
MSFP 2008

A Partial Type Checking Algorithm for
Type : Type

Andreas Abel1,3

Institut für Informatik, Ludwigs-Maximilians-Universität München
Oettingenstr. 67, D-80538 München

Thorsten Altenkirch1,2,4

School of Computer Science, The University of Nottingham
Nottingham, NG8 1BB, UK

Abstract

We analyze a partial type checking algorithm for the inconsistent domain-free pure type system Type:Type
(λ∗). We show that the algorithm is sound and partially complete using a coinductive specification of
algorithmic equality. This entails that the algorithm will only diverge due to the presence of diverging
computations, in particular it will terminate for all typeable terms.

Keywords: Dependent Types, Pure Type Systems, Type Checking, Type:Type

1 Introduction

In this paper, we analyze and implement a partial type checking algorithm for the
inconsistent theory Type:Type (λ∗) similar to the one presented in [6]. This is an
instance of a domain-free pure type system [4] and it seems possible to extend it to
any functional pure type system (PTS). The motivation for this work is to implement
type checkers for dependently typed programming languages which support general
recursion such as Augustsson’s Cayenne [3]. We use Type:Type as a test case
for a language with dependent types avoiding the syntactic complexity of a full
programming language.

Our main contribution is that we show soundness and partial completeness. By
partial completeness we mean that if the algorithm diverges, it will do only be-
cause the program or its type, or their combination, contains some loop; divergence

1 Research supported by the coordination action TYPES (510996).
2 Research supported by EPSRC grant Observational Equality For Dependently Typed Programming
(EP/C512022/1)
3 andreas.abel@ifi.lmu.de
4 txa@cs.nott.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Abel, Altenkirch

because of an error in the algorithm is excluded. Hence, for a given PTS it is suf-
ficient to establish termination to show that the algorithm is complete and does
indeed decide the typing relation. We believe that this is a promising approach,
because it means we can establish basic syntactic properties of the typing algorithm
independently of termination.

In particular, we give algorithmic typing rules Γ ` t ⇔ A, read in context Γ,
term t checks against type A, in two versions: Γ `µ t⇔ A, using inductive equality,
and Γ `ν t⇔ A, using coinductive equality. The inductive version of the algorithm
is shown sound, whereas the coinductive version is proven complete.

We present the algorithm for Type:Type (type is a type) with type equality by
untyped β-conversion =β. Our proofs crucially rely on the injectivity of the function
type constructor Πx :A.B which is a consequence of confluence of β-reduction in
our case.

The type checking algorithm computes weak head normal forms (whnf) of types.
This is sufficient, because β-reduction is standardizing. Standardization can be
subsumed by the slogan if a term β-reduces to a whnf, then weak head reduction
reaches a whnf of the same shape. For instance, if t −→∗β λxu, then t −→∗w λxu′

with u′ −→∗β u. With confluence, this becomes: if t =∗β λxu, then t −→∗w λxu′ with
u′ =∗β u.

Related work.
The algorithm presented here is basically a modern reimplementation of Co-

quand’s algorithm [6], see also [7], but the study of partial completeness using
coinduction is new. The fact that we consider only β-equality simplifies the treat-
ment — a syntactic study of βη-equality along the lines of [9,8] is left for future
work. The recent work by the first author [1] is also directed at βη-equality but
relies on normalization.

Overview.
We start by presenting Type:Type and verifying some basic properties. Next

we specify the type checking algorithm in relational form and show soundness of
the inductive type checking relation. The completeness of the coinductive relation
is then established using coinduction. Finally we present an implementation of the
algorithm in Haskell and discuss further extensions of the present work.

2 Type:Type

The Curry-style λ∗ is a domain free pure type system [5] with just one sort Type,
axiom Type :Type and rule (Type,Type,Type).

Syntax.
As usual for pure type systems, there is only one grammatical class Expression

for terms t, u, types A,B,C, and sorts s. Metavariable x ranges over a countably

2

Abel, Altenkirch

infinite set of variable identifiers.

Exp 3 t, u,A,B,C, s ::= x | λxt | t u | Πx :A.B |Type expressions

Ne 3 n ::= x | nu neutral terms

Cxt 3 Γ ::= � | Γ, x :A typing contexts

We identify expressions up to α-conversion. A context Γ is just a list of pairs x :A,
but it is also considered a finite map from variables to types. Hence, no variable
may be assigned two types in a context.

Capture-avoiding substitution of u for x in t is written t[u/x]. One-step β-
reduction is denoted by−→β, its reflexive-transitive closure by−→∗β and its reflexive-
transitive-symmetric closure by =β. By confluence, t =β t

′ if and only if there is
some u with t −→∗β u and t′ −→∗β u. Weak head reduction is given by the rule

(λxt)uu1 . . . un −→w t[u/x]u1 . . . un

for n > 0. Its reflexive-transitive closure is written −→∗w. (Typeable) whnfs are
neutral terms n, abstractions λxt, function types Πx :A.B, and the constant Type.
In the following we employ a vector notation and write t u1 . . . un simply as tu.

Proposition 2.1 (Standardization of β-reduction [11])

(i) If t −→∗β xu′ then t −→∗w xu and u −→∗β u′.

(ii) If t −→∗β λxu′ then t −→∗w λxu and u −→∗β u′.
(iii) If C −→∗β Πx :A′. B′ then C −→∗w Πx :A.B and A −→∗β A′ and B −→∗β B′.
(iv) If C −→∗βType then C −→∗w Type.

Using confluence, −→∗β can be replaced by =β in the above statements. In
particular, we can derive the following corollary from confluence:

Corollary 2.2 (Injectivity of Π) If Πx :A.B =β Πx :A′. B′ then A =β A
′ and

B =β B
′.

Inference rules of λ∗.
The terms t of type A are given by the judgement Γ ` t : A which is mutually

defined with the judgement Γ ` ok for well-formed contexts. If J is a judgement,
we write D :: J to express that D is a derivation of J .

Well-formed contexts Γ ` ok.

cxt-empty
� ` ok

cxt-ext
Γ ` A :Type

Γ, x :A ` ok

3

Abel, Altenkirch

Typing Γ ` t : A.

type-f
Γ ` ok

Γ `Type :Type
fun-f

Γ, x :A ` B :Type

Γ ` Πx :A.B :Type

hyp
Γ ` ok (x :A) ∈ Γ

Γ ` x : A
fun-i

Γ, x :A ` t : B
Γ ` λxt : Πx :A.B

fun-e
Γ ` t : Πx :A.B Γ ` u : A

Γ ` t u : B[u/x]
conv

Γ ` t : A A =β B

Γ ` t : B

The judgement Γ ` t : A implies Γ ` ok, which is easy to check.
The following inversion lemma is independent of injectivity.

Lemma 2.3 (Inversion of Typing) (i) If D :: Γ `Type : C then C =βType.

(ii) If D :: Γ ` Πx :A.B : C then C =βType and Γ, x :A ` B :Type.

(iii) If D :: Γ ` x : C then C =β Γ(x).

(iv) If D :: Γ ` λxt : C then C =β Πx :A.B and Γ, x :A ` t : B.

(v) If D :: Γ ` t u : C then Γ ` t : Πx :A.B with Γ ` u : A and C =β B[u/x].

Proof. By induction on D. 2 2

Typing enjoys the usual properties of weakening, substitution, and subject re-
duction for β. The proofs are standard.

3 A Type-Checking Algorithm

The most elementary format of a strongly typed functional program is a list of
non-recursive declarations of the form x : A = t, meaning identifier x of type A
is defined as term t. In a list of declarations, later declarations may rely on the
type and definition of previously declared identifiers. It is reasonable to assume
that both t and A are free of β-redexes, however, during type-checking redexes will
occur in types.

We use a bidirectional representation of algorithmic type checking, using Γ `
t⇒ A to denote that the type A of t can be inferred and Γ ` t⇔ A that t can be
checked to have type A.

A program is type checked by first ensuring that A is a well-formed type, written
Γ ` A ⇒Type, then checking that t is of type A, written Γ ` t ⇔ A, adding the
declaration x : A = t to the global environment and proceeding with the next
declaration.

4

Abel, Altenkirch

Type inference
Γ ` t ⇒ A. (Input: Γ well-formed, t neutral and β-normal. Output: A with

Γ ` t : A.)

inf-var
Γ ` x⇒ Γ(x)

inf-fun-e
Γ ` t⇒ C C −→∗w Πx :A.B Γ ` u⇔ A

Γ ` t u⇒ B[u/x]

inf-type
Γ `Type⇒Type

inf-fun-f
Γ ` A⇒ s s −→∗w Type Γ, x :A ` B ⇒ s′ s′ −→∗w Type

Γ ` Πx :A.B ⇒Type

Type inference diverges for applications t u when the inferred type of t has no whnf.
We don’t specify here that the result of type inference has to be a whnf, even though
we will use whnfs in the implementation. Indeed, any inferred type will have to be
reduced to a whnf when it is used anyway.

Type checking
Γ ` t⇔ A. (Input: Γ, A with Γ ` A :Type, t β-normal. Output: none.)

chk-inf
Γ ` t⇒ A ` A ∼ A′

Γ ` t⇔ A′
t not a λ

chk-fun-i
C −→∗w Πx :A.B Γ, x :A ` t⇔ B

Γ ` λxt⇔ C

Rule chk-red is applied when we want to check an abstraction against a type which
is not yet in whnf. Checking against a type which has no whnf diverges.

Algorithmic equality
` A ∼ A′. If the type of a term t is declared as A′ but inferred as A (rule

chk-inf), we need to ensure that A and A′ are β-equal. The following rules specify
an algorithm which alternates weak head normalization (aq-red-l and aq-red-r)
and structural comparison (the other rules).

aq-red-l
t1 −→w t

′
1 ` t′1 ∼ t2
` t1 ∼ t2

aq-red-r
t2 −→w t

′
2 ` t1 ∼ t′2
` t1 ∼ t2

aq-var
` x ∼ x

aq-app
` n ∼ n′ ` u ∼ u′

` nu ∼ n′ u′
aq-λ

` t ∼ t′

` λxt ∼ λxt′

aq-type
`Type ∼Type

aq-fun
` A ∼ A′ ` B ∼ B′

` Πx :A.B ∼ Πx :A′. B′

5

Abel, Altenkirch

4 Soundness

A terminating run of the type checker corresponds to a finite derivation in the
system of algorithmic rules presented above. Hence, when we want to reason that the
algorithm is sound, i. e., that it only accepts well-typed terms, we need to consider
inductive algorithmic equality `µ t ∼ t′ and algorithmic typing Γ `µ t ⇔/⇒ A

which refers to inductive equality.

Lemma 4.1 (Soundness of algorithmic equality) D ::`µ t ∼ t′ implies t =β

t′.

Proof. Trivially by induction on D. 2 2

Theorem 4.2 (Soundness of bidirectional type checking) (i) If D :: Γ `µ
t⇒ A and Γ ` ok then Γ ` t : A.

(ii) If D :: Γ `µ t⇔ C and Γ ` C :Type, then Γ ` t : C.

Proof. Simultaneously by induction on D. Likewise trivial. 2 2

5 Completeness

Since type-checking of λ∗ is undecidable, an appropriate completeness result for
our algorithm would be: if β-normal t is of type A, checking t against A does
not fail finitely. I. e., the algorithm might diverge or succeed, but not report an
error. We make this formal by considering the coinductive version of algorithmic
equality `ν t ∼ t′, i. e., we allow infinite derivations, and a version of algorithmic
typing Γ `ν t ⇔/⇒ A which refers to coinductive equality. In the following we
prove, using the technique of coinduction [10], that finite derivations of typing and
equality in the declarative system (of Section 2) map to possibly infinite derivations
in the algorithmic system (of Section 3).

First we show that if two terms t1 and t2 are β-equal, then D ::`ν t1 ∼ t2. In
case t1 ≡ Ω := (λx. x x) (λx. x x), the derivation D is simply an infinite repetition
of aq-red-l. Note that the same derivation shows `ν Ω ∼ t for an arbitrary term
t, hence, the contraposition of the following lemma cannot hold:

Lemma 5.1 (Completeness of algorithmic equality) If t1 =β t2 then `ν t1 ∼
t2.

Proof. By coinduction. We consider the following cases:

• Case t1 −→w t′1. Then `ν t1 ∼ t2 follows by rule aq-red-l using coinductive
hypothesis `ν t′1 ∼ t2.

• Case t2 −→w t
′
2. Analogously.

In the remaining cases, t1 and t2 are whnfs.

• Case t1 ≡Type =β t2. By confluence, t2 −→∗βType. Since t2 is a whnf, t2 ≡Type.
The goal follows by aq-type.

• Case t1 ≡ Πx :A1. B1 =β t2. By confluence, t2 ≡ Πx :A2. B2 with A1 =β A2 and
B1 =β B2. The goal follows by aq-fun with coinductive hypotheses `ν A1 ∼ A2

and `ν B1 ∼ B2.

6

Abel, Altenkirch

The other cases are proven analogously. 2 2

Next we show that for a well-typed and checkable (i. e., β-normal) term t there
is an algorithmic typing derivation with possibly infinite derivations of algorithmic
equality.

Theorem 5.2 (Completeness of type checking) Let t β-normal and Γ ` t :
C.

(i) If t is neutral then Γ `ν t⇒ A and A =β C.

(ii) In any case, Γ `ν t⇔ C.

Proof. Simultaneously by induction on t.

• Case t ≡ x. By inversion C =β Γ(x). We have Γ `ν x ⇒ Γ(x) by inf-var. The
second goal follows since by Lemma 5.1 `ν Γ(x) ∼ C.

• Case t ≡ nu. By inversion, Γ ` n : Πx :A.B with Γ ` u : A and C =β B[u/x].
By induction hypothesis, Γ `ν n ⇒ D with D =β Πx : A.B. By confluence
and standardization, D −→∗w Πx : A′. B′ with A =β A′ and B =β B′. Since
by the conversion rule, Γ ` u : A′ we have by second induction hypothesis
Γ `ν u ⇔ A′, hence, by inf-fun-e we can conclude Γ `ν nu ⇒ B′[u/x] with
B′[u/x] =β B[u/x] =β C. This implies the second goal Γ `ν t⇔ C.

• Case t ≡Type. By inversion C =βType. We conclude by inf-type.
• Case t ≡ Πx :A.B. By inversion, C =βType and Γ, x :A ` B :Type which implies

Γ ` A :Type. By the first induction hypothesis we have Γ `ν A ⇒ s with s =β

Type. By second induction hypothesis, Γ, x :A `ν B : s′ with s′ =β Type. Since
by confluence and standardization s −→∗w Type and s′ −→∗w Type, we conclude by
inf-fun-f.

• Case t ≡ λxt′. By inversion, C =β Πx : A.B and Γ, x : A ` t′ : B. Since
C −→∗w Πx :A′. B′ with A =β A

′ and B =β B
′, we have Γ, x :A′ ` t′ : B′. By

induction hypothesis Γ, x :A′ ` t′ ⇔ B′ and we conclude by chk-fun-i. 2

2

Completeness leads to the following important corollary which shows that the
only reason that the algorithm will reject a typeable term is non-termination:

Corollary 5.3 Let t β-normal and Γ ` t : C but Γ 6 `µ t⇔ C. Then a subterm of
t has an inferred or ascribed type which is not strongly normalizing.

Proof. From 5.2 we know that D :: Γ `ν t ⇔ C. Since ` and `ν differ only
in the equality check, there must be types A and A′ with an infinite derivation of
`ν A ∼ A′ contained inD. This derivation must contain infinitely many applications
of aq-red-l or aq-red-r, thus, A or A′ is not strongly normalizing. 2

6 Haskell Implementation

In the following, we present a Haskell implementation of our type checking algo-
rithm for λ∗. We choose an efficient implementation of substitution and weak head
reduction through closures. In the end, it is very similar to Coquand’s algorithm

7

Abel, Altenkirch

[6], however, we distinguish closures and weak head normal forms through different
data types, making some invariants explicit this way. Also, we explicitly use mon-
ads, and this in an abstract way that makes the implementation extensible, e. g., to
universe inference.

We use monads for handling of errors and lookup in the typing context, which
is implemented by finite maps.

module TypeType where

import Control .Monad .Error
import Control .Monad .Reader
import Data.Map (Map)
import qualified Data.Map as Map

Syntax
as parsed from a file is represented by abstract syntax trees of (Haskell) type

Exp. Variables are referred to by Name. We maintain the invariant that function
types appear only in the form Pi a (Abs x b).

type Name = String
data Exp

= Var Name
| Abs Name Exp
| App Exp Exp
| Pi Exp Exp
| Type

deriving Show
arr a b = Pi a (Abs "_" b)

Values and environments.
Evaluation is lazy, so values are closures Clos t rho, pairs of an expression t

and an environment rho. When type checking the body of an Abstraction, the
free variable is mapped a unique Id , called a generic value Gen by Coquand [6].
Thus, the environment component rho may map variable names either to generic
values or to closures in turn. The (Haskell) type e of environments is passed as a
parameter to Val , since we do not want to commit to a particular representation of
environments here.

type Id = Int
data Show e ⇒ Val e

= Gen Id
| Clos Exp e

deriving Show
type Ty e = Val e

8

Abel, Altenkirch

The weak head normal form (whnf) of a closure might either be an introduction,
WType, WPi , or WAbs, or an elimination of a generic value, WNe, i.e., an identifier
applied to several closures. Evaluation does not step under binders, thus, the whnf
of a function closure Clos (Abs x t) rho is simply WAbs x t rho.

data Show e ⇒Whnf e
= WNe Id [Val e] -- reversed list of arguments
| WAbs Name Exp e
| WPi (Val e) (Val e)
| WType

deriving Show
type WTy e = Whnf e

Environments, which map names to values, are left abstract. We specify them
via the type class Env , providing operations for construction (emptyEnv and extEnv ,
extension) and query (lookupEnv).

class Show e ⇒ Env e where
emptyEnv :: e
extEnv :: Name → Val e → e → e
lookupEnv :: e → Name → Val e

Evaluation and application.
whnf computes the weak head normal form of a value, by removing the weak

head β-redexes. There are two cases of values: generic values Gen, which are already
weak head normal, and closures, which we normalize using the auxiliary function
whnf ′.

whnf :: Env e ⇒ Val e →Whnf e
whnf (Gen i) = WNe i []
whnf (Clos t rho) = whnf ′ t rho

whnf ′ computes the whnf of an expression in an environment rho. The value
of variables Var x is looked up in the environment. The result might be a closure
which has to be evaluated recursively. Or, it might be a generic value, in case x has
become free by stepping under its binder. Applications are the source of redexes,
which are resolved lazily (cbn), using function app. Expressions of the other shapes,
Abs, Pi , and Type, are already whnfs.

whnf ′ :: Env e ⇒ Exp → e →Whnf e
whnf ′ (Var x) rho = whnf (lookupEnv rho x)
whnf ′ (App t u) rho = app (whnf ′ t rho) (Clos u rho)
whnf ′ (Abs x t) rho = WAbs x t rho
whnf ′ (Pi a b) rho = WPi (Clos a rho) (Clos b rho)
whnf ′ Type rho = WType

9

Abel, Altenkirch

app applies a whnf to a closure, reducing the result to a whnf. The function part
can only be neutral or an abstraction, other cases are impossible since ill-typed.

app :: Env e ⇒Whnf e → Val e →Whnf e
app (WNe i vs) v = WNe i (v : vs)
app (WAbs x t rho) v = whnf ′ t (extEnv x v rho)

A context for type checking.
We hide the context in a monad of class MonadCxt . The context provides both a

type and a value for each name. bind extends the context with both type and value.
new extends it with the given type, creating a new generic value. new ′ creates just
a generic value, in situations where its type does not matter.

The type of a name can be queried by typeOf , and expression can be closed in
the context which acts like an environment in this case (this is the only way we
need to refer to the values of names).

class (Env e,Monad m)⇒ MonadCxt e m | m → e where
bind :: Name → Ty e → Val e → m a → m a
new :: Name → Ty e → (Val e → m a)→ m a
new ′ :: Name → (Val e → m a)→ m a
new ′ x = new x dontCare
typeOf :: Name → m (Ty e)
close :: Exp → m (Val e)

dontCare = error "Internal error: no type assigned to variable"

Bidirectional type checking.
infer t infers the type of expression t , returning it in whnf. Inferable are all

expressions shapes except abstractions.
For a variable, the type is looked up in the context and then weak head normal-

ized. This does not introduce unnecessary divergence, since an inferred type needs
always to be converted to weak head normal form, either to check whether it is a
function type (see case App), or to compare it to another type (see eq below). Note
however, that types in the context are not in weak head normal form. Normaliz-
ing them before adding them to the context would indeed introduce unnecessary
divergence, e.g., for unused variables of diverging type.

infer :: MonadCxt e m ⇒ Exp → m (WTy e)
infer (Var x) = typeOf x >>= return ◦ whnf
infer (App t u) = do w ← infer t

case w of
WPi v f → do check u v

u ′ ← close u
return (whnf f ‘app‘ u ′)

→ fail ("expected " ++ show t ++

10

Abel, Altenkirch

" to be of function type")
infer Type = return WType
infer (Pi a b) = do check ′ a WType

v ← close (a ‘arr ‘ Type)
check b v
return WType

check t v checks expression t against type value v by converting the type to
weak head normal form and calling check ′. check ′ treats only abstractions Abs x t ,
which must be of function type Pi v f , and their body t must type check in the
context extended by x whose type is v and whose value is set to a new generic value
i . The type of non-abstractions t is inferred as w ′ and compared to the ascribed
type w .

check :: MonadCxt e m ⇒ Exp → Ty e → m ()
check t v = check ′ t (whnf v)
check ′ :: MonadCxt e m ⇒ Exp →WTy e → m ()
check ′ (Abs x t) (WPi v f) = new x v (λi → check ′ t (whnf f ‘app‘ i))
check ′ (Abs x t) w = fail ("expected " ++ show w ++

" to be a function type")
check ′ t w = do w ′ ← infer t

eq w ′ w

Equality checking
of values. We define three mutually recursive functions, each returning a monadic

boolean m (). eq operates on whnfs, eq ′ on arbitrary closures, eqs compares lists of
closures of the same length. Two function closures WAbs are tested for equality by
applying them to a new generic value i .

eq :: MonadCxt e m ⇒Whnf e →Whnf e → m ()
eq WType WType = return ()
eq (WPi a b) (WPi a ′ b′) = eq ′ a a ′ >> eq ′ b b′

eq v@(WAbs{ }) v ′@(WAbs x) = new ′ x (λi → eq (v ‘app‘ i) (v ′ ‘app‘ i))
eq (WNe i vs) (WNe i ′ vs ′) | i ≡ i ′ = eqs vs vs ′

eq w w ′ = fail ("equality check fails for " ++ show w ++
" and " ++ show w ′)

eq ′ :: MonadCxt e m ⇒ Val e → Val e → m ()
eq ′ v v ′ = eq (whnf v) (whnf v ′)
eqs :: MonadCxt e m ⇒ [Val e]→ [Val e]→ m ()
eqs [] [] = return ()
eqs (v : vs) (v ′ : vs ′) = eq ′ v v ′ >> eqs vs vs ′

eqs vs vs ′ = fail ("equality check fails: " ++
"argument vectors of different lengths")

11

Abel, Altenkirch

Declarations.
Input to the type checker are declarations of the form x : A = t meaning name

x has type A and definition t . The type checker will first ensure that A is a well-
formed type, evaluate it (lazily), then check t against the value of A, and finally
bind x to type value of A and the value of t in the current environment. Then it
will go on to the next declaration.

data Decl = Decl{name :: Name, ty :: Exp, value :: Exp} deriving Show
checkDecl :: MonadCxt e m ⇒ Decl → m (Ty e,Val e)
checkDecl (Decl x a t) = do

check ′ a WType
v ← close a
check t v
w ← close t
return (v ,w)

type Decls = [Decl]
checkDecls :: MonadCxt e m ⇒ Decls → m ()
checkDecls [] = return ()
checkDecls (d : ds) = do

(a, v)← checkDecl d
bind (name d) a v (checkDecls ds)

An implementation of contexts.
We implement contexts as finite maps from names to their type and value. They

also handle the generation of fresh identifiers. To this end, the next unused generic
value is store in field nextFree. cxtLookup just retrieves the type of a name, cxtExt
just binds a type to a name, and cxtBind binds both type and value to a name.

data Cxt = Cxt{nextFree :: Int
, cxt :: Map Name (Ty Cxt ,Val Cxt)}

deriving Show
cxtLookup :: Monad m ⇒ Cxt → Name → m (Ty Cxt)
cxtLookup gamma x = case Map.lookup x (cxt gamma) of

Just (a, v)→ return a
Nothing → fail ("identifier not in scope: " ++ x)

cxtEmpty :: Cxt
cxtEmpty = Cxt 0 Map.empty
cxtExt :: Name → Ty Cxt → Cxt → Cxt
cxtExt x a (Cxt n gamma) = Cxt (n + 1) (Map.insert x (a,Gen n) gamma)
cxtBind :: Name → Ty Cxt → Val Cxt → Cxt → Cxt
cxtBind x a v gamma = gamma{cxt = Map.insert x (a, v) (cxt gamma)}

Contexts can be seen as environments, since they provide a value for each name.

12

Abel, Altenkirch

instance Env Cxt where
emptyEnv = cxtEmpty
extEnv x v rho = rho{cxt = Map.insert x (dontCare, v) (cxt rho)}
lookupEnv rho x | Just (a, v)← Map.lookup x (cxt rho) = v

Implementation of the type checking monad.
During type checking, we need to query the context and we need to raise er-

rors. The type checking monad wraps a reader monad ReaderT Cxt (see module
Control .Monad .Reader) around an error monad Either String . The implementation
of the MonadCxt operations access the context through the MonadReader opera-
tion ask and modify it through local . The Reader Monad here is only used to hide
the plumbing used in a standard implementation of static binding. In particular
shadowing of variables is implemented by replacing the previous definition.

type TC = ReaderT Cxt (Either String)
instance MonadCxt Cxt TC where

typeOf x = do gamma ← ask
cxtLookup gamma x

close t = do rho ← ask
return (Clos t rho)

new x a f = do gamma ← ask
local (cxtExt x a) (f (Gen (nextFree gamma)))

bind x a v c = local (cxtBind x a v) c

The implementation of the main type checking loop uses the reader monad to
type check a sequence of declarations.

checkFile :: Decls → IO ()
checkFile ds = case (checkDecls ds ‘runReaderT ‘ cxtEmpty) of

Right ()→ putStrLn "Type checking succeeded"
Left s → putStrLn ("Type checking error: " ++ s)

Acknowledgment.
The Haskell code has been typeset by lhs2TeX (Andres Löh and Ralf Hinze).

7 Conclusion

We have presented a correct partial type checking algorithm for λ∗ which has non-
normalizing types. It should be possible to extend the algorithm for functional
PTS by annotating types with sorts—however, there is a known issue with the
abstraction rule which needs to be investigated (see [12]).

We have shown that the algorithm will only fail because of the presence of
diverging terms during type checking (Corollary 5.3). This does not mean that the
algorithm could not be improved, e.g., it could check for syntactic equality before

13

Abel, Altenkirch

normalizing terms. However, in practice we are interested in type checking in a
normalizing fragment of the theory anyway. Indeed, for a given PTS we only have
to show normalization to be able to conclude that our algorithm decides the typing
relation. Thus, apart from being applicable for non-terminating type systems our
paper also suggests a new way of showing decidability of terminating type theories:
as in this paper, one can prove partial correctness of type checking, and then show
normalization separately which entails decidability of type checking.

The proof presented here should be also extensible to languages with explicit
recursion and additional features to model dependent data types, e.g., we plan to
apply it to ΠΣ, a core language for dependently typed programming [2].

Another line of research would be to extend our approach to λ∗ with βη-equality
using a type-sensitive implementation of the equality checker. The problem is that
the separation of equality checking and type checking does not work anymore—
however, we conjecture that such an algorithm would still be sound and partially
complete.

References

[1] Abel, A., T. Coquand and P. Dybjer, Verifying a semantic βη-conversion test for Martin-Löf type
theory, in: Mathematics of Program Construction, MPC’08, 2008, to appear.

[2] Altenkirch, T. and N. Oury, ΠΣ: A core language for dependently typed programming (2008), draft,
available on http://www.cs.nott.ac.uk/˜txa/publ/.

[3] Augustsson, L., Cayenne - a language with dependent types, in: Proceedings of the third ACM
SIGPLAN International Conference on Functional Programming (ICFP ’98), Baltimore, Maryland,
USA, September 27-29, 1998, SIGPLAN Notices 34 (1999), pp. 239–250.

[4] Barthe, G. and T. Coquand, Remarks on the equational theory of non-normalizing pure type systems,
Journal of Functional Programming 16 (2006), pp. 137–155.

[5] Barthe, G. and M. H. Sørensen, Domain-free pure type systems, J. Funct. Program. 10 (2000), pp. 417–
452.

[6] Coquand, T., An algorithm for type-checking dependent types, in: Mathematics of Program
Construction. Selected Papers from the Third International Conference on the Mathematics of Program
Construction (July 17–21, 1995, Kloster Irsee, Germany), Science of Computer Programming 26
(1996), pp. 167–177.

[7] Coquand, T. and M. Takeyama, An implementation of Type : Type, in: P. Callaghan, Z. Luo, J. McKinna
and R. Pollack, editors, Types for Proofs and Programs, International Workshop, TYPES 2000,
Durham, UK, December 8-12, 2000, Selected Papers, Lecture Notes in Computer Science 2277 (2000),
pp. 53–62.

[8] Goguen, H., “A Typed Operational Semantics for Type Theory,” Ph.D. thesis, University of Edinburgh
(1994), available as LFCS Report ECS-LFCS-94-304.

[9] Goguen, H., Justifying algorithms for βη conversion, in: V. Sassone, editor, Foundations of Software
Science and Computational Structures, 8th International Conference, FoSSaCS 2005, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK,
April 4-8, 2005, Proceedings, Lecture Notes in Computer Science 3441 (2005), pp. 410–424.

[10] Gordon, A., A tutorial on co-induction and functional programming, in: Functional Programming,
Glasgow 1994 (1995), pp. 78–95.

[11] Plotkin, G., Call-by-name, call-by-value, and the λ-calculus, Theoretical Computer Science 1 (1975),
pp. 125–159.

[12] Pollack, R., “The Theory of LEGO,” Ph.D. thesis, University of Edinburgh (1994).

14

	Introduction
	Type:Type
	A Type-Checking Algorithm
	Soundness
	Completeness
	Haskell Implementation
	Conclusion
	References

