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Introduction

Introduction

Guarded recursive types (Nakano, LICS 2000)
Negative recursive types while maintaining consistency

o uX.pX—A
o fix:(PA—A)— A

Applications

o Semantics (abstracting step-indexing)
o Functional Reactive Programming (causality)
e Coinduction (productivity, with a “Globally”/"“[0" modality)

o This talk: Strong Normalization.
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Introduction

Guarded types

Types and terms.

AB = A=-B|pA|X|uXA
t,u = x|Axt|tu|nextt|txu

Occurrences of X in uX. A must be under a » “guard”.
e Good:
o uX.» X
o uX.Axw» X and uX.»(AxX)
o uX.(»X)— Aand uX.» (X — A).
e Bad:
o uX. X and uX.Ax X
o uX. X —=Aand uX. X = p»A
o uX»uX.X.
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Typing

e Type equality: congruence closure of - uX. A= A[uX. A/X].
o Typing [ Ht: A

Mt A r=t:»(A—B) FFu:» A
Fnextt:p» A [Ftxu:»B

M-t A FA=B
N-t:B
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Introduction

Denotational Semantics

Types as streams of sets:

AN — Set with restriction maps.

It r r

A Ag—2 A op 2
next ! ro n

I Iq r

A 1< Ag 2 Ay
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Introduction

Fixed-point construction (intuition)

A 1< Ap 2 A
f fo h f
A Ag— A g
Any map f : » A — A has a fixed-point fixs : 1 — A:
id id id
1 1 1 1
fix fo hofy fofiof
n n r
A Ag S A S Ay ..
f f f3
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Introduction

Reduction
@ Redex contraction t+— t'.
(Ax.t)u = tlu/x]

nexttxnextu + next(tu)

o Full one-step reduction t — t': Compatible closure of .
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Introduction

Recursion from recursive types

Guarded recursion combinator can be encoded.
The standard Y combinator would need a type T such that
T=T-A

to typecheck the self applications of x and w:

f A=A

XX A ifx: T
0] Ax:T).f(xx) : T—A
Y 0w A
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Introduction

Recursion from recursive types

We can solve T=p» T — A;

T=uXpX—=A

So we get a guarded fixpoint combinator:

f : PA-A
X (T —=A) ifx:»T
X *knextx : pA if x:»T
o = A(x:»T).f(x*xnextx) : »T —A
Y = o(nextw) A

Y¢ — f(next @« next (next ®)) — f (next (@ (next w))) = f (nextYy)

Note: Full reduction — of Yy diverges.
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Introduction

More Examples

@ Streams!?

@ RepMin: One pass through binary tree, replacing all labels by their
minimum.

@ Attribute grammars!?
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Introduction

Restricted reduction

Restore normalization: do not reduce under next.

Relaxed: reduce only under next up to a certain depth.

Family —,, of reduction relations.

tt t—,t

t—p, t nextt —>,41 nextt’

Plus compatibility rules for all other term constructors.

—, is monotone in n (more fuel gets you further).

Goal: each —, is strongly normalizing.
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Introduction

Restricted reduction (Example)

Y —§ f (nextY) ——¢
Y —] f(next(f (nextY))) ——1

Y —5 f (next(f (next(f (nextY))))) —>2
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Introduction

Strong normalization as well-foundedness

@ t €sn, if —, reduction starting with ¢ terminates.

Vt'.t —,t/ = t' Esn,
t€sn,

@ sn, is antitone in n, since —, occurs negatively.

@ More reductions = less termination.
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Introduction

Inductive SN,
o Take the inductively defined normal forms:
E:= |Eu|Exu|nexttxE

E €SN, te SN, t €SN,
E[x] € SN, Ax.t € SN, nextt € SNy nextt € SN 1

o And close them under “Strong head reduction” t —>N ¢/

t—oN ¢ t' € SN, tt/ t €SN,
t €SN, E[t] —3N E[t']

o t —>N ¢/ is like weak head reduction but erased terms must be s.n.
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Introduction

Notions of s.n. coincide?

Rules for SN, are closure properties of sn,.
SN, C sn, follows by induction on SN,,.
Converse sn, C SN, does not hold!

Counterexamples are ill-typed s.n. terms, e.g.,

(Ax.x)*y or (nextx)y.

Solution: consider only well-typed terms.

Proof of t € sn, = t € SN, by case distinction on t: neutral (E[x]),
introduction (Ax.t,nextt), or weak head redex.
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Introduction

Saturated sets (semantic types)

Types are modeled by sets 7 C SN,,.

o n-closure <7, of o7 inductively:

tead E €SN, t—oN ¢ t' e,
te.d, E[x] € o, teo,

o/ is n-saturated (&7 € SAT,) if &/, C /.

Saturated sets are non-empty (contain e.g. the variables).
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Introduction

Constructions on semantic types

@ Function space and “later:

o =B = {t|tuePBforall uecd}
>, = {nextt|te o if n>0},

If o7, %8 € SAT, then &/ — % € SAT,,.
»o o/ € SATy.
If o7 € SAT, then », 1.9/ € SAT 1.
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Introduction

Type interpretation

e Type interpretation [A], € SAT,

[A=Bln = Nuw<nllAlw — [Blw)

[[»AHO = »gSNg = {nextt}o
[>Alnsr = »ar1[Aln
XAl = [AXA/X],

@ By lex. induction on (n,size(A)) where size(» A) = 0.

@ Requires recursive occurrences of X to be guarded by a ».
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Introduction

Type soundness

o Context interpretation:

p€[ln < p(x) € [A]n forall (x:A) el

Identity substitution id € [I'], since x € [A],.
Type soundness: if I =t : A then tp € [A], for all nand p € [[],.
Corollary: t € SN, for all n.
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Introduction

Formalization in Agda

Syntax of types as a mixed inductive-coinductive datatype:

Ty=vXuY.(YxY)+X
mutual
data Ty : Set where
S i(ab:Ty) - Ty
> i (aw:eoTy) o Ty
record oo Ty : Set where
coinductive

constructor delay
field force : Ty

@ Intensional (propositional) equality too weak for coinductive types.

@ — add an extensionality axiom for our coinductive type.
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Introduction

Well-typed terms

data Tm (I" : Cxt) : (a: Ty) — Set where

var : V{a} (x: VarT a) —TmT a
abs @ V{a b} (t: Tm(a::T) b) — TmT (a > b)
app : V{a b} (t: TmT(a> b)) (u: TmT a) - TmTDb
next : V{aeo} (t: Tm T (force ac)) > TmT (b ax)

% 0 V{ace beo} (t: Tm T (B(a = beo))) (v: Tm I (B ax)) — Tm I (B beo)

@ We used intrinsically well-typed terms (data structure indexed by
typing context and type expression).

@ Second Kripke dimension (context) required “everywhere”, e.g., in SN
and [A].
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Introduction

Conclusions & Further work

Strong normalization is a new result, albeit expected for the restricted
reduction.

Agda formalization (ca. 3kLoc, 170kB) useful as basis for further
research.

Add modalities to handle (co)inductive types.

Integrate into Intensional Type Theory.
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