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with Surjective Pairs

Andreas Abel∗ C

Institut für Informatik, Ludwigs-Maximilians-Universität München

abel@informatik.uni-muenchen.de

Thierry Coquand∗

Department of Computer Science, Chalmers University of Technology

coquand@cs.chalmers.se

Abstract. Martin-Löf’s Logical Framework is extended by strong Σ-types and presented via judg-
mental equality with rules for extensionality and surjective pairing. Soundness of the framework
rules is proven via a generic PER model on untyped terms. An algorithmic version of the framework
is given through an untyped βη-equality test and a bidirectional type checking algorithm. Complete-
ness is proven by instantiating the PER model with η-equality on β-normal forms, which is shown
equivalent to the algorithmic equality.

1. Introduction

Central to dependent type theories is the rule of conversion: The type of an expression can be converted to
an equal type, where in intensional type theories the notion of equality between types is decidable. In the
past, research has focused on β-equality, and since β-reduction is confluent, two types are equal iff they
have a common β-reduct. This both suggest an implementation for equality—β-normalize and compare
for syntactical identity—and provides a specification sufficient to reason about the meta-theoretic proper-
ties of the type theory: From confluence one gets injectivity of the dependent function space constructor
Π, an important mile stone to prove subject reduction and, hence, soundness of the type theory. Be-
cause β is well behaved, one can consider β-reduction on untyped terms, which simplifies the reasoning
significantly.
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If one adds η-laws to the notion of equality, this strategy does not work any more. Surjective pairing,
the strong η-law for Σ-types, destroys confluence of reduction for untyped terms [19]. In the presence
of a unit type, η-reduction is not even locally confluent on well-typed terms [20]. Furthermore, for
the type theory considered in this article, MLFΣ, an extension of Martin-Löf’s logical framework with
βη-equality by dependent surjective pairs (strong Σ types), subject reduction fails.

On the specification side, the short comings of η are salvaged by judgmental equality. Equality of two
expressions is stated with reference to their type and a valid typing context. Soundness of type theories
with judgmental equality follows directly from a PER model which interprets types as extensional partial
equivalence relations. More problematic could be injectivity of Π; in our case, however, it is trivial since
we follow Martin-L”of’s later approach and separate terms and types conceptually: Terms can appear in
types only inside the El constructor.

Another issue is decidability of judgmental equality: the rules do not suggest an algorithm imme-
diately. We take the incremental βη-convertibility test which has been given by the second author for
dependently typed λ-terms [8], and extend it to pairs. The algorithm computes the weak head normal
forms of the conversion candidates, and then analyzes the shape of the normal forms. In case the head
symbols do not match, conversion fails early. Otherwise, the subterms are recursively weak head nor-
malized and compared. There are two flavors of this algorithm.

Type-directed conversion. In this style, the type of the two candidates dictates the next step in the
algorithm. If the candidates are of function type, both are applied to a fresh variable, if they are of
pair type, their left and right projections are recursively compared, and if they are of base type, they are
compared structurally, i. e., their head symbols and subterms are compared. Type-directed conversion
has been investigated by Harper and Pfenning [17]. The advantage of this approach is that it can handle
cases where the type provides extra information which is not present already in the shape of terms.
An example is the unit type: any two terms of unit type, e. g., two variables, can be considered equal.
Harper and Pfenning report difficulties in showing transitivity of the conversion algorithm, in case of
dependent types. To circumvent this problem, they erase the dependencies and obtain simple types to
direct the equality algorithm. In the theory they consider, the Edinburgh Logical Framework [16], erasure
is sound, but in theories with types defined by cases (large eliminations), erasure is unsound and it is not
clear how to make their method work. In this article, we investigate an alternative approach.

Shape-directed (untyped) conversion. As the name suggests, the shape of the candidates directs the
next step. If one of the objects is a λ-abstraction, both objects are applied to a fresh variable, if one object
is a pair, the algorithm continues with the left and right projections of the candidates, and otherwise, they
are compared structurally. Since the algorithm does not depend on types, it is in principle applicable to
many type theories with functions and pairs. In this article, we prove it complete for MLFΣ, but since we
are not using erasure, we expect the proof to extend to theories with large eliminations.

Main technical contributions of this article.

1. We extend the untyped type-checking algorithm of the second author [8] to a type system with
Σ-types and surjective pairing. Recall that reduction in the untyped λ-calculus with surjective
pairing is not Church-Rosser [6] (see Appendix A). Therefore, one cannot specify this type system
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with conversion defined on raw terms.1 However, since surjective pairing does not destroy local
confluence, it is confluent on strongly normalizing terms. Thus, once the type theory is proven
sound which implies that all terms are normalizing, one can use reduction to check for equality.
One byproduct of the completeness proof of our equality algorithm is that we can decide equality
also by the following strategy: first β-normalize, then check η-equality of the β-normal forms
(which in our case can be done by η-reduction).

2. We take a modular approach for showing the completeness of the conversion algorithm. This result
is obtained using a special instance of a general PER model construction. Furthermore this special
instance can be described a priori without references to the typing rules.

Contents. Figure 1 summarizes the technical developments of this article. We start with a syntactical
description of MLFΣ, in the style of equality-as-judgement (Section 2). Then, we give an untyped al-
gorithm to check βη-equality of two expressions, which alternates weak head reduction and comparison
phases, plus a bidirectional type checking algorithm for normal terms (Section 3). The goal of this article
is to show that the algorithmic presentation of MLFΣ is equivalent to the declarative one. Soundness is
proven rather directly in Section 4, requiring inversion for the typing judgement in order to establish sub-
ject reduction for weak head evaluation. Completeness, which implies decidability of MLFΣ, requires
construction of a model. Before giving a specific model, we describe a class of PER (partial equivalence
relation) models of MLFΣ based on a generic model of the λ-calculus with pairs (Section 5). In Section 6
we turn to the specific model of expressions modulo β-equality and show that η-equality of β-normal
forms is a partial equivalence, hence, gives rise to a PER model. In Section 7 we give a proof that η-
equivalence is decided by the algorithmic equality which implies that the algorithmic equality serves as
basis for a PER model as well. This entails completeness of the algorithm. We could have done a more
direct proof, without the intermediate model involving η-equality, and this (rather technical) path is taken
in Section 8. Decidability of judgmental equality on well-typed terms in MLFΣ ensues, which entails
that type checking of normal forms is decidable as well (Section 9).

This article is an extended and revised version of a conference contribution with the same title [3].

2. Declarative Presentation of MLFΣ

This section presents the typing and equality rules for an extension of Martin-Löf’s logical framework
[21] by dependent pairs. We show some standard properties like weakening and substitution, as well
as injectivity of function and pair types and inversion of typing, which will be crucial for the further
development.

Expressions (terms and types). We do not distinguish between terms and types syntactically. Depen-
dent function types, usually written Πx :A.B, are written FunA (λxB); similarly, dependent pair types
Σx :A.B are represented by Pair A (λxB). We write projections L and R postfix. The syntactic entities

1In the absence of confluence, one cannot show injectivity of type constructors, on which usually the proof of subject reduction
rests. Adams [5] has shown the equivalence of pure type systems with judgmental and untyped equality, but only for β.
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Figure 1. Outline of Results.
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Wellformed contexts Γ ` ok.

CXT-EMPTY ¦ ` ok
CXT-EXT

Γ ` A :Type

Γ, x :A ` ok

Type formation Γ ` A :Type.

SET-F
Γ ` ok

Γ ` Set :Type
SET-E

Γ ` t : Set

Γ ` El t :Type

FUN-F
Γ, x :A ` B :Type

Γ ` FunA (λxB) :Type
PAIR-F

Γ, x :A ` B :Type

Γ ` Pair A (λxB) :Type

Typing Γ ` t : A.

HYP
Γ ` ok (x :A) ∈ Γ

Γ ` x : A
CONV

Γ ` t : A Γ ` A = B :Type

Γ ` t : B

FUN-I
Γ, x :A ` t : B

Γ ` λxt : FunA (λxB)
FUN-E

Γ ` r : FunA (λxB) Γ ` s : A

Γ ` r s : B[s/x]

PAIR-I
Γ, x :A ` B :Type Γ ` s : A Γ ` t : B[s/x]

Γ ` (s, t) : Pair A (λxB)

PAIR-E-L
Γ ` r : Pair A (λxB)

Γ ` r L : A
PAIR-E-R

Γ ` r : Pair A (λxB)
Γ ` r R : B[r L/x]

Figure 2. MLFΣ rules for contexts, types and typing.
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of MLFΣ are given by the following grammar.

Var 3 x, y, z variables
Const 3 c ::= Fun | Pair | El | Set constants
Proj 3 p ::= L | R left and right projection
Exp 3 r, s, t ::= c | x | λxt | r s | (t, t′) | r p expressions
Ty 3 A,B, C ::= Set | El t | FunA (λxB) | Pair A (λxB) types
Cxt 3 Γ ::= ¦ | Γ, x :A typing contexts

The only binder is abstraction λxt, which binds variable x in expression t. Let FV(t) denote the set of
free variables of expression t. We identify terms and types up to α-conversion and write t ≡ t′ to express
syntactic equality between t and t′ (modulo α), as opposed to β-, η-, or judgemental equality which will
be defined later. We adopt the convention that in contexts Γ, all variables must be distinct; hence, the
context extension Γ, x : A presupposes x 6∈ dom(Γ), where dom(Γ) denotes the domain of Γ viewed
as a finite map from variables to types. This view also explains the notation Γ(x). Capture-avoiding
subsitution of expression s for variable x in expression t is written as t[s/x].

Types Ty ⊆ Exp are distinguished expressions; they are closed under substitution. The inhabitants
of Set are type codes; El maps type codes to types. For instance, Fun Set (λa. Fun (El a) (λ .El a))
denotes the type of the polymorphic identity λaλxx.

Judgements are inductively defined relations. If D is a derivation of judgement J , we write D :: J .
The height of derivation D is denoted by #D. The type theory MLFΣ is presented via five judgements:

Γ ` ok Γ is a well-formed context
Γ ` A :Type A is a well-formed type
Γ ` t : A t has type A

Γ ` A = A′ :Type A and A′ are equal types
Γ ` t = t′ : A t and t′ are equal terms of type A

A variable x is free in a judgement Γ ` J , written x ∈ FV(J), if it is free in one of the expressions in J .
Typing rules are given in Figure 2, together with the rules for well-formed contexts and types. The rules
for the equality judgements are given in Figures 3 and 4.

Remark 2.1. (Subject reduction fails)
In the typing context z : Pair A (λxB), the η-redex (z L, z R) can be given the non-dependent type
Pair A (λ .B[z L/x]), but its reduct z not. A closer analysis of this problem leads us to rule PAIR-I: the
types of s and t do not determine the type of (s, t). If the term s appears in B[s/x], then there are at least
two different expressions B1 and B2 such that B1[s/x] ≡ B2[s/x] ≡ B[s/x], which lead to different
types of (s, t).

For the remainder of this section we present properties of MLFΣ which have easy syntactical proofs.
In this, we follow roughly the path outlined by Harper and Pfenning [17]. However, there is a metho-
dological difference: In all judgements Γ ` J , we presuppose Γ ` ok, which is not true for Harper and
Pfenning’s presentation of the logical framework.
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EQ-SET-F
Γ ` ok

Γ ` Set = Set :Type
EQ-SET-E

Γ ` t = t′ : Set

Γ ` El t = El t′ :Type

EQ-FUN-F
Γ ` A = A′ :Type Γ, x :A ` B = B′ :Type

Γ ` FunA (λxB) = FunA′ (λxB′) :Type

EQ-PAIR-F
Γ ` A = A′ :Type Γ, x :A ` B = B′ :Type

Γ ` Pair A (λxB) = Pair A′ (λxB′) :Type

Figure 3. MLFΣ type equality rules.

Type equality (see Figure 3) is reflexive, symmetric, and transitive, which can only be shown after
establishing context conversion (Lemma 2.9) and syntactic validity (Theorem 2.1). But injectivity and
non-confusion for type-constructors is completely trivial in our formulation of type equality, which lacks
computation on the type level and rules for symmetry and transitivity.

Lemma 2.1. (Injectivity)
1. If D :: Γ ` Set = C :Type then C ≡ Set.

2. If D :: Γ ` El t = C :Type then C ≡ El t′ and Γ ` t = t′ : Set.

3. Let c ∈ {Fun, Pair}. If D :: Γ ` cA (λxB) = C : Type then C ≡ cA′ (λxB′) with Γ ` A =
A′ :Type and Γ, x :A ` B = B′ :Type.

Proof:
By cases on D. ut

For Harper and Pfenning’s version of the Edinburgh LF which lacks type-level λ-abstraction [17],
injectivity is also not hard to prove. In the Edinburgh LF with type-level λ it involves a normalization
argument and is proven using logical relations [26].

In the following, we prove a sequence of technical lemmata that bring us to the important theorem of
syntactic validity which states that all syntactic entities in a derived judgement are well-formed.

Lemma 2.2. (Scoping)
1. If D :: Γ ` J then FV(J) ⊆ dom(Γ).

2. If D :: Γ′, x :A,Γ′′ ` J then FV(A) ⊆ dom(Γ′).

Proof:
Simultaneously by induction on D. ut
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Equivalence, hypotheses, conversion.

EQ-SYM
Γ ` t = t′ : A

Γ ` t′ = t : A
EQ-TRANS

Γ ` r = s : A Γ ` s = t : A

Γ ` r = t : A

EQ-HYP
Γ ` ok (x :A) ∈ Γ

Γ ` x = x : A
EQ-CONV

Γ ` t = t′ : A Γ ` A = B :Type

Γ ` t = t′ : B

Dependent functions.

EQ-FUN-I
Γ, x :A ` t = t′ : B

Γ ` λxt = λxt′ : FunA (λxB)

EQ-FUN-E
Γ ` r = r′ : FunA (λxB) Γ ` s = s′ : A

Γ ` r s = r′ s′ : B[s/x]

EQ-FUN-β
Γ, x :A ` t : B Γ ` s : A

Γ ` (λxt) s = t[s/x] : B[s/x]

EQ-FUN-η
Γ ` t : FunA (λxB)

Γ ` (λx. t x) = t : FunA (λxB)
x 6∈ FV(t)

Dependent pairs.

EQ-PAIR-I
Γ ` s = s′ : A Γ ` t = t′ : B[s/x]

Γ ` (s, t) = (s′, t′) : Pair A (λxB)

EQ-PAIR-E-L
Γ ` r = r′ : Pair A (λxB)

Γ ` r L = r′ L : A
EQ-PAIR-E-R

Γ ` r = r′ : Pair A (λxB)
Γ ` r R = r′ R : B[r L/x]

EQ-PAIR-β-L
Γ ` s : A Γ ` t : B

Γ ` (s, t) L = s : A
EQ-PAIR-β-R

Γ ` s : A Γ ` t : B

Γ ` (s, t) R = t : B

EQ-PAIR-η
Γ ` r : Pair A (λxB)

Γ ` (r L, r R) = r : Pair A (λxB)

Figure 4. MLFΣ term equality rules.
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Lemma 2.3. (Weakening)
If D1 :: Γ, Γ′ ` J and both D2 :: Γ ` A :Type and x 6∈ dom(Γ,Γ′), then E :: Γ, x :A, Γ′ ` J .

Remark 2.2. The result derivation E is at most as long as the input derivations together: #E ≤ #D1 +
#D2. Note that the special case Γ′ = ¦ cannot be proven by itself; e.g., the case FUN-F fails since the
order of the hypotheses matters in the context.

Proof:
By induction on D1. First, consider J = ok. Γ′ can be empty or not:

1. Case D1 :: Γ, Γ′ ` ok and Γ′ = ¦. From D2 we get E :: Γ, x :A ` ok by rule CXT-EXT.

2. Case D1 :: Γ, Γ′ ` ok and Γ′ 6= ¦. The only matching rule is:

CXT-EXT
Γ, Γ′′ ` B :Type

Γ,Γ′′, y :B ` ok

By induction hypothesis, Γ, x :A,Γ′′ ` B :Type. We conclude by rule CXT-EXT.

Now we look at the other judgements. There are two principal cases for the last rule inD1: First, the rule
discharges a hypothesis, and second, the context is left unchanged by the rule.

1. A hypothesis is discharged in the last rule of D1, for instance:

FUN-F
Γ,Γ′, y :B ` C :Type

Γ,Γ′ ` FunB (λyC) :Type

Extending Γ′ by the assumption y :B for the induction hypothesis, we obtain Γ, x :A, Γ′, y :B `
C :Type. The goal follows by FUN-F.

2. The last rule application in D1 leaves the context unchanged. Most rules fall into this pattern, for
instance:

HYP
Γ, Γ′ ` ok (y :B) ∈ (Γ,Γ′)

Γ,Γ′ ` y : B

By induction hypothesis, Γ, x :A,Γ′ ` ok, hence, Γ, x :A,Γ′ ` y : B by HYP.

Mixed forms, like EQ-FUN-F, can be treated analogously. ut

The following lemma materializes the fact that in all judgements, the context is well-formed, which
implies that all types in the contexts must be well-formed.

Lemma 2.4. (Context well-formedness)
1. If D :: Γ, Γ′ ` J then E :: Γ ` ok and the derivation E is at most as long as D.

2. If D :: Γ, x :A, Γ′ ` J , then E :: Γ ` A :Type and E is shorter than D.
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Proof:
The first proposition holds since in the leaves of type formation, typing, and equality derivations (rules
SET-F, HYP, EQ-HYP, and EQ-SET-F) we require well-formed contexts. Formally, it is proven by induc-
tion on D. All cases are easy, for instance:

FUN-F
Γ, Γ′, y :B ` C :Type

Γ, Γ′ ` FunB (λyC) :Type

By induction hypothesis, Γ ` ok.
For the second proposition, use the first proposition to derive E :: Γ, x : A ` ok. The last rule in E

must be CXT-EXT with premise E ′ :: Γ ` A :Type. We have #E ′ < #E ≤ #D. ut

Corollary 2.1. (Iterative weakening)
If Γ ` J and Γ, Γ′ ` J ′ then Γ, Γ′ ` J .

Proof:
By induction on the length of Γ′. If Γ′ is empty, there is nothing to show, otherwise Γ′ = (x :A, Γ′′). By
the lemma, Γ ` A :Type, hence by weakening, Γ, x :A ` J . By induction hypothesis, Γ, x :A, Γ′′ ` J .

ut

Another consequence of context well-formedness is that we can decompose well-formed types:

Lemma 2.5. (Inversion for types)
1. If D :: Γ ` El t :Type then D′ :: Γ ` t : Set.

2. Let c ∈ {Fun, Pair}. If D :: Γ ` cA (λxB) :Type then D1 :: Γ ` A :Type and D2 :: Γ, x :A `
B :Type.

In all cases, the derivations D′, D1, and D2 are shorter than D.

Proof:
By cases on D, using Lemma 2.4 for part 2. For instance:

FUN-F
Γ, x :A ` B :Type

Γ ` FunA (λxB) :Type

From the premise, D2, we get D1 :: Γ ` A :Type by context well-formedness. ut

Similarly, context well-formedness is required to establish reflexivity.

Lemma 2.6. (Reflexivity)
1. If D :: Γ ` t : A then Γ ` t = t : A.

2. If D :: Γ ` A :Type then Γ ` A = A :Type.

Proof:
Each by induction on D. Reflexivity for terms is proven mechanically, by replacing typing rulesR in D
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with their counterpart EQ-R from the set of equality rules. Reflexivity for types requires some attention
in case of FUN-F and PAIR-F, for instance:

FUN-F
Γ, x :A ` B :Type

Γ ` FunA (λxB) :Type

First, the induction hypothesis gives us Γ, x : A ` B = B : Type. Secondly, by the Lemma 2.4, we
obtain a derivation Γ ` A : Type which is shorter than D, so we can apply the induction hypothesis
again to obtain Γ ` A = A :Type. The goal follows by EQ-FUN-F. ut

The substitution lemma allows us to replace a variable by a term of the correct type in a derivation.
It relies on weakening and context well-formedness.

Lemma 2.7. (Substitution)
Let Γ ` s : A. If D :: Γ, x :A,Γ′ ` J then Γ, Γ′[s/x] ` J [s/x].

Proof:
By induction on D.

• Case:
CXT-EXT

Γ ` A :Type

Γ, x :A ` ok

Then Γ ` ok by context well-formedness.

• Case:

CXT-EXT
Γ, x :A, Γ′ ` B :Type

Γ, x :A, Γ′, y :B ` ok

By induction hypothesis, Γ, Γ′[s/x] ` B[s/x] :Type, hence Γ, Γ′[s/x], y :B[s/x] ` ok.

• Cases HYP and EQ-HYP, e. g.:

HYP
Γ, x :A, Γ′ ` ok

Γ, x :A,Γ′ ` x : A

First observe that by scoping (Lemma 2.2) we have FV(A) ⊆ dom(Γ), so x 6∈ FV(A) and
A[s/x] ≡ A. By induction hypothesis, Γ, Γ′[s/x] ` ok. We apply iterative weakening on
Γ ` s : A to conclude Γ, Γ′[s/x] ` s : A.

All other cases go through by induction hypothesis, using the properties of the substitution operation. ut

In the following lemmata, which are all required to prove syntactic validity, there are some hypothe-
ses (underlined) which will turn out to be redundant after we have proven syntactic validity. But until
then, they are required for “boot-strapping”.

Lemma 2.8. (Functionality for typing and type formation)
Let Γ ` s = s′ : A and Γ ` s : A.

1. If D :: Γ, x :A, Γ′ ` t : C then Γ, Γ′[s/x] ` t[s/x] = t[s′/x] : C[s/x].

2. If D :: Γ, x :A, Γ′ ` C :Type then Γ, Γ′[s/x] ` C[s/x] = C[s′/x] :Type.
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Proof:
Each by induction on D. We spell out some cases for the first proposition, for the second, there are no
surprises.

• In the case of an hypothesis rule, we have Γ, x : A,Γ′ ` ok, hence, by the substitution lemma,
Γ, Γ′[s/x] ` ok. We consider the following subcases:

– The used hypothesis is x : A. Since all types in Γ′[s/x] are wellformed, we can iteratively
weaken (Cor. 2.1) the assumption of this lemma to obtain the desired Γ,Γ′[s/x] ` s = s′ : A.
Note that A ≡ A[s/x] since x cannot be free in A (Lemma 2.2).

– The used hypothesis is (y :B) ∈ Γ. Then x cannot be free in B and Γ,Γ′[s/x] ` y = y : B
is an instance of rule EQ-HYP.

– The used hypothesis is (y : B) ∈ Γ′. Then (y : B[s/x]) ∈ Γ′[s/x] and we can again use
EQ-HYP.

• Case:

CONV
Γ, x :A,Γ′ ` t : B Γ, x :A, Γ′ ` B = C :Type

Γ, x :A,Γ′ ` t : C

Γ, Γ′[s/x] ` t[s/x] = t[s′/x] : B[s/x] induction hypothesis

Γ ` s : A assumption

Γ, Γ′[s/x] ` B[s/x] = C[s/x] :Type substitution lemma

Γ, Γ′[s/x] ` t[s/x] = t[s′/x] : C[s/x] rule EQ-CONV

• Case:

FUN-I
Γ, x :A, Γ′, y :B ` t : C

Γ, x :A,Γ′ ` λyt : FunB λyC

Γ, Γ′[s/x], y :B[s/x] ` t[s/x] = t[s′/x] : C[s/x] induction hypothesis

Γ, Γ′[s/x] ` λy. t[s/x] = λy. t[s′/x] : Fun (B[s/x]) λy.C[s/x] rule EQ-FUN-I

Γ, Γ′[s/x] ` (λyt)[s/x] = (λyt)[s′/x] : (FunB λyC)[s/x] properties of substitution

• Case:

PAIR-E-R
Γ, x :A, Γ′ ` r : Pair B λyC

Γ, x :A, Γ′ ` r R : C[r L/y]

Γ, Γ′[s/x] ` r[s/x] = r[s′/x] : Pair (B[s/x]) λy. C[s/x] induction hypothesis

Γ, Γ′[s/x] ` (r R)[s/x] = (r R)[s′/x] : (C[s/x])[(r[s/x] L)/y] rule EQ-PAIR-E-R

Γ, Γ′[s/x] ` (r R)[s/x] = (r R)[s′/x] : (C[r L/y])[s/x] properties of substitution
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ut
Lemma 2.9. (Context conversion)
Let Γ ` B = A :Type and Γ ` B :Type. If D :: Γ, x :A, Γ′ ` J then Γ, x :B,Γ′ ` J .

Proof:
By induction on D.

• Case Γ′ = ¦ and J = ok:
CXT-EXT

Γ ` A :Type

Γ, x :A ` ok

From the assumption Γ ` B :Type we get Γ, x :B ` ok.

• Case:

HYP
Γ, x :A, Γ′ ` ok

Γ, x :A,Γ′ ` x : A

By induction hypothesis Γ, x : B, Γ′ ` ok, hence, Γ, x : B, Γ′ ` x : B. The goal follows by rule
CONV.

The other cases can be handled mechanically using the induction hypothesis. ut

Next, we will establish that type equality is an equivalence relation. Symmetry is needed to use a
context conversion the other way round in the syntactic validity lemma.

Lemma 2.10. (Symmetry)
Let Γ ` C ′ :Type. If D :: Γ ` C = C ′ :Type then Γ ` C ′ = C :Type.

Proof:
By induction on D.

• Case:

EQ-SET-E
Γ ` t = t′ : Set

Γ ` El t = El t′ :Type

By EQ-SYM, Γ ` t′ = t : Set. The goal follows by EQ-SET-E.

• Case:

EQ-FUN-F
Γ ` A = A′ :Type Γ, x :A ` B = B′ :Type

Γ ` FunA (λxB) = FunA′ (λxB′) :Type

First, Γ ` A : Type by context well-formedness. By inversion on Γ ` FunA′ (λxB′) :Type we
have Γ ` A′ : Type, hence by induction hypothesis, Γ ` A′ = A : Type. Again, by inversion,
Γ, x :A′ ` B′ :Type, and we apply context conversion to obtain Γ, x :A ` B′ :Type. We obtain
the second induction hypothesis, Γ, x :A ` B′ = B :Type, from which we infer Γ, x :A′ ` B′ =
B :Type by context conversion. We conclude Γ ` FunA′ (λxB′) = FunA (λxB) :Type.

ut
Lemma 2.11. (Transitivity)
If D :: Γ ` C1 = C2 :Type and Γ ` C2 = C3 :Type then Γ ` C1 = C3 :Type.
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Proof:
By induction on D. The case EQ-SET-E can be handled by EQ-TRANS, interesting is the following one:

Γ ` A1 = A2 :Type Γ, x :A1 ` B1 = B2 :Type

Γ ` FunA1 (λxB1) = FunA2 (λxB2) :Type

Γ ` A2 = A3 :Type Γ, x :A2 ` B2 = B3 :Type

Γ ` FunA2 (λxB2) = FunA3 (λxB3) :Type

By context well-formedness, Γ ` A1 : Type, hence, we can apply context conversion to obtain Γ, x :
A1 ` B2 = B3 :Type. By induction hypothesis it follows that Γ, x :A1 ` B1 = B3 :Type. The rest is
easy. ut

Theorem 2.1. (Syntactic validity)
1. Typing: If D :: Γ ` t : A then Γ ` A :Type.

2. Equality: If D :: Γ ` t = t′ : A then Γ ` A :Type and both Γ ` t : A and Γ ` t′ : A.

3. Type equality: If D :: Γ ` A = A′ :Type then Γ ` A :Type and Γ ` A′ :Type.

Proof:
Simultaneously by induction on D. A few interesting cases are:

• Case:

CONV
Γ ` t : A Γ ` A = B :Type

Γ ` t : B

By induction hypothesis (3.), Γ ` B :Type.

• Case:

PAIR-I
Γ, x :A ` B :Type Γ ` s : A Γ ` t : B[s/x]

Γ ` (s, t) : Pair A (λxB)

By induction hypotheses, Γ ` A : Type, and Γ ` B[s/x] : Type. By assumption Γ, x : A ` B :
Type, from which we conclude Γ ` Pair A (λxB) :Type by rule PAIR-F.

• Case:

PAIR-E-R
Γ ` r : Pair A (λxB)
Γ ` r R : B[r L/x]

By inversion on the induction hypothesis, Γ, x :A ` B :Type. Also, by rule PAIR-E-L, Γ ` r L :
A. Hence, Γ ` B[r L/x] :Type by substitution.

• Case:

EQ-FUN-F
Γ ` A = A′ :Type Γ, x :A ` B = B′ :Type

Γ ` FunA (λxB) = FunA′ (λxB′) :Type

By induction hypothesis, Γ ` A,A′ : Type and Γ, x : A ` B,B′ : Type. We infer Γ `
FunA (λxB) : Type directly, by FUN-F, whereas Γ ` FunA′ (λxB′) : Type follows only af-
ter we converted the type of x in the context to A′ (Lemma 2.9). This conversion is possible since
we obtain Γ ` A′ = A :Type by symmetry (Lemma 2.10).
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• Case:

EQ-FUN-E
Γ ` r = r′ : FunA (λxB) Γ ` s = s′ : A

Γ ` r s = r′ s′ : B[s/x]

Γ ` s, s′ : A induction hypothesis

Γ ` FunA (λxB) :Type induction hypothesis

Γ, x :A ` B :Type inversion

Γ ` B[s/x] :Type substitution lemma

Γ ` r, r′ : FunA (λxB) induction hypothesis

Γ ` r s : B[s/x] rule FUN-E

Γ ` r′ s′ : B[s′/x] rule FUN-E

Γ ` s′ = s : A rule EQ-SYM

Γ ` B[s′/x] = B[s/x] :Type functionality for typing

Γ ` r′ s′ : B[s/x] rule CONV

• Case:

EQ-FUN-β
Γ, x :A ` t : B Γ ` s : A

Γ ` (λxt) s = t[s/x] : B[s/x]

By induction hypothesis, Γ, x : A ` B : Type, and we get the first goal Γ ` B[s/x] : Type
by the substitution lemma. Directly, we obtain Γ ` λxt : FunA (λxB) and the second goal
Γ ` (λxt) s : B[s/x]. Again by substitution, the last goal Γ ` t[s/x] : B[s/x] follows.

• Case:

EQ-FUN-η
Γ ` t : FunA (λxB)

Γ ` (λx. t x) = t : FunA (λxB)
x 6∈ FV(t)

W. l. o. g., x is not bound by context Γ. By induction hypothesis, Γ ` FunA (λxB) : Type. By
inversion for types, Γ ` A : Type, hence we can apply weakening to obtain Γ, x : A ` t :
FunA (λxB). This entails Γ, x :A ` t x : B by FUN-E and Γ ` λx. t x : FunA (λxB) by FUN-I.

ut

After having established syntactical validity, we can drop all underlined hypotheses from the lem-
mata.

Figure 5 recapitulates the dependencies between the lemmata that lead up to syntactic validity.
The following lemma is more or less a consequence of substitution and functionality for typing, but

it will allow for a more concise reasoning in Section 4.

Lemma 2.12. (Functionality for equality)
1. If Γ, x :A, Γ′ ` t = t′ : C and Γ ` s = s′ : A then Γ, Γ′[s/x] ` t[s/x] = t′[s′/x] : C[s/x].

2. If Γ, x :A, Γ′ ` C = C ′ :Type and Γ ` s = s′ : A then Γ,Γ′[s/x] ` C[s/x] = C ′[s′/x] :Type.
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weakening

iterative weakening

syntactic validity

substitution

functionality for typing

context well-formedness

inversion for types

reflexivity

symmetry

scoping

context-conversion

transitivity

Figure 5. Lemma dependencies.

Proof:
Direct (cf. Harper and Pfenning [17]). We show the proof of the first proposition:

Γ ` s : A syntactic validity

Γ,Γ′[s/x] ` t[s/x] = t′[s/x] : C[s/x] substitution lemma

Γ, x :A, Γ′ ` t′ : C syntactic validity

Γ,Γ′[s/x] ` t′[s/x] = t′[s′/x] : C[s/x] functionality for typing

Γ,Γ′[s/x] ` t[s/x] = t′[s′/x] : C[s/x] rule EQ-TRANS

ut

The next lemma will be central for the soundness proof of algorithmic equality in Section 4. Other
names for the theorem are generation lemma or stripping lemma, and it is central for proving subject
reduction (which we will not do in this article).

Lemma 2.13. (Inversion of Typing)
1. If D :: Γ ` x : C then Γ ` Γ(x) = C :Type.

2. If D :: Γ ` λxt : C then C ≡ FunA (λxB) and Γ, x :A ` t : B.

3. If D :: Γ ` r s : C then Γ ` r : FunA (λxB) with Γ ` s : A and Γ ` B[s/x] = C :Type.

4. If D :: Γ ` (r, s) : C then C ≡ Pair A (λxB) with Γ ` r : A and Γ ` s : B[r/x].
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5. If D :: Γ ` rL : A then Γ ` r : Pair A (λxB).

6. If D :: Γ ` rR : C then Γ ` r : Pair A (λxB) and Γ ` B[rL/x] = C :Type.

Proof:
By induction on D. For each shape of term t in Γ ` t : C, there are two matching rules. One is the
introduction resp. elimination rule fitting t, which entails the inversion property trivially. The other one
is rule CONV:

• Case:

CONV
Γ ` λxt : C Γ ` C = C ′ :Type

Γ ` λxt : C ′

By induction hypothesis C ≡ FunA (λxB) and Γ, x : A ` t : B. By injectivity, C ′ ≡
FunA′ (λxB′) with Γ ` A = A′ : Type and Γ, x : A ` B = B′ : Type. By conversion and
context conversion we conclude Γ, x :A′ ` t : B′.

• Case:

CONV
Γ ` r s : C Γ ` C = C ′ :Type

Γ ` r s : C ′

By induction hypothesis Γ ` r : FunA (λxB) for some A,B with Γ ` s : A and Γ ` B[s/x] =
C :Type. We infer Γ ` B[s/x] = C ′ :Type by transitivity.

• Case:

CONV
Γ ` r L : A Γ ` A = A′ :Type

Γ ` r L : A′

By induction hypothesis, Γ ` r : Pair A (λxB). Syntactic validity (Theorem 2.1), inversion, and
reflexivity entail Γ, x :A ` B = B :Type, hence, Γ ` Pair A (λxB) = Pair A′ (λxB) :Type by
rule EQ-PAIR-F. The desired Γ ` r : Pair A′ (λxB) follows by CONV.

ut

Remark 2.3. (Weaker inversion property for left projection)
The statement “if Γ ` rL : C then Γ ` r : Pair A (λxB) and Γ ` A = C :Type” can be proven without
reference to syntactic validity.

3. Algorithmic Presentation

In this section, we present algorithms for deciding equality and for type-checking. The goal of this article
is to show these algorithms sound and complete.

Syntactic classes. The algorithms work on weak head normal forms WVal. For convenience, we intro-
duce separate categories for normal forms which can denote a function and for those which can denote a
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pair. In the intersection of these categories live the neutral expressions.

WElim 3 e ::= s | p eliminations
WNe 3 n ::= c | x | n e neutral expressions
WFun 3 wf ::= n | λxt weak head function values
WPair 3 wp ::= n | (t, t′) weak head pair values
WVal 3 w ::= wf | wp weak head values

Note that types A ∈ Ty ⊆WNe are always neutral weak head values.

Weak head evaluation. We define simultaneously two judgements:

↘ ⊆ Exp×WVal

@ ↘ ⊆ WVal×WElim×WVal

Weak head evaluation t↘ w.

EVAL-C
c↘ c

EVAL-VAR
x↘ x

EVAL-FUN-I
λxt↘ λxt

EVAL-FUN-E
r ↘ wf wf@s↘ w

r s↘ w

EVAL-PAIR-I
(t, t′)↘ (t, t′)

EVAL-PAIR-E
r ↘ wp wp@p↘ w

r p↘ w

Active elimination w@e↘ w′.

ELIM-NE
n@e↘ n e

ELIM-FUN
t[s/x]↘ w

(λxt)@s↘ w

ELIM-PAIR-L
t↘ w

(t, t′)@L↘ w
ELIM-PAIR-R

t′ ↘ w

(t, t′)@R↘ w

Weak head evaluation t↘ w is equivalent to multi-step weak head reduction to weak head normal form.

Conversion. Two terms t, t′ are algorithmically equal if t ↘ w, t′ ↘ w′, and w ∼ w′ for some
w, w′. We combine these three propositions to t↓ ∼ t′↓. Similarly, t@e ∼ t′@e′ shall denote t@e↘ w,
t′@e′ ↘ w′, and w ∼ w′. The algorithmic equality on weak head normal forms w ∼ w′ is given
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inductively by the following rules:

AQ-C
c ∼ c

AQ-VAR
x ∼ x

AQ-NE-FUN
n ∼ n′ s↓ ∼ s′↓

n s ∼ n′ s′
AQ-NE-PAIR

n ∼ n′

n p ∼ n′ p

AQ-EXT-FUN
wf@x ∼ w′f@x

wf ∼ w′f
x 6∈ FV(wf , w′f )

AQ-EXT-PAIR
wp@L ∼ w′p@L wp@R ∼ w′p@R

wp ∼ w′p
For two neutral values, the rules (AQ-NE-X) are preferred over AQ-EXT-FUN and AQ-EXT-PAIR. Thus,
conversion is deterministic. It is easy to see that it is symmetric as well.

In our presentation, untyped conversion resembles type-directed conversion. In the terminology
of Harper and Pfenning [17] and Sarnat [25], the first four rules AQ-C, AQ-VAR, AQ-NE-FUN and
AQ-NE-PAIR compute structural equality, whereas the remaining extensionality rules AQ-EXT-FUN and
AQ-EXT-PAIR compute type-directed equality. The difference is that in our formulation, the shape of a
value—function or pair— triggers application of the extensionality rules.

Remark 3.1. In contrast to the corresponding equality for λ-terms without pairs [8], which we obtain
by removing AQ-NE-PAIR and AQ-EXT-PAIR, this relation is not transitive. For instance, λx. n x ∼ n
and n ∼ (nL, nR), but not λx. n x ∼ (nL, nR).

Type checking. In the following, we give a bidirectional type checking algorithm [9, 22, 17] for β-
normal terms. The judgement Γ ` t ⇓ A infers type A from neutral terms t and the simultaneously
defined judgement Γ ` t ⇑ C checks whether the β-normal term t has type C. A third judgement
Γ ` A ⇓ Type identifies wellformed types A ∈ Ty and depends on the type-checking judgement.
Although the algorithm works only for well-formed contexts, well-formed types, and β-normal terms,
we do not presuppose these properties in the definition of the judgements. However, these conditions
will appear in the soundness (4.1) and completeness (9.2) theorems.
Type inference Γ ` t ⇓ A. (Input: Γ well-formed, t neutral and β-normal. Output: A with Γ ` t : A.)

INF-VAR
Γ ` x ⇓ Γ(x)

INF-FUN-E
Γ ` r ⇓ FunA (λxB) Γ ` s ⇑ A

Γ ` r s ⇓ B[s/x]

INF-PAIR-E-L
Γ ` r ⇓ Pair A (λxB)

Γ ` rL ⇓ A
INF-PAIR-E-R

Γ ` r ⇓ Pair A (λxB)
Γ ` rR ⇓ B[rL/x]

Type checking Γ ` t ⇑ A. (Input: Γ, C with Γ ` C :Type, t β-normal. Output: none.)

CHK-INF
Γ ` r ⇓ A A ∼ B

Γ ` r ⇑ B
CHK-FUN-I

Γ, x :A ` t ⇑ B

Γ ` λxt ⇑ FunA (λxB)

CHK-PAIR-I
Γ ` t ⇑ A Γ ` t′ ⇑ B[t/x]

Γ ` (t, t′) ⇑ Pair A (λxB)
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Type well-formedness Γ ` A ⇓Type. (Input: Γ well-formed, A type. Output: none.)

CHK-SET-F
Γ ` Set ⇓Type

CHK-SET-E
Γ ` t ⇑ Set

Γ ` El t ⇓Type

CHK-DEP-F
Γ ` A ⇓Type Γ, x :A ` B ⇓Type

Γ ` cA (λxB) ⇓Type
c ∈ {Fun,Pair}

When starting type-checking Γ ` t ⇑ C of term t, we suppose that C has been checked for well-
formedness before. Also, we suppose one starts the type-checker with an empty context in the beginning
and adds only checked types to the context. Under these assumptions, one can see that all rules maintain a
checked context—the only rules that extend the context by a type A are CHK-FUN-I and CHK-DEP-F, and
in both cases A has been checked before. Another observation is that only checked terms are substituted
into types (rules INF-FUN-E, INF-PAIR-E-R, and CHK-PAIR-I). This implies that inference Γ ` t ⇓ A
always returns a well-formed type: in case INF-VAR, since it comes from the checked context, and in the
other cases, since it results from a substitution of a checked term into a well-formed type. Finally, we can
conclude that equality test A ∼ B is only invoked on well-formed types A, B. All these observations
will be proven formally in the next section and in Section 9.

The algorithms in this section have been prototypically implemented in Haskell using explicit sub-
stitutions [1].

4. Soundness

The soundness proofs for conversion and type-checking in this section are entirely syntactical and rely
crucially on injectivity of El, Fun and Pair (Lemma 2.1) and inversion of typing (Lemma 2.13). First, we
show soundness of weak head evaluation, which subsumes subject reduction.

Lemma 4.1. (Soundness of weak head evaluation)
1. If D :: t↘ w and Γ ` t : C then Γ ` t = w : C.

2. If D :: w@e↘ w′ and Γ ` w e : C then Γ ` w e = w′ : C.

Note that we do not need a corresponding lemma for weak head evaluation of types, since they are neutral
and therefore always weak head normal.

Proof:
Simultaneously by induction on D, making essential use of inversion laws.

• Case:

EVAL-FUN-E
r ↘ wf wf@s↘ w

r s↘ w
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Γ ` r s : C hypothesis

Γ ` r : FunA (λxB) &

Γ ` s : A &

Γ ` B[s/x] = C :Type inversion

Γ ` r = wf : FunA (λxB) first ind. hyp.

Γ ` r s = wf s : B[s/x] EQ-FUN-E

Γ ` r s = wf s : C CONV

Γ ` wf s : C syntactic validity

Γ ` wf s = w : C second ind. hyp.

Γ ` r s = w : C EQ-TRANS

• Case:

ELIM-FUN
t[s/x]↘ w

(λxt)@s↘ w

Γ ` (λxt) s : C hypothesis

Γ ` λxt : FunA (λxB) &

Γ ` s : A &

Γ ` B[s/x] = C :Type inversion

Γ, x :A ` t : B inversion

Γ ` (λxt) s = t[s/x] : B[s/x] EQ-FUN-β

Γ ` (λxt) s = t[s/x] : C EQ-CONV

Γ ` t[s/x] : C syntactic validity

Γ ` t[s/x] = w : C ind. hyp.

Γ ` (λxt) s = w : C EQ-TRANS

ut

Two algorithmically convertible well-typed expressions must also be equal in the declarative sense.
In case of neutral terms, we also obtain that their types are equal. This is due to the fact that we can read
off the type of the common head variable and break it down through the sequence of eliminations.

Lemma 4.2. (Soundness of conversion)
1. Neutral terms: If D :: n ∼ n′ and Γ ` n : C and Γ ` n′ : C ′ then Γ ` n = n′ : C and

Γ ` C = C ′ :Type.

2. Weak head values: If D :: w ∼ w′ and Γ ` w, w′ : C then Γ ` w = w′ : C.

3. All terms: If t↓ ∼ t′↓ and Γ ` t, t′ : C then Γ ` t = t′ : C.
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Proof:
The third proposition is a consequence of the second, using soundness of evaluation (Lemma 4.1) and
transitivity. We prove the first two propositions simultaneously by induction on D.

• Case:

AQ-NE-FUN
n ∼ n′ s↓ ∼ s′↓

n s ∼ n′ s′

Γ ` n s : C hypothesis

Γ ` n : FunA (λxB) &

Γ ` s : A &

Γ ` B[s/x] = C :Type inversion

Γ ` n′ s′ : C ′ hypothesis

Γ ` n′ : FunA′ (λxB′) &

Γ ` s′ : A′ &

Γ ` B′[s′/x] = C ′ :Type inversion

Γ ` n = n′ : FunA (λxB) &

Γ ` FunA (λxB) = FunA′ (λxB′) :Type first ind. hyp.

Γ ` A = A′ :Type injectivity

Γ ` s′ : A symmetry, rule CONV

Γ ` s = s′ : A second ind. hyp. (3.)

Γ, x :A ` B = B′ :Type injectivity

Γ ` B[s/x] = B′[s′/x] :Type functionality

Γ ` C = C ′ :Type transitivity, symmetry

Γ ` n s = n′ s′ : C rules EQ-FUN-E,CONV

• Case (instance of AQ-EXT-FUN with wf ≡ λxt and w′f = n):

AQ-EXT-FUN
(λxt)@x↘ w w ∼ nx n@x↘ nx

λxt ∼ n
x 6∈ FV(n)
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Γ ` λxt : C hypothesis

C ≡ FunA (λxB) &

Γ, x :A ` t : B inversion

t↘ w assumption

Γ, x :A ` t = w : B eval. sound (Lemma 4.1)

Γ ` n : FunA (λxB) hypothesis, def. C

Γ ` λx. n x = n : FunA (λxB) EQ-FUN-η, x 6∈ FV(n)
Γ, x :A ` n : FunA (λxB) weakening

Γ, x :A ` nx : B FUN-E, HYP

Γ, x :A ` w = nx : B ind. hyp.

Γ, x :A ` t = nx : B transitivity (EQ-TRANS)

Γ ` λxt = λx. n x : FunA (λxB) EQ-FUN-I

Γ ` λxt = n : C EQ-TRANS, CONV

ut

Lemma 4.3. (Soundness of type conversion)
Let C ∼ C ′. If D :: Γ ` C :Type and Γ ` C ′ :Type, then Γ ` C = C ′ :Type.

Proof:
By induction on D. For instance, if C ≡ FunA (λxB), we obtain by inversion for types the two
derivations Γ ` A : Type and Γ, x : A ` B : Type which are shorter than D. By inversion on the
derivation of FunA (λxB) ∼ C ′ using the fact that C ′ is a type, we can determine C ′ ≡ FunA′ (λxB′)
and both A ∼ A′ and λxB ∼ λxB′. The last proposition can only be derived from B ∼ B′. Inverting
the well-formedness derivation of C ′ and using context conversion gives us Γ ` A′ :Type and Γ, x :A `
B′ :Type. Now we can assemble the induction hypotheses Γ ` A = A′ :Type and Γ, x :A ` B = B′ :
Type to conclude Γ ` C = C ′ :Type. ut

It follows that also type checking is correct, if started in a correct context and with a well-formed
type.

Theorem 4.1. (Soundness of bidirectional type checking)
1. If D :: Γ ` t ⇓ A and Γ ` ok then Γ ` t : A.

2. If D :: Γ ` t ⇑ C and Γ ` C :Type, then Γ ` t : C.

3. If D :: Γ ` C ⇓Type and Γ ` ok then Γ ` C :Type.

Proof:
All three propositions by induction on D, the first two simultaneously, then the third. ut
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5. Models

To show completeness of algorithmic equality, we leave the syntactic discipline. Although a syntactical
proof should be possible along the lines of Goguen [13, 14], we prefer a model construction since it is
more apt to extensions of the type theory.

The contribution of this section is that any PER model over a λ-model with full β-equality is a model
of MLFΣ. Only in the next section will we decide on a particular model which enables the completeness
proof.

5.1. λ Models

We assume a set D with the four operations

· ∈ D× D→ D application,

L ∈ D→ D left projection,

R ∈ D→ D right projection, and
∈ Exp× Env→ D denotation.

Herein, we use the following entities:

c ∈ Const := {Set, El,Fun, Pair} constants
u, v, f, V, F ∈ D ⊇ Const domain of the model
ρ ∈ Env := Var→ D environments

Let p range over the projection functions L and R. To simplify the notation, we write also f v for f · v.
Update of environment ρ by the binding x= v is written ρ, x= v. The operations f · v, v p and tρ must
satisfy the following laws:

DEN-CONST cρ = c if c ∈ Const

DEN-VAR xρ = ρ(x)
DEN-FUN-E (r s)ρ = rρ (sρ)
DEN-PAIR-E (r p)ρ = rρ p

DEN-β tρ = t′ρ if t =β t′

DEN-IRR tρ = tρ′ if ρ(x) = ρ′(x) for all x ∈ FV(t)

These laws axiomatize a syntactical λ-algebra [6, 5.3.2.(ii)] extended by projections. In an earlier ver-
sion of this work [3] we required D to be a syntactical λ-model, with weak extensionality. However, this
is an unnecessary requirement and excludes closed term models.

The following laws for β are admissible:

DEN-FUN-β (λxt)ρ v = t(ρ, x=v)

DEN-PAIR-β-L (r, s)ρ L = rρ

DEN-PAIR-β-R (r, s)ρ R = sρ
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Proof:
We show soundness of DEN-FUN-β.

(λxt)ρ v

= (λxt)ρ x(ρ, x=v) DEN-VAR

= (λxt)(ρ, x=v) x(ρ, x=v) DEN-IRR

= ((λxt)x)(ρ, x=v) DEN-FUN-E

= t(ρ, x=v) DEN-β.

ut
The substitution property is a consequence of β-equality:

Lemma 5.1. (Soundness of substitution)
(t[s/x])ρ = t(ρ, x=sρ).

Proof:
(t[s/x])ρ = ((λxt) s)ρ = (λxt)ρ sρ = t(ρ, x=sρ). ut

Injectivity laws. We require the type constructors in the model to be injective. This is necessary since
we want to interpret distinguished elements of D, the types, as semantical types later. In the following,
let c, c′ ∈ {Fun,Pair}.

DEN-SET-NOT-EL Set 6= El v

DEN-SET-NOT-DEP Set 6= c V F

DEN-EL-NOT-DEP El v 6= c V F

DEN-EL-INJ El v = El v′ implies v = v′

DEN-DEP-INJ c V F = c′ V ′ F ′ implies c = c′ and V = V ′ and F = F ′

5.2. PER Models

In the definition of PER models, we follow a paper of the second author with Pollack and Takeyama [10]
and Vaux [27]. The only difference is, since we have codes for types in D, we can define the semantical
property of being a type directly on elements of D, whereas the first cited work defines a new syntactic
class of type expressions on top of D, there being the untyped λ-calculus, and the second cited work
introduces an intensional type equality on closures tρ.

Relations on D. Let Rel denote the set of relations over D. If A ∈ Rel, we say v ∈ A if v is in the
carrier of A, i. e., (v, w) ∈ A or (w, v) ∈ A for some w ∈ D.

Partial equivalence relations (PERs) and families. A PER is a symmetric and transitive relation. Let
Per ⊆ Rel denote the set of PERs over D. IfA ∈ Per, we write v = v′ ∈ A if (v, v′) ∈ A. ForA a PER,
v ∈ A means v = v ∈ A. Each set A ⊆ D can be understood as the discrete PER where v = v′ ∈ A
holds iff v = v′ and v ∈ A. Let Fam(A) be the set of functions F ∈ A → Per such that F(v) = F(v′)
if (v, v′) ∈ A.
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Constructions on PERs. Let A ∈ Rel and F ∈ A → Rel . We define Fun(A,F),Pair(A,F) ∈ Rel:

(f, f ′) ∈ Fun(A,F) iff (f v, f ′ v′) ∈ F(v) for all (v, v′) ∈ A
(v, v′) ∈ Pair(A,F) iff (v L, v′ L) ∈ A and (v R, v′ R) ∈ F(v L)

Lemma 5.2. (Fun and Pair operate on PERs)
If A ∈ Per and F ∈ Fam(A) then Fun(A,F),Pair(A,F) ∈ Per.

In the following, assume some Set ∈ Per and some E` ∈ Fam(Set).

Semantical types. We define inductively a new relation Type ∈ Per and a function [ ] ∈ Fam(Type):

Set = Set ∈ Type and [Set] is Set .
El v = El v′ ∈ Type if v = v′ ∈ Set . Then [El v] is E`(v).
Fun V F = Fun V ′ F ′ ∈ Type if V = V ′ ∈ Type and v = v′ ∈ [V ] implies F v = F ′ v′ ∈ Type.

We define then [Fun V F ] to be Fun([V ], v 7→ [F v]).
Pair V F = Pair V ′ F ′ ∈ Type if V = V ′ ∈ Type and v = v′ ∈ [V ] implies F v = F ′ v′ ∈ Type.

We define then [Pair V F ] to be Pair([V ], v 7→ [F v]).

This definition is possible by the injectivity laws. Notice that in the last two clauses, we have

Fun([V ], v 7→ [F v]) = Fun([V ′], v 7→ [F ′ v]), and
Pair([V ], v 7→ [F v]) = Pair([V ′], v 7→ [F ′ v]).

Remark 5.1. Type and [ ] are an instance of an inductive-recursive definition [12]. Appendix B presents
an alternative formulation, via a relation which is not a priori a PER, and a partial function.

5.3. Validity

If Γ is a context, we define a corresponding PER on Env, written [Γ]. We define ρ = ρ′ ∈ [Γ] to mean
that, for all x:A in Γ, we have Aρ = Aρ′ ∈ Type and ρ(x) = ρ′(x) ∈ [Aρ].

Semantical contexts Γ ∈ Cxt are defined inductively by the following rules:

SEM-CXT-EMPTY ¦ ∈ Cxt

SEM-CXT-EXT
Γ ∈ Cxt Aρ = Aρ′ ∈ Type for all ρ = ρ′ ∈ [Γ]

(Γ, x :A) ∈ Cxt

Theorem 5.1. (Soundness of the rules of MLFΣ)
1. If D :: Γ ` ok then Γ ∈ Cxt .

2. If D :: Γ ` A :Type then Γ ∈ Cxt , and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type.

3. If D :: Γ ` t : A then Γ ∈ Cxt , and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type and tρ = tρ′ ∈ [Aρ].

4. If D :: Γ ` A = A′ :Type then Γ ∈ Cxt , and if ρ = ρ′ ∈ [Γ] then Aρ = A′ρ′ ∈ Type.
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5. If D :: Γ ` t = t′ : A then Γ ∈ Cxt , and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type and
tρ = t′ρ′ ∈ [Aρ].

Proof:
Simultaneously by induction on D, using lemma 5.1.

• Case:
FUN-I

Γ, x :A ` t : B

Γ ` λxt : FunA (λxB)

(Γ, x :A) ∈ Cxt ind. hyp. (*)

Γ ∈ Cxt inversion

ρ = ρ′ ∈ [Γ] assumption

Aρ = Aρ′ ∈ Type from (*)

v = v′ ∈ [Aρ] assumption (v, v′ arbitrary)

(ρ, x=v) = (ρ′, x=v′) ∈ [Γ, x :A] def. [Γ, x :A]
B(ρ, x=v) = B(ρ′, x=v′) ∈ Type ind. hyp.

(λxB)ρ v = (λxB)ρ′ v′ ∈ Type DEN-FUN-β

(FunAλxB)ρ = (FunA λxB)ρ′ ∈ Type def. Type, DEN-FUN-E, DEN-CONST

t(ρ, x=v) = t(ρ′, x=v′) ∈ [B(ρ, x=v)] ind. hyp.

(λxt)ρ v = (λxt)ρ′ v′ ∈ [(λxB)ρ v] DEN-FUN-β

(λxt)ρ = (λxt)ρ′ ∈ [(FunAλxB)ρ] def. Fun , DEN-FUN-E, DEN-CONST

• Case:

FUN-E
Γ ` r : FunA (λxB) Γ ` s : A

Γ ` r s : B[s/x]

Γ ∈ Cxt ind. hyp.

ρ = ρ′ ∈ [Γ] assumption

Fun (Aρ) ((λx.B)ρ) = Fun (Aρ′) ((λx.B)ρ′) ∈ Type ind. hyp.

sρ = sρ′ ∈ [Aρ] ind. hyp.

B(ρ, x=sρ) = B(ρ′, x=sρ′) ∈ Type def. Type
(B[s/x])ρ = (B[s/x])ρ′ ∈ Type subst. (Lemma 5.1)

rρ = rρ′ ∈ Fun([Aρ], v 7→ [B(ρ, x=v)]) ind. hyp.

rρ (sρ) = rρ′ (sρ′) ∈ [B(ρ, x=sρ)] def. Fun
(r s)ρ = (r s)ρ′ ∈ [(B[s/x])ρ] DEN-FUN-E, Lemma 5.1
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• Case:

EQ-FUN-β
Γ, x :A ` t : B Γ ` s : A

Γ ` (λxt) s = t[s/x] : B[s/x]

Γ ∈ Cxt ind. hyp.

ρ = ρ′ ∈ [Γ] assumption

Aρ = Aρ′ ∈ Type ind. hyp.

sρ = sρ′ ∈ [Aρ] ind. hyp.

(ρ, x=sρ) = (ρ′, x=sρ′) ∈ [Γ, x :A] def. [Γ, x :A]
B(ρ, x=sρ) = B(ρ′, x=sρ′) ∈ Type ind. hyp.

(B[s/x])ρ = (B[s/x])ρ′ ∈ Type subst. (Lemma 5.1)

t(ρ, x=sρ) = t(ρ′, x=sρ′) ∈ [B(ρ, x=sρ)] ind. hyp.

(λxt)ρ (sρ) = (t[s/x])ρ′ ∈ [(B[s/x])ρ] DEN-FUN-β, subst.

• Case:

EQ-FUN-η
Γ ` t : FunA (λxB)

Γ ` (λx. t x) = t : FunA (λxB)
x 6∈ FV(t)

Γ ∈ Cxt ind. hyp.

ρ = ρ′ ∈ [Γ] assumption

(FunAλxB)ρ = (FunAλxB)ρ′ ∈ Type ind. hyp.

Aρ = Aρ′ ∈ Type inversion on Type
v = v′ ∈ [Aρ] assumption (v, v′ arbitrary)

tρ = tρ′ ∈ [(FunAλxB)ρ] ind. hyp.

tρ v = tρ′ v′ ∈ [(λxB)ρ v] def. Fun
t(ρ, x=v) v = tρ′ v′ ∈ [(λxB)ρ v] irrelevance DEN-IRR

(t x)(ρ, x=v) = tρ′ v′ ∈ [(λxB)ρ v] DEN-FUN-E, DEN-VAR

(λx. t x)ρ v = tρ′ v′ ∈ [(λxB)ρ v] DEN-FUN-β

(λx. t x)ρ = tρ′ ∈ [(FunAλxB)ρ] since v, v′ arb.

• Case:

EQ-PAIR-η
Γ ` r : Pair A (λxB)

Γ ` (r L, r R) = r : Pair A (λxB)
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Γ ∈ Cxt ind. hyp.

ρ = ρ′ ∈ [Γ] assumption

(Pair AλxB)ρ = (Pair AλxB)ρ′ ∈ Type ind. hyp.

rρ = rρ′ ∈ [(Pair AλxB)ρ] ind. hyp.

(r L)ρ = rρ′ L ∈ [Aρ] def. Pair , DEN-PAIR-E

(r L, r R)ρ L = rρ′ L ∈ [Aρ] DEN-PAIR-β-L

(r R)ρ = rρ′ R ∈ [(λxB)ρ (r L)ρ] def. Pair , DEN-PAIR-E

(r L, r R)ρ R = rρ′ R ∈ [(λxB)ρ ((r L, r R)ρ L)] DEN-PAIR-β-R

(r L, r R)ρ = rρ′ ∈ [(Pair AλxB)ρ] def. Pair

ut

5.4. Safe Types

We define an abstract notion of safety, similar to what Vaux calls “saturation” [27]. A PER is safe if it
lies between a PER N on neutral expressions and a PER S on safe expressions [28]. In the following,
we use set notation ⊆ and ∪ also for PERs.

Safety. N ,Sfun ,Spair ∈ Per form a safety range if the following conditions are met:

SAFE-INT N ⊆ S = Sfun ∪ Spair

SAFE-NE-FUN u v = u′ v′ ∈ N if u = u′ ∈ N and v = v′ ∈ S
SAFE-NE-PAIR u p = u′ p ∈ N if u = u′ ∈ N
SAFE-EXT-FUN v = v′ ∈ Sfun if v u = v′ u′ ∈ S for all u = u′ ∈ N
SAFE-EXT-PAIR v = v′ ∈ Spair if v L = v′ L ∈ S and v R = v′ R ∈ S

A relation A ∈ Per is called safe w. r. t. to a safety range (N ,Sfun ,Spair ) if N ⊆ A ⊆ S. Usually there
is just one safety range in scope and then all uses of “safe” refer to this one.

Lemma 5.3. (Fun and Pair preserve safety)
Let R = (N ,Sfun ,Spair ) be a safety range. If A ∈ Per is safe (w. r. t. R) and F ∈ Fam(A) is such that
F(v) is safe (w. r. t.R) for all v ∈ A then Fun(A,F) and Pair(A,F) are safe (w. r. t.R).

Proof:
By monotonicity of Fun and Pair , if one considers the following reformulation of the conditions:

SAFE-NE-FUN N ⊆ Fun(S, 7→ N )
SAFE-NE-PAIR N ⊆ Pair(N , 7→ N )
SAFE-EXT-FUN Fun(N , 7→ S) ⊆ Sfun

SAFE-EXT-PAIR Pair(S, 7→ S) ⊆ Spair

ut
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Lemma 5.4. (Type interpretations are safe)
Let (N ,Sfun ,Spair ) be a safety range. Let Set be safe and E`(v) be safe for all v ∈ Set . If V ∈ Type
then [V ] is safe.

Proof:
By induction on the proof that V ∈ Type, using Lemma 5.3. ut

6. Term Model

In this section, we instantiate the model of the previous section to the set of expressions modulo β-
equality. Application is interpreted as expression application and the projections of the model are mapped
to projections for expressions.

We define β-reduction −→β as the closure of the axioms (λxt) s −→β t[s/x], (t, t′) L −→β t, and
(t, t′) R −→β t′ under all term constructors. Its reflexive-transitive closure −→∗

β is confluent, which
enables us to define β-equality t =β t′ as there exists some t0 such that t −→∗

β t0
∗
β←− t′.

Let r ∈ D denote the equivalence class of r ∈ Exp with regard to =β . Similarly, let ρ ∈ Var → D
denote the equivalence class of ρ ∈ Var→ Exp, meaning that ρ(x) = {t | t =β ρ(x)}.

D := Exp/=β

r · s := r s

r L := r L

r R := r R

tρ := t[ρ]

Herein, t[ρ] denotes the substitution of ρ(x) for x in t, carried out in parallel for all x ∈ FV(t).

Lemma 6.1. Exp/=β is a λ model in the sense of the last section.

Proof:
We have to show that all operations are well-defined. For application, consider pairs of equivalent mem-
bers r =β r′ and s =β s′. Since r s =β r′ s′, application is well-defined. The projections are similarly
easy. For the denotation operation, let t a term with FV (t) = ~x. We assume two equivalent valuations ρ
and ρ′, meaning that ρ(x) =β ρ′(x) for all variables x. Now 2

t[ρ] =β ((λ~xt) ~x)[ρ] =β (λ~xt)[ρ] ~x[ρ] =β (λ~xt) ~x[ρ]
=β (λ~xt)[ρ′] ~x[ρ] =β (λ~xt)[ρ′] ~x[ρ′] =β ((λ~xt) ~x)[ρ′] =β t[ρ′].

If we weaken the assumption such that ρ and ρ′ coincide only on the free variables of t, the calculation
is still sound and validates DEN-IRR. The laws DEN-CONST, DEN-VAR, DEN-FUN-E and DEN-PAIR-E

follow directly by the definition of parallel substitution, with a little work also DEN-β. The injectivity
requirements follow from confluence and the fact that El, Fun, and Pair are unanimated constants. ut
2 Benzmüller, Brown, and Kohlhase [7] prove a similar result by converting t into an SK-combinatorial term.
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η-reduction and -equality. Let one-step η-reduction be the least congruence generated by the axioms
λx. r x −→η r if x 6∈ FV(r) and (r L, r R) −→η r. It is locally confluent and preserves free variables.
Its reflexive-transitive closure −→∗

η is strongly normalizing (each step removes an abstraction or a pair)
and confluent (Newman’s Lemma). Because of confluence, we can define η-equality t =η t′ as t −→∗

η

t0
∗
η←− t′. In this article, we are only interested in η for β-normal forms.

Value classes. The β-normal forms v ∈ Val can be described by the following grammar. As it will
become clear at the end of this section, they completely represent the β-equivalence classes t ∈ Exp/=β

of well-typed terms t.

VNe 3 u ::= c | x | u v | u p neutral values
VFun 3 vf ::= u | λxv function values
VPair 3 vp ::= u | (v, v′) pair values
Val 3 v ::= vf | vp values

Note that η-reduction on β-normal forms does not create β-redexes, hence it is well-defined on Val.
Neutral values reduce to neutral values, so it is even well-defined on VNe. Even on values, it does not
preserve typing, see Remark 2.1.

Lemma 6.2. (Inversion properties of −→∗
η)

1. If D :: x −→∗
η t then t ≡ x. If D :: c −→∗

η t then t ≡ c.

2. If D :: r s −→∗
η t then t ≡ r′ s′ with r −→∗

η r′ and s −→∗
η s′.

3. If D :: r p −→∗
η t then t ≡ r′ p with r −→∗

η r′.

4. If D :: λxv −→∗
η t then either

• t ≡ u neutral value, x 6∈ FV(u), and v −→∗
η ux, or

• t ≡ λxv′ and v −→∗
η v′.

5. If D :: (v1, v2) −→∗
η t then either

• t ≡ u neutral and both v1 −→∗
η u L and v2 −→∗

η u R, or

• t ≡ (v′1, v
′
2) and both v1 −→∗

η v′1 and v2 −→∗
η v′2.

Proof:
Each by induction on D. Proposition 4 relies on the fact that if λx. r x is β-normal, then r must be
neutral. ut

As a consequence of these inversion properties, we can decompose η-equations between values
as follows. Some of these decompositions, e. g. 5., do not carry over to arbitrary terms: We have
λx. (λxz) x =η λxz, but not (λxz) x =η z.

Corollary 6.1. (Inversion on =η)
1. If x =η u0 then u0 ≡ x. If c =η u0 then u0 ≡ c.
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2. If u v =η u0 then u0 ≡ u′ v′ with u =η u′ and v =η v′.

3. If u p =η u0 then u0 ≡ u′ p with u =η u′.

4. If λxv =η u then v =η ux and x 6∈ FV(u).

5. If λxv =η λxv′ then v =η v′.

6. If (v1, v2) =η u then v1 =η u L and v2 =η uR.

7. If (v1, v2) =η (v′1, v
′
2) then v1 =η v′1 and v2 =η v′2.

8. If (v1, v2) =η λxv then v1 −→∗
η u L, v2 −→∗

η uR, and ux ∗
η←− v for some u.

An η-equality on β-equivalence classes. Since η-equality is an equivalence on Val, the relation

t ' t′ :⇐⇒ t =β v and t′ =β v′ for some v, v′ with v =η v′

is a partial equivalence on Exp. Note that if t ' t′, then t and t′ are β-normalizable. If t, t′ are β-normal
forms, then t ' t′ if t =η t′. We lift ' to β-equivalence classes: t ' t′ iff t ' t′. Two classes can only
be related if both contain a β-normal form. Choosing these normal forms as representatives, we have

v ' v′ ⇐⇒ v =η v′.

Safety range. We define the following sub-relationsN ,Sfun ,Spair ⊆ S := '.

(t, t′) ∈ N :⇐⇒ t =β u =η u′ =β t′ for some u, u′ ∈ VNe

(t, t′) ∈ Sfun :⇐⇒ t =β vf =η v′f =β t′ for some vf , v′f ∈ VFun

(t, t′) ∈ Spair :⇐⇒ t =β vp =η v′p =β t′ for some vp, v
′
p ∈ VPair

Lemma 6.3. N ,Sfun ,Spair ∈ Per.

Lemma 6.4. (Extensionality for functions)
If v x ' v′ x with x 6∈ FV(v, v′), then v, v′ ∈ VFun and v =η v′.

Proof:
Consider the cases:

• Case v, v′ neutral. Then v x =η v′ x, and v =η v′ follows by Cor. 6.1, item 2.

• Case v ≡ λxv0 and v′ ≡ u neutral. By assumption, x 6∈ FV(u) and v x ' ux, and since
(λxv0) x −→β v0, we have v0 =η ux. Hence, λxv0 =η λx. u x =η u.

• Case v ≡ λxv0 and v′ ≡ λxv′0. From the assumption we get v0 =η v′0 by β-reduction. Hence,
λxv0 =η λxv′0.

• Case v ≡ (v1, v2). Then (v1, v2) x does not reduce to β-normal form, which is a contradiction to
the assumption.
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ut
Corollary 6.2. (SAFE-EXT-FUN)
If v u = v′ u′ ∈ S for all u = u′ ∈ N , then v = v′ ∈ Sfun .

Proof:
By the previous lemma with u ≡ u′ ≡ x 6∈ FV(v, v′). ut
Lemma 6.5. (SAFE-EXT-PAIR)
If v L ' v′ L and v R ' v′ R then v, v′ ∈ VPair and v =η v′.

Proof:
By cases, similar to last lemma. ut
Corollary 6.3. (Safety range)
N ,Sfun ,Spair form a safety range.

Proof:
SAFE-INT holds by definition of N ,Sfun ,Spair . Requirements SAFE-NE-FUN and SAFE-NE-PAIR are
simple closure properties of η-equality. SAFE-EXT-FUN is satisfied by Cor. 6.2 and SAFE-EXT-PAIR by
Lemma 6.5. ut

Now we can instantiate our generic PER model of MLFΣ. We let Set := S and E`(t) := S. From
this we get a decision procedure for judgmental equality.

Lemma 6.6. (Context satisfiable)
Let ρ0(x) := x for all x ∈ Var. If Γ ` ok, then ρ0 ∈ [Γ].

Theorem 6.1. (Equal terms are related)
If Γ ` t = t′ : C then t ' t

′.

Proof:
Note that tρ0 = t. By soundness of MLFΣ (Thm. 5.1), tρ0 = t′ρ0 ∈ [Cρ0]. The claim follows since
[Cρ0] ⊆ S by Lemma 5.4. ut
Corollary 6.4. (Equal types are related)
If D :: Γ ` A = A′ :Type then A ' A

′.

Proof:
By induction on D, using the theorem in case A ≡ El t. ut
We have shown that each well-typed term is β-normalizable and two judgmentally equal terms βη-
reduce to the same normal form. This gives us a decision procedure for equality of well-typed terms:
By Theorem 5.1, instantiated to the term model of this section, well-typed terms Γ ` t, t′ : C are β-
normalizable, hence, the test t ' t′ terminates. If the test succeeds, then Γ ` t = t′ : C holds; this
is a consequence of Cor. 7.2, Lemma 7.1, and Lemma 4.2, and will be formally established in the next
section. If the test fails, then by Theorem 6.1, Γ ` t = t′ : C cannot be true.

It remains to show that our algorithmic equality is also a decision procedure. In the next section, we
demonstrate that t ' t

′ implies t↓ ∼ t′↓, which means that both t and t′ weak head normalize and these
normal forms are algorithmically equal. Then we have proven completeness of the algorithmic equality.
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7. Completeness

In this section, we show completeness of the algorithmic presentation of MLFΣ by relating it to the term
model of the last section.

7.1. A Transitive Extension of Algorithmic Equality

To relate the η-equality on β-normal forms ' to the algorithmic equality ∼, we first present a transitive
extension +∼ of the algorithmic equality which is conservative for terms of the same type. We then show
that this extension +∼ is equivalent to '. Since ' has been shown complete through the PER model, the
algorithmic equality is also complete for terms of the same type.

Algorithmic equality, restated. We recapitulate the rules of algorithmic equality, this time without
use of active elimination @.

Rules for neutral terms:

AQ-C
c ∼ c

AQ-VAR
x ∼ x

AQ-NE-FUN
n ∼ n′ s↓ ∼ s′↓

n s ∼ n′ s′
AQ-NE-PAIR

n ∼ n′

n p ∼ n′ p

The following three rules are a synonym for AQ-EXT-FUN.

AQ-EXT-FUN-FUN
t↓ ∼ t′↓

λxt ∼ λxt′

AQ-EXT-FUN-NE
t↓ ∼ nx

λxt ∼ n
x 6∈ FV(n) AQ-EXT-NE-FUN

nx ∼ t↓
n ∼ λxt

x 6∈ FV(n)

And these three rules are a synonym for AQ-EXT-PAIR.

AQ-EXT-PAIR-PAIR
r↓ ∼ r′↓ s↓ ∼ s′↓

(r, s) ∼ (r′, s′)

AQ-EXT-PAIR-NE
r↓ ∼ n L s↓ ∼ nR

(r, s) ∼ n
AQ-EXT-NE-PAIR

n L ∼ r↓ n R ∼ s↓
n ∼ (r, s)

A transitive extension. Let w
+∼ w′ be given by the rules for algorithmic equality plus the following

two:

AQ+-FUN-PAIR
t↓ +∼ nx n L

+∼ r↓ nR
+∼ s↓

λxt
+∼ (r, s)

x 6∈ FV(n)

AQ+-PAIR-FUN
r↓ +∼ n L s↓ +∼ n R nx

+∼ t↓
(r, s) +∼ λxt

x 6∈ FV(n)
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These rules destroy the algorithmic character, since the neutral term n has to be guessed if one reads the
rules from bottom to top as in logic programming.

Lemma 7.1. (The extension +∼ is conservative for same-typed terms)
1. If D :: n

+∼ n′ and Γ ` n : C and Γ ` n′ : C ′ then n ∼ n′ and Γ ` C = C ′ :Type.

2. If D :: w
+∼ w′ and Γ ` w, w′ : C then w ∼ w′.

3. If t↓ +∼ t′↓ and Γ ` t, t′ : C then t↓ ∼ t′↓.
Proof:
The third proposition is a direct consequence of the second, using subject reduction for weak head eval-
uation which is implied by its soundness (Lemma 4.1) together with syntactic validity (Theorem 2.1).
The first two propositions are proven simultaneously by induction on D. The requirement of being of
the same type in (2.) prevents D from applying rules AQ+-FUN-PAIR and AQ+-PAIR-FUN. Hence D
contains only the counterparts of the rules for the algorithmic equality. The most interesting case is the
following one:

AQ+-NE-FUN
n

+∼ n′ s↓ +∼ s′↓
n s

+∼ n′ s′

Γ ` n s : C hypothesis

Γ ` n : FunA (λxB) &

Γ ` s : A &

Γ ` B[s/x] = C :Type inversion

Γ ` n′ s′ : C ′ hypothesis

Γ ` n′ : FunA′ (λxB′) &

Γ ` s′ : A′ &

Γ ` B′[s′/x] = C ′ :Type inversion

n ∼ n′ &

Γ ` FunA (λxB) = FunA′ (λxB′) :Type first ind. hyp.

Γ ` A = A′ :Type injectivity

Γ ` s′ : A symmetry, rule CONV

s↓ ∼ s′↓ second ind. hyp. (3.)

n s ∼ n′ s′ rule AQ-NE-FUN

Γ ` s = s′ : A soundness of algorithmic equality

Γ, x :A ` B = B′ :Type injectivity

Γ ` B[s/x] = B′[s′/x] :Type functionality

Γ ` C = C ′ :Type transitivity, symmetry

ut
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As a consequence, the algorithmic equality is transitive for terms of the same type, provided +∼ is indeed
transitive. This claim will be validated through equivalence with the transitive '.

7.2. Soundness of the Extended Algorithmic Equality

In this section, we show that the extended algorithmic equality +∼ is sound w. r. t. the model equality
'. Together with the dual result of the next section we establish equivalence of these two notions of
equality. As a byproduct, we obtain transitivity of +∼, which we will later also obtain directly (see
Section 8). However, for the completeness of the algorithmic equality, which is the main theme of this
article, the soundness result of this section is not relevant.

Lemma 7.2. (Soundness of weak head evaluation w. r. t. β-equality)
If t↘ w then t =β w.

Lemma 7.3. (Soundness of +∼ w. r. t. ')
If D :: w

+∼ w′ then w ' w′.

Proof:
By induction on D, using the previous lemma. All cases are easy, for example:

• Case

AQ+-NE-FUN
n

+∼ n′ s↓ +∼ s′↓
n s

+∼ n′ s′

By induction hypothesis, n =β u =η u′ =β n′ and s =β v =η v′ =β s′. Thus, n s =β u v =η

u′ v′ =β n′ s′.

• Case

AQ+-EXT-FUN-NE
t↓ +∼ nx

λxt
+∼ n

x 6∈ FV(n)

By assumption t ↘ w and by induction hypothesis w ' nx. Together with the previous lemma,
t =β w =β v =η u x =β nx, hence, λxt =β λxv =η λx. u x =η u =β n.

• Case

AQ+-FUN-PAIR
t↓ +∼ nx n L

+∼ r↓ nR
+∼ s↓

λxt
+∼ (r, s)

x 6∈ FV(n)

By the previous lemma and induction hypothesis, t =β v =η ux =β nx, hence, λxv =η

λx. u x =η u. Further, n L =β u L =η v1 =β r and n R =β uR =η v2 =β s, thus,
u =η (u L, u R) =η (v1, v2). Together, λxt =β λxv =η (v1, v2) =β (r, s).

ut

Corollary 7.1. If t↓ +∼ t↓ then t is β-normalizable.
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7.3. Completeness of the Extended Algorithmic Equality

In the following, we demonstrate that two terms t ' t′ that are related in the term-PER model are also
related by the extended algorithmic equality.

Lemma 7.4. (Completeness of +∼ on β-normal forms)
If v =η v′ then v

+∼ v′.

For the proof we need an induction measure | · | on terms which is compatible with the subterm ordering
and gives extra weight to introductions, such that |λxr| + |t| > |r| + |t x| and |(r, s)| + |t| > |r| +
|t L|. These conditions are also met by Goguen’s [14] measure for proving termination of Coquand’s [8]
algorithmic equality restricted to pure λ-terms. But we need the extra conditions |λxt| > 2|t| and both
|(r, s)| > 2|r| and |(r, s)| > 2|s|.

|x| := |c| := 1
|r s| := |r|+ |s|
|r p| := |r|+ 1
|λxt| := 2|t|+ 1
|(r, s)| := 2|r|+ 2|s|

Observe that the conditions are met since |t| ≥ 1 for all terms t. This measure is compatible with
η-reduction, i. e., if v −→η v′ then |v| > |v′|.
Proof:
Lemma 7.4 is proved by induction on |v|+ |v′|. We first treat the cases for neutral terms u =η u′.

• Case u ≡ c. Then u′ ≡ c by Cor. 6.1 and c
+∼ c.

• Case u ≡ x. Similar.

• Case u ≡ u1 v1. Then by Cor. 6.1 u′ ≡ u2 v2 with u1 =η u2 and v1 =η v2. By induction
hypothesis u1

+∼ u2 and v1
+∼ v2, hence u

+∼ u′ by AQ+-NE-FUN.

• Case u ≡ u1 p. Similar.

Now we look at the general form v =η v′, where we omit symmetrical cases.

• Case λxv =η u. By Cor. 6.1, v =η ux. Since |v| + |ux| = |v| + |u| + 1 < (2|v| + 1) + |u| =
|λxv| + |u|, we can apply the induction hypothesis and obtain v

+∼ ux. Thus λxv
+∼ u by

AQ+-EXT-FUN-NE.

• Case λxv =η λxv′. By Cor. 6.1, v =η v′, on which we apply the induction hypothesis and
AQ+-EXT-FUN-FUN.

• Case λxv =η (v1, v2). By Cor. 6.1 there exists a neutral u such that v −→∗
η ux and both u L ∗

η←−
v1 and uR ∗

η←− v2. Since reduction is compatible with the measure, we have |v|+ |ux| ≤ 2|v| <
2|v| + 1 = |λxv| and can apply the induction hypothesis to obtain v

+∼ ux. Further, we have
|u L| + |v1| ≤ 2|v1| < 2|v1| + 2|v2| = |(v1, v2)|, thus, by induction hypothesis, u L

+∼ v1, and
similarly, u R

+∼ v2. By AQ+-FUN-PAIR we get λxv
+∼ (v1, v2).
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• Case (v1, v2) =η u. By Cor. 6.1, v1 =η u L and v2 =η uR. Since |v1|+ |u L| = |v1|+ |u|+ 1 <

2(|v1| + |v2|) + |u| = |(v1, v2)| + |u|, by induction hypothesis, v1
+∼ u L, and with a similar

calculation, v2
+∼ uR. Thus, (v1, v2)

+∼ u by AQ+-EXT-PAIR-NE.

• Case (v1, v2) =η (v′1, v
′
2). By inversion, induction hypothesis, and rule AQ+-EXT-PAIR-PAIR.

ut
Remark 7.1. (Alternative proof)
First, show reflexivity v

+∼ v for all β-normal forms v by induction on v. Then prove that +∼ is closed
under η-expansion. More precisely, show that

1. u −→η u′ and D :: u′ ~e +∼ v imply u~e
+∼ v for a vector of eliminations ~e, and

2. v1 −→η v2 and D :: v2
+∼ v3 imply v1

+∼ v3

simultaneously by induction on D. For reasons of symmetry, +∼ is also closed by η-expansion on the
right hand side. Finally, assuming v1 −→∗

η v2
∗
η←− v3 we can show v1

+∼ v3 from v2
+∼ v2 by induction

on the number of reduction steps.

Lemma 7.5. (Standardization)
1. If t =β x then t↘ x. If t =β c then t↘ c.

2. If t =β n s then t↘ n′ s′ with n =β n′ and s =β s′.

3. If t =β n p then t↘ n′ p with n =β n′.

4. If t =β λxr then t↘ λxr′ with r =β r′.

5. If t =β (r, s) then t↘ (r′, s′) with r =β r′ and s =β s′.

Proof:
Fact about the λ-calculus [6]. ut

Lemma 7.6. (From normal to normalizing terms)
1. If n =β u and n′ =β u′ and D :: u

+∼ u′, then n
+∼ n′.

2. If t =β v and t′ =β v′ and D :: v
+∼ v′, then t↓ +∼ t′↓.

Proof:
Simultaneously by induction on D, using standardization.

• Case n =β u v and n′ =β u′ v′ and

AQ+-NE-FUN
u

+∼ u′ v
+∼ v′

u v
+∼ u′ v′
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n ≡ n0 s with n0 =β u and s =β v neutral n −→∗
β u v application

n′ ≡ n′0 s′ with n′0 =β u′ and s′ =β v′ neutral n′ −→∗
β u′ v′ application

n0
+∼ n′0 first ind. hyp.

s↓ +∼ s′↓ second ind. hyp.

n0 s
+∼ n′0 s′ AQ+-NE-FUN

• Case t =β λxv and t′ =β u and

AQ+-EXT-FUN-NE
v

+∼ ux

λxv
+∼ u

x 6∈ FV(u)

t↘ λxr with r =β v standardization

t′ ↘ n with n =β u standardization

x 6∈ FV(n) renaming

nx =β ux =β is a congruence

r↓ +∼ nx induction hypothesis

λxr
+∼ n AQ+-EXT-FUN-NE

• Case t =β λxv and t′ =β (v1, v2) and

AQ+-FUN-PAIR
v

+∼ ux u L
+∼ v1 uR

+∼ v2

λxv
+∼ (v1, v2)

x 6∈ FV(u)

t↘ λxr with r =β v standardization

t′ ↘ (r1, r2) with r1 =β v1 and r2 =β v2 standardization

r↓ +∼ ux and u L
+∼ r1↓ and uR

+∼ r2↓ induction hypotheses

λxr
+∼ (r1, r2) AQ+-FUN-PAIR

ut

Corollary 7.2. (Completeness of +∼)
If t ' t′ then t↓ +∼ t′↓.

Proof:
By assumption t =β v =η v′ =β t′. First v

+∼ v′ by Lemma 7.4, then also t↓ +∼ t′↓ by Lemma 7.6. ut

Corollary 7.3. If t is β-normalizable, then t↓ +∼ t↓.
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Together with Cor. 7.1 we see that the diagonal of extended algorithmic equality—which coincides
with the diagonal of pure algorithmic equality—characterizes the weakly normalizing terms t. Here, we
consider a term weakly normalizing if is has a junk-free normal form v, which excludes β-normal forms
like (λxx) L or (x, y) z. We define w ∈ WN :⇐⇒ w

+∼ w and t ∈ WN :⇐⇒ t ↘ w ∈ WN. Let us
specialize the rules of algorithmic equality to WN:

c ∈WN x ∈WN

n ∈WN s ∈WN

n s ∈WN

n ∈WN

n p ∈WN

r ∈WN

λxr ∈WN

r ∈WN s ∈WN

(r, s) ∈WN

t↘ w w ∈WN

t ∈WN

This predicate corresponds to Joachimski and Matthes’ [18] inductive characterization of weakly nor-
malizing λ-terms. (Only that they use weak head reduction instead of weak head evaluation.)3

7.4. Completeness of Algorithmic Equality

Now we can assemble the pieces of the jigsaw puzzle.

Theorem 7.1. (Completeness of algorithmic equality)
1. If Γ ` t = t′ : C then t↓ ∼ t′↓.
2. If D :: Γ ` A = A′ :Type then A ∼ A′.

Proof:
Completeness for terms (1): By Theorem 6.1 we have t ' t

′, which entails t↓ +∼ t′↓ by Cor. 7.2. Since
Γ ` t, t′ : C, we infer t↓ ∼ t′↓ by Lemma 7.1. The completeness for types (2) is then shown by
induction on D, using completeness for terms in case EQ-SET-E. ut

8. A Shortcut: Disposing of η-Reduction

In sections 7.2 and 7.3 we have shown that the extended algorithmic equality +∼ is equivalent to η-
equality on β-normal forms. Hence, we could define more directly v ' v′ iff v

+∼ v′. The requirement
SAFE-EXT-FUN is simply fulfilled by the admissible rule

AQ+-EXT-FUN
wf@x

+∼ w′f@x

wf
+∼ w′f

x 6∈ FV(wf , w′f ),

and SAFE-EXT-PAIR by a similar admissible rule AQ+-EXT-PAIR. It remains to show—without reference
to =η—that +∼ is transitive. We dedicate the remainder of this section to that task.

Let #D ≥ 1 denote the following measure on derivations D :: w
+∼ w′:

#AQ+-FUN-PAIR(D1,D21,D22) = 1 + #D1 + max(#D21, #D22)
#AQ+-PAIR-FUN(D11,D12,D2) = 1 + max(#D11, #D12) + #D2

#r(D1, . . . ,Dn) = 1 + max{#Di | 1 ≤ i ≤ n}
3The inductive characterization originates from van Raamsdonk et. al. [24].
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Here, r stands for any other rule application, or more precisely, a rule which has a counterpart in the
original algorithmic equality judgement w ∼ w′. Hence, #D is just the height of derivation D if D
corresponds to a derivation of w ∼ w′. Since rule AQ+-FUN-PAIR stands for a pair of derivations
D1 :: λxt ∼ n and D2 :: n ∼ (r, s), its weight is derived for the sum of the weight of these derivations;
and similarly for AQ+-PAIR-FUN.

Lemma 8.1. (+∼ is transitive)
Let ~e be a possibly empty list of eliminations.

1. If D1 :: n
+∼ w and D2 :: w

+∼ n′ then E :: n
+∼ n′.

2. If D1 :: w
+∼ n~e and D2 :: n

+∼ n′ then E :: w
+∼ n′ ~e.

3. If D1 :: n
+∼ n′ and D2 :: n′ ~e +∼ w then E :: n~e

+∼ w.

4. If D1 :: w1
+∼ w2 and D2 :: w2

+∼ w3 then E :: w1
+∼ w3.

In all cases, #E < #D1 + #D2.

Proof:
Simultaneously by induction on #D1 + #D2. In the remainder of this proof, leave # implicit. First, we
prove (1):

• Case D1,D2 :: x
+∼ x. Then E :: x

+∼ x with 1 = E < D1 +D2 = 2.

• Case

D1 =

D11

n1
+∼ n2

D12

s1↓ +∼ s2↓
n1 s1

+∼ n2 s2

D2 =

D21

n2
+∼ n3

D22

s2↓ +∼ s3↓
n2 s2

+∼ n3 s3

E1 :: n1
+∼ n3 E1 < D11 +D21 < D1 +D2 − 1 first ind. hyp.

E2 :: s1↓ +∼ s3↓ E2 < D12 +D22 < D1 +D2 − 1 second ind. hyp.

E :: n1 s1↓ +∼ n3 s3↓ E = max(E1, E2) + 1 < D1 +D2 AQ+-NE-FUN

• Case n1 p
+∼ n2 p and n2 p

+∼ n3 p: Similarly.

• Case

D1 =

D′1
nx

+∼ t↓
n

+∼ λxt
x 6∈ FV(n) D2 =

D′2
t↓ +∼ n′ x

λxt
+∼ n′

x 6∈ FV(n′)

E ′ :: nx
+∼ n′ x E ′ < D′1 +D′2 ind. hyp.

E :: n
+∼ n′ E < E ′ < D1 +D2 inversion
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• Case

D1 =

D11

n L
+∼ r↓

D12

n R
+∼ s↓

n
+∼ (r, s)

D2 =

D21

r↓ +∼ n′ L

D22

s↓ +∼ n′ R

(r, s) +∼ n′

E1 :: n L
+∼ n′ L E1 < D11 +D21 ind. hyp.

E :: n
+∼ n′ E < E1 < D1 +D2 inversion

For (2), consider the cases:

• Case w is neutral and ~e is empty: By (1).

• Case w = n0 s0 and

D1 =

D11

n0
+∼ n~e

D12

s0↓ +∼ s↓
n0 s0

+∼ n~e s

D2

n
+∼ n′

E ′ :: n0
+∼ n′ ~e E ′ < D11 +D2 ind. hyp. (D11 +D2 < D1 +D2)

E :: n0 s0
+∼ n′ ~e s E = 1 + max(E ′,D12) < D1 +D2 AQ+-NE-FUN

• Case w = n0 p similar.

• Case w = λxt and

D1 =

D′1
t↓ +∼ n~e x

λxt
+∼ n~e

D2

n
+∼ n′

E ′ :: t↓ +∼ n′ ~e x E ′ < D′1 +D2 ind. hyp.

E :: λxt
+∼ n′ ~e E < D′1 +D2 + 1 = D1 +D2 AQ+-EXT-FUN-NE

• Case

D1 =

D11

r↓ +∼ n~e L

D12

s↓ +∼ n~eR

(r, s) +∼ n~e

D2

n
+∼ n′
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E1 :: r↓ +∼ n′ ~e L E1 < D11 +D2 ind. hyp.

E2 :: s↓ +∼ n′ ~eR E2 < D12 +D2 ind. hyp.

E :: (r, s) +∼ n′ ~e E = 1 + max(E1, E2) < D1 +D2 AQ+-EXT-PAIR-NE

Statement (3) is symmetrical to (2) and can be proven analogously. For (4), all of the following cases are
easy:

• Case λxt
+∼ n and n

+∼ λxt′.

• Case λxt
+∼ λxt′ and λxt′ +∼ n (plus symmetrical case).

• Case λxt1
+∼ λxt2 and λxt2

+∼ λxt3.

• Case (r, s) +∼ n and n
+∼ (r′, s′).

• Case (r, s) +∼ (r′, s′) and (r′, s′) +∼ n (plus symmetrical case).

• Case (r1, s1)
+∼ (r2, s2) and (r2, s2)

+∼ (r3, s3).

The following cases introduce a relation between a function and a pair.

• Case

D1 =

D′1
t↓ +∼ nx

λxt
+∼ n

x 6∈ FV(n) D2 =

D21

n L
+∼ r↓

D22

n R
+∼ s↓

n
+∼ (r, s)

E :: λxt
+∼ (r, s) by AQ+-FUN-PAIR. E = 1 +D′1 + max(D21,D22) < D1 +D2.

• Case (r, s) +∼ n and n
+∼ λxt. Symmetrical.

The remaining cases eliminate a relation between a function and a pair. We only spell out these cases
where the second relation is of this kind, the other cases are done analogously.

• Case (x 6∈ FV(n, n′))

D1 =

D′1
nx

+∼ t↓
n

+∼ λxt
D2 =

D′2
t↓ +∼ n′ x

D′3
n′ L +∼ r↓

D′4
n′ R +∼ s↓

λxt
+∼ (r, s)
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E1 :: nx
+∼ n′ x E1 < D′1 +D′2 ind.hyp. on D′1,D′2

E2 :: n
+∼ n′ 1 + E2 < D′1 +D′2 inversion on E1

E3 :: n L
+∼ n′ L E3 < D′1 +D′2 AQ+-NE-PAIR

E4 :: nR
+∼ n′ R E4 < D′1 +D′2 AQ+-NE-PAIR

E5 :: n L
+∼ r↓ E5 < E3 +D′3 < D1 +D2 ind.hyp. on E3,D′3

E6 :: nR
+∼ s↓ E6 < E4 +D′4 < D1 +D2 ind.hyp. on E4,D′4

E :: n
+∼ (r, s) E = 1 + max(E5, E6) < D1 +D2 AQ+-EXT-NE-PAIR

• Case (x 6∈ FV(n, n′))

D1 =

D′1
t↓ +∼ t′↓

λxt
+∼ λxt′

D2 =

D21

t′↓ +∼ n′ x

D22

n′ L +∼ r↓
D23

n′ R +∼ s↓
λxt′ +∼ (r, s)

E ′ :: t↓ +∼ n′ x E ′ < D′1 +D21 ind.hyp. on D′1,D21

E :: λxt
+∼ (r, s) E = 1 + E ′ + max(D22,D23) < D1 +D2 AQ+-FUN-PAIR

• Case

D1 =

D11

r↓ +∼ n L

D12

s↓ +∼ nR

D13

nx
+∼ t↓

(r, s) +∼ λxt
x 6∈ FV(n)

D2 =

D21

t↓ +∼ n′ x

D22

n′ L +∼ r′↓
D23

n′ R +∼ s′↓
λxt

+∼ (r′, s′)
x 6∈ FV(n′)
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E1 :: n x
+∼ n′ x E1 < D13 +D21 ind. hyp.

E2 :: n L
+∼ n′ L E2 < D13 +D21 inversion

E3 :: n R
+∼ n′ R E3 < D13 +D21 inversion

E4 :: r↓ +∼ n′ L E4 < D11 + E2 < D11 +D13 +D21 ind. hyp.

E5 :: s↓ +∼ n′ R E5 < D12 + E3 < D12 +D13 +D21 ind. hyp.

E6 :: r↓ +∼ r′↓ E6 < E4 +D22 < D11 +D13 +D21 +D22 ind. hyp.

E7 :: s↓ +∼ s′↓ E7 < E5 +D23 < D12 +D13 +D21 +D23 ind. hyp.

E :: (r, s) +∼ (r′, s′) E = 1 + max(E6, E7) < D1 +D2 AQ+-EXT-PAIR-PAIR

We have three cases left, which can be proven similarly to the previous ones.

• Case n
+∼ (r, s) and (r, s) +∼ λxt.

• Case (r, s) +∼ (r′, s′) and (r′, s′) +∼ λxt.

• Case λxt
+∼ (r, s) and (r, s) +∼ λxt′.

ut

9. Decidability

By completeness of algorithmic equality, every well-typed term is weakly normalizing (Cor. 7.1). On
weakly normalizing terms, the equality algorithm terminates, as we will see in this section.

9.1. Decidability of Equality

We have shown that two judgmentally equal terms t, t′ weak-head normalize to w, w′ and there exists
a derivation of w ∼ w′, hence, the equality algorithm, which searches deterministically for such a
derivation, terminates with success. What remains to show is that the query t↓ ∼ t′↓ terminates for all
well-typed t, t′, either with success, if the derivation can be closed, or with failure, in case the search
arrives at a point where there is no matching rule.

For a derivation D of algorithmic equality, we define the measure |D| which denotes the number of
rule applications on the longest branch of D, counting the rules AQ-EXT-FUN and AQ-EXT-PAIR twice.4

Lemma 9.1. (Termination of equality)
If D1 :: w1 ∼ w1 and D2 :: w2 ∼ w2 then the query w1 ∼ w2 terminates.

Proof:
By induction on |D1| + |D2|. There are many cases to consider. First we consider neutral w1, w2, for
instance:
4A similar measure is used by Goguen [14] to prove termination of algorithmic equality restricted to pure λ-terms [8].
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• Case: w1 ≡ x and w2 ≡ n2 s2. Since there is no rule with a conclusion of the shape x ∼ n2 s2,
the query fails.

• Case: w1 ≡ n1 s1 and w2 ≡ n2 s2. Rule AQ-NE-FUN matches. By the first induction hypothesis,
n1 ∼ n1 and n2 ∼ n2, hence, the subquery n1 ∼ n2 terminates. Since by the second induction
hypothesis, s1 ↘ w′1, s2 ↘ w′2, w′1 ∼ w′1, and w′2 ∼ w′2, the subquery w′1 ∼ w′2 terminates as
well. Hence, the whole query terminates.

The other neutral cases work similarly. Let us consider some cases where at least one of the weak head
normal forms is not neutral.

• Case w1 ≡ λxr and w2 ≡ (t, t′). There is no matching rule, the query fails.

• Case w1 ≡ n and w2 ≡ (t, t′). Rule AQ-EXT-PAIR matches. We apply the induction hypothesis
to the derivations D̂1 :: n L ∼ n L and D′2 :: t↓ ∼ t↓, which is legal since |D1| + |D2| ≥
|D1|+ |D′2|+2 > (|D1|+1)+ |D′2| = |D̂1|+ |D′2|. Hence, the first subquery n L ∼ t↓ terminates,
and, by a similar argument, also the second subquery nR ∼ t′↓.

• Case w1 ≡ n and w2 ≡ λxr. Rule AQ-EXT-FUN matches. Since x ∼ x is a derivation of height
one, we can apply the induction hypothesis, with justification similar to the last case, on the only
subquery nx ∼ r↓.

ut
Theorem 9.1. (Decidability of equality)
If Γ ` t, t′ : C then the query t↓ ∼ t′↓ succeeds or fails finitely and decides Γ ` t = t′ : C.

Proof:
By Theorem 7.1, t ↘ w, t′ ↘ w′, w ∼ w, and w′ ∼ w′. By the previous lemma, the query w ∼ w′

terminates. Since by soundness and completeness of the algorithmic equality, w ∼ w′ if and only if
Γ ` t = t′ : C, the query decides judgmental equality. ut
Corollary 9.1. (Decidability of type equality)
If D :: Γ ` A : Type and Γ ` A′ : Type then the query A ∼ A′ succeeds or fails finitely and decides
Γ ` A = A′ :Type.

Proof:
By induction on D, using the theorem in case A = El t. ut

9.2. Termination of Type Checking

The termination of the type checker is a consequence of termination of equality for well-typed objects.

Lemma 9.2. (Termination of type checking)
Let Γ ` ok.

1. The query Γ ` t ⇓ ? terminates (? 6≡Type).

2. If Γ ` C :Type then the query Γ ` t ⇑ C terminates.
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Proof:
Simultaneously by induction on t. The inference succeeds directly in case t ≡ x with rule INF-VAR, and
fails immediately in case t ≡ c, t ≡ λxr, or t ≡ (t1, t2). We consider t ≡ r s. Then rule INF-FUN-E

matches.

INF-FUN-E
Γ ` r ⇓ FunA (λxB) Γ ` s ⇑ A

Γ ` r s ⇓ B[s/x]

query Γ ` r ⇓ ? terminates induction hypothesis

Γ ` r ⇓ C &
C ≡ FunA (λxB) otherwise fail

Γ ` r : FunA (λxB) inference sound (Thm. 4.1)

Γ ` FunA (λxB) :Type syntactic validity

Γ ` A :Type inversion

query Γ ` s ⇑ A terminates induction hypothesis

Γ ` s ⇑ A otherwise fail

Γ ` s : A checking sound (Thm. 4.1)

Γ, x :A ` B :Type inversion

Γ ` B[s/x] :Type substitution (Lemma 2.7)

Γ ` r s ⇓ B[s/x], query successful

The remaining case t ≡ r p is treated analogously. For the termination of checking, let us start with case
t ≡ (t1, t2), where rule CHK-PAIR-I matches.

CHK-PAIR-I
Γ ` t1 ⇑ A Γ ` t2 ⇑ B[t1/x]

Γ ` (t1, t2) ⇑ Pair A (λxB)

Using the induction hypotheses, we basically need to show that Γ ` B[t1/x] : Type if Γ ` t1 ⇑ A
succeeds. The case t ≡ λxr matches rule CHK-FUN-I and is treated similarly. In the remaining cases,
rule CHK-INF fires.

CHK-INF
Γ ` r ⇓ A A ∼ C

Γ ` r ⇑ C

By induction hypothesis, the inference algorithm terminates. If Γ ` r ⇓ A then Γ ` A :Type, hence the
equality check terminates by Lemma 9.1, which implies termination of the type checker. ut
Lemma 9.3. (Termination of type well-formedness)
If Γ ` ok then the query Γ ` A ⇓Type terminates.

Proof:
By induction on A, using the previous lemma in case A ≡ El t. ut

9.3. Completeness of Type Checking

Once we have solved the hard problem of deciding equality, the decidability of typing is easy, provided
we restrict to normal terms.
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Normal and neutral terms. We introduce two predicates t ⇑ (t is normal) and t ⇓ (t is additionally
neutral).

c ⇓ x ⇓
r ⇓ s ⇑

r s ⇓
r ⇓

r p ⇓
r ⇓
r ⇑

t ⇑
λxt ⇑

r ⇑ s ⇑
(r, s) ⇑

Theorem 9.2. (Completeness of type checking)
1. If D :: t ⇓ and Γ ` t : C then Γ ` t ⇓ A and A ∼ C.

2. If D :: t ⇑ and Γ ` t : C then Γ ` t ⇑ C.

Proof:
Simultaneously by induction on D. ut

Corollary 9.2. (Completeness of type well-formedness)
If D :: Γ ` A :Type and A ⇓ then Γ ` A ⇓Type.

Proof:
By induction on D. In case A ≡ El t, the premise A ⇓ forces t ⇑, hence we can apply the previous
theorem. ut

Our bidirectional algorithm can only check β-normal terms; however, it can be extended to arbitrary
terms by requiring type annotations in redexes [11, 2], some of which can also be inferred by suitable
heuristics [23].

10. Conclusion

We have presented a sound and complete conversion algorithm for MLFΣ. The completeness proof builds
on PERs over untyped expressions, hence, we need—in contrast to Harper and Pfenning’s completeness
proof for type-directed conversion [17]—no Kripke model and no notion of erasure, what we consider an
arguably simpler procedure. We see in principle no obstacle to generalize our results to type theories with
type definition by cases (large eliminations), whereas it is not clear how to treat them with a technique
based on erasure.

The disadvantage of untyped conversion, compared to type-directed conversion, is that it cannot
handle cases where the type of a term provides more information on equality than its shape, e. g., unit
types, singleton types and signatures with manifest fields [10].

A more general proof of completeness? Our proof uses a λ-model with full β-equality thanks to the
rule DEN-β. We had also considered a weaker model (without DEN-β and DEN-IRR, but with DEN-FUN-β
and DEN-PAIR-β) which only equates weakly convertible objects. Combined with extensional PERs this
would have been the model closest to our algorithm. But due to the use of substitution in the declarative
formulation, we could not show MLFΣ’s rules to be valid in such a model. Whether it still can be done,
remains an open question.



A. Abel and T. Coquand / Algorithmic Equality with Surjective Pairing 49

Related work. The second author, Pollack, and Takeyama [10] present a model for βη-equality for an
extension of the logical framework by singleton types and signatures with manifest fields. Equality is
tested by η-expansion, followed by β-normalization and syntactic comparison. In contrast to this work,
no syntactic specification of the framework and no incremental conversion algorithm are given.

Schürmann and Sarnat [25] have been working on an extension of the Edinburgh Logical Framework
(ELF) by Σ-types (LFΣ), following Harper and Pfenning [17]. In comparison to MLFΣ, syntactic validity
(Theorem 2.1) and injectivity are non-trivial in their formulation of ELF. Robin Adams [4] has extended
Harper and Pfenning’s algorithm to Luo’s logical framework (i. e., MLF with typed λ-abstraction) with
Σ-types and unit.

Goguen [13] gives a typed operational semantics for Martin-Löf’s logical framework. An extension
to Σ-types has to our knowledge not yet been considered. Recently, Goguen [14] has proven termination
and completeness for both the type-directed [17] and the shape-directed equality [8] from the standard
meta-theoretical properties (strong normalization, confluence, subject reduction, etc.) of the logical
framework. He also proposes a method to check βη-equality for Σ- and singleton types by a sequence
of full η-expansion followed by β-reduction [15].

Acknowledgments. We are grateful to Lionel Vaux whose clear presentation of models for this implicit
calculus [27] provided a guideline for our model construction. Thanks to Ulf Norell for proof-reading
an earlier version of this article. The first author is indebted to Frank Pfenning who taught him type-
directed equality and bidirectional type-checking at Carnegie Mellon University in 2000, and to Carsten
Schürmann for communication on LFΣ. Thanks to the anonymous referees for their helpful comments
on the draft version, especially to the one who spotted many small mistakes by rigorously checking our
proofs.

APPENDIX.

A. Surjective Pairing Destroys Confluence

Klop [19, pp. 195–208] shows that the untyped λ-calculus with the reduction (r L, r R) −→ r, called
surjective pairing, is not confluent (Church-Rosser). It is, however, locally confluent (weakly Church-
Rosser), hence, because of Newman’s Lemma, only a term with an infinite reduction sequence can fail
to be confluent. Klop provides the following example.

Θ := (λxλy. y (xx y)) (λxλy. y (xx y)) Turing’s fixed-point combinator
e := z free variable (or the term Ω)
c := Θ (λcλa. e (a L, (c a) R))
a := Θ c

Since c t −→+ e (t L, (c t) R) and a −→+ c a, we can construct the following reduction sequences:

c a −→+ e (a L, (c a)R) −→+ e ((c a) L, (c a) R) −→+ e (c a)
c a −→+ c (c a) −→+ c (e (c a))
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The end reducts of both sequences cannot be joined again.
Not that only the last step in both sequences was a surjective pairing reduction, all others were β-

steps. Thus, the example refutes even confluence of the relation −→∗
β−→∗

η.

Remark A.1. (η-postponement fails)
Surjective pairing destroys also η-postponement. In the reduction sequence ((λxt) L, (λxt) R) s −→η

(λxt) s −→β t[s/x], the β-redex is created by η-reduction and cannot be reduced first.

B. Alternative to Inductive-Recursive Definition

In section 5.2 we have defined intensional type equality V = V ′ ∈ Type and type interpretation [V ]
simultaneously by induction-recursion. In the following, we give conventional definitions of the two
concepts.

Type interpretation. Type interpretation [ ] ∈ D ⇀ Rel is a partial function specified by the following
equations.

INT-SET-F [Set] = Set
INT-SET-E [El v] = E`(v)
INT-FUN-F [FunV F ] = Fun([V ], v 7→ [F v])
INT-PAIR-F [Pair V F ] = Pair([V ], v 7→ [F v])

Lemma B.1. Type interpretation [ ] ∈ D ⇀ Rel is a well-defined partial function.

Proof:
Well-definedness, i. e., that V = V ′ implies [V ] = [V ′], follows by injectivity and pairwise distinct-
ness of type constructors. The latter guarantees that we can define the type interpretation by pattern
matching although D is not necessarily a free structure. For instance, in the absence of the inequality
Set 6= Fun V F (DEN-SET-NOT-DEP), the defining equations of type interpretation could imply the in-
consistency Set = Fun([V ], v 7→ [F v]). Injectivity proves that, e. g., [Fun V F ] = [Fun V ′ F ′] if
Fun V F = Fun V ′ F ′, since then V = V ′ and F = F ′ by law DEN-DEP-INJ. ut

Intensional type equality Type ∈ Rel is given inductively by the following rules. Note that rule
TYEQ-DEP has an infinitary premise.

TYEQ-SET-F
Set = Set ∈ Type TYEQ-SET-E

v = v′ ∈ Set
El v = El v′ ∈ Type

TYEQ-DEP
V = V ′ ∈ Type F v = F ′ v′ ∈ Type for all (v, v′) ∈ [V ]

c V F = c V ′ F ′ ∈ Type c ∈ {Fun, Pair}

In the last rule, if [V ] is not defined, the quantification is to be read as empty. The name intensional type
equality [10] shall distinguish it from the more extensional type equality given by [V ] = [V ′].

The next lemma proves the following: For all semantical types V ∈ Type, the interpretation [V ]
is a well-defined PER, and intensionally equal types have the same interpretation. Together, [ ] ∈
Fam(Type).
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Lemma B.2. (Soundness of intensional type equality)
If D :: V = V ′ ∈ Type then [V ], [V ′] ∈ Per and [V ] = [V ′].

Proof:
By structural induction on D. We consider the following case:

V = V ′ ∈ Type F v = F ′ v′ ∈ Type for all v = v′ ∈ [V ]
Fun V F = Fun V ′ F ′ ∈ Type

We have to show thatFun([V ], v 7→ [F v]) andFun([V ′], v 7→ [F ′ v]) are PERs and equal. By induction
hypothesis, [V ] and [V ′] are PERs and equal. Assume v = v′ ∈ [V ] arbitrary. We may use the induction
hypothesis on the assumptions F v = F ′ v, F v′ = F ′ v ∈ Type to deduce [F v] = [F v′] ∈ Per, hence,
the family F , defined by F(v) := [F v], is in Fam([V ]), since v and v′ were arbitrary. Analogously, for
the second familyF ′, whereF ′(v) := [F ′ v], it holds thatF ′ ∈ Fam([V ′]). By Lemma 5.2,Fun([V ],F)
and Fun([V ′],F ′) are PERs. Also by induction hypothesis, we obtain [F v] = [F ′ v] for arbitrary v, so
the two families F and F ′ are equal. This entails our goal. ut

Finally, we can prove that Type is itself a PER.

Lemma B.3. (Intensional type equality is a PER)
1. If D :: V1 = V2 ∈ Type and V2 = V3 ∈ Type then V1 = V3 ∈ Type.

2. If D :: V = V ′ ∈ Type then V ′ = V ∈ Type.

Proof:
Each by structural induction on D. For transitivity (1.), we consider the case:

V1 = V2 ∈ Type F1 v1 = F2 v2 ∈ Type for all v1 = v2 ∈ [V1]
Fun V1 F1 = Fun V2 F2 ∈ Type

V2 = V3 ∈ Type F2 v2 = F3 v3 ∈ Type for all v2 = v3 ∈ [V2]
Fun V2 F2 = Fun V3 F3 ∈ Type

By soundness of intensional type equality (Lemma B.2), we have [V1] = [V2] ∈ Per, and by the first
induction hypothesis, V1 = V3 ∈ Type. Assume arbitrary v = v′ ∈ [V1]. Since [V1] is a PER, v′ = v′ ∈
[V1], hence, also v′ = v′ ∈ [V2]. By assumption F1 v = F2 v′ ∈ Type and F2 v′ = F3 v′ ∈ Type, hence,
we can apply the induction hypothesis to obtain F1 v = F3 v′ ∈ Type. Since v and v′ were arbitrary
Fun V1 F1 = Fun V3 F3 ∈ Type by rule TYEQ-DEP. ut
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