weak head normalforms (whnfs) are given
by the following grammar:

Whnf ∋ a, b, f, A, B, F ::= s | (x⋆U)→ T | λx⋆U. t | n whnf
Wne ∋ n, N ::= x | n ⋆u neutral whnf

Weak head evaluation.t ց a and active applicationf @⋆ u ց a are given by the
following rules.

tց f f @⋆ uց a

t ⋆uց a aց a

t[u/x]ց a

(λx⋆U. t)@⋆ uց a n @⋆ uց n ⋆u

Instead of writing the propositionst ց a andP [a] we will sometimes simply write
P [↓t]. Similarly, we might writeP [f @⋆ u] instead off @⋆ uց a andP [a]. In rules, it
is understood that the evaluation judgement is always an extra premise, never an extra
conclusion.

Type equality ∆ ⊢ A ⇐⇒ ∆′ ⊢ A′, for weak head normal forms, and∆ ⊢
T ⇐̂⇒ ∆′ ⊢ T ′, for arbitrary well-formed types, checks that two given types are
equal in their respective contexts.

∆ ⊢ s ⇐⇒ ∆′ ⊢ s

∆ ⊢ N : s ←→ ∆′ ⊢ N ′ : s′

∆ ⊢ N ⇐⇒ ∆′ ⊢ N ′

∆ ⊢ ↓T ⇐⇒ ∆′ ⊢ ↓T ′

∆ ⊢ T ⇐̂⇒ ∆′ ⊢ T ′

∆ ⊢ U ⇐̂⇒ ∆′ ⊢ U ′ ∆. x :U ⊢ T ⇐̂⇒ ∆′. x :U ′ ⊢ T ′

∆ ⊢ (x⋆U)→ T ⇐⇒ ∆′ ⊢ (x⋆U ′)→ T ′

Structural equality∆ ⊢ n : A ←→ ∆′ ⊢ n′ : A′ and∆ ⊢ n : T ←̂→ ∆′ ⊢ n′ : T ′

checks the neutral expressionsn andn′ for equality and at the same time infers their
types, which are returned as output.

∆ ⊢ n : T ←̂→ ∆′ ⊢ n′ : T ′

∆ ⊢ n : ↓T ←→ ∆′ ⊢ n′ : ↓T ′

(x :T) ∈ ∆ (x :T ′) ∈ ∆′

∆ ⊢ x : T ←̂→ ∆′ ⊢ x : T ′

∆ ⊢ n : (x :U)→ T ←→ ∆′ ⊢ n′ : (x :U ′)→ T ′

∆ ⊢ u : U ⇐̂⇒ ∆′ ⊢ u′ : U ′

∆ ⊢ n u : T [u/x] ←̂→ ∆′ ⊢ n′ u′ : T ′[u′/x]

∆ ⊢ n : (x÷U)→ T ←→ ∆′ ⊢ n′ : (x÷U ′)→ T ′

∆ ⊢ n ÷u : T [u/x] ←̂→ ∆′ ⊢ n′ ÷u′ : T ′[u′/x]

Note that the inferred typesT [u/x] andT ′[u′/x] in the last rule are a priori different,
even ifT is equal toT ′. This motivates a heterogeneously-typed algorithmic equality.

8

Type-directed equality∆ ⊢ t : A ⇐⇒ ∆′ ⊢ t′ : A′ and∆ ⊢ t : T ⇐̂⇒ ∆′ ⊢ t′ : T ′

checks termst andt′ for equality and proceeds by the common structure of the supplied
types, to account forη.

∆ ⊢ T ⇐̂⇒ ∆′ ⊢ T ′

∆ ⊢ T : s ⇐⇒ ∆′ ⊢ T ′ : s′

∆. x⋆U ⊢ t ⋆x : T ⇐̂⇒ ∆′. x⋆U ′ ⊢ t′ ⋆x : T ′

∆ ⊢ t : (x⋆U)→ T ⇐⇒ ∆′ ⊢ t′ : (x⋆U ′)→ T ′

∆ ⊢ ↓t : T ←̂→ ∆′ ⊢ ↓t′ : T ′

∆ ⊢ t : N ⇐⇒ ∆′ ⊢ t′ : N ′

∆ ⊢ t : ↓T ⇐⇒ ∆′ ⊢ t′ : ↓T ′

∆ ⊢ t : T ⇐̂⇒ ∆′ ⊢ t′ : T ′

Note that in the but-last rule we do not check that the inferred typeT of ↓t equals
the ascribed typeN . Since algorithmic equality is only invoked for well-typedt, we
know that this must always be the case. Skipping this test is aconceptually important
improvement over Harper and Pfenning [13].

Lemma 3 (Uniqueness of inferred types).

1. If ∆ ⊢ n : A ←→ ∆′ ⊢ n′ : A′ and∆ ⊢ n : B ←→ ∆′ ⊢ n′ : B′ thenA = B
andA′ ≡ B′.

2. If ∆ ⊢ n : T ←̂→ ∆′ ⊢ n′ : T ′ and∆ ⊢ n : U ←̂→ ∆′ ⊢ n′ : U ′ thenT = U
andT ′ ≡ U ′.

Lemma 4 (Algorithmic equality is a Kripke PER). ←→, ←̂→, ⇐⇒, and⇐̂⇒ are
symmetric and transitive and closed under weakening.

Extending structural equality to irrelevance, we let

∆⊕ ⊢ n : A ←→ ∆⊕ ⊢ n : A ∆′⊕ ⊢ n′ : A′ ←→ ∆′⊕ ⊢ n′ : A′

∆ ⊢ n÷A ←→ ∆′ ⊢ n′ ÷A′

and analogously for∆ ⊢ n÷ T ←̂→ ∆′ ⊢ n′ ÷ T ′.

4 A Universal Kripke Model for IITT

In this section we build, based on algorithmic equality, a universal Kripke model of
typed terms that is both sound and complete for IITT. Following Goguen [12] and
previous work [4], we first define a semantic universe hierarchy Ti whose sole purpose
is to provide a measure for defining a logical relation and proving some of its properties.
The limit Tω corresponds to the proof-theoretic strength or ordinal of IITT.

4.1 An Induction Measure

We denote sets of expressions byA,B and functions from expressions to sets of expres-
sions byF . LetÂ = {t | ↓t ∈ A} denote the closure ofA by weak head expansion. De-
pendent function space is defined asΠ AF = {f ∈ Whnf | ∀u ∈ Â. f @⋆ u ∈ F(u)}.

9

By recursion oni ∈ N we define inductively setsTi ⊆Whnf×P(Whnf) as follows
[4, Sec. 5.1]:

(N, Wne) ∈ Ti (Setj , |Tj |) ∈ Ti

(Setj , Seti) ∈ Axiom

(U,A) ∈ T̂i ∀u ∈ Â. (T [u/x],F(u)) ∈ T̂i

((x⋆U)→ T, Π AF) ∈ Ti

Herein,T̂i = {(T,A) | (↓T,A) ∈ Ti} and |Tj | = {A | (A,A) ∈ Tj for someA}.
The induction measureA ∈ Seti shall now mean the minimum height of a derivation
of (A,A) ∈ Ti for someA. Note that due to universe stratification,A ∈ Seti is smaller
thanSeti ∈ Setj .

4.2 A Heterogeneously Typed Kripke Logical Relation

By induction on the maximum of the measuresA ∈ Seti andA′ ∈ Seti′ we define two
Kripke relations

∆ ⊢ A : Seti s ∆′ ⊢ A′ : Seti′

∆ ⊢ a : A s ∆′ ⊢ a′ : A′.

together with their respective closureŝs and the generalization to⋆. The clauses are
given in rule form.

∆ ⊢ N ⇐⇒ ∆′ ⊢ N ′

∆ ⊢ N : Seti = ∆′ ⊢ N ′ : Seti′

∆ ⊢ N : Seti s ∆′ ⊢ N ′ : Seti′

∆ ⊢ n : ←̂→ ∆′ ⊢ n′ :
∆ ⊢ n : N = ∆′ ⊢ n′ : N ′

∆ ⊢ n : N s ∆′ ⊢ n′ : N ′

∆ ⊢ Seti : Seti+1 = ∆′ ⊢ Seti : Seti+1

∆ ⊢ Seti : Seti+1 s ∆′ ⊢ Seti : Seti+1

∆ ⊢ U : Seti ŝ ∆′ ⊢ U ′ : Seti′

∀(Γ, Γ ′) ≤ (∆, ∆′), Γ ⊢ u ⋆ U ŝ Γ ′ ⊢ u′ ⋆ U ′ =⇒

Γ ⊢ T [u/x] : Seti ŝ Γ ′ ⊢ T ′[u′/x] : Seti′

∆ ⊢ (x⋆U)→ T : Seti = ∆′ ⊢ (x⋆U ′)→ T ′ : Seti′

∆ ⊢ (x⋆U)→ T : Seti s ∆′ ⊢ (x⋆U ′)→ T ′ : Seti′

∀(Γ, Γ ′) ≤ (∆, ∆′), Γ ⊢ u ⋆ U ŝ Γ ′ ⊢ u′ ⋆ U ′ =⇒

Γ ⊢ f ⋆u : T [u/x] ŝ Γ ′ ⊢ f ′ ⋆u′ : T ′[u′/x]
∆ ⊢ f : (x⋆U)→ T = ∆′ ⊢ f ′ : (x⋆U ′)→ T ′

∆ ⊢ f : (x⋆U)→ T s ∆′ ⊢ f ′ : (x⋆U ′)→ T ′

10

tց a ∆ ⊢ t = a : ↓T ∆′ ⊢ t′ = a′ : ↓T ′ t′ ց a′

∆ ⊢ a : ↓T s ∆′ ⊢ a′ : ↓T ′

∆ ⊢ t : T ŝ ∆′ ⊢ t′ : T ′

∆⊕ ⊢ a : A s ∆⊕ ⊢ a : A ∆′⊕ ⊢ a′ : A′ s ∆′⊕ ⊢ a′ : A′

∆ ⊢ a÷A s ∆′ ⊢ a′ ÷A′

∆⊕ ⊢ t : T ŝ ∆⊕ ⊢ t : T ∆′⊕ ⊢ t′ : T ′ ŝ ∆′⊕ ⊢ t′ : T ′

∆ ⊢ t÷ T ŝ ∆′ ⊢ t′ ÷ T ′

It is immediate that the logical relation contains only well-typed terms, is symmetric,
transitive, and closed under weakening.

Lemma 5 (Soundness).

1. If ∆ ⊢ a : A s ∆′ ⊢ a′ : A′ then∆ ⊢ a : A = ∆′ ⊢ a′ : A′.

2. If ∆ ⊢ t : T ŝ ∆′ ⊢ t′ : T ′ then∆ ⊢ t : T = ∆′ ⊢ t′ : T ′.

Lemma 6. s andŝ are PERs and closed under weakening.

Lemma 7 (Type and context conversion).

1. If ∆ ⊢ a : A s ∆′ ⊢ a′ : A′ and ∆′ ⊢ A′ : s′ s ∆′′ ⊢ A′′ : s′′ then
∆ ⊢ a : A s ∆′′ ⊢ a′ : A′′.

2. If ∆ ⊢ t : T ŝ ∆′ ⊢ t′ : T ′ and ∆′ ⊢ T ′ : s′ ŝ ∆′′ ⊢ T ′′ : s′′ then
∆ ⊢ t : T ŝ ∆′′ ⊢ t′ : T ′′.

Proof. Simultaneously by induction onA′ ∈ s and↓T ′ ∈ s, respectively.

Lemma 8 (Escape from the logical relation).Let∆ ⊢ A : Seti s ∆′ ⊢ A′ : Seti′

1. ∆ ⊢ A ⇐⇒ ∆ ⊢ A′.
2. If ∆ ⊢ t : A ŝ ∆′ ⊢ t′ : A′ then∆ ⊢ t : A ⇐⇒ ∆′ ⊢ t′ : A′.
3. If ∆ ⊢ n ⋆ A ←→ ∆′ ⊢ n′ ⋆ A′ and ∆ ⊢ n ⋆ A = ∆ ⊢ n′ ⋆ A′ then

∆ ⊢ n ⋆ A s ∆ ⊢ n′ ⋆ A′.

Corollary 1. Let∆ ⊢ T : Seti ŝ ∆′ ⊢ T ′ : Seti′

1. ∆ ⊢ T ⇐̂⇒ ∆ ⊢ T ′.
2. If ∆ ⊢ t : T ŝ ∆′ ⊢ t′ : T ′ then∆ ⊢ t : T ⇐̂⇒ ∆′ ⊢ t′ : T ′.
3. If ∆ ⊢ n ⋆ T ←̂→ ∆′ ⊢ n′ ⋆ T ′ and ∆ ⊢ n ⋆ T = ∆ ⊢ n′ ⋆ T ′ then

∆ ⊢ n ⋆ T ŝ ∆ ⊢ n′ ⋆ T ′.

The corollary is a direct, non-inductive consequence of thelemma, so we can use it in
the proof of the lemma, quoted as “IH”.

Proof. Simultaneously by induction onA ∈ Seti.

Case ∆ ⊢ N : Seti s ∆ ⊢ N ′ : Seti′ .

11

Subcase1. ∆ ⊢ N ⇐⇒ ∆′ ⊢ N ′ by assumption.
Subcase2. We have∆ ⊢ ↓t : ←→ ∆′ ⊢ ↓t′ : , thus∆ ⊢ t : N ⇐⇒ ∆′ ⊢

t′ : N ′.
Subcase3.

First, consider⋆ = :. If ∆ ⊢ n : N = ∆′ ⊢ n′ : N ′ and ∆ ⊢ n :
N ←→ ∆′ ⊢ n′ : N ′ then∆ ⊢ n : ←̂→ ∆′ ⊢ n′ : and trivially
∆ ⊢ n : N s ∆′ ⊢ n′ : N ′.
Then, take⋆ = ÷. Note that if∆⊕ ⊢ n : N = ∆⊕ ⊢ n : N and∆⊕ ⊢
n : N ←→ ∆⊕ ⊢ n : N then∆⊕ ⊢ n : ←̂→ ∆⊕ ⊢ n : and
∆⊕ ⊢ n : N s ∆⊕ ⊢ n : N . This implies that if∆ ⊢ n÷N = ∆′ ⊢ n′÷N ′

and∆ ⊢ n÷N ←→ ∆′ ⊢ n′ ÷N ′ then∆ ⊢ n÷ ←̂→ ∆′ ⊢ n′ ÷ and
∆ ⊢ n÷N s ∆′ ⊢ n′ ÷N ′.

Case ∆ ⊢ Setj : Seti s ∆′ ⊢ Setj : Seti′ .

Subcase1. Clearly,∆ ⊢ Setj ⇐⇒ ∆′ ⊢ Setj .

Subcase2. Let∆ ⊢ T : Setj ŝ ∆′ ⊢ T ′ : Setj . Then∆ ⊢ T ⇐̂⇒ ∆′ ⊢ T ′ by
IH 1, thus∆ ⊢ T : Setj ⇐⇒ ∆′ ⊢ T ′ : Setj

Subcase 3. For⋆ = : let ∆ ⊢ N : Setj ←→ ∆′ ⊢ N ′ : Setj . Then∆ ⊢
N ⇐⇒ ∆′ ⊢ N ′ and∆ ⊢ N : Setj s ∆′ ⊢ N ′ : Setj by definition.
Considering⋆ = ÷, it is sufficient to observe that∆⊕ ⊢ N : Setj ←→ ∆⊕ ⊢
N : Setj implies∆⊕ ⊢ N ⇐⇒ ∆⊕ ⊢ N and∆⊕ ⊢ N : Setj s ∆⊕ ⊢
N : Setj by definition.

Case ∆ ⊢ (x⋆U)→ T : Seti s ∆′ ⊢ (x⋆U ′)→ T ′ : Seti′ .

Subcase1. Similar to 2.
Subcase 2. By assumption,∆ ⊢ t : (x⋆U) → T ŝ ∆′ ⊢ t′ : (x⋆U ′) → T ′.

It is sufficient to show∆. x⋆U ⊢ t ⋆x : T ⇐̂⇒ ∆′. x⋆U ′ ⊢ t′ ⋆x : T ′.
Since∆ ⊢ U : Seti ŝ ∆′ ⊢ U ′ : Seti′ , by soundness∆ ⊢ U : Seti =
∆′ ⊢ U ′ : Seti′ , hence∆. x⋆U ⊢ x ⋆ U = ∆′. x⋆U ′ ⊢ x ⋆ U ′. Since also
∆. x⋆U ⊢ x ⋆ U ←̂→ ∆′. x⋆U ′ ⊢ x ⋆ U ′, we obtain∆. x⋆U ⊢ t ⋆x : ↓T ŝ

∆′. x⋆U ′ ⊢ t′ ⋆x : ↓T ′ via IH 3, which entails our goal by IH 2.
Subcase3. First, the case for⋆ = :. We reuse variable⋆ for a different irrelevance

marker. We have∆ ⊢ n : (x⋆U) → T ←→ ∆′ ⊢ n′ : (x⋆U ′) → T ′.
Assume arbitrary(Γ, Γ ′) ≤ (∆, ∆′) andΓ ⊢ u ⋆ U ŝ Γ ′ ⊢ u′ ⋆ U ′, which
yieldsΓ ⊢ u ⋆ U = Γ ′ ⊢ u′ ⋆ U ′ andΓ ⊢ T [u/x] : Seti ŝ Γ ′ ⊢ T ′[u′/x] :
Seti′ . In case⋆ = : we have to apply IH 2 forΓ ⊢ u : ↓U ⇐⇒ Γ ′ ⊢ u′ : ↓U ′.
Otherwise, we obtain directlyΓ ⊢ n ⋆u : ↓(T [u/x]) ←→ Γ ′ ⊢ n′ ⋆u′ :
↓T ′[u′/x]. By IH 3, Γ ⊢ n ⋆u : ↓(T [u/x]) s Γ ′ ⊢ n′ ⋆u′ : ↓T ′[u′/x].
The case for⋆ = ÷ proceeds analogously.

4.3 Validity in the Model

Simultaneously and by induction on the length ofΓ we define the PERs
 Γ =
 Γ ′

and∆ ⊢ σ : Γ ŝ ∆′ ⊢ σ′ : Γ ′ which presupposes the former. In rule notation this

12

reads:

 ⋄ =
 ⋄

 Γ =
 Γ ′ Γ
 U = Γ ′
 U ′

 Γ. x⋆U =
 Γ ′. x⋆U ′

∆ ⊢ σ : ⋄ ŝ ∆′ ⊢ σ′ : ⋄

∆ ⊢ σ : Γ ŝ ∆′ ⊢ σ′ : Γ ′ ∆ ⊢ σ(x) ⋆ Uσ ŝ ∆′ ⊢ σ′(x) ⋆ U ′σ′

∆ ⊢ σ : Γ. x⋆U ŝ ∆′ ⊢ σ′ : Γ ′. x⋆U ′

Again at the same time, we define the following abbreviations, also given in rule nota-
tion:

Γ
 s = Γ ′
 s

Γ
 T : s = Γ ′
 T ′ : s′

Γ
 T = Γ ′
 T ′

 Γ =
 Γ ′ Γ
 T = Γ ′
 T ′

∀∆ ⊢ σ : Γ ŝ ∆′ ⊢ σ′ : Γ ′ =⇒ ∆ ⊢ tσ : Tσ ŝ ∆′ ⊢ t′σ′ : T ′σ′

Γ
 t : T = Γ ′
 t′ : T ′

Finally, letΓ
 t : T ⇐⇒ Γ
 t : T = Γ
 t : T and
 Γ ⇐⇒
 Γ =
 Γ .

Lemma 9 (Context satisfiable).For the identity substitutionid and
 Γ =
 Γ ′ we
haveΓ ⊢ id : Γ ŝ Γ ′ ⊢ id : Γ ′.

Proof. By induction onΓ , using Lemma 8.3.

Theorem 1 (Completeness of IITT rules).If Γ
 t : T = Γ ′
 t′ : T ′ thenΓ ⊢ t :
T = Γ ′ ⊢ t′ : T ′ andΓ ⊢ T = Γ ′ ⊢ T ′.

Proof. Using Lemma 9 we obtainΓ ⊢ t : T ŝ Γ ′ ⊢ t′ : T ′, which entailsΓ ⊢ t :
T = Γ ′ ⊢ t′ : T ′. Analogously, since our assumption entailsΓ
 T = Γ ′
 T ′ by
definition, we getΓ ⊢ T = Γ ′ ⊢ T ′.

Theorem 2 (Fundamental theorem of logical relations).

1. If ⊢ Γ then
 Γ .
2. If ⊢ Γ = ⊢ Γ ′ then
 Γ =
 Γ ′.
3. If Γ ⊢ t : T thenΓ
 t : T .
4. If Γ ⊢ t : T = Γ ′ ⊢ t′ : T ′ thenΓ
 t : T = Γ ′
 t′ : T ′.

Proof. By induction on the derivation.

5 Meta-theoretic Consequences of the Model Construction

After doing hard work in the construction of a universal model, the rest of the meta-
theory of IITT falls into our lap like a ripe fruit.

13

5.1 Normalization and Subject Reduction

An immediate consequence of the model construction is that each term has a weak head
normal form and that typing and equality is preserved by weakhead normalization.

Theorem 3 (Normalization and subject reduction).If Γ ⊢ t : T thent ց a and
Γ ⊢ t = a : T .

Proof. By the fundamental theorem,Γ ⊢ t : T ŝ Γ ⊢ t : T which by definition
contains a derivation ofΓ ⊢ t = ↓t : T .

5.2 Correctness of Algorithmic Equality

Algorithmic equality is correct, i. e., sound, complete, and terminating. Together, this
entails decidability of equality in IITT. Algorithmic equality is built into the model at
every step, thus, completeness is immediate:

Theorem 4 (Completeness of algorithmic equality).If Γ ⊢ t : T = Γ ′ ⊢ t′ : T ′

thenΓ ⊢ t : T ⇐̂⇒ Γ ′ ⊢ t′ : T ′.

Proof. SinceΓ ⊢ id : Γ ŝ Γ ′ ⊢ id : Γ ′, we haveΓ ⊢ t : T ŝ Γ ′ ⊢ t′ : T ′ by the
fundamental theorem, and conclude with Lemma 8.2.

Termination of algorithmic equality is a consequence of full normalization, which
we have not defined explicitly, but which is implicit in the model.

Lemma 10 (Termination of algorithmic equality). If ∆ ⊢ t : T ŝ ∆ ⊢ t : T and
∆′ ⊢ t′ : T ′ ŝ ∆′ ⊢ t′ : T ′ then the query∆ ⊢ t : T ⇐̂⇒ ∆′ ⊢ t′ : T ′ terminates.

Proof. Generalize to all six algorithmic equality judgements and inspect the rules.
Membership oft, T andt′, T ′ in the model guarantees that all weak head evaluations
terminate.

Theorem 5. If ∆ ⊢ t : T and∆′ ⊢ t′ : T ′ then the query∆ ⊢ t : T ⇐̂⇒ ∆′ ⊢ t′ : T ′

terminates.

Proof. From the lemma by the fundamental theorem.

Soundness of the equality algorithm is a consequence of subject reduction.

Theorem 6 (Soundness of algorithmic equality).

1. Let∆ ⊢ t : T and∆′ ⊢ t′ : T ′ and∆ ⊢ T = ∆′ ⊢ T ′. If ∆ ⊢ t : T ⇐̂⇒ ∆′ ⊢
t′ : T ′ then∆ ⊢ t : T = ∆′ ⊢ t′ : T ′.

2. Let∆ ⊢ n : T and∆′ ⊢ n′ : T ′ and ⊢ ∆ = ⊢ ∆′. If ∆ ⊢ n : U ←̂→ ∆′ ⊢ n′ :
U ′ then∆ ⊢ n : U = ∆′ ⊢ n′ : U ′ and∆ ⊢ U = T and∆′ ⊢ U ′ = T ′.

Proof. Generalize the theorem to all six algorithmic equality judgments and prove it by
induction on the algorithmic equality derivation. Since wehave subject reduction, the
proof proceeds mechanically, because each algorithmic rule corresponds, modulo weak
head normalization, to a declarative rule.

14

Case ∆ ⊢ T : s and∆′ ⊢ T ′ : s and

∆ ⊢ ↓T ⇐⇒ ∆′ ⊢ ↓T ′

∆ ⊢ T ⇐̂⇒ ∆′ ⊢ T ′

By induction hypothesis,∆ ⊢ ↓T : s = ∆′ ⊢ ↓T ′ : s. By subject reduction
∆ ⊢ T = ↓T : s and∆′ ⊢ T ′ = ↓T ′ : s. By transitivity∆ ⊢ T : s = ∆′ ⊢ T ′ : s.

Case
∆ ⊢ T ⇐̂⇒ ∆′ ⊢ T ′

∆ ⊢ T : s ⇐⇒ ∆′ ⊢ T ′ : s

By induction hypothesis,∆ ⊢ T : s = ∆′ ⊢ T ′ : s.

5.3 Homogeneity

Although we defined IITT-equality heterogeneously, we can now show that the hetero-
geneity was superficial, i. e., in fact do equal terms have equal types. This was already
implicit in the formulation of the equality algorithm whichonly compares terms at types
of the same shape. By rather than building homogeneity into the definition of equality,
we obtain it as a global result.

Lemma 11. If
 Γ =
 Γ ′ then⊢ Γ = ⊢ Γ ′.

Proof. By induction on the context length from Thm. 1.

Theorem 7 (Homogeneity).If Γ ⊢ t : T = Γ ′ ⊢ t′ : T ′ then ⊢ Γ = ⊢ Γ ′ and
Γ ⊢ T = Γ ′ ⊢ T ′.

Proof. By the fundamental theoremΓ
 t : T = Γ ′
 t′ : T ′, which by definition
entailsΓ
 T = Γ ′
 T ′ and
 Γ =
 Γ ′. The rest follows by Thm. 1 and the last
lemma.

5.4 Consistency

Importantly, not every type is inhabited in IITT, thus, it can be used as a logic. A prereq-
uisite is that types can be distinguished, which follows immediately from completeness
of algorithmic equality.

Lemma 12 (Type constructor discrimination).Neutral types, sorts and function types
are mutually unequal.

1. Γ ⊢ N 6= Γ ′ ⊢ s.
2. Γ ⊢ N 6= Γ ′ ⊢ (x⋆U)→ T .
3. Γ ⊢ s = Γ ′ ⊢ s′ impliess ≡ s′.
4. Γ ⊢ s 6= Γ ′ ⊢ (x⋆U)→ T .

Proof. Direct, by completeness of algorithmic equality.

From normalization and type constructor discrimination wecan show that not every
type is inhabited.

15

Theorem 8 (Consistency).X :Set0 6 ⊢ t : X .

Proof. Let Γ = (X :Set0). AssumingΓ ⊢ t : X , we haveΓ ⊢ a : X for the whnfa
of t. We invert on the typing ofa. By Lemma 12,X cannot be equal to a function type
or sort, thus,a can neither be aλ nor a function type nor a sort, it can only be neutral.
The only variableX must be in the head ofa, but sinceX is not of function type, it
cannot be applied. Thus,a ≡ X , which is ill-typed, sinceX cannot be equal toSet0.
Contradiction!

5.5 Decidability

To round off, we show that typing in IITT is decidable. Type checking algorithms such
as bidirectional checking [11] rely on injectivity of function type constructors, which is
built into the definition ofs:

Theorem 9 (Function type injectivity). If Γ ⊢ (x⋆U) → T : s = Γ ′ ⊢ (x⋆U ′) →
T ′ : s′ thenΓ ⊢ U : s = Γ ′ ⊢ U ′ : s′ andΓ. x⋆U ⊢ T : s = Γ ′. x⋆U ′ ⊢ T ′ : s′.

Proof. SinceΓ ⊢ id : Γ ŝ Γ ′ ⊢ id : Γ ′ we have by the fundamental theorem
Γ ⊢ (x⋆U) → T : s ŝ Γ ′ ⊢ (x⋆U ′) → T ′ : s′ which by inversion yields first
Γ ⊢ U : s ŝ Γ ′ ⊢ U ′ : s′ andΓ ⊢ U : s = Γ ′ ⊢ U ′ : s′. SinceΓ. x⋆U ⊢ x ⋆ U ŝ

Γ ′. x⋆U ′ ⊢ x⋆U ′, we also obtainΓ. x⋆U ⊢ T : s ŝ Γ ′. x⋆U ′ ⊢ T ′ : s′ and conclude
Γ. x⋆U ⊢ T : s = Γ ′. x⋆U ′ ⊢ T ′ : s′.

Theorem 10 (Decidability of IITT).

1. Γ ⊢ t : T = Γ ′ ⊢ t′ : T ′ is decidable.
2. Γ ⊢ t : T is decidable.

Proof. Decidability of equality follows from soundness (Thm 6, completeness (Thm. 4,
and termination (Thm. 5). Decidability of typing follows from decidability of type con-
version, weak head normalization, and function type injectivity, using the inversion
lemmata on typing derivations. Any reasonable type inference algorithm will do.

6 Extensions

Data types and recursion.The semantics of IITT is ready to cope with inductive data
types like the natural numbers and the associated recursionprinciples. Recursion into
types, aka known as large elimination, is also accounted forsince we have universes
and a semantics which does not erase dependencies (unlike Pfenning’s model [23]).

Types with extensionality principles.The purpose of having a typed equality algo-
rithm is to handleη-laws that are not connected to the shape of the expression (like
η-contraction for functions) but to the shape of the type only. Typically these are types

16

T with at most one inhabitant, i. e., the empty type, the unit type, singleton types or
propositions.3 For suchT we have theη-law

Γ ⊢ t, t′ : T

Γ ⊢ t = t′ : T

which can only be checked in the presence of typeT . Realizing suchη-laws gives addi-
tional “proof” irrelevance which is not covered by Pfenning’s irrelevant quantification
(x÷U)→ T .

Internal erasure.Termsu ÷ U in irrelevant position are only there to please the type
checker, they are ignored during equality checking. This can be inferred from the sub-
stitution principle: IfΓ. x÷U ⊢ T andΓ ⊢ u, u′ ÷ U , thenΓ ⊢ T [u/x] = T [u′/x];
the typeT has the same shape regardless ofu, u′. Hence, terms likeu serve the sole
purpose to prove some proposition and could be replaced by a dummy• immediately
after type-checking. This is an optimization which in the first place saves memory, but
if expressions are written to interface files and reloaded later, it also saves disk space
and execution time of saving and loaded. First experiments with an implementation of
internal erasure in Agda [10] shows that savings are huge, like in formalizing category
theory and algebra which uses structures with embedded proofs (see Example 1).

Internal erasure can be realized by makingΓ ⊢ t ÷ T a judgement (as opposed to
just a notation forΓ⊕ ⊢ t : T) and adding the rule

Γ ⊢ t÷ T

Γ ⊢ • ÷ T
.

The rule states that if there is already a prooft of T , then• is a new proof ofT . This
preserves provability while erasing the proof terms. Conservativity of this rule can be
proven as in joint work of the author with Coquand and Pagano [5].

Proof modality.Pfenning [23] suggests a modality△ formed by the rule

Γ ⊢ t÷ T

Γ ⊢ t : △T
.

which for instance allows the definition of the subset type{x : U | T x} as Σx :
U.△(T x). Such a modality has been present in Nuprl asSquashtype [21] and it is
also known as the type of proofs of (proposition)T [5, 9]. Using the extensions of
Example 1, we can encode it as△T = (÷T)× 1.

7 Conclusions

We have extended Pfenning’s notion of irrelevance to a type theory IITT with universes
that accommodates types defined by recursion. A heterogeneous algorithmic equality
judgement has allowed a smooth construction of a universal Kripke model that is both

3 Some care is necessary for the type of Leibniz equality [1, 26].

17

sound and complete for IITT, yielding normalization, consistency and decidability of
IITT. Inspired by a heterogeneously typed semantics, we have formulated the declara-
tive system with a heterogeneous equality judgement as welland demonstrated that this
also yields a sound specification of type theory.

Integrating irrelevance and data types in dependent type theory does not seem with-
out challenges. We have succeeded to treat Pfenning’s notion of irrelevance, but our
proof does not scale directly toparametricfunction types, a stronger notion of irrelevant
function types called implicit quantification by Miquel [19].4 Two more type theories
build on Miquel’s calculus [18], Barras and Bernardo’s ICC∗ [9] and Mishra-Linger
and Sheard’sErasure Pure Type Systems(EPTS) [20], but none has offered a satisfying
account of large eliminations yet. Miquel’s model [17] features data types only as im-
predicative encodings. For irrelevant, parametric, and recursive functions to coexist it
seems like three different function types are necessary, e.g., in the style of Pfenning’s
irrelevance, extensionality and intensionality. We would like to solve this puzzle in
future work, not least to implement high-performance languages with dependent types.

Acknowledgments.Thanks to Bruno Barras, Bruno Bernardo, Thierry Coquand, Dan
Doel, Hugo Herbelin, Conor McBride, and Ulf Norell for discussions on irrelevance in
type theory. Thanks to Jason Reed, Conor McBride, and the anonymous referees for
suggesting improvements on the text. Work on a previous paper has been carried out
while being invited researcher at PPS, Paris, in the INRIAπr2 team headed by Pierre-
Louis Curien and Hugo Herbelin. I have benefited from presentations at JFLA 2010,
the Agda Implementer’s Meeting in March 2010 and the DTP workshop in 2010.

References

1. Andreas Abel. Extensional normalization in the logical framework with proof irrelevant
equality. In Olivier Danvy, editor,2009 Wksh. on Normalization by Evaluation, 2009.

2. Andreas Abel. MiniAgda: Integrating sized and dependenttypes. In Ana Bove, Ekaterina
Komendantskaya, and Milad Niqui, editors,Wksh. on Partiality And Recursion in Interactive
Theorem Provers (PAR 2010), 2010.

3. Andreas Abel and Thierry Coquand. Untyped algorithmic equality for Martin-Löf’s logical
framework with surjective pairs.Fundam. Inform., 77(4):345–395, 2007. TLCA’05 special
issue.

4. Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a semanticβη-conversion test
for Martin-Löf type theory. In Philippe Audebaud and Christine Paulin-Mohring, editors,
Proc. of the 9th Int. Conf. on Mathematics of Program Construction, MPC 2008, volume
5133 ofLect. Notes in Comput. Sci., pages 29–56. Springer, 2008.

5. Andreas Abel, Thierry Coquand, and Miguel Pagano. A modular type-checking algorithm
for type theory with singleton types and proof irrelevance.In P.-L. Curien, editor,Proc. of
the 9th Int. Conf. on Typed Lambda Calculi and Applications,TLCA 2009, volume 5608 of
Lect. Notes in Comput. Sci., pages 5–19. Springer, 2009.

4 A function argument is parametric if it is irrelevant for computing the function result while the
type of the result may depend on it. In Pfenning’s notion, theargument must also be irrelevant
in the type.

18

6. Roberto M. Amadio, editor.Proc. of the 11th Int. Conf. on Foundations of Software Science
and Computational Structures, FOSSACS 2008, volume 4962 ofLect. Notes in Comput. Sci.
Springer, 2008.

7. Lennart Augustsson. Cayenne - a language with dependent types. InProc. of the 3rd ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP ’98), volume 34 ofSIGPLAN No-
tices, pages 239–250. ACM Press, 1999.

8. Steven Awodey and Andrej Bauer. Propositions as [Types].J. Log. Comput., 14(4):447–471,
2004.

9. Bruno Barras and Bruno Bernardo. The implicit calculus ofconstructions as a programming
language with dependent types. In Amadio [6], pages 365–379.

10. Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - a functional language
with dependent types. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel, editors,Theorem Proving in Higher Order Logics, TPHOLs 2009, volume 5674 of
Lect. Notes in Comput. Sci., pages 73–78. Springer, 2009.

11. Thierry Coquand. An algorithm for type-checking dependent types. InProc. of the 3rd
Int. Conf. on Mathematics of Program Construction, MPC ’95, volume 26 ofSci. Comput.
Program., pages 167–177. Elsevier, May 1996.

12. Healfdene Goguen.A Typed Operational Semantics for Type Theory. PhD thesis, University
of Edinburgh, August 1994. Available as LFCS Report ECS-LFCS-94-304.

13. Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type
theory.ACM Transactions on Computational Logic, 6(1):61–101, 2005.

14. INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.2 edition, 2008.
http://coq.inria.fr/.

15. Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and Freek Wiedijk, editors,
TYPES, volume 2646 ofLect. Notes in Comput. Sci., pages 200–219. Springer, 2002.

16. Conor McBride and James McKinna. The view from the left.J. Func. Program., 2004.
17. Alexandre Miquel. A model for impredicative type systems, universes, intersection types

and subtyping. InProc. of the 15th IEEE Symp. on Logic in Computer Science (LICS 2000),
pages 18–29, 2000.

18. Alexandre Miquel. The implicit calculus of constructions. In Samson Abramsky, editor,
Proc. of the 5th Int. Conf. on Typed Lambda Calculi and Applications, TLCA 2001, volume
2044 ofLect. Notes in Comput. Sci., pages 344–359. Springer, 2001.

19. Alexandre Miquel. Le Calcul des Constructions implicite: syntaxe et sémantique. PhD
thesis, Université Paris 7, December 2001.

20. Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems. In
Amadio [6], pages 350–364.

21. Richard Nathan Mishra-Linger.Irrelevance, Polymorphism, and Erasure in Type Theory.
PhD thesis, Portland State University, 2008.

22. Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML programs in the system
Coq. J. Symb. Comput., 15(5/6):607–640, 1993.

23. Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory.
In LICS 2001: IEEE Symposium on Logic in Computer Science, June 2001.

24. Jason Reed. Proof irrelevance and strict definitions in alogical framework, 2002. Senior
Thesis, published as Carnegie-Mellon University technical report CMU-CS-02-153.

25. Jason Reed. Extending higher-order unification to support proof irrelevance. In David A.
Basin and Burkhart Wolff, editors,Theorem Proving in Higher Order Logics, TPHOLs 2003,
volume 2758 ofLect. Notes in Comput. Sci., pages 238–252. Springer, 2003.

26. Benjamin Werner. On the strength of proof-irrelevant type theories.Logical Meth. in Com-
put. Sci., 4, 2008.

19

