Verifying Program Optimizations in Agda Case Study: List Deforestation

Andreas Abel

16 July 2009

This is a case study on proving program optimizations correct. We prove the foldr-unfold fusion law, an instance of deforestation. As a result we show that the summation of the first n natural numbers, implemented by producing the list $\mathrm{n}::$... :: $1:: 0::$ [] and summing up the its elements, can be automatically optimized into a version which does not use an intermediate list.

```
module Fusion where
open import Data.Maybe
open import Data.Nat
open import Data.Product
open import Data.List hiding (downFrom)
open import Relation.Binary.PropositionalEquality
import Relation.Binary.EqReasoning as Eq
```

From Data.List we import foldr which is the standard iterator for lists.
foldr : $\{\mathrm{ab}:$ Set $\} \rightarrow(\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{b}) \rightarrow \mathrm{b} \rightarrow$ List $\mathrm{a} \rightarrow \mathrm{b}$
foldrcn [] $=\mathrm{n}$
foldrcn(x:: xs) $=c x$ (foldrcnxs)
Further, sum sums up the elements of a list by replacing [] by 0 and _ $::_{-}$by + .

$$
\begin{aligned}
& \text { sum : List } \mathbb{N} \rightarrow \mathbb{N} \\
& \text { sum }=\text { foldr__ }^{+}+_{-} 0
\end{aligned}
$$

Finally, unfold is a generic list producer. It takes two parameters, $f: B \rightarrow$ Maybe $(A \times B)$, the transition function, and $s: B$, the start state. Now f is iterated on the start state. If the result of applying f on the current state is nothing, an empty list is output and the list production terminates. If the application of f yields just (x, s^{\prime}) then x is taken to be the next element of the list and s' the new state of the production.

In Agda, everything needs to terminate, so we add a (hidden) parameter $\mathrm{n}: \mathbb{N}$ which is an upper bound on the number of elements to be produced. Each iteration decreases
this number. Consequently the type $B: \mathbb{N} \rightarrow$ Set is now parameterized by n, and $f: \forall\{n\} \rightarrow B($ suc $n) \rightarrow$ Maybe $(A \times B n)$ can only be applied to a state B (suc n) where still an element could be output.

```
unfold : \(\{\mathrm{A}: \operatorname{Set}\}(\mathrm{B}: \mathbb{N} \rightarrow\) Set \()\)
        \((\mathrm{f}: \forall\{\mathrm{n}\} \rightarrow \mathrm{B}(\) suc n\() \rightarrow\) Maybe \((\mathrm{A} \times \mathrm{B} \mathrm{n})) \rightarrow\)
        \(\forall\{\mathrm{n}\} \rightarrow \mathrm{Bn} \rightarrow\) List A
unfold \(B f\{n=\) zero \(\} s=[]\)
unfold \(B f\{n=\) suc \(n\} s\) with \(f s\)
\(\ldots\)... nothing \(=[]\)
\(\ldots\).. just \(\left(x, s^{\prime}\right)=x::\) unfold \(B f s^{\prime}\)
```

A typical instance of unfold is the function downFrom from the standard library with the behavior downFrom $3=2:: 1:: 0::[]$. We reimplement it here, avoiding local definitions as used in the standard library.

```
data Singleton : \(\mathbb{N} \rightarrow\) Set where
    wrap : \((\mathrm{n}: \mathbb{N}) \rightarrow\) Singleton n
downFromF : \(\forall\{n\} \rightarrow\) Singleton (suc \(n) \rightarrow\) Maybe \((\mathbb{N} \times\) Singleton \(n\) )
downFromF \(\{n\}(\) wrap \(\circ(\) suc \(n))=\) just ( \(n\), wrap \(n)\)
downFrom : \(\mathbb{N} \rightarrow\) List \(\mathbb{N}\)
downFrom \(\mathrm{n}=\) unfold Singleton downFromF (wrap n )
sumFrom : \(\mathbb{N} \rightarrow \mathbb{N}\)
sumFrom zero \(=\) zero
sumFrom (suc \(n\) ) \(=n+\) sumFrom \(n\)
```

Our goal is to show the theorem $\forall \mathrm{n} \rightarrow$ sum (downFrom n) \equiv sumFrom n .
The theorem follows from general considerations:

- sum is a foldr, it consumes a list.
- downFrom is a unfold, it produces a list.

The list is only produced to be consumed again. Can we optimize away the intermediate list?

Removing intermediate data structures is called deforestation, since data structures are tree-shaped in the general case.

In our case, we would like to fuse an unfold followed by a foldr into a single function foldUnfold which does not need lists. We observe that a foldr after an unfold satisfies the following equations:
foldr c n (unfold Bf\{zero $\} \mathrm{s}$) $=\mathrm{n}$
foldrcn (unfold Bf\{sucm\}s|fs=nothing) $=n$
foldr cn (unfold Bf $\{$ sucm $\} s \mid f s=$ just (x, s '))

$$
\begin{aligned}
& =\text { foldr c n }(x:: \text { unfold B f s') } \\
& =c x(\text { foldr } \mathrm{c} \mathrm{n}(\text { unfold B f s' })
\end{aligned}
$$

In the recursive case, the pattern foldr c $n \circ$ unfold $B f$ resurfaces, and it contains all the recursive calls to foldr and unfold. Hence, we can introduce a new function foldUnfold as

```
foldUnfold cnBf=foldrcnounfoldBf
```

```
foldUnfold : \(\{\mathrm{AC}:\) Set \(\} \rightarrow(\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{C}) \rightarrow \mathrm{C} \rightarrow\)
    \((B: \mathbb{N} \rightarrow\) Set \() \rightarrow(\forall\{n\} \rightarrow B(\) suc \(n) \rightarrow\) Maybe \((A \times B n)) \rightarrow\)
    \(\{n: \mathbb{N}\} \rightarrow B n \rightarrow C\)
foldUnfold cnBf\{zero\}s \(=n\)
foldUnfold \(\mathrm{c} n \mathrm{Bf}\{\) suc \(m\}\) with \(f s\)
\(\ldots \mid\) nothing \(=n\)
\(\ldots\). \(\mid\) just \(\left(x, s^{\prime}\right)=c \times\left(\right.\) foldUnfold \(\left.c n B f\{m\} s^{\prime}\right)\)
```

foldUnfold does not produce an intermediate list.
It is easy to show that the definition of foldUnfold is correct.

```
foldr-unfold : \(\{\mathrm{AC}:\) Set \(\} \rightarrow(\mathrm{c}: \mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{C}) \rightarrow(\mathrm{n}: \mathrm{C}) \rightarrow\)
    \((B: \mathbb{N} \rightarrow\) Set \() \rightarrow(f: \forall\{n\} \rightarrow B(\) suc \(n) \rightarrow\) Maybe \((A \times B n)) \rightarrow\)
    \(\{\mathrm{m}: \mathbb{N}\} \rightarrow(\mathrm{s}: \mathrm{B} m) \rightarrow\)
    foldr cn(unfold Bfs) 三foldUnfold cnBfs
foldr-unfold cnBf\{zero\}s=refl
foldr-unfold \(c n B f\{\) suc \(m\} s\) with \(f s\)
\(\ldots \mid\) nothing \(=\) refl
\(\ldots \quad\) just \(\left(x, s^{\prime}\right)=\operatorname{cong}(c x)\) (foldr-unfold \(\left.c n B f\{m\} s^{\prime}\right)\)
```

sumFrom is a special case of foldUnfold.

```
lem1 : \(\forall\{n\} \rightarrow\) foldUnfold \({ }_{-}+_{-} 0\) Singleton downFromF (wrap \(n\) ) \(\equiv\) sumFrom \(n\)
lem1 \(\{\) zero \(\}=\) refl
\(\operatorname{lem} 1\{\) suc \(n\}=\operatorname{cong}(\lambda m \rightarrow n+m)(\operatorname{lem} 1\{n\})\)
```

Our theorem follows by composition of the two lemmata.

```
thm : \(\forall\{n\} \rightarrow\) sum (downFrom \(n\) ) \(\equiv\) sumFrom \(n\)
thm \(\{n\}=\) begin
    sum (downFrom \(n\) )
        \(\equiv\langle\) refl \(\rangle\)
foldr _+_ 0 (unfold Singleton downFromF (wrap n))
        \(\equiv\langle\) foldr-unfold _+_ 0 Singleton downFromF (wrap n) \(\rangle\)
foldUnfold _+_ 0 Singleton downFromF (wrap n)
        \(\equiv\langle\operatorname{lem} 1\{n\}\rangle\)
```


sumFrom n

where open \equiv-Reasoning
That's it!

