
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Diplomarbeit

TERMINATION CHECKING FOR A
DEPENDENTLY TYPED LANGUAGE

Dezember 2007

Autor: Karl Mehltretter
Aufgabensteller: Prof. Martin Hofmann

Betreuer: Dr. Andreas Abel

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit selbständig ver-
fasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Karl Mehltretter

1

Danksagung

Diese Diplomarbeit entstand am Lehrstuhl für Theoretische Informatik der
Universität München. Vor allem danke ich meinem Betreuer Andreas Abel
für seine tolle Unterstützung.

Desweiteren möchte ich mich bei meinen Eltern, bei Sandrine, bei Karin
und Thomas und auch bei Andy, Robert und Christian für ihren Rückhalt
während dieser nicht immer einfachen Zeit bedanken.

2

Inhalt

Abhängige Typen werden als Basis für viele interaktive Theorembeweiser
eingesetzt und es gibt seit einiger Zeit Bemühungen, sie für allgemeine funk-
tionale Programmiersprachen zu verwenden. Eine Sprache mit abhängigen
Typen erlaubt es, in einem gemeinsamen Rahmen sowohl Programme zu
schreiben als auch Beweise zu formalisieren.

Das aus der Programmierung bekannte pattern matching wurde als Mittel
zur Definition von rekursiven Funktionen in diesen Systemen vorgeschla-
gen. Zwar ist pattern matching intuitiv und ausdrucksstark, doch muss
sichergestellt werden, dass die so definierten Funktionen total sind.

Ein Aspekt einer totalen Funktion ist Terminierung: Jeder Auswertung
der Funktion muss in endlicher Zeit möglich sein. Unendliche Objekte kön-
nen unterstützt werden, indem jeweils nur Teile davon berechnet werden.
Gültige Definitionen für unendliche Objekte müssen produktiv sein.

Da das Halteproblem unentscheidbar ist, kann das Ziel nur sein, mög-
lichst viele Definition als terminierend zu erkennen. Es gibt verschiedene
Ansätze zum Überprüfen der Terminierung. Oft können Funktionen, deren
rekursive Aufrufe einem gewissen Schema folgen, vom System zugelassen
werden. Das size-change principle umfasst einige dieser Schemata.

Ein weiterer Vorschlag ist der Einsatz von sized types. Information über
die Größe von Argumenten wird im Typsystem verfolgt, um diese für das
Erkennen der Terminierung zu nutzen.

Im Rahmen dieser Diplomarbeit wurde das System Mugda entwickelt
und wird nachfolgend vorgestellt. Es basiert auf Typentheorie nach Martin-
Löf und unterstützt induktive und coinduktive Typen. Rekursive Funk-
tionen werden durch pattern matching definiert. Das Kriterium für Ter-
minierung basiert auf dem size-change principle. Außerdem stellt die Sprache
Elemente bereit, um dem Benutzer die Verwendung von sized types zu er-
möglichen.

Abstract

Dependent types have been used at the core of many proof assistants,
and more recently there have been efforts to extend their use to functional
programming languages. Dependent type theories allow programming
and reasoning in a common framework.

The pattern matching notation, known from traditional programming,
has been proposed for defining recursive functions in such systems. While
pattern matching is intuitive and powerful, it has to be ensured that the
defined functions are total.

One aspect of totality is termination: the evaluation of a function at any
argument must be computable in finite time. Infinite objects can be added
to the language by computing only finite parts of them as necessary. Valid
definitions of infinite objects need to be productive.

As the halteproblem is undecidable, the goal can only be to accept as
many valid definitions as possible. There are many approaches to ensure
termination. One is to allow the definition of functions where the recursive
calls follow a certain scheme. The size-change principle subsumes some of
these schemes.

Another approach is the use of sized types, where information about the
height of arguments is tracked in the type system and is used to recognize
definitions as terminating.

For this thesis, the system Mugda was developed and will subsequently
be described. It is based on Martin-Löf type theory and supports inductive
and coinductive types. Recursive functions are defined by pattern match-
ing. Its termination criterion is based on the size-change principle. In
addition, the language provides elements to enable the use of sized types.

Contents

1 Introduction 4
1.1 Overview . 7

2 Mugda : Syntax and Semantics 8
2.1 Preliminaries . 8
2.2 Syntax of Mugda . 8
2.3 Semantics of Mugda expressions 10

2.3.1 Values . 10
2.3.2 Signatures . 11
2.3.3 Evaluation . 12

2.4 Example programs . 14
2.4.1 Identity function . 14
2.4.2 Booleans . 14
2.4.3 Natural numbers . 15
2.4.4 Lists . 15
2.4.5 Finitely branching trees 15
2.4.6 Vectors . 15
2.4.7 Equality . 16
2.4.8 Streams . 17

3 Type-Checking 18
3.1 Scope-Checking . 18
3.2 Bidirectional type-checking 18
3.3 Let declarations . 22
3.4 Data type declarations . 22

3.4.1 Checking data and constructor types 22
3.4.2 Strict positivity . 23
3.4.3 Checking the whole declaration 26

3.5 Function declarations . 26
3.5.1 Syntactic checks for patterns 27
3.5.2 Coverage of pattern matching 27
3.5.3 Preliminaries . 27
3.5.4 Checking accessible part of patterns 28

1

CONTENTS 2

3.5.5 Checking inaccessible patterns 29
3.5.6 Checking the whole declaration 29

3.6 Mugda programs . 31

4 Termination-Checking 32
4.1 Motivation . 32
4.2 Matrix notation . 33
4.3 Relating pattern and expressions 33
4.4 Applying the size-change principle 37
4.5 Examples . 39

4.5.1 Addition . 39
4.5.2 Mutual even and odd 40
4.5.3 Brouwer ordinals . 40

4.6 Excursion: Extending the order 41
4.6.1 Examples . 43

4.7 List reversion: Vectors to the rescue 44

5 Sized data types 46
5.1 Adding a Size type . 46

5.1.1 Syntax and semantics 47
5.1.2 Type-Checking . 48
5.1.3 Termination-Checking 48

5.2 Sized data type declarations 49
5.2.1 Examples . 49
5.2.2 Checking sized data type declarations 50

5.3 Subtyping for size . 51
5.4 Examples: sized inductive types 53

5.4.1 Natural number division 53
5.4.2 Sized Lists . 55
5.4.3 Sized Brouwer ordinals 56
5.4.4 A higher-order function 56

5.5 Examples: Sized coinductive types 57
5.5.1 Sized Streams . 57
5.5.2 Fibonacci stream . 58
5.5.3 Equality of streams . 58
5.5.4 Stream processors . 59

5.6 Admissible recursive function declarations 60
5.6.1 Admissible type . 62
5.6.2 Size pattern coverage 62
5.6.3 Admissibility criterion 63

5.7 Admissible corecursive declarations 64
5.7.1 Admissibility criterion 64
5.7.2 Fibonacci à la Haskell 65

5.8 On the necessity of subtyping 65

CONTENTS 3

5.9 Putting it all together . 66

6 Conclusion 67

A Mugda implementation 69
A.1 Source file listing . 69
A.2 Usage . 70
A.3 Some implementation details 71

Chapter 1

Introduction

Dependent type theory. Dependent types are an important part of Martin-
Löf type theory [ML84], which was conceived as a foundation for construc-
tive mathematics.

Through the proofs-as-programs paradigm, they are fundamental to
proof assistants like Coq [INR07], Lego [Pol94] and Twelf [PS99]. As pro-
gramming languages receive more and more powerful type systems, there
have been renewed efforts to use dependent types in programming lan-
guages: Cayenne [Aug98], Agda [Nor07] and Epigram [McB07] strive to be
seen more as practical programming languages rather than logical frame-
works.

Inductive families. Dependent type theory1 is often described as an open
theory: new constants can be added to the system. As a programming
language, there is the need to define inductive types like lists and trees. For
logical purposes, inductive predicates have to be defined.

Inductive families [Dyb94] offer a powerful general scheme for defining
inductive types. A nice example for programming is matrix multiplication.
One could define a inductive family of types Mat that is indexed by two
natural numbers. The type for matrix multiplication could then be given as

mmult : Mat k m -> Mat m n -> Mat k n

which is not possible with a simple type system.

Pattern Matching. In traditional type theory, so-called elimination con-
stants for each data type provide primitive recursion on objects. As an
alternative, it was suggested in [Coq92] to allow definitions by pattern
matching, a well-known concept from functional languages [Aug85].

1for an introductory text, the reader is referred to [NPS90]

4

CHAPTER 1. INTRODUCTION 5

Pattern matching does allow for more readable and intuitive definitions,
which is essential for type theory 2 to be useful as a programming languages.
It has to be ensured that the pattern clauses cover all possible cases.

Termination Furthermore, pattern matching allows unrestricted recur-
sion, and functions with non-terminating computations have to be disal-
lowed for the following reasons:

• Proofs as programs need to be total functions to be correct.

• As types can depend on terms, computation is performed during type
checking. Thus, for type checking to be decidable, non-terminating
computation cannot be allowed.

To be more concrete, let us look at a simple recursive definition by pattern
matching on a list in the functional programming Haskell:

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

The only recursive call is length xs. The argument xs is a structural part
of the input argument on the left hand side (x:xs). We conclude, if the list
data type is well founded (i.e there are only finite lists), then the program
length is guaranteed to terminate on all input lists.

Term-based termination. We note that we looked only at the defining
clauses of the function to decide termination, its type declaration was ir-
relevant. Such methods are called term-based to differentiate them from the
type-based methods discussed below.

When pattern matching for dependent types was introduced in [Coq92],
the test that was outlined above was suggested as the criterion for termina-
tion: at least one argument needs to get structurally smaller in each recursive
call. But not all defined functions have that clear structurally recursive form.

In [AA02], a decision procedure for a simply typed language was given
that also handles lexicographic orderings on arguments and mutual def-
initions. The size change principle [LJBA01] subsumes this effort and also
handles functions with so-called permuted arguments.

2Pattern matching is actually not a conservative extension to a theory with elimination
constants. Pattern matching definitions can only be translated to a traditional type theory
by adding the so-called K Axiom [HS95, GMM06].

CHAPTER 1. INTRODUCTION 6

Type-based termination. The above methods require that a declaration
does not only need to be accepted by the type-checker, but also pass a sepa-
rate syntactic termination check. In contrast, type-based termination3 refers to
methods where the type-checker itself is in charge of checking termination:
It is ensured by the typing rules.

The sized types approach is an instance of type-based termination: In-
ductive types are decorated with size annotations that denote an upper
bound on the height of the objects inhabiting them. It is then checked that
this size is getting smaller during recursive calls.

In comparison with term-based termination, sized types are more robust
to syntactical changes to the program and the type system is able to use the
information that certain functions are size-preserving. Some effort [BGP06]
has been made to automatically infer these size annotations.

Infinite objects. Often there arises the need for potentially infinite objects,
for example to model a continuous stream of network packages. Streams,
infinite sequences of elements, are the prime example of coinductive types,
where inhabitants can have infinite height.

While corecursive definitions that create or manipulate infinite objects are
inherently non-terminating, they still should be productive. For productive
definitions, looking at a finite portion of the object is well-defined. As for
termination, there are syntactic tests to guarantee productivity [Coq93], but
here again sized types offer a worthwhile alternative.

Mugda. Our work started with an investigation of how a sized type ap-
proach could be added to a system like Agda. The current version of Agda
supports inductive families and mutual recursive function declarations by
pattern matching. The Agda termination checker was, at that time, based
on the work of [AA02].

In the description above, sized types sound like a very different ap-
proach compared to term-based termination. But, with inductive families
and pattern matching, these approaches can be naturally combined.

As a result, the system Mugda was developed. It supports inductive
families and pattern matching. As special features, the language supports
coinductive definitions and also offers a built-in Size type to form size an-
notations. We outline here how termination and productivity checking of
definitions is handled by Mugda :

• a syntactic termination checker based on the size-change principle is
employed.

• in addition, the Size type can be used to create sized data types,
enabling advantages of the sized type approach.

3for an introduction, see [Abe06]

CHAPTER 1. INTRODUCTION 7

• productivity of corecursive functions is also guaranteed by the Size
type.

• the usage of the Size type is controlled by the type checker.

1.1 Overview

We introduce the syntax and semantics of the Mugda language in the next
chapter, and show some example programs. The language described is
missing the Size type that is later added in chapter 5.

Type-Checking for Mugda is presented in chapter 3. We cannot just
focus on termination-checking because a termination-checker can easily be
tricked by ill-typed declarations.

In the fourth chapter, a termination criterion for inductive function dec-
larations based on the size-change principle is presented. Then we moti-
vate and present an extension that increases its strength for definitions with
nested patterns.

In chapter 5, the Size type is added to the language, which enables the
formation of sized data types. It is shown how sized data types help to allow
more recursive definitions pass the termination check of the third chapter.
It also enables the declaration of a broad range of productive corecursive
definitions to pass this check. Finally, we first motivate why the usage
of size annotations needs to be restricted, and then give an admissibility
criterion to achieve this.

In the conclusion, we take a look back and list ideas for future work.
The appendix contains a description of the implementation of Mugda.

Chapter 2

Mugda : Syntax and Semantics

2.1 Preliminaries

First we define some common mathematical sets:

Natural numbers N = {0, 1, ...} is the set of natural numbers.

Booleans B = {>,⊥} is the set of Boolean values.

Power Set For some set B, P(B) is the power set of B.

Sequences For some set B, B∗ is the set of finite sequences over B. The
empty sequence is written as �. Sequences are written as~b or (b1 . . . bn). The
length of a sequence is defined as |(b1 . . . bn)| := n.

2.2 Syntax of Mugda

Identifiers

We assume the following disjoint sets of identifiers:

C 3 c for constructors
D 3 D for data types
F 3 f,g for functions
L 3 l for global lets
V 3 x, y, i for variables

Elements of C,D,F and Lwill be called constants.

8

CHAPTER 2. MUGDA : SYNTAX AND SEMANTICS 9

Expressions

EXPR 3 e,A,B ::= λ x. e abstraction
| (x : A)→ B dependent function type
| e e1 . . . en application
| let x : e1 = A1 in e2 local let
| Set universe of small types
| x variable
| c constructor name
| D data type name
| f function name
| l let name

Expressions are the unified syntax of types and terms.

Patterns

PAT 3 p ::= x variable pattern
| c ~p constructor pattern
| e inaccessible pattern

Telescopes

τ ::= � empty telescope
| (x : A) τ parameter
| (+ x : A) τ strictly positive parameter

Constructor definitions

γ ::= c : A

Clause definitions

CLAUSE 3 κ ::= f ~p = e

For a clause f ~p = e, ~p is called the right hand side and e the left hand side.

Recursive function definitions

µ ::= fun f : A ~κ

Corecursive function definitions

ν ::= cofun f : A ~κ

CHAPTER 2. MUGDA : SYNTAX AND SEMANTICS 10

Declarations

DECL 3 δ ::= data D τ : A ~γ inductive data type
| codata D τ : A ~γ coinductive data type
| let l : A = e global let
| mutual ~µ mutual fun
| mutual ~ν mutual cofun

Mugda program

A Mugda program is a list of declarations ~δ.

Syntactic sugar

• A→ B is short for (x : A)→ B where x is some variable not occurring
in B.

• In the examples, we write mutual fun f : A ~κ as fun f : A ~κ .

• If it is clear from the context, � is dropped. For example, c is short for
the pattern c �when c is a nullary constructor.

Prepend Telescope to expression

Ignoring the + annotations, for a telescope τ = (x1 : A1) . . . (xn : An) we
write τ → B for the expression (x1 : A1) → . . .→ (xn : An)→ B. For an
empty telescope τ = �, τ→ B is meant to be the expression B. Accordingly,
we write Θ→ B for (x1 : A1)→ . . .→ (xn : An)→ B.

2.3 Semantics of Mugda expressions

Computation is already needed during type-checking for dependent types.
Thus, we first need provide an evaluation that is used during type-checking.

2.3.1 Values

The semantics of Mugda contain the main ingredients of the type-checking
algorithm of [Coq96]: Closures and generic values. Closures, already in-
troduced in [Lan63], are used for explicit substitution. We simultaneously
define values and environments:

CHAPTER 2. MUGDA : SYNTAX AND SEMANTICS 11

Values

VAL 3 v ::= v ~v application
| Lam x eρ abstraction
| Pi x v eρ dependent function space
| a atomic value

AVAL 3 a ::= k generic value
| Set universe of small types
| c constructor name
| f function name
| D data name

A generic value k ∈ N represents the computed value of a variable during
type-checking.

Environments

ENV 3 ρ,Γ ::= � empty environment
| ρ, x = v extended with binding

A closure eρ is a pair of an expression e and an environment ρ. The
environment provides bindings for the free variables occurring in e. Values
can be seen as partially evaluated expressions that may contain closures.

2.3.2 Signatures

A signature carries information about all declared constants. Each declara-
tion adds newly defined constants to the signature, which is empty at the
beginning.

Signature

A signature Σ is defined as a partial polymorphic mapping:

• Σ : F→ VAL× CLAUSE∗ × B
mapping a function constant to its type (as a value), the clauses and a
flag to indicate whether the clauses have been type-checked.

• Σ : L→ EXPR×VAL
mapping a global let constant to the expression and its type.

• Σ : C→ VAL
mapping a constructor constant to its type.

• Σ : D→ VAL×N
mapping a data type constant to its type and the number of parame-
ters.

CHAPTER 2. MUGDA : SYNTAX AND SEMANTICS 12

The empty signature Σ0 is undefined on all arguments.

2.3.3 Evaluation

Now the evaluation of a closure eρ can be defined. A closed expression can
be evaluated in an empty environment.

We simultaneously define evaluation as a function↘ along with some
helper functions. Most of these functions are partial, but they are total on
well-typed expressions. A fixed signature Σ is assumed.

Evaluation

↘ : EXPR×ENV→ VAL
↘ (λ x. e)ρ = Lam x eρ

↘ ((x : A)→ B)ρ = Pi x vA Bρ where vA =↘ Aρ

↘ (let x : A = e1 in e2)ρ =↘ eρ,x=v1
2 where v1 =↘ eρ1

↘ (e e1 . . . en)ρ = app v v1 . . . vn where v =↘ eρ, vi =↘ eρi
↘ {Setρ = Set
↘ cρ = c
↘ fρ = f
↘ lρ =↘ e� where Σ l = (e, vt)
↘ xρ = lkup ρ x

The closures in Lam x eρ and Pi x vA Bρ do not have a binding for x. The
missing binding has to be provided before these closures can be evaluated.
This might be a concrete value (for example during β-reduction) or a fresh
generic value k.

Environment look-up

lkup : ENV×V→ VAL
lkup (ρ, x = v) x = v
lkup (ρ, y = v) x = lkup ρ x if y , x

Application

does β-reduction and inductive function application:

app : VAL×VAL∗ → VAL
app u � = u
app (u ~c1) ~c2 = app u (~c1, ~c2)
app (Lam x eρ) (v, ~v) = app v′ ~v where v′ =↘ eρ,x=v

app f ~v = appfun f ~v if f is a fun
app v ~v = v ~v otherwise

In the following, as pattern matching can fail, the object ⇑ is used to
indicate this.

CHAPTER 2. MUGDA : SYNTAX AND SEMANTICS 13

Pattern matching

Pattern matching returns an environment that binds the variables in the
patterns to values. When matching against a coinductive constructor, the
value is forced:

match : ENV×PAT×VAL→ ENV∪ { ⇑ }
match ρ (c ~p) v = matchf ρ p v′ if c is a coinductive constructor

and v′ = force v
match ρ p v = matchf ρ p v otherwise

matchf : ENV×PAT×VAL→ ENV∪ { ⇑ }
matchf ρ e v = ρ
matchf ρ x v = ρ, x = v
matchf ρ (c �) c = ρ
matchf ρ (c ~p) (c ~v) = matchlist ρ ~p ~v
matchf ρ p v = ⇑ otherwise

matchlist : ENV×PAT∗ × VAL∗ → ENV∪ { ⇑ }
matchlist ρ � � = ρ
matchlist ρ (p, ~p) (v, ~v) = matchlist ρ′ ~p ~v where ρ′ = matchρ p v , ⇑
matchlist ρ p v = ⇑ otherwise

Matching of a clause

For a single clause, if all patterns of a clause match against the argument
values, then the right hand side can be evaluated:

matchcl : ENV×PAT∗ × EXPR×VAL∗ → VAL∪ { ⇑ }
matchcl ρ � e ~v = app v ~v where v =↘ eρ

matchcl ρ (p, ~p) e (v, ~v) = matchcl ρ′ ~p ~v if ρ′ = match ρ p v , ⇑
matchcl ρ ~p e ~v = ⇑ otherwise

Matching of multiple clauses

Now we define how a sequence of clauses matches against the argument
values. Each clause is tried until one is matched or there are no clauses left.
It is assumed that clauses are distinct and complete, so that at most one will
match:

matchcls : CLAUSE∗ × VAL∗ → VAL∪ { ⇑ }
matchcls � ~v = ⇑
matchcls ((f ~p = e) ~γ) ~v = v if v = matchcl � ~p e ~v , ⇑
matchcls ((f ~p = e) ~γ) ~v = matchcls ~γ ~v otherwise

CHAPTER 2. MUGDA : SYNTAX AND SEMANTICS 14

Note that matching can fail, even when the coverage of all clauses is
complete: there can be too few arguments. Furthermore, generic values do
not match against a constructor pattern.

Now the reduction behaviour of recursive and corecursive functions can
be described. Only functions whose clauses have been type-checked (and
later termination-checked) will trigger reduction.

Inductive function application

We always reduce application of an inductive function if possible:

appfun : V × VAL∗ → VAL
appfun f ~v = v if Σ f = (t, ~γ,>) and matchcls ~γ ~v = v , ⇑
appfun f ~v = f ~v otherwise

Corecursive unrolling

As said above, an application of a corecursive definition is lazily unrolled
when needed. force tries to unroll a corecursive application until a con-
structor appears:

force : VAL→ VAL
force f = force (f �)
force (f ~v) = force v where v = matchcls ~γ ~v , ⇑

if Σ f = (t, ~γ,>) and f is a cofun
force v = v otherwise

2.4 Example programs

2.4.1 Identity function

Without defining data types, we still can define some non-recursive func-
tions. One example is the identity mapping. Mugda is monomorphic, so
the type has to be supplied as the first argument:

let id : (A : Set)→ A→ A = λ A. λ a. a

2.4.2 Booleans

The type of Booleans is introduced with:

data Bool : Set
tt : Bool
ff : Bool

An if-then-else construct can be defined by pattern matching:

CHAPTER 2. MUGDA : SYNTAX AND SEMANTICS 15

fun ite : (A : Set)→ Bool→ A→ A→ A
ite A tt a b = a
ite A ff a b = b

2.4.3 Natural numbers

The type of natural numbers:

data Nat : Set
zero : Nat
succ : Nat → Nat

The addition function can be defined recursively by pattern matching:

fun add : Nat → Nat → Nat
add x zero = x
add x (succ y) = succ (add x y)

2.4.4 Lists

Lists are an example of a parameterized data type:

data List (+ A : Set) : Set
nil : List A
cons : A→ List A→ List A

2.4.5 Finitely branching trees

The following declaration introduces finitely branching trees where nodes
and leafs carry elements of type A.

data Tree (+ A : Set) : Set
node : A→ List (Tree A)→ Tree A

A leaf is a node with an empty list of successors. In node, the recursive
argument Tree A appears as a parameter to List. This will be allowed
because the parameter of List is strictly positive.

2.4.6 Vectors

Now things get more interesting. Vectors are an example of an inductive
family of types.

data Vec (+ A : Set) : Nat → Set
nil : Vec A zero
cons : (n : Nat)→ A→ Vec A n→ Vec A (succ n)

CHAPTER 2. MUGDA : SYNTAX AND SEMANTICS 16

Next let us define the head function that returns the first element of a
vector. This operation should only be allowed for a non-empty vector.
With dependent types, we can express this in the type signature:

fun head : (A : Set)→ (n : Nat)→ Vec A (succ n)→ A

Advancing to the clause definition, the usage of inaccessible patterns will be-
come clear. First, pattern matching against the vector argument is needed:

head ? ? (cons B m x xl) = x

It is of note that a clause for the nil case is not needed, because nil does not
belong to a type of the form VecA (succn). Now, what about those question
marks above? One might be inclined to use non-linear pattern variables:

head B m (cons B m x xl) = x

But really, the system need not check at run-time that the values at the
corresponding arguments are equal – it is guaranteed for a well-typed
program.

So to capture the notion that the first two arguments are automatically
instantiated by matching against a constructor, the inaccessible pattern no-
tation [Nor07, GMM06] is used. The final definition is:

fun head : (A : Set)→ (n : Nat)→ Vec A (succ n)→ A
head B m (cons B m x xl) = x

2.4.7 Equality

The following predicate is called Martin-Löf equality, another important
example of a type that can be defined as an inductive family:

data Eq (A : Set) : A→ A→ Set
refl : (a : A)→ Eq A a a

where the single constructor refl states reflexivity of equality.
As a simple example, the program

let proof : (x : Nat)→ Eq Nat (add x zero) x
= λ y. refl Nat y

can now be seen as a proof of the mathematical proposition ∀x ∈N : x+0 =
x. Without having formally introduced type-checking, we want to provide
some intuition on issues that arise while checking such declarations.

The above example passes the type-checker because add x zero reduces
to zero , and which is – for the type system – equal to itself. Now, to
prove ∀x ∈ N : 0 + x = x, more effort is needed. The following will not be
accepted:

CHAPTER 2. MUGDA : SYNTAX AND SEMANTICS 17

let proof2 : (x : Nat)→ Eq Nat (add zero x) x
λ y. refl Nat y

The type-checker is only able to “see” definitional equality. As addition was
defined by recursion on the second argument, add zero x does not reduce
to x during type-checking.

More technically, the generic value introduced for y – that “moves up”
to the type – neither matches against the constructor pattern zero in the
first clause nor against the constructor pattern succ y in the second clause
of add .

So what is needed is a recursive proof, by manually doing case distinc-
tion:

fun eqSucc : (x : Nat)→ (y : Nat)→ Eq Nat x y→ Eq Nat (succ x) (succ y)
eqSucc x x (refl Nat x) = refl Nat (succ x)

fun proof2 : (x : Nat)→ Eq Nat (add zero x) x
proof2 zero = refl Nat zero
proof2 (succ x) = eqSucc (add zero x) x (proof2 x)

Recursive proofs need to be total functions to be logically valid.

2.4.8 Streams

Next we introduce streams as an example of a coinductive type. Coinduc-
tive types are not required to be well-founded, i.e. their inhabitants do not
need to have finite height.

codata Stream : Set
cons : Nat → Stream → Stream

For less clutter in later examples, we focus here on streams of natural
numbers, although they could be parameterized just like lists. As Stream
has only one constructor, there are no Stream objects of finite height.

A stream of zeroes can be declared by the following corecursive decla-
ration:

cofun zeroes : Stream
zeroes = cons zero zeroes

The first element of a stream can be computed by the function head :

fun head : Stream → Nat
head (cons x xs) = x

As expected ↘ (head zeroes)� = zero because head triggers an un-
folding. This evaluation is well-defined because zeroes is productive.

Chapter 3

Type-Checking

The starting point for this chapter was the simple type-checking algorithm
for dependent types that is given in [Coq96].

In the following, we will introduce judgments for type-checking. A rule
of a judgment has the general form

A1 . . . An

B
c

where the Ai are the premises and B is the conclusion. All these judgments
given in this work are algorithmic: a deterministic algorithm that builds a
derivation bottom-up is directly induced by the rules. If more than one rule
is applicable, the first one (in reading direction – left to right, top to bottom)
must be chosen.

3.1 Scope-Checking

In the semantics of the previous section, looking up in an environment or
in the signature was expected never to fail. This is only guaranteed for
well-scoped programs, where identifiers are always in scope.

We deal with this problem here by postulating that type-checking fails
if lookup in an environment or signature is not defined. In an actual im-
plementation (see appendix), the use of identifiers can already be checked
after parsing.

3.2 Bidirectional type-checking

A standard technique for dependent types called bidirectional type-checking
is used. Intuitively, this means that the type-checker has two modes: one
for checking that an expression has a certain type and one for checking that
an expression is correct while inferring its type.
The following three judgments are defined simultaneously:

18

CHAPTER 3. TYPE-CHECKING 19

check type checks that A denotes a valid type (figure 3.3):

k;ρ; Γ ` A Type ⊆N × ENV×ENV×EXPR

check expression checks that e has the type v (figure 3.1):

k;ρ; Γ ` e⇔ v ⊆N × ENV×ENV×EXPR×VAL

infer type checks that e is correct and infers its type value v (figure 3.2):

k;ρ; Γ ` e⇒ v :N × ENV×ENV×EXPR→ VAL

The environment ρwill be used to bind fresh generic values to variables,
and Γ will bind the type value corresponding to these generic values.

As noted, in checking mode, the type-checker might have to infer the
type of the expression and then verify that the inferred type value is equal
to the one that is being checked against : Equality (also called convertibility)
between two values is needed:

Equality of values A simple equality derived from [Coq96] is presented.
Regarding infinite objects, a corecursive definition should be equal to its
unfolding. We try to approximate this by allowing the type-checker to unroll
(force) a corecursive definition. Unlimited unfolding cannot be allowed,
thus we keep track of unfolding and only allow one side of two to be
unrolled.

The force history set F = {L,R,N} is introduced to keep track if the left or
right side (v2) has been forced, or no side yet. We will return to the subject
of equality for infinite objects in section 5.5.3.

Two judgments (figure 3.4) are defined simultaneously, the latter oper-
ating on already unrolled values:

f ; k ` v1 ⇔ v2 ⊆ F ×N × VAL×VAL

f ; k ` v1↔ v2 ⊆ F ×N × VAL×VAL

After having defined the basic building blocks, type-checking individual
declarations is next. For readability, we formalize these as imperative algo-
rithms rather than judgments. When a declaration passes the type-check,
the signature can be expanded.

Type-correctness of empty signature:

The empty signature Σ0 is type-correct.

CHAPTER 3. TYPE-CHECKING 20

-

k;ρ; Γ ` A Type k;ρ; Γ ` e1⇔↘ Aρ

k;ρ, x =↘ eρ1 ; Γ, x =↘ Aρ
` e2 ⇔ v

k;ρ; Γ ` let x : A = e1 in e2 ⇔ v

-
k + 1;ρ, x = k; Γ, x = vA ` e⇔↘ tρ,y=k

k;ρ; Γ ` λ x. e⇔ Pi y vA tρ

-
k;ρ; Γ ` A⇔ Set k + 1;ρ, x = k; Γ, x =↘ Aρ

` B⇔ Set
k;ρ; Γ ` (x : A)→ B⇔ Set

-
k;ρ; Γ ` e⇒ v2 N; k ` v2 ⇔ v1

k;ρ; Γ ` e⇔ v1

Figure 3.1: Checking expressions

--
k;ρ; Γ ` e1 ⇒ Pi x vA Bρ k;ρ; Γ ` e2 ⇔ vA

k;ρ; Γ ` e1 e2 ⇒↘ Bρ,x=↘eρ2

--
k;ρ; Γ ` (e1 e2) ~e⇒ v
k;ρ; Γ ` e1 (e2 ~e)⇒ v

-
v = lkup Γ x

k;ρ; Γ ` x⇒ v

-
Σ f = (v, ~γ, b)
k;ρ; Γ ` f⇒ v

-
Σ c = v

k;ρ; Γ ` c⇒ v

-
Σ D = (v,n)

k;ρ; Γ ` D⇒ v
-

Σ l = (e, v)
k;ρ; Γ ` l⇒ v

Figure 3.2: Inferring type of expressions

k;ρ; Γ ` A Type k + 1;ρ, x = k; Γ, x =↘ Aρ
` B Type

k;ρ; Γ ` (x : A)→ B Type

k;ρ; Γ ` Set Type
k;ρ; Γ ` t⇔ Set
k;ρ; Γ ` t Type

Figure 3.3: Type judgment

CHAPTER 3. TYPE-CHECKING 21

-

L; k ` force v1↔ v2 if force v1 , v1, force v2 = v2, f , R
R; k ` v1↔ force v2 if force v1 = v1, force v2 , v2, f , L

f ; k ` v1↔ v2 otherwise

f ; k ` v1 ⇔ v2

-
f ; k ` v⇔ w f ; k ` v j ⇔ w j for all j ∈ {1 . . . n}

f ; k ` v v1 . . . vn↔ w w1 . . .wn

-
f ; k ` v1 ⇔ v2 f ; k + 1 `↘ bρ,x1=k

1 ⇔↘ bΓ,x2=k
2

f ; k ` Pi x1 v1 bρ1 ↔ Pi x2 v2 bΓ
2

-
f ; k + 1 `↘ eρ,x1=k

1 ⇔↘ eΓ,x2=k
2

f ; k ` Lam x1 eρ1 ↔ Lam x2 eΓ
2

-
f ; k ` a↔ a

Figure 3.4: equality checking

CHAPTER 3. TYPE-CHECKING 22

3.3 Let declarations

Checking a global let declaration is pretty straightforward:

Algorithm

For δ = let l : A = e and a type-correct signature Σ, if

1. 1; �; � ` A Type

2. vA :=↘ A�

3. 1; �; � ` e⇔ vA

4. Σ′ := Σ ∪ {l 7→ (e, vA)}

then Σ′ is a type-correct signature.

3.4 Data type declarations

We have to check that data type declarations follow the scheme of inductive
families [Dyb94]. Actually, we here stay closer to the current version of
Agda, namely the strict positivity test is more lenient. In addition, Mugda
supports coinductive types [Coq93, Gim98] with the codata construct.

3.4.1 Checking data and constructor types

First, a valid data type declarations needs to have the syntactic form outlined
in figure 3.5, so that the parameters pi . . . pn in the result type of every
constructor exactly match those of the telescope.

data D (p1 : P1) . . . (pn : Pn) : Θ→ Set
c1 : ∆1 → D p1 . . . pn t1

1 . . . t
1
m

. . .
ck : ∆k → D p1 . . . pn tk

1 . . . t
k
m

Figure 3.5: Syntactic valid form of data declaration

Figure 3.7 shows the check for the data type, and figure 3.8 shows the
check for each constructor type. As the types will depend on the parameters,
we will have to prepend the telescope when checking them. For example,
in the judgment k;ρ; Γ; n ` A DataType we have

• As in previous judgments, k is the next fresh generic value, and ρ and
γ are environments for free variables.

• n is a fixed parameter that will be set to the length of the telescope
τ = (p1 : P1) . . . (pn : Pn).

CHAPTER 3. TYPE-CHECKING 23

• A is the expression that is left to be checked.

So for the declaration in figure 3.5, it is checked that

1; �; �; |τ| ` τ→ Θ→ Set DataType

holds.
The parameter types Pi can be arbitrary types, while the types in indices

Θ and the constructor arguments in ∆i need to be small types, i.e. of type
Set. Otherwise the data type V in figure 3.6, adapted from [Coq92], would
be accepted. Then loop would pass the termination-check of the next
chapter. In a language with a predicative hierarchy of universes like Agda
[Nor07], the type V is not accepted as a small type, but as an inhabitant of
a higher level (Set1). Then loop would not be type-correct.

data V : Set
v : ((A : Set)→ (A→ A))→ V

fun loop : V → Set
loop (v f) = loop (f V (v f))

let diverge : Set = loop (v id)

Figure 3.6: Invalid data type V

if k < n then k;ρ; Γ ` A Type
if k ≥ n then k;ρ; Γ ` A⇔ Set

k + 1;ρ, x = k; Γ, x =↘ Aρ; n ` B DataType
k;ρ; Γ; n ` (x : A)→ B DataType

k;ρ; Γ; n ` Set DataType

Figure 3.7: Data-type judgment

3.4.2 Strict positivity

In a telescope, each (pi : Pi) can be written as (+ pi : Pi) to denote strict
positivity.

Positive parameters

For D, we define the set of positive parameter indices pos(D):

pos(D) ⊆N := { i | pi is declared strictly positive}

CHAPTER 3. TYPE-CHECKING 24

if k ≥ n then k;ρ; Γ ` A⇔ Set
k + 1;ρ, x = k; Γ, x =↘ Aρ; n ` B ConType

k;ρ; Γ; n ` (x : A)→ B ConType

k;ρ; Γ ` v⇔ Set
k;ρ; Γ; n ` v ConType

Figure 3.8: Constructor type judgment

We require that data type declarations are strictly positive. Otherwise
there are inconsistencies [PM93], i.e. non-terminating terms could be con-
structed that would fail the check of the next chapter. Roughly, its meaning
is: In every constructor argument. the data type to be defined is not allowed
to occur in a function domain or in an application.

An exception to this that is allowed in Mugda is that parameters that are
for themselves strictly positive do preserve strict positivity. This allows the
definition of the Tree type in section 2.4.5 to pass the strict positivity test.
In that regard, Mugda ’s data types are closer to the strictly positive families
described in [MAG07]. For the strict positivity test of a constructor (fig-
ure 3.11) the non-occurrence (figure 3.9) and the strict positive occurrence
(figure 3.10) of an atomic value is needed.

k ` a nocc vA k + 1 ` a nocc ↘ Bρ,x=k

k ` a nocc Pi x vA Bρ
k + 1 ` a nocc ↘ eρ,x=k

k ` a nocc Lam x eρ

k ` a nocc v k ` a nocc v j for all j ∈ {1 . . . n}
k ` a nocc v v1 . . . vn

a , a′

k ` a nocc a′

Figure 3.9: Non-occurrence of atomic value a

Example : Untyped lambda calculus

Figures 3.12 and 3.13 show two encodings of untyped lambda calculus that
are rejected. The data type Term is rejected in figure 3.12, and in figure 3.13,
Fun is rejected because its parameter A is declared as strictly positive, but is
not. In both example, app is non-recursive and would pass the termination
check of the next chapter.

CHAPTER 3. TYPE-CHECKING 25

k ` a nocc vA k + 1 ` a spos ↘ Bρ,x=k

k ` a spos Pi x vA Bρ
k + 1 ` a spos ↘ eρ,x=k

k ` a spos Lam x eρ

k ` a nocc v j for all j ∈ {1 . . .m}, j < pos(D)
k ` a spos v j for all j ∈ pos(D)

k ` a spos D v1 . . . vm

k ` a spos v k ` a nocc v j for all j ∈ {1 . . . n}
k ` a spos v v1 . . . vn

k ` a spos a
k ` a nocc v
k ` a spos v

Figure 3.10: Strictly positive occurrence of atomic value a

k ` a spos vA k + 1 ` a sposc ↘ Bρ,x=k

k ` a sposc Pi x vA Bρ k ` a sposc D ~v

Figure 3.11: strict positivity test for constructor

data Term : Set
abs : (Term → Term)→ Term

fun app : Term → Term → Term
app (abs f) y = f y

let omega : Term = abs (λ x. app x x)
let diverge : Term = app omega omega

Figure 3.12: Encoding of untyped lambda calculus

data Fun (+A : Set) : Set
fn : (A→ A)→ Fun A

data Term : Set
abs : Fun Term → Term

fun app : Term → Term → Term
app (abs (fn Term f)) y = f y

letomega : Term = abs (fnTerm (λx.appx x))
let diverge : Term = app omega omega

Figure 3.13: Another encoding of untyped lambda calculus

CHAPTER 3. TYPE-CHECKING 26

3.4.3 Checking the whole declaration

Algorithm

For declaration δ = data D τ : A ~γ and type-correct signature Σ,
if

1. δ follows form of figure 3.5

2. n := |τ|

3. 1; �; �; n ` τ→ A DataType

4. vD :=↘ (τ→ A)�

5. Σ′ := Σ ∪ {D 7→ (vD,n)}

6. Using Σ′, for every constructor declaration ci : Bi ∈ ~γ:

(a) 1; �; �; n ` τ→ Bi ConType
(b) vi :=↘ (τ→ Bi)�

(c) 1 ` k sposc vi for every j ∈ pos(D)
(d) 1 ` D sposc vi

7. Σ′′ := Σ′ ∪
⋃

i

{ci 7→ vi}

then Σ′′ is a type-correct signature.

A codata declaration is checked just the same.

3.5 Function declarations

Overview

We need to check each clause f ~p e of a function separately against the
declared type. So for each clause, we have to check the patterns ~p and then
the right hand side e. Checking the patterns ~p will yield an environment for
the free variables in e.

Because of the inaccessible patterns, we follow [Nor07] and check ~p
in two phases. In the first phase, we will skip inaccessible patterns, and
only check the accessible part of the patterns. Thee inaccessible patterns
will be represented by fresh flexible generic values. These flexible generic
values will be instantiated to concrete values when checking constructor
patterns. Then in the second phase, it is verified that the expressions of the
inaccessible patterns are equal to those instantiated in the first phase, and
finally the right hand side e can be checked.

CHAPTER 3. TYPE-CHECKING 27

3.5.1 Syntactic checks for patterns

We first outline some syntactic requirements on the patterns:

• all patterns of a clause are linear - all variables occur only once in the
accessible parts.

• variable bindings in the right hand side do not shadow the variable
patterns.

• all clauses should have the same number of patterns.

This can already be checked during scope-checking. The last two items are
important for the syntactic termination-checker described in the following
chapter.

3.5.2 Coverage of pattern matching

Also not covered here is very important for logical consistency: It is neces-
sary to check that the clauses cover all possible cases. This is quite compli-
cated [Nor07, SP03] for inductive families and will not be described here. In
addition, due to our “try all clauses” semantics, clauses should not overlap.

3.5.3 Preliminaries

Converting pattern to value

During type-checking of the accessible patterns, patterns will be converted
to values because the type may depend on them:

⇓
_ _ :N × PAT→ VAL
⇓

k p = v where p2v k p = (v, k′)
p2v :N × PAT→ (VAL,N)
p2v k x = (k, k + 1)
p2v k (c �) = (c, k)
p2v k (c ~p) = (c ~v, k′) where (~e, k′) = ps2vs k ~p
p2v k e = (k, k + 1)
ps2vs :N × PAT∗ → (VAL∗,N)
ps2vs k � = (�, k)
ps2vs k (p, ~p) = (k′′, (v, ~v)) where

(v, k′) = p2v k p
(~v, k′′) = ps2vs k′ ~p

Both pattern variables and inaccessible patterns are converted to ascending
fresh generic values, just as later during checking of the pattern.

Instantiating by successful unification (figure 3.14) will yield a substitu-
tion for flexible generic values:

CHAPTER 3. TYPE-CHECKING 28

Substitutions

A substitution is a list σ : (N × VAL)∗ and denotes a partial mapping of
generic values to values. � is the empty substitution. σ[v/k] is the substitu-
tion where k is mapped to v and others according to σ.

Application of a substitution

Now we define simultaneously the application of a substitution on values
and environments:

{} : (N × VAL)∗ × VAL→ VAL
σ{k} = v if (k, v) ∈ σ
σ{v v1 . . . vn} = σ{v} σ{v1} . . . σ{vn}

σ{Pi x vA Bρ} = Pi x σ{vA} Bσ{ρ}

σ{Lam x eρ} = Lam x eσ{ρ}

σ{v} = v otherwise
{} : (N × VAL)∗ × ENV→ VAL
σ{�} = �
σ{(x, v)ρ} = (x, σ{v})σ{ρ}

Composition of substitutions

Next is the composition comp σ1 σ2 of two substitutions σ1 and σ2, with the
intended meaning that the equation comp σ1 σ2{v} = σ2{σ1{v}} holds:

comp : (N × VAL)∗ × (N × VAL)∗ → (N × VAL)∗

comp ((k1, v1) . . . (kn, vn)) σ2 = ((k1, σ2{v1}) . . . (kn, σ2{vn}) σ2)

It is assumed that the domains of the substitutions are disjoint and that there
are no occurrences of the generic values of σ1 in the values of the codomain
of σ2.

3.5.4 Checking accessible part of patterns

The main work of the first phase is the judgment

(k, ξ, σ, ρ,Γ) ` p chkP v⇒ (k′, ξ′, σ′, ρ′,Γ′), v′

where

• k denotes the next fresh generic value

• ρ and Γ are environments, again providing for a variable a value and
its type.

• ξ ⊆N× (EXPR×VAL) is a set of flexible generic values, together with
the corresponding inaccessible expression and its supposed type.

CHAPTER 3. TYPE-CHECKING 29

--
k ` k′ nocc v

k, ξ ` k′ inst v⇒ (k′, v)
k′ ∈ ξ

--
k ` k′ nocc v

k, ξ ` v inst k′ ⇒ (k′, v)
k′ ∈ ξ

-
k, ξ ` ~v instlist ~w⇒ σ

k, ξ ` c ~v inst c ~w⇒ σ
-

k, ξ ` ~v instlist ~w⇒ σ

k, ξ ` D ~v inst D ~w⇒ σ

-
k; N ` v1 ⇔ v2

k, ξ ` v1 inst v2 ⇒ �

k, ξ ` � instlist � ⇒ �

k, ξ ` v1 inst w1 ⇒ σ
k, ξ ` σ{v2} . . . σ{vn} instlist σ{w2} . . . σ{wn} ⇒ σ′

k, ξ ` v1v2 . . . vn instlist w1w2 . . .wn ⇒ comp σ σ′

Figure 3.14: Instantiation of flexible values by unification

• σ is a substitution for the flexible generic values

• p is the pattern to check

• v is the remaining type of the function.

• (k′, ξ′, σ′, ρ′,Γ′), v′ as “output”, are updated versions of the above.

This is simultaneously defined with checking a list of patterns in figure 3.15.
Unification is used in the rule - for checking a constructor pattern.

3.5.5 Checking inaccessible patterns

After the accessible part of the patterns has been checked, now the inac-
cessible patterns have to be checked. Checking a inaccessible pattern e is
described in figure 3.16: The expression may contain any pattern variable
of the clause. It is checked that the value inferred during the first phase is
equal to the expression e written down by the user.

3.5.6 Checking the whole declaration

Now, only the right hand side is left to be checked. It is type-checked
against the type remaining from the first phase. The complete algorithm
for type-checking a mutual function declaration follows:

CHAPTER 3. TYPE-CHECKING 30

-
vB =↘ Bρ,x=k ρ′ = (ρ, y = k) Γ′ = (Γ, y = vA)

(k, ξ, σ, ρ,Γ) ` y chkP Pi x vA Bρ ⇒ (k + 1, ξ, σ, ρ′,Γ′), vB

-

Σ c = vc (k, ξ, σ, ρ,Γ) ` ~p chkPs vc ⇒ (k′, ξ′, σ′, ρ′,Γ′), v′c
k, ξ ` v′c inst vA ⇒ σ2 vp =⇓k p σ′′ = comp σ′ σ2

Γ′′ = σ′′{Γ′} vB = σ′′{↘ Bρ,x=vp}

(k, ξ, σ, ρ,Γ) ` c ~p chkP Pi x vA Bρ ⇒ (k′, ξ′, σ′′, ρ′,Γ′′), vB

-
vB =↘ Bρ,x=k, ξ′ = ξ ∪ {(k, (e, vA))}

(k, ξ, σ, ρ,Γ) ` e chkP Pi x vA Bρ ⇒ (k + 1, ξ′, σ, ρ, Γ), vB

(k, ξ, σ, ρΓ) ` � chkPs v⇒ (k, ξ, σ, ρ,Γ), v

(k, ξ, σ, ρ,Γ) ` p chkP v⇒ (k′, ξ′, σ′, ρ′,Γ′), v′

(k′, ξ′, σ′, ρ′,Γ′) ` ~p chkPs v′ ⇒ (k′′, ξ′′, σ′′, ρ′′,Γ′′), v′′

(k, ξ, σ, ρΓ) ` p ~p chkPs v⇒ (k′′, ξ′′, σ′′, ρ′′,Γ′′), v′′

Figure 3.15: checking accessible patterns

k;ρ; Γ ` e⇔ σ{vt}

(i, vi) ∈ σ k; N `↘ eρ ⇔ vi

(k, σ, ρ, Γ) ` i checkinacc e : vt

Figure 3.16: Checking inaccessible pattern

CHAPTER 3. TYPE-CHECKING 31

Algorithm

For a mutual declaration δ =

mutual
fun f1 : A1
~γ1

. . .
fun fn : An
~γn

and a type-correct signature Σ, if

1. for every i ∈ {1 . . . n}
(a) 1; �; � ` Ai Type
(b) vi :=↘ A�i

2. Σ′ := Σ ∪
⋃

i∈{1...n}

{ fi 7→ (vi, ~γi,⊥)}

3. Using Σ′, for every i ∈ {1 . . . n} and every clause f~p e ∈ ~γi:

(a) (1, �, �, �, �) ` ~p chkPs vi ⇒ (k, ξ, σ, ρ,Γ), v
(b) (k, σ, ρ, Γ) ` i checkinacc e : vt for all (i, (e, vt)) ∈ ξ
(c) k;ρ; Γ ` e⇔ v

4. Σ′′ := Σ ∪
⋃

i∈{1...n}

{ fi 7→ (vi , ~γi,>)}

then Σ′′ is a type-correct signature.

A mutual cofun declaration is type-checked just the same.

3.6 Mugda programs

The previous sections detailed algorithms for all declarations of Mugda. We
can apply those to a list of declarations:

Algorithm

For a Mugda program ~δ = δ1 . . . δn, if

• for every i ∈ {1 . . . n}: Σi is the result of type-checking δi
using Σi−1

then ~δ is a type-correct Mugda program.

So for a whole Mugda program, the declarations are checked one by one,
starting with the empty signature Σ0.

Chapter 4

Termination-Checking

4.1 Motivation

The type-checking algorithm presented in the previous chapter has one
drawback: The function declaration

fun foo : Nat → Nat
foo x = foo x

passes the type checker, although the function denoted by foo is not well-
defined. Also, now the declaration

let v : Vec Nat (foo zero) = nil Nat zero

is neither rejected nor accepted, because the evaluation of foo zero is unde-
fined. For an implementation, this means that the type checker itself never
finishes, or perhaps crashes with a stack overflow. Type-checking is not
decidable, because it is not enforced that evaluation is well-defined.

Terminating closure

A closure eρ is terminating if its evaluation is defined, i.e. there exists a value
v ∈ VAL such that↘ eρ = v.

Terminating signature

A type-correct signature Σ is terminating, if every closure that can be evalu-
ated during type-checking with Σ is terminating.

Proposition: decidable type-checking

Type-checking of a Mugda program δi . . . δn is decidable if all signatures Σi
that arise during type-checking (see section 3.6) are terminating.

32

CHAPTER 4. TERMINATION-CHECKING 33

Proposition

• The empty signature Σ0 is terminating.

• Given

– δ either a let , data or codata declaration

– Σ a terminating signature

– Σ′ the signature resulting from type-checking δ with Σ.

then Σ′ is terminating.

Only mutual (co)recursive declarations can possibly cause evaluation to be
undefined. What is left to do in this chapter is to give a criterion that rejects
all those declarations that would result in a signature that is not terminating.
Of course, any such criterion will also reject valid ones, as the halteproblem
is undecidable.

4.2 Matrix notation

For a set R we write Rm,n for the set of matrices with m rows and n columns
and elements in R. We write αi, j for the element in the ith row and jth
column. For a matrix α ∈ Rm,n, the dimension is |α| := (m,n). For a square
matrix β ∈ Rm,m, the set of diagonal elements is diag β := {βi,i | i ≤ m}.

4.3 Relating pattern and expressions

The size-change principle [LJBA01] states:

a program terminates on all inputs if every infinite call sequence
would cause an infinite descent in some data values.

So to see that an evaluation in our semantics is terminating, we need
to know how the size of the semantical values change during evaluation of
recursion. This is done by analyzing the syntax of the program: how do the
expression of the arguments from a recursive call relate to the patterns on
the right hand side ?

This section is mostly based on [AA02], but where their work constructs
a lexicographic order to show termination, we will use a simpler and yet
more powerful criterion based on the size change principle, which is pre-
sented in the following section.

CHAPTER 4. TERMINATION-CHECKING 34

Order
ORDER = { ? , ≤ , < }

This set denotes the possible results when comparing a expression e to a
pattern p, with the intended meaning:

• e < p : the value represented by e is smaller than that of p.

• e ≤ p: we do not have e1 < p, but the value represented by p is not
smaller than that of e.

• e ? p : the value represented by p is smaller than e or their relation is
not known.

Our order will be based on two rules:

• Axiom 1: x < c ~p1 x ~pn when c is a inductive constructor

• Axiom 2: f ~e ≤ f

The first rule expresses that x is a structural part of c ~p1 x ~pn. The second
rule is essential for higher order data types like Ord .

Order multiplication

can be seen as serial composition:

∗ < ≤ ?
< < < ?
≤ < ≤ ?
? ? ? ?

Order Addition

can be seen as parallel composition, or as the maximum:

+ < ≤ ?
< < < <
≤ < ≤ ≤

? < ≤ ?

The triple (ORDER,+, ∗) forms a commutative semiring, where ? is the
neutral element of + and ≤ is the neutral element of ∗.

Order minimum

∧ < ≤ ?
< < ≤ ?
≤ ≤ ≤ ?
? ? ? ?

CHAPTER 4. TERMINATION-CHECKING 35

Maximum and minimum for list

for a non-empty list (o1 . . . on) we define as abbreviations

maxo (o1 . . . on) := o1 + . . . + on

and
mino (o1 . . . on) := o1 ∧ . . . ∧ on

Arity

All clauses of a function declaration should have the same number of pat-
terns.
The arity of a function f is ar(f) := |~p|where f ~p = e is some clause of f.

Call

A call is an expression of the form f ~e.

Expression to pattern

As said, we want to compare an expression to a pattern, yielding an element
of ORDER. Mugda mainly differs from simply typed languages by having
the inaccessible patterns e. We handle this kind of pattern by trying to
convert the expression e into a “normal” pattern:

etp : EXPR→ PAT∪ { ⇑ }
etp x = x
etp (c e1 . . . en) = c (etp e1) . . . (etp en)
etp c = c �
etp e = ⇑ otherwise

Now the comparison of an expression to a pattern follows:

Comparing expression to pattern

cmp : EXPR×PAT→ ORDER

cmp e1 e2 =

cmp e1 p if etp e2 = p , ⇑
≤ if e1 = e2
? otherwise

cmp x p = cmpv x p
cmp (x ~e) p = cmpv x p
cmp c (c �) = ≤
cmp (c e1 . . . en) (c p1 . . . pn) = mino (cmp e1 pn) . . . (cmp en pn)
cmp e p = ? otherwise

where cmpv compares a variable to a pattern:

CHAPTER 4. TERMINATION-CHECKING 36

Comparing variable to pattern

cmpv : V × PAT→ ORDER
cmpv x x = ≤
cmpv x (c p1 . . . pn) = < ∗ maxo (cmpv x p1) . . . (cmpv x pn)

if c is inductive constructor
cmpv x e = cmpv x p if etp e = p , ⇑
cmpv x p = ? otherwise

Note that coinductive objects are not well-founded, so we have

cmpv x (c ~p) = ?

when c is a coinductive constructor.

Call matrices

A call matrix is a triple (f, α,g) where f,g ∈ F and α ∈ ORDERar(f),ar(g). It
represents a call from f to � in the static flowgraph. The set of all call
matrices is CALL.

The size-change principle is often presented with bipartite graphs in-
stead of call matrices, but these are equivalent representations.

Call matrix of call

Let f ~p = e be a function clause and g ~e be a call in e, where ~p = p1 . . . pn and
~e = e1 . . . em. The associated call matrix cm(f, ~p,g,~e) ∈ CALL is given by

cm(f, ~p,g,~e) := (f, α,g)

where α ∈ ORDERar(f),ar(g) with the elements:

αi, j =

{
cmp e j pi if j ≤ m
? if j > m

In the definition of α, it was taken into consideration that there can
be calls f e1 . . . en where n < ar f , because a function might be used as a
higher-order argument. The missing arguments are filled up with ?.

Call set

A finite set of call matrices is called a call set. For a mutual declaration

δ = mutual (f1 A1 γ1) . . . (fn Anγn)

we define the set rec of recursive function identifiers

rec := { f1, . . . , fn}

CHAPTER 4. TERMINATION-CHECKING 37

and the initial call set cs(δ) as

cs(δ) :=
⋃

i∈{1...n}

{extr rec fi ~p e | fi ~p e ∈ γi}

The initial call set includes the call matrices of all recursive calls, where the
extraction of call matrices from a right hand side is defined as follows:

Extraction of call matrices from expression

extr : P(F) × F × PAT∗ × EXPR→ P(CALL)
extr rec f ~p (g e1 . . . en) = {cm(f, ~p,g,~e)} ∪

⋃
i∈{1...n} extr rec f ~p ei

if g ∈ rec
extr rec f ~p g = {cm(f, ~p,g, �)}

if g ∈ rec
extr rec f ~p (e e1 . . . en) = extr rec f ~p e ∪

⋃
i∈{1...n} extr rec f ~p ei

extr rec f ~p λ x. e = extr rec f ~p e
extr rec f ~p let x : A = e1 in e2 = extr rec f ~p e1 ∪ extr rec f ~p e2
extr rec f ~p (x : A)→ B = extr rec f ~p A ∪ extr rec f ~p B
extr rec f ~p e = ∅ otherwise

Note that for the expression let x : A = e1 in e2 we don’t have to extract
calls in the type A because it is only evaluated during type-checking of the
function.

4.4 Applying the size-change principle

Starting from the initial call set, the following allows reasoning about the
possibility of infinite call sequences:

Order matrix multiplication

× : Om,n
×On,p

→ Om,p

(α × β)i, j =

n∑
k=1

αi,k ∗ βk, j

Call Matrix composition

(f , α, g) ? (g, β, h) := (f , α × β, h)

CHAPTER 4. TERMINATION-CHECKING 38

Call set completion

Completing a call set is closing it under composition. This can be achieved
with a fixed point algorithm:

complete : P(CALL)→ P(CALL)

complete cs =

{
complete cs′ if cs , cs′

cs′ if cs = cs′

where cs′ = cs ∪ {(f , α, g) ? (g′, β, h) | g = g′ and (f , α, g), (g′, β, h) ∈ cs}

For a declaration δ, complete cs(δ) is the completed call set of δ.

Idempotent call matrix

A call-matrix (f , α, g) is idempotent if f = g and α × α = α

Decreasing call matrix

The element < ∈ O is decreasing.
A call matrix (f , α, g) is decreasing if diag(α) contains a decreasing element.

Proposition: Size-change principle for Mugda

We can now give a criterion based on the size-change principle [LJBA01]:

Given

1. a terminating signature Σ

2. a mutual recursive function declaration δ

3. Σ′ is the signature resulting from type-checking δ in Σ

4. every idempotent call-matrix α ∈ complete (cs(δ)) is de-
creasing.

then Σ′ is terminating.

The size-change principle is proven to be correct in [Wah07] for a depen-
dently typed language with simpler first order data types. The work in [AA02]
contains a proof of correctness for the structural order defined by axioms 1
and 2 in a simply typed language.

Productivity of corecursive declarations will follow in the next chapter,
when the Size type is added to Mugda.

CHAPTER 4. TERMINATION-CHECKING 39

4.5 Examples

4.5.1 Addition

Recall the addition function on natural numbers:

fun add : Nat → Nat → Nat
add x zero = x
add x (succ y) = succ (add x y)

The single recursive call is add x y in the second clause. To build the call
matrix we need to calculate:

cmp x x = ≤
cmp x (succ y) = ?
cmp y x = ?
cmp y (succ y) = <

The call set is a singleton set {α}where

α = add
(
≤ ?
? <

)
add

To complete the call set, α is composed with itself:

add
(
≤ ?
? <

)
add ? add

(
≤ ?
? <

)
add = add

(
≤ ?
? <

)
add

which yields again α. Thus, {α} is the completed call set. α is an idempotent
matrix, and because it is decreasing, the declaration for add is accepted.
Now suppose the arguments in the recursive call are permuted:

fun add2 : Nat → Nat → Nat
add2 x zero = x
add2 x (succ y) = succ (add2 y x)

which still computes the addition of two natural numbers. The initial call
set is

β1 = add2

(
? ≤

< ?

)
add2

The completed call set is {β1, β2, β3}where

β2 = add2

(
< ?
? <

)
add2 , β3 = add2

(
? <
< ?

)
add2

The only idempotent matrix β2 is decreasing, so the definition of add2 is also
accepted. Permuted arguments are a strength of the size-change principle.

CHAPTER 4. TERMINATION-CHECKING 40

4.5.2 Mutual even and odd

The following mutual declaration

mutual
fun even : Nat → Bool

even zero = tt
even (succ x) = odd x

fun odd : Nat → Bool
odd zero = ff
odd (succ x) = even x

yields the initial call set{
even

(
<
)
odd ,odd

(
<
)
even

}
The completed call set{

even
(
<
)
odd ,odd

(
<
)
even ,even

(
<
)
even ,odd

(
<
)
odd

}
includes two additional idempotent matrices that are both decreasing. Thus
this mutual definition is also accepted.

4.5.3 Brouwer ordinals

The so-called Brouwer ordinals can be defined with

data Ord : Set
ozero : Ord
olim : (Nat → Ord)→ Ord

This is an example of a higher-order data type, because the argument to
olim contains a function space. Now ordinal addition can be defined:

fun addOrd : Ord → Ord → Ord
addOrd x ozero = x
addOrd x (olim f) = olim (λ y. addOrd x (f y))

The interesting comparison is (f y) against olim f . We should have f y ≤ f
(Axiom 2) and olim f < f (Axiom 1), thus with transitivity f y < olim f . And
indeed we get:

cmp x x = ≤
cmp x (olim f) = ?
cmp (f y) x = ?
cmp (f y) (olim f) = cmpv f (olim f) = < ∗ maxo (cmpv f f) = < ∗ ≤ = <

The corresponding call set is

addOrd
(
≤ ?
? <

)
addOrd

and is then accepted just like add .

CHAPTER 4. TERMINATION-CHECKING 41

4.6 Excursion: Extending the order

Motivation

The following type

data NatPair : Set
np : Nat → Nat → NatPair

denotes pairs of natural numbers. Now if one defines addition on pairs:

fun addp : NatPair → Nat
addp (np x zero) = x
addp (np x (succ y)) = succ (addp (np x y))

but this does no longer pass the termination-check. Too much information
is lost when creating the call matrices for this single nested pattern. For
addp , the call matrix is

addp
(
≤

)
addp

which is idempotent but not decreasing.
The plan is to do a finer comparison for nested patterns, where the result

is not a single element, but a whole matrix of elements:

Extended Order

The set ORDER+ is defined recursively by

• ORDER ⊆ ORDER+

• if M ⊆ ORDER+ and n ∈N then Mn,n
⊆ ORDER+

Extended Order operations

The operations ∗, + and ∧ given in the previous section are extended to
ORDER+ by adding the following additional cases together with a new
operation, collapse :

Additional composition cases

α ∗ β =

{
α × β if |α| = |β|
(collapse α) ∗ (collapse β) otherwise

α ∗ ? = ?
α ∗ ≤ = α
α ∗ < = (collapse α) ∗ <
? ∗ β = ?
≤ ∗ β = β
< ∗ β = < ∗ (collapse β)

CHAPTER 4. TERMINATION-CHECKING 42

Additional addition cases

α + β =

{
γ with γi, j = αi, j + βi, j if |α| = |β|
(collapse α) + (collapse β) otherwise

α + ? = α
α + ≤ = (collapse α) + ≤
α + < = <
? + β = β
≤ + β = ≤ + (collapse β)
< + β = <

Additional minimum cases

α ∧ β =

{
γ with γi, j = αi, j ∧ βi, j if |α| = |β|
(collapse α) ∧ (collapse β) otherwise

α ∧ ? = ?
α ∧ ≤ = (collapse α) ∧ ≤
α ∧ < = α
? ∧ β = ?
≤ ∧ β = ≤ ∧ (collapse β)
< ∧ β = β

Collapsing of matrix

collapse : M(ORDER+)→ ORDER+

collapse α = mino (diagα)

Comparison with extended order

Now, the following clause of cmp

cmp (c e1 . . . en) (c p1 . . . pn) = mino (cmp e1 p1) . . . (cmp en pn)

is changed to

cmp (c e1 . . . en) (c p1 . . . pn) =

γ ∈ ORDER+

n,n with γi, j = cmp e j pi
if n ≥ 2

cmp e1 p1 otherwise

so more order information about the components is used, for as long as
possible before the matrix might have to be collapsed.

CHAPTER 4. TERMINATION-CHECKING 43

Decreasing element

In the extended order, a decreasing element is recursively defined by

• < is decreasing

• α is decreasing if diag(α) has at least one decreasing element.

The remaining operations from the previous section carry over directly
to ORDER+. Before giving examples, we conjecture the following:

Proposition: Size-change principle for extended order

The size change principle with ORDER+ for Mugda holds.

4.6.1 Examples

Pair addition

Back to the example from the motivation, the initial call set calculated with
the extended order is:

add p

((
≤ ?
? <

))
add p

This is also the completed call set and the matrix is decreasing.

List flattening

Another example that now is recognized as terminating is this version of
list flattening:

fun flat : (A : Set)→ List (List A)→ List A
flat A (nil List A) = nil A
flat A (cons List A (nil A) yl) = flat A yl
flat A (cons List A (cons A x xl) yl) = cons A x (flat A (cons (List A) xl yl))

The initial set of call matrices is:

flat
(
≤ <
? <

)
flat , flat

≤ <

?

≤ ? ?
? < ?
? ? ≤

 flat

It turns out that this is already the completed call set. Both matrices are
idempotent and decreasing.

CHAPTER 4. TERMINATION-CHECKING 44

4.7 List reversion: Vectors to the rescue

First, we present a peculiar list reversion algorithm found in [Bla04]. It is
shown in figure 4.1. This mutual declaration is not accepted as terminating.
For example the call

rev A (rev2 A x xs)

in the third clause of rev2 induces the following call matrix:

rev2

(
≤ ?
≤ ?

)
rev

Indirect calls are not handled well by a purely syntactic test. A termination-
checker needs information about the behaviour of rev2 , more precisely
about the size of the returned list. But the user can help by using vectors
instead of lists: the same algorithm with vectors is shown in figure 4.2.
This declaration is now accepted, because in enough recursive calls the first
argument is getting structurally smaller.

mutual
fun rev : (A : Set)→ List A→ List A

rev A (nil A) = nil A
rev A (cons A x xs) = cons A (rev1 A x xs) (rev2 A x xs)

fun rev1 : (A : Set)→ A→ List A→ A
rev1 A a (nil A) = a
rev1 A a (cons A x xs) = rev1 A x xs

fun rev2 : (A : Set)→ A→ List A→ List A
rev2 A a (nil A) = nil A
rev2 A a (cons A x xs) = rev A (cons A a (rev A (rev2 A x xs)))

Figure 4.1: not accepted : reversion on Lists

CHAPTER 4. TERMINATION-CHECKING 45

mutual
fun rev : (n : Nat)→ (A : Set)→ Vec A n→ Vec A n

rev zero A (nil A) = nil A
rev succ n A (cons A n x xs) =

cons A n (rev1 n A x xs) (rev2 n A x xs)
fun rev1 : (n : Nat)→ (A : Set)→ A→ Vec A n→ A

rev1 zero A a (nil A) = a
rev1 succ n A a (cons A n x xs) = rev1 n A x xs

fun rev2 : (n : Nat)→ (A : Set)→ A→ Vec A n→ Vec A n
rev2 zero A a (nil A) = nil A
rev2 succ n A a (cons A n x xs) =

rev (succ n) A (cons A n a (rev n A (rev2 n A x xs))

Figure 4.2: accepted: reversion on vectors

Chapter 5

Sized data types

As the rev example demonstrated, richer types allow more declarations
to be accepted by the termination-checker. But natural numbers are not
sufficient as the height for inhabitants of coinductive types like Stream or
types with infinite branching like Ord. This is why a type Size will be
added to Mugda that has an element ∞ that is “big enough” for all objects
in Mugda. Inductive families that use this new type as an index will be
called sized types.

In addition, using vectors instead of lists is not always easily possible.
Consider a filter function that removes some elements from a list. For
vectors, we would need to resort to existential types1, which we will sketch
as

fun filter : (A : Set)→ (p : A→ Bool)→ (n : Nat)
→ Vec A n→ (m : Nat .(Leq m n , Vec A m))

where filter returns a natural number m, a proof that m is smaller than n,
and a vector of length m.

The Size type will provide an easy way out. For inductive types, the
size will be an upper bound on the height. Filtering on sized lists then has
the type

fun filter : (A : Set)→ (p : A→ Bool)→ (i : Size)→ List A i→ List Ai

and Mugda will offer subtyping that is helpful when implementing filter.

5.1 Adding a Size type

In most works on sized types, sizes annotations are merely “tagged on” to
an existing language. An exception is [Abe06], where a size kind is added
to a polymorphic lambda calculus. As Mugda already supports inductive
families, adding a primitive type of sizes was the natural choice.

1for the use of existential types for termination, see [XP99].

46

CHAPTER 5. SIZED DATA TYPES 47

5.1.1 Syntax and semantics

We extend expressions and patterns:

EXPR 3 e,A,B ::= . . .
| Size Size type
| s e size successor
| ∞ limit size

PAT 3 p ::= . . .
| s p size successor pattern

As Size is a type, in particular we also have variables of type Size.
Thus, we can form size expressions of the form that was first developed in
[BFG+04].

Semantics

Values also are extended accordingly:

VAL 3 v ::= . . .
| Size Size type
| s v size successor
| ∞ size limit

We will now expand semantics for the size type. For the semantics, the
size type can be imagined as a coinductive type with one constructor s and
a distinguished inhabitant∞.

Size successor

The semantics should take into account that ∞ is the limit size, i.e. the
equation s∞ = ∞ holds:

s∞ : VAL→ VAL
s∞ ∞ = ∞
s∞ v = s v otherwise

Evaluation

↘ Sizeρ = Size
↘∞

ρ = ∞
↘ (s e)ρ = s∞ v where v =↘ eρ

Pattern matching

matchf ρ (s p)∞ = match ρ p∞
matchf ρ (s p) (s v) = match ρ p v

CHAPTER 5. SIZED DATA TYPES 48

5.1.2 Type-Checking

First the following clauses are added:

Application of substitution

σ{s v} = s∞ σ{v}

Converting pattern to value

p2v k (s p) = (s v, k′) where (v, k′) = p2v k p

All additional typing rules are shown in figure 5.1. It is noteworthy that
Size is not a small type. The rule - is similar to -, as s can
be seen as a constructor of type Size→ Size.

k;ρ; Γ ` Size Type
-

k;ρ; Γ ` e⇔ Size
k;ρ; Γ ` s e⇔ Size

-
k;ρ; Γ ` ∞⇒ Size

-
f ; k ` v1 ⇔ v2

f ; k ` s v1↔ s v2

k ` a nocc v
k ` a nocc s v

k ` a spos v
k ` a spos s v

-

(k, ξ, σ, ρ,Γ) ` p chkP Size→ Size⇒ (k′, ξ′, σ′, ρ′,Γ′), v′

v =⇓k p
(k, ξ, σ, ρ,Γ) ` s p chkP Pi x Size Bρ ⇒ (k′, ξ′, σ′, ρ′,Γ′),↘ Bρ,x=v

-
k, ξ ` v1 inst v2 ⇒ σ

k, ξ ` s v1 inst s v2 ⇒ σ

-
k, ξ ` v1 inst∞⇒ σ

k, ξ ` s v1 inst∞⇒ σ

Figure 5.1: Additional typing rules for Size type

5.1.3 Termination-Checking

We now detail the additions to chapter 4:

CHAPTER 5. SIZED DATA TYPES 49

Expression to pattern

etp (s e) = s (etp e)

Comparing expression to pattern

cmp (s e1) (s e2) = cmp e1 e2

Comparing variable to pattern

the size successor is treated like an inductive constructor:

cmpv x (s p) = < ∗ cmpv x p

This is quite dangerous, as the Size type is not well-founded. Later the
use of Size must be controlled so that termination-checking remains valid.

5.2 Sized data type declarations

Two new declarations are added to the language:

Declarations

DECL 3 δ ::= . . .
| sized data D τ : A ~γ sized inductive data type
| sized codata D τ : A ~γ sized co inductive data type

5.2.1 Examples

Sized natural numbers

sized data Nat : Size→ Set
zero : (i : Size)→ Nat (s i)
succ : (i : Size)→ Nat i→ Nat (s i)

The following declaration

let 1 : Nat∞ = succ ∞ (zero∞)

defines the natural number 1. So “at run-time” all objects of a sized type
get the height∞, which is the only closed expression of type Size. We also
introduce the type of sized streams:

Sized Streams

sized codata Stream : Size→ Set
cons : (i : Size)→ Nat → Stream i → Stream (s i)

Next is type-checking of the new sized declarations.

CHAPTER 5. SIZED DATA TYPES 50

5.2.2 Checking sized data type declarations

A sized data declaration need to be of the syntactic scheme outlined in
figure 5.2:

sized data D (p1 : P1) . . . (pn : Pn) : Size→ Θ→ Set
c1 : (i1 : Size)→ ∆1 → D p1 . . . pn (s i1) t1

2 . . . t
1
m

. . .
ck : (ik : Size)→ ∆k → D p1 . . . pn (s ik) tk

2 . . . t
k
m

Figure 5.2: Syntactic valid form of sized data declaration

For non-sized data declarations, a size is not allowed in the indices Θ
because Size is not a small type. But, for a sized declarations, it is allowed
as the first index and, for every constructor, as the first argument. We will
check that every recursive argument in every ∆ j has the form

D . . . i . . .

and that i does not occur anywhere else (figure 5.3). The judgement k `
v sizeCon i D is used to check every constructor, where

• k denotes the next free generic value.

• v is the value that remains to be checked.

• i ∈N is the generic value of the size index.

• D is the declared sized data type.

The helper judgment k ` v sizeUse i D is used to check the occurences of i in
every constructor argument. The size argument should denote the height
of an object when viewed as a tree, and every constructor increases this
height.
In summary, the type-checking algorithm for sized data types follows:

Algorithm

For the declaration δ = sized data D τ : A ~γ and a type-correct
signature Σ, if

1. n := |τ|

2. δ follows the form of figure 5.2

3. 1; �; �; n + 1 ` τ→ A DataType

4. vD :=↘ (τ→ A)�

5. Σ′ := Σ ∪ {D 7→ (vD,n)}

CHAPTER 5. SIZED DATA TYPES 51

6. Given Σ′, for every constructor declaration c : B ∈ ~γ:
(a) 1; �; �; n + 1 ` τ→ B ConType
(b) vi :=↘ (τ→ B)�

(c) 1 ` j sposc vi for every j ∈ pos(D)
(d) 1 ` D sposc vi

(e) 1 ` vi sizeCon (n + 1) D

7. Σ′′ := Σ′ ∪
⋃

i

{ci 7→ vi}

then Σ′′ is a type-correct signature.

k ` t j nocc i for all j ∈ {2 . . .m}
k ` D p1 . . . pn i t2 . . . tm sizeUse i D

Σ D = (vD,n)

k ` v sizeUse i D
k ` v j sizeUse i D for all j ∈ {1 . . . n}

k ` v v1 . . . vn sizeUse i D

k ` v sizeUse i D
k ` s v sizeUse i D

k ` vA sizeUse i D
k + 1 `↘ Bρ,x=k sizeUse i D
k ` Pi x vA Bρ sizeUse i D

k + 1 `↘ eρ,x=k sizeUse i D
k ` Lam x eρ sizeUse i D

a , i
k ` a sizeUse i D

k ` vA sizeUse i D if k > i
vA = Size if k = i

k + 1 `↘ Bρ,x=k sizeCon i D
k ` Pi x vA Bρ sizeCon i D

k ` p j nocc i for all j ∈ {1 . . . n}
k ` t j nocc i for all j ∈ {2 . . .m}

k ` D p1 . . . pn (s i) t2 . . . tm sizeCon i D
Σ D = (vD,n)

Figure 5.3: constructor size check

5.3 Subtyping for size

For an inductive sized type, the size index can be interpreted as an upper
bound on the height of its inhabitants. An inhabitant of Nat i is also an

CHAPTER 5. SIZED DATA TYPES 52

-
` v v ∞

-
` k v k

--
` v1 v v2

` s v1 v s v2
--

` v1 v v2

` v1 v s v2

Figure 5.4: Size value comparison

inhabitant of Nat (s i). For an inductive sized types like Nat the following
should hold:

Nat i is a subtype of Nat (s i)

and

Nat i is a subtype of Nat∞.

for every size i.
For Stream as a sized coinductive type, the type Stream∞ contains all

fully defined streams. Thus, the size can be interpreted as a lower bound for
the definedness of its inhabitants:

Stream (s i) is a subtype of Stream i

and

Stream∞ is a subtype of Stream i

for every size i.
A partial order on values of type Size is given in figure 5.4. As strict

positivity implies positivity (monotonicity), the information about strictly
positive parameters can be used for subtyping. The subtype relation in
figure 5.5 is defined, just like the equality relation, by two simultaneous
judgments

f ; k ` v1 5 v2 ⊆ F ×N × VAL×VAL

f ; k ` v1� v2 ⊆ F ×N × VAL×VAL

where again the first judgment is used to unroll one of the values v1 and v2
for the second judgment. Of special interest are the rules:

• -: subtyping for sized inductive type.

• -: subtyping for sized coinductive type.

• -: subtyping for other data types.

• -: subtyping is contravariant for the function domain.

CHAPTER 5. SIZED DATA TYPES 53

As the values “switch places” for the domain in the rule -, the force
history f is switched accordingly. We define R = L, L = R and N = N.

Subtyping is now replacing type equality in the rule -. The up-
dated rule is shown in figure 5.6.

5.4 Examples: sized inductive types

5.4.1 Natural number division

The minus function can be defined by:

fun minus : (i : Size)→ Nat i→ Nat∞→ Nat i
minus s i (zero i) y = zero i
minus i x (zero∞) = x
minus s i (succ i x) (succ∞ y) = minus i x y

Subtyping is used in the right hand side of the last clause. While minus is
structurally recursive even without a size, there is more information in the
type: the size of the result list now has an upper bound i. This is essential
for the following definition of division on natural numbers:

fun div : (i : Size)→ Nat i→ Nat∞→ Nat i
div s i (zero i) y = zero i
div s i (succ i x) (zero∞) = zero i
div s i (succ i x) (succ∞ y) =

succ i (div i (minus i x y) (succ∞ y))

div is structural recursive on the size argument. The initial call set is the
singleton matrix

div

< < ?
? ? ?
? ? ≤

div

which is idempotent and decreasing.

CHAPTER 5. SIZED DATA TYPES 54

-

L; k ` force v1� v2 if force v1 , v1, force v2 = v2, f , R
R; k ` v1� force v2 if force v1 = v1, force v2 , v2, f , L

f ; k ` v1� v2 otherwise

f ; k ` v1 5 v2

-

for all j ∈ pos(D) : f ; k ` p j 5 q j
for all j < pos(D) : f ; k ` p j ⇔ q j

for all j ∈ {1, ..m} : f ; k ` v j ⇔ w j ` s v t
f ; k ` D p1 . . . pn s v1 . . . vm� D q1 . . . qn t w1 . . .wm

ΣD = (vD,n)

-

for all j ∈ pos(D) : f ; k ` p j 5 q j
for all j < pos(D) : f ; k ` p j ⇔ q j

for all j ∈ {1, ..m} : f ; k ` v j ⇔ w j ` t v s
f ; k ` D p1 . . . pn s v1 . . . vm� D q1 . . . qn t w1 . . .wm

ΣD = (vD,n)

-

for all j ∈ pos(D) : f ; k ` p j 5 q j
for all j < pos(D) : f ; k ` p j ⇔ q j
for all j ∈ {1, ..m} : f ; k ` v j ⇔ w j

f ; k ` D p1 . . . pn v1 . . . vm� D q1 . . . qn w1 . . .wm
ΣD = (vD,n)

-
f ; k ` v 5 w for all j ∈ {1, ..m} : f ; k ` v j ⇔ w j

f ; k ` v v1 . . . vn� w w1 . . .wn

-
f ; k ` v2 5 v1 f ; k + 1 `↘ bρ,x1=k

1 5↘ bΓ,x2=k
2

f ; k ` Pi x1 v1 bρ1 � Pi x2 v2 bΓ
2

-
f ; k + 1 `↘ eρ,x1=k

1 5↘ eΓ,x2=k
2

f ; k ` Lam x1 eρ1 � Lam x2 eΓ
2

-
f ; k ` v1 5 v2

f ; k ` s v1� s v2
-

f ; k ` a� a

Figure 5.5: subtype checking

-
k;ρ; Γ ` e⇒ v2 N; k ` v2 5 v1

k;ρ; Γ ` e⇔ v1

Figure 5.6: updated type-checking rule for subtyping

CHAPTER 5. SIZED DATA TYPES 55

5.4.2 Sized Lists

sized data List (A : Set) : Size→ Set
nil : (i : Size)→ List A (s i)
cons : (i : Size)→ A→ List A i→ List A (s i)

Quicksort

This version of the well-known sorting algorithm adapted from [Abe04] is
shown in figure 5.7.

data Prod (+A : Set) : Set
prod : A→ A→ Prod A

fun pr1 : (A : Set)→ Prod A → A
pr1 A (prod A a b) = a

fun pr2 : (A : Set)→ Prod A → A
pr2 A (prod A a b) = b

fun split : (i : Size)→ (A : Set)→ (leq : A→ A→ Bool)
→ A→ List A i→ Prod (List A i)

split s i A leq a (nil A i) = prod (List A (s i)) (nil A i) (nil A i)
split s i A leq a (cons A i x xs) =

let rec : Prod (List A i) = split i A leq a xs in
let l1 : List A i = pr1 (List A i) rec in
let l2 : List A i = pr2 (List A i) rec in

ite (Prod (List A (s i))) (leq a x)
(prod (List A (s i)) l1 (cons A i x l2))
(prod (List A (s i)) (cons A i x l1) l2)

fun qsapp : (i : Size)→ (A : Set)→ (leq : A→ A→ Bool)
→ List A i→ List A∞→ List A∞

qsapp s i A leq (nil A i) ys = ys
qsapp s i A leq (cons A i x xs) ys =

let sl : Prod (List A i) = split i A leq x xs in
let l1 : List A i = pr1 (List A i) sl in
let l2 : List A i = pr2 (List A i) sl in

qsapp i A leq l1 (cons A∞ x (qsapp i A leq l2 ys))

let quicksort : (i : Size)→ (A : Set)→ (leq : A→ A→ Bool)
→ List A i→ List A∞

= λ i. λ A. λ leq. λ l. qsapp i A leq l (nil A∞)

Figure 5.7: Quicksort

The main routine quicksort is parameterized over a linear order leq :
A→ A→ Bool on A. The split function splits a list l into a pair of list l1 and
l2 where all smaller elements are in l1 and the others in l2. The type of this

CHAPTER 5. SIZED DATA TYPES 56

function
(i : Size)→ . . .→ List A i→ Prod (List A i)

allows a rough upper bound on the sizes of both result lists. This exam-
ple shows how little effort sized types require to make some definitions
accepted to the termination check, but the price to pay is that the type of
quicksort itself is

(i : Size)→ . . .→ List A i→ List A∞

so the information that quicksort is size preserving is lost.

5.4.3 Sized Brouwer ordinals

Now sized Brouwer ordinals are introduced:

sized data Ord : SizeSet
ozero : (i : Size)→ Ord (s i)
olim : (i : Size)→ (Nat → Ord i)→ Ord (s i)

With sized ordinals, Axiom 2 (f ~e ≤ f) is not needed to accept ordinal
addition:

fun addOrd : Ord∞→ (i : Size)→ Ord i→ Ord∞
addOrd x s i (ozero i) = x
addOrd x s i (olim f) = olim∞ (λ y. addOrd x i (f y))

addOrd is structurally recursive in the size argument.

5.4.4 A higher-order function

While somewhat artificial, the following example is interesting for two
reasons:

fun addWith : ((k : Size)→ Nat k→ Nat k)→ (i : Size)→ (j : Size)
→ Nat i→ Nat j→ Nat∞

addWith f s i j (zero i) y = y
addWith f s i j (succ i x) y = succ∞ (addWith f j i y (f i x))

addWith resembles the permuting function addp that was presented in the
previous chapter. But it has one additional parameter that is declared to be
a size-preserving function. Any function of type

(k : Size)→ Nat k→ Nat k

can now be passed along to addWith . The second reason is that the function
has two size arguments that are permuting in the recursive call. So this is
really a example that plays to the strength of our system: both the Size type
and the size-change principle are needed to show termination.

CHAPTER 5. SIZED DATA TYPES 57

5.5 Examples: Sized coinductive types

The guardedness condition [Coq93] could be employed for checking produc-
tivity of coinductive definitions. But in the following, we will use the Size
type to prove productivity.

5.5.1 Sized Streams

Recall the declaration of zeroes from section 2.4.8:

cofun zeroes : Stream
zeroes = cons zero zeroes

An example of an unproductive stream is unp :

cofun unp : Stream
unp = unp

and↘ (head unp)� is not defined. Now let us transfer these declarations
to the sized version of Stream . For the productive stream zeroes , we turn
it into

cofun zeroes : (i : Size)→ Stream i
zeroes (s i) = cons i zero (zeroes i)

This passes the termination checker, because the call matrix

zeroes
(
<
)
zeroes

is idempotent and decreasing. With sized types, productive corecursive
definitions are now structurally recursive on the size argument. This would
also pass the guardedness check: the call to zeroes is guarded by cons .

For the unproductive stream, we have two bad choices: The first one

cofun unp : (i : Size)→ Stream i
unp i = unp i

is type-correct, but does not pass the termination-check. The second option

cofun unp : (i : Size)→ Stream i
unp (s i) = unp i

would be accepted by the termination-checker, but is not type-correct.
Now, for a productive stream, we can look at the first element of a stream

with head , or remove the first element of a stream with tail :

fun head : Stream∞→ Nat
head (cons ∞ x xs) = x

fun tail : Stream∞→ Stream∞
tail (cons ∞ x xs) = xs

CHAPTER 5. SIZED DATA TYPES 58

We can now define the nth element of a stream:

fun nth : Nat → Stream∞→ Nat
nth zero xs = head xs
nth (succ n) xs = nth n (tail xs)

5.5.2 Fibonacci stream

The obligatory example is to define the stream of Fibonacci numbers:

cofun fib′ : Nat → Nat → (i : Size)→ Stream i
fib′ x y (s i) = cons i x (fib′ y (add x y) i)

let fib : Stream∞ = fib′ (succ zero) (succ zero)∞

and get the fourth Fibonacci number by:

let fib4 : Nat = nth (succ (succ (succ (succ zero)))) fib

5.5.3 Equality of streams

The following is a type-correct declaration:

let isEq : Eq (Stream∞) (zeroes∞) (cons∞ zero (zeroes∞))
= refl (Stream∞) (zeroes∞)

The inferred type of refl (Stream∞) (zeroes∞) is

Eq (Stream∞) (zeroes∞) (zeroes∞)

The type-checker has to unroll (zeroes∞) once to see that the type is equal
to the declared type of isEq . Now let’s define another stream:

cofun zeroes2 : (i : Size)→ Stream i
zeroes2 (s s i) = cons (s i) zero (cons i zero (zeroes2 i))

We cannot prove

Eq (Stream∞) (zeroes∞) (zeroes2∞)

because the type-checker can’t unroll both zeroes∞ and zeroes2 ∞ as this
would lead to no progress. But we can define bisimilarity on streams
[Coq93], as a sized coinductive predicate:

codata Bis : Size→ Stream∞→ Stream∞→ Set
bis : (i : Size)→ (n : Nat)→ (s1 : Stream∞)→ (s2 : Stream∞)
→ Bis i s1 s2 → Bis (cons n s1) (cons n s2)

And now the following is a valid infinite proof:

CHAPTER 5. SIZED DATA TYPES 59

cofun isBis : (i : Size)→ Bis i (zeroes∞) (zeroes2∞)
isBis (s s i) =

bis (s i) zero (cons∞ zero (zeroes∞)) (cons∞ zero (zeroes2∞))
(bis i zero (zeroes∞) (zeroes2∞) (isBis i))

Observational equality [AMS07], which is a recent attempt to strengthen
decidable equality for dependent types, would automatically entail this
notion of bisimilarity for coinductive types.

5.5.4 Stream processors

A stream processor [GHP06] transforms an input stream into an output
stream. It can get an element from the input stream or put an element into
the output stream. The generated output stream is productive if the stream
processor does not stop putting elements into the output stream.

Productive stream processors can be nicely modeled with mixed in-
ductive/coinductive sized types [Abe07]. As Mugda does not support such
mixed declarations directly, we need to resort to a continuation-passing style:

data ISP (+ K : Set) : Set
put : Nat → K→ ISP K
get : (Nat → ISP K)→ ISP K

sized codata SP : Size→ Set
isp : (i : Size)→ ISP (SP i)→ SP (s i)

As an example, the stream processor adder continuously gets a natural
number n, then puts the sum of the following n input elements into the
output stream:

fun iadder : Nat → Nat → (K : Set)→ K→ ISP K
iadder zero acc K k = put K acc k
iadder (succ n) acc K k = get K (λm. (iadder n (add m acc) K k))

cofun coadder : (i : Size)→ SP i
coadder (s i) = isp i (get (SP i) (λ n. iadder n zero (SP i) (coadder i)))

let adder : SP∞ = coadder∞

The execution of a stream processor, called eating, follows:

fun ieat : (K : Set)→ (C : Set)→
ISP K→ Stream∞→ (Nat → K→ Stream∞→ C)→ C

ieat K C (get K f) (cons∞ a as) h = ieat K C (f a) as h
ieat K C (put K b k) as h = h b k as

cofun eat : (i : Size)→ SP∞→ Stream∞→ Stream i
eat (s i) (isp∞ ip) as = ieat (SP∞) (Stream (s i))

ip as (λ b. λ k. λ as′. (cons i b (eat i k as′))

CHAPTER 5. SIZED DATA TYPES 60

ieat is shown terminating due to Axiom 2, and eat is structurally recursive
on the size argument, thus productive.

But eat would not be accepted by the guardedness check: Although the
recursive call to eat is guarded by the constructor cons , this constructor is
again surrounded by ieat , which is not allowed by this syntactic criterion.

5.6 Admissible recursive function declarations

As we will see, the use of Size needs to be constrained. Otherwise, there
are declarations that are type-correct and pass the termination-checker, but
lead to non-termination.

We will give a criterion for when a mutual declaration δ is admissible.
Admissibility is a necessary concept in works on sized types. Admissibility
based on monotonicity is for example used in [BGP06] and [Bla04]. The
admissibility of [Abe06] and [HPS96] is based on the more advanced concept
of continuity.

The criterion for Mugda is based on monotonicity and has to deal with
dependent pattern matching. We look at the types of a mutual declaration,
and also – because matching on constructors has an influence on the type –
at the patterns. Consider for example the following:

fun bad1 : (i : Size)→ Bool
bad1 (s i) = bad1 i

It is type-correct, and the termination-checker will happily tell you that
bad1 is terminating. But↘ (bad1∞)ρ is not defined.

It can be argued that the pattern s i does not cover all cases: A hypothet-
ical bottom size element would not match against s i. Case distinction on
a size should not be accepted. For the same reason, the following function
definition is also not admissible:

fun bad2 : (i : Size)→ Nat i→ Bool
bad2 s s i (zero (s i)) = bad2 (s i) (zero i)
bad2 s i (succ i x) = bad2 i x;

For example, ↘ (bad2 ∞ (zero ∞))ρ is not defined. Such examples are
forbidden by the bottom-check [HPS96] in other systems with sized types.

Both examples will be rejected because of their incomplete size pattern.
But there are examples where the size patterns are complete, but the type
needs to be rejected. The program in figure 5.8 is adopted from [Abe06].
The type of the function loop is

(i : Size)→ Nat i→ (Nat∞→ Maybe (Nat i))→ Bool

and needs to be rejected by an admissibility check. Otherwise diverge could
be constructed, which leads to non-termination when evaluated.

CHAPTER 5. SIZED DATA TYPES 61

data Maybe (+ A : Set) : Set
nothing : Maybe A
just : A→ Maybe A

funshift_case : (i : Size)→ Maybe(Nat(s i))→ Maybe(Nat i)
shift_case i (nothing Nat s i) = nothing (Nat i)
shift_case i (just Nat s i (zero i)) = nothing (Nat i)
shift_case i (just Nat s i (succ i x)) = just (Nat i) x

let shift : (i : Size)→ (Nat∞→ Maybe (Nat (s i)))
→ Nat∞→ Maybe (Nat i)

= λ i. λ f . λ n. shift_case i (f (succ∞ n))

let inc : Nat∞→ Maybe Nat∞ = λ n. just Nat∞ (succ∞ n)

mutual
fun loop : (i : Size)→ Nat i

→ (Nat∞→ Maybe (Nat i))→ Bool
loop s i (zero i) f = loop_case (s i) f (f (zero i))
loop s i (succ i n) f = loop i n (shift i f)

fun loop_case : (i : Size)→ (Nat∞→ Maybe (Nat i))
→ Maybe (Nat i)→ Bool

loop_case i f (nothing Nat i) = tt
loop_case s i f (just Nat (s i) (zero i)) = tt
loop_case s i f (just Nat (s i) (succ i y)) = loop i y (shift i f)

let diverge : Bool = loop∞ (zero∞) inc

Figure 5.8: Loop example

CHAPTER 5. SIZED DATA TYPES 62

What follows is admissibility for the case of a mutual recursive declara-
tion. Admissibility for corecursive declarations will be covered in the next
section.

5.6.1 Admissible type

First, all types of a mutual function declaration have to be admissible. This
can be described informally for a type expression t:

• For an inductive function with type

t = (a1 : A1)→ . . .→ (an : An)→ R

it is required that for every argument type (a j : A j) of the form (i : Size)

– For k > j, either i is not occurring in Ak or Ak is inductive in i, i.e.
Ak is a sized inductive type of size i.

– the result type R is monotone in i.

The formal judgment in figure 5.9 is defined on evaluated types, not ex-
pressions.

k; N ` v 5 [s i/i]{v}
k ` v mon i

D sized inductive data type
k ` D p1 . . . pn i v1 . . . vm ind i

Σ D = (vD,n)

k ` vA ind i or k ` vA nocc i
k + 1 `↘ Bρ,x=k admIndSize i
k ` Pi x vA Bρ admIndSize i

k ` v mon i
k ` v admIndSize i

k + 1 `↘ Bρ,x=k admIndSize k if vA = Size
k + 1 `↘ Bρ,x=k admIndType
k ` Pi x vA Bρ admIndType

k ` v admIndType
v , Pi x vA Bρ

Figure 5.9: Admissible type for inductive function

5.6.2 Size pattern coverage

As was said before, the check for complete coverage of pattern matching
will not be detailed in this work. But a special case is coverage for the built-
in Size type: without this check even non-terminating function declarations
would be accepted. For a mutual recursive declaration δ, the patterns ~p are

CHAPTER 5. SIZED DATA TYPES 63

size complete, if no pattern of the form (s p) occurs. So only a variable i will
be a complete pattern. This still allows s to appear inside of inaccessible
patterns. Although straightforward, this is formalized with the judgment
in figure 5.10.

` ~p sizePats
` c ~p sizePat ` x sizePat ` e sizePat

` p sizePat ` ~p sizePats
` p ~p sizePats ` � sizePats

Figure 5.10: Size pattern completeness for recursive function

5.6.3 Admissibility criterion

Putting the previous two sections together, the final admissibility criterion
follows:

For the mutual recursive function declaration δ =

mutual
fun f1 : A1
~γ1

. . .
fun fn : An
~γn

if for every i ∈ {1 . . . n}:

1. 1 `↘ A�i admIndType

2. ` ~p sizePats for every clause f ~p e ∈ γi

then δ is admissible.

Examples

For the rejected example loop , i is occurring in the argument type

Maybe (Nat (s i))

but this argument type is not inductive in i, so the function loop is not
admissible because of its type. Both bad1 and bad2 are not admissible
because their size patterns. As can be seen, all examples given in sections
5.4 and 5.5 are admissible.

CHAPTER 5. SIZED DATA TYPES 64

5.7 Admissible corecursive declarations

For corecursive functions, the type admissibility criterion is even more
restricted. Again, it is first outlined for a type expression:

• For a corecursive function with type

t = (a1 : A1)→ . . .→ (an : An)→ R

it is required that for every argument type (a j : A j) of the form (i : Size)

– i is not occurring in argument types Ak (where k > j).

– the result type R is coinductive in i, i.e. R is a sized coinductive
type of size i.

This is formalized with the judgment given in figure 5.11.
We do not check the completeness of the size pattern for corecursive

declarations because the size argument is determined by the right hand
side – the object that is being defined – and thus can be seen as inaccessible.

D sized codata
k ` D p1 . . . pn i v1 . . . vm coind i

Σ D = (vD,n)

k ` vA nocc i k + 1 `↘ Bρ,x=k admCoSize i
k ` Pi x vA Bρ admCoSize i

k ` v coind i
k ` v admCoSize i

k + 1 `↘ Bρ,x=k admCoSize k if vA = Size
k + 1 `↘ Bρ,x=k admCoType
k ` Pi x vA Bρ admCoType k ` v admCoType

Figure 5.11: Admissibility type for corecursive function

5.7.1 Admissibility criterion

For the mutual corecursive function declaration δ =

mutual
cofun f1 : A1
~γ1

. . .
cofun fn : An
~γn

if for every i ∈ {1 . . . n}:

CHAPTER 5. SIZED DATA TYPES 65

• 1 `↘ A�i admCoType

then δ is admissible.

5.7.2 Fibonacci à la Haskell

Both admissibility criteria do not allow an argument of the form Stream i.
Functions can only have arguments of the form Stream∞, so pattern match-
ing can only happen on fully constructed infinite objects.

In the lazy functional programming language Haskell [Je99], which sup-
ports partiality, the following is a valid definition of the stream of Fibonacci
numbers:

fib :: [Int]
fib = (1 : (1 : zipWith (+) fib (tail fib)))

Translating this definition into Mugda as a sized stream is not possible, and
indeed is not productive with the given evaluation semantics.

In Haskell, the helper functions zipWith and tail can operate on any
list, even on fib which is just being defined. In the Mugda setting, tail
would need to have the type

(i : Size)→ Stream (s i)→ Stream i

This type is not admissible, because i is occurring in the argument type
Stream (s i).

5.8 On the necessity of subtyping

Subtyping for inductive types is actually just for convenience to the user.
For example

fun weakSNat : (i : Size)→ Nat i→ Nat (s i)
weakSNat s i (zero i) = zero (s i)
weakSNat s i (succ i x) = succ (s i) (weakSNat i x)

could be used to manually weaken an object into a greater type. But sub-
typing does make the system more comfortable, and also this weakening
would have a significant impact on runtime performance. Its bad brother

fun badSNat : (i : Size)→ Nat (s i)→ Nat i
badSNat s i (zero (s i) = zero i
badSNat s i (succ (s i) x) = succ i (badSNat i x)

fails to pass the admissibility test. For Stream , the weakening function
would be

CHAPTER 5. SIZED DATA TYPES 66

cofun weakStream : (A : Set)→ (i : Size)→ Stream A (s i)→ Stream A i
weakStream A s i (cons A ((s i)) x xs) = cons A i x (weakStream A i xs)

but its type is not admissible. This seems to indicate that a less restrictive
admissibility criterion should be achievable.

5.9 Putting it all together

Now that we have limited the use of the Size type, we can formulate our
termination criterion for Mugda with sized types. We conjecture:

Proposition : Size-change principle for Mugda with sized types

Given

1. Σ a terminating signature

2. a mutual (co)recursive declaration δ

3. Σ′ is resulting from type-checking δ in Σ

4. δ is admissible

5. every idempotent call-matrix α ∈ complete cs(δ) is decreas-
ing

then Σ′ is terminating.

The integration of the size type in Mugda went through a lot of changes. At
first, Size was a small type. Through this, a “bad user” could do a lot of
things to fool the system. Taking Size out of Set defused the situation quite
a bit. Admissibility was at times much more lenient, until counter-examples
such as “Fibonacci à la Haskell” were found.

Chapter 6

Conclusion

We think that the Mugda language demonstrates the usefulness of sized
types. To that end, we have stretched Coquand’s simple type-checking
algorithm to a quite usable system. To our knowledge, Mugda is the first
system to combine the sized type approach with the size-change principle.

Important for Mugda as a prof system would be to add coverage check-
ing of patterns, and to proof all those propositions that this thesis only tried
to make look somewhat plausible. As inductive families seem to add quite
a bit complexity, this is likely not easy.

Anyway, we hope this work also provides an easy access to both de-
pendent types and the sized type approach. The pattern matching notation
used by Mugda should be a little bit more accessible than the fixed point
operators used in a lot of previous presentations of sized types.

Finally, here are some further ideas that came up during development
of this thesis:

Inference of sizes The possibility to infer all size annotations automati-
cally should be explored. The system described in [BGP06] is able to infer
size annotations with only minimal assistance required by the user. It re-
mains to be seen if and how this inference could be applied to Mugda.

Implicit arguments At runtime, the size arguments all end up being ∞.
So it would be wasteful if it was kept around during execution of a pro-
gram. The removal of type information that is not needed at runtime is
ongoing research [Miq01, BMM03]. As lists, vectors and sized list behave
the same, conversion functions can be written by the user to change from
one representation to the other. At runtime, these could be safely removed
as they would amount to identity functions.

More mutual definitions We could allow more combinations for mutual
declarations. Defining an inductive data type together with a recursive

67

CHAPTER 6. CONCLUSION 68

function amounts to the so-called inductive-recursive definitions of [DS01].
But also mixed inductive/coinductive definitions should be interesting. This
direction was investigated and some adjustment of the admissibility of
Mugda seems to be necessary to handle such definitions.

Better admissibility The current admissibility criterion can probably be
relaxed somewhat to allow more definitions. More audacious would be to
adapt the more advanced concepts from [Abe06].

Higher-order subtyping Along with better admissibility, higher-order
subtyping would enable the definition of functions that are parameterized
over any sized type. Polarized subtyping [Ste98] could be explored, which
is already used in the sized polymorphic lambda calculus of [Abe06].

Future of sized types We think it could be worthwhile to integrate a
sized type approach into a full system like Agda2 [Nor07], especially with
an extension to coinductive types in mind. Productivity is handled quite
naturally with a sized type approach. Furthermore, there are plans to give a
translation of the full Agda2 language to a simpler core language [CKNT07],
which can be more easily justified. Once again, a sized type approach could
be considered for this core language.

Appendix A

Mugda implementation

Mugda was implemented in the function language Haskell [Je99], using the
Glasgow Haskell compiler (GHC) [JHH+93].

A.1 Source file listing

• Lexer.x : the alex lexer file

• Parser.y : the happy parser file

• Concrete.hs : concrete syntax produced by the parser

• TraceError.hs : provides the user a trace when an error occurs

• ScopeChecker.hs : turns concrete into abstract syntax

• Abstract.hs : produced by the scope-checker, used during type-
checking

• Values.hs : defines values , evaluation, signature , type-check monad

• TypeChecker.hs : type-checking with admissibility

• Termination.hs : syntactic termination check

• Completeness.hs : size pattern completeness check

• SPos.hs : strict positivity checker

• Main.hs : the main module

• example directory: example input files

• Makefile : for compilation

69

APPENDIX A. MUGDA IMPLEMENTATION 70

A.2 Usage

Mugda as presented was pretty much directly transfered to ASCII syntax:

• lists of constructors and clauses are grouped with brackets { } and
separated with semicolon ;

• (x : A)→ B is written (x : A) -> B

• A→ B is written A -> B

• let x : A = e in f is written let x : A = e in f

• λ x. e is written \x -> e

• e is written .e

• ∞ is written #

• s is written $

• one line comments are prefixed by --

• multi-line comments are put between {- and -}

a let declaration can be prefixed with eval. Then the value will be evalu-
ated after type checking is done. As an example showing most of the syn-
tactical features, here is the Fibonacci stream example (examples/fib.ma)
in text format:

data Nat : Set {
zero : Nat;
succ : Nat -> Nat

}

fun add : Nat -> Nat -> Nat {
add zero = \y -> y;
add (succ x) = \y -> succ (add x y)

}

sized codata Stream : Size -> Set {
cons : (i : Size) -> Nat -> Stream i -> Stream ($ i)

}

fun tail : Stream # -> Stream # {
tail (cons .# x xs) = xs

}

APPENDIX A. MUGDA IMPLEMENTATION 71

fun head : Stream # -> Nat {
head (cons .# x xs) = x

}

fun nth : Nat -> Stream # -> Nat {
nth zero xs = head xs;
nth (succ x) xs = nth x (tail xs)

}

let 1 : Nat = (succ zero)

cofun fib’ : (x : Nat) -> (y : Nat)
-> (i : Size) -> Stream i {

fib’ x y ($ i) = cons i x (fib’ y (add x y) i)
}

-- fib = 1, 1, 2, 3, 5 , 8 ...
let fib : Stream # = (fib’ 1 1 #)

let 4 : Nat = (succ (succ (succ 1)))

-- fib(4) = 5
eval let fib4 : Nat = nth 4 fib

Running Main examples/fib.ma yields the console output:

***** Mugda v1.0 *****
--- scope checking ---
--- type checking ---
--- evaluating ---
fib4 evaluates to (succ (succ (succ (succ (succ zero)))))

A.3 Some implementation details

The alex [Mar07a] and happy [Mar07b] tools were used to generate lexer
and parser for Mugda. Most of the Haskell code is monadic, where monad
transformers [Gra06] are used to keep the signature in a state monad, to
provide I/O and tracing of errors. The execution of Mugda can be broken
into 4 stages:

Parsing The input file is parsed into concrete syntax.

Scope-Checking As mentioned in chapter 3, scope-checking is the first
step after parsing. During parsing, it is not known whether an identifier is

APPENDIX A. MUGDA IMPLEMENTATION 72

a variable or a constructor etc. If the Mugda program is well-scoped, scope-
checking produces abstract syntax where all identifiers are categorized. In
addition, some syntactic tests like checking linearity of patterns are done
during this stage.

Type-Checking Every declaration is type-checked. For mutual declara-
tions, the type-checker also checks admissibility and finally invokes the
termination-checker.

Evaluation For all declarations of the form eval let l : A = e, e is
evaluated and this value is displayed.

Bibliography

[AA02] Andreas Abel and Thorsten Altenkirch. A predicative analy-
sis of structural recursion. Journal of Functional Programming,
12(1):1–41, January 2002.

[Abe04] Andreas Abel. Termination checking with types. RAIRO – The-
oretical Informatics and Applications, 38(4):277–319, 2004. Special
Issue: Fixed Points in Computer Science (FICS’03).

[Abe06] Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-
Order Types. PhD thesis, Ludwig-Maximilians-Universität
München, 2006.

[Abe07] Andreas Abel. Mixed inductive/coinductive types and strong
normalization, to appear. In The Fifth ASIAN Symposium on
Programming Languages and Systems (APLAS 2007), 2007.

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra.
Observational equality, now! In Aaron Stump and Hongwei Xi,
editors, PLPV, pages 57–68. ACM, 2007.

[Aug85] Lennart Augustsson. Compiling pattern matching. In FPCA,
pages 368–381, 1985.

[Aug98] Lennart Augustsson. Cayenne - a language with dependent
types. In International Conference on Functional Programming,
pages 239–250, 1998.

[BFG+04] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu.
Type-based termination of recursive definitions. Mathematical
Structures in Computer Science, 14:97–141, February 2004.

[BGP06] G. Barthe, B. Grégoire, and F. Pastawski. Type-based termina-
tion of recursive definitions in the calculus of inductive construc-
tions. In Proceedings of the 13th International Conference on Logic for
Programming Artificial Intelligence and Reasoning (LPAR’06), Lec-
ture Notes in Artificial Intelligence. Springer-Verlag, November
2006. To appear.

73

BIBLIOGRAPHY 74

[Bla04] F. Blanqui. A type-based termination criterion for dependently-
typed higher-order rewrite systems, 2004.

[BMM03] Edwin Brady, Conor McBride, and James McKinna. Inductive
families need not store their indices. In TYPES, pages 115–129,
2003.

[CKNT07] Thierry Coquand, Yoshiki Kinoshita, Bengt Nordström, and
Makoto Takeyama. A simple type theoretic language: Mini-
TT (unpublished). 2007.

[Coq92] Thierry Coquand. Pattern matching with dependent types. In
Proceeding from the logical framework workshop at Båstad, June 1992.

[Coq93] Thierry Coquand. Infinite objects in type theory. In H. Baren-
dregt and T. Nipkow, editors, Types for Proofs and Programs
(TYPES ’93), volume 806 of Lecture Notes in Computer Science,
pages 62–78. Springer-Verlag, 1993.

[Coq96] Thierry Coquand. An algorithm for type-checking dependent
types. Science of Computer Programming, 26(1-3):167–177, 1996.

[DS01] Peter Dybjer and Anton Setzer. Indexed induction-recursion.
Lecture Notes in Computer Science, 2183:93–??, 2001.

[Dyb94] Peter Dybjer. Inductive families. Formal Aspects of Computing,
6(4):440–465, 1994.

[GHP06] Neil Ghani, Peter Hancock, and Dirk Pattinson. Continuous
functions on final coalgebras. Electr. Notes Theor. Comput. Sci.,
164(1):141–155, 2006.

[Gim98] E. Gimenez. A tutorial on recursive types in coq, 1998.

[GMM06] Healfdene Goguen, Conor McBride, and James McKinna. Elim-
inating dependent pattern matching. In Kokichi Futatsugi, Jean-
Pierre Jouannaud, and José Meseguer, editors, Algebra, Meaning
and Computation: Essays dedicated to Joseph A. Goguen on the Oc-
casion of His 65th Birthday (Goguen Festschrift), volume 4060 of
Lecture Notes in Computer Science, pages 521–540. Springer, 2006.

[Gra06] Martin Grabmüller. Monad Transformers Step by Step. Draft
paper, October 2006.

[HPS96] John Hughes, Lars Pareto, and Amr Sabry. Proving the cor-
rectness of reactive systems using sized types. In Symposium on
Principles of Programming Languages, pages 410–423, 1996.

BIBLIOGRAPHY 75

[HS95] M. Hofmann and T. Streicher. The groupoid interpretation of
type theory, 1995.

[INR07] INRIA. The coq proof assistant. http://coq.inria.fr, 2007.

[Je99] Simon Peyton Jones and John Hughes (editors). Haskell 98: A
non-strict, purely functional language. Technical report, Febru-
ary 1999.

[JHH+93] S. Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler. The
glasgow haskell compiler: a technical overview, 1993.

[Lan63] P. J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6(4):308–320, 1963.

[LJBA01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The
size-change principle for program termination. ACM SIGPLAN
Notices, 36(3):81–92, 2001.

[MAG07] Peter Morris, Thorsten Altenkirch, and Neil Ghani. Construct-
ing strictly positive families. In The Australasian Theory Sympo-
sium (CATS2007), January 2007.

[Mar07a] Simon Marlow. Alex – a lexical analyser generator for haskell.
http://haskell.org/alex, 2007.

[Mar07b] Simon Marlow. Happy – the parser generator for haskell.
http://haskell.org/happy, 2007.

[McB07] Conor McBride. Epigram, http://e-pig.org, 2007.

[Miq01] Alexandre Miquel. The implicit calculus of constructions: Ex-
tending pure type systems with an intersection type binder and
subtyping. In S. Abramsky, editor, Proc. of 5th Int. Conf. on Typed
Lambda Calculi and Applications, TLCA’01, Krakow, Poland, 2–5
May 2001, volume 2044, pages 344–359. Springer-Verlag, Berlin,
2001.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory.
Bibliopolis, Napoli, 1984.

[Nor07] Ulf Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Department of Computer Science
and Engineering, Chalmers University of Technology, SE-412 96
Göteborg, Sweden, September 2007.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Program-
ming in Martin-Löf’s Type Theory: An Introduction, volume 7 of
Int. Series of Monographs on Computer Science. Oxford, 1990.

BIBLIOGRAPHY 76

[PM93] Christine Paulin-Mohring. Inductive definitions in the system
Coq: Rules and properties. In M. Bezem and J. F. Groote, editors,
Proceedings 1st Int. Conf. on Typed Lambda Calculi and Applications,
TLCA’93, Utrecht, The Netherlands, 16–18 March 1993, volume
664, pages 328–345. Springer-Verlag, Berlin, 1993.

[Pol94] Robert Pollack. The Theory of LEGO: A Proof Checker for the Ex-
tended Calculus of Constructions. PhD thesis, 1994.

[PS99] Frank Pfenning and Carsten Schürmann. System description:
Twelf — A meta-logical framework for deductive systems. In
H. Ganzinger, editor, Proceedings of the 16th International Confer-
ence on Automated Deduction (CADE-16), pages 202–206, Trento,
Italy, 1999. Springer-Verlag LNAI 1632.

[SP03] C. Schurmann and F. Pfenning. A coverage checking algorithm
for lf, 2003.

[Ste98] Martin Steffen. Polarized Higher-Order Subtyping. PhD thesis,
Technische Fakultät, Universität Erlangen, 1998.

[Wah07] David Wahlstedt. Dependent Type Theory with Parameterized
First-Order Data Types and Well-Founded Recursion. PhD thesis,
Chalmers University of Technology, 2007. ISBN 978-91-7291-
979-2.

[XP99] Howgwei Xi and Frank Pfenning. Dependent types in practical
programming. In Conference Record of POPL 99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, San Antonio, Texas, pages 214–227, New York, NY, 1999.

