Veritying a Semantic #n-Conversion Test
for Martin-Lof Type Theory

Andreas Abel
Thierry Coquand® Peter Dybjer?

1 Ludwig-Maximilians-University Munich
2Chalmers University of Technology

Mathematics of Program Construction
Marseille, France
18 July 2008

Abel Coquand Dybjer (LMU, CTH) Semantic Sn-Conversion DTP’08 1/ 27

Background

o Dependently typed languages allow specification, implementation,
and verification in the same language.

e Strong data invariants.
e Pre- and post-conditions.
e Soundness.
e Programs (e.g., add) can occur in types of other programs (e.g.,
append).
append : (nm : Nat) -> Vec n -> Vec m -> Vec (add n m)
o Type equality can be established
o automatically, e.g., Vec (add 0 m) = Vec m (by computation), or
e by proof, e.g., Vec (add n m) = Vec (add m n).

o Goal: establish more equalities automatically.

Semantic Bn-Conversion DTP’08 2/27

Building 7 into Definitional Equality

e Coq’s definitional equality is 3 (+ § + ¢).

@ The stronger definitional equality, the fewer the user has to revert
to equality proofs.

e Why not n? (f = Ax.f x if x new)

e Validates, for instance, f = comp f id.

e But 7 complicates the meta theory.

e Twelf, Epigram, and Agda check for #n-convertibility.

e Twelf’s type-directed conversion check has been verified by Harper
& Pfenning (2005).

e This work: towards verification of Epigram and Agda’s equality
check.

Semantic Bn-Conversion DTP’08 3/ 27

Language

Core type theory:
o Dependent function types Fun AAxB (= (x : A) -> B) with 7.
e Predicative universes Setg, Sety,
e Natural numbers.
e We handle large eliminations (types defined by cases and
recursion), in contrast to Harper & Pfenning (2005).

Scales to X types with surjective pairing.

Goal: handle all types with at most one constructor (1, ¥, 1, 0,
singleton types).

Not a goal?: handle enumeration types (2, disjoint sums, ...).

Semantic Bn-Conversion DTP’08 4 /27

Syntax of Terms and Types

e Lambda-calculus with constants

r,s,t = c|x|Axt]|rs
c = N type of natural numbers
z Z€ro
s successor
rec primitive recursion
Fun function space constructor
Set; universe of sets of level i

o MNx:A.B (Agda: (x : A) -> B) is written Fun A (Ax.B).

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 5 /27

Judgements

o Essential judgements

M-t:A t has type Ain I’
l-t=t:A tandt are equal expressions of type Ain I

e Typing of functions:

Mx:AkFt:B It r:FunA(Ax.B) N-s:A
I Ax.t: Fun A(Ax.B) I+rs:B[s/x]

Semantic Bn-Conversion DTP’08 6 /27

Set formation rules

Small types (sets):

I+ A: Set; I x:AF B: Set;
I =N : Setg [= Fun A(Ax.B) : Set;

@ Setg includes types defined by recursion like Vec A n.

(Large) types:

I+ A: Set;
'+ A:Seti;1 I F Set; : Set;jy1

e E.g., Fun Setg (AA. A — (N — A)) : Set;.
In Agda: (A : Set) -=> A -> N -> A : Setl.

Semantic Bn-Conversion DTP’08 7/ 27

Equality

@ Conversion rule:

Frt:A A= A": Set;
M=t A

o Type checking requires checking type equality!
e Equality axioms:

Nx:AFt:B N-s:A
= (Ax.t)s = t[s/x] : B[s/x]

(5)

) Itt:FunA(Ax.B)
T TFOx.tx)=t:FunA(Ax.B)

x & FV(t)

@ Add computation axioms for primitive recursion.

Semantic Bn-Conversion DTP’08 8 /27

- |
The Type Checking Task

e Input a sequence of typed definitions in S-normal form

X0 c Ao = to
Xp—1 : Ap-1 = tpa

@ Check the sequence in order
@ check that A; is well-formed
@ cvaluate A; to X; in current environment
© check that t; is of type X;
@ cvaluate t; to d; in current environment
@ add binding x; : X; = d; to environment

e Type conversion: need to check type values X, X’ for equality

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 9 /27

Values

e In implementation of type theory, values could be:
@ Normal forms (Agda 2)
© Weak head normal forms (Constructive Engine, Pollack)
@ Explicit substitutions (Twelf)
@ Closures (Epigram 2)
@ Virtual machine code (Coq, Grégoire & Leroy (2002))
@ Compiled code (Cayenne, Dirk Kleeblatt)

o Need symbolic execution at compile time.

o Abstract over implementation via applicative structures.

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 10 / 27

Applicative Structure

@ Domain D of values with 2 operations:
@ Application .- _:DxD —D
@ Evaluation __: Exp x (Var — D) — D.

o Laws:
cp = ¢ e.g. Fun,Set;
xp = p(x)
(rs)p = rp-sp

(Mxt)p-d = t(p,x=d)

e Variables x1,xp € D aka de Bruijn levels, generic values Coquand
(1996).

e Neutral objects x; - di - ... - dx are eliminations of variables aka
atomic objects / accumulators.

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 11 / 27

Checking Type Equality

e Comparing type values

AFX=X1{Set~ i X and X’ are equal types at level i

Ate=¢| X neutral e and e’ are equal, inferring type X
Ad=d X d and d’ are equal, checked at type X
e Roots:

@ Setting of Coquand (1996)

@ Type-directed n-equality of Harper & Pfenning (2005), extended to
dependent types

© Implementations: Agdalight, Epigram 2

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 12 / 27

Algorithmic Equality

e Type mode A = X = X' 4} Set ~ i (inputs: A, X, X’, output: 7 or
fail).

A F Set; = Set;) Set ~ i+ 1

A X=X 1 Set~| A,xp: X FF-xpa=F -xa 1 Set ~ j
A F Fun X F = Fun X' F’ 4} Set ~~ max(i,)

A+ E = E' || Set;
A+ E=E {Set~i

e Arbitrary choice: asymmetric.

Semantic Bn-Conversion DTP’08 13 / 27

- |
Algorithmic Equality

Inference mode A e =€ || X (inputs: A,e,e’, output: X or fail).

Ate=e |FinXF AFd=d{X
AFx=x{Ax) Ated=¢ed || F-d

Checking mode A +d = d' X (inputs: A, d,d’, X, output: succeed or
fail).

Ate=¢l| E A F Ey = Ey | Set;
AlFe=¢e N E

Axpa: X Ff-xa=f-xafF-xa AI—X:X’ﬂSetwii
AFf=f1FunXF AFX=X1{Set; =7

Semantic Bn-Conversion DTP’08 14 / 27

Verification of Algorithmic Equality

e Completeness: Any two judgmentally equal expressions are
recognized equal by the algorithm.
Ft=1t:Aimplies F tpiy = t'piq I} Apid-

e Soundness: Any two well-typed expressions recognized as equal are
also judgmentally equal.
Ft,t':Aand F tpig = t'piq t Apig imply =t =1t': A

o Termination: the equality algorithm terminates on all well-typed
expressions.

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 15 / 27

Towards a Kripke model

e Completeness of algorithmic equality usually established via
Kripke logical relation (semantic equality)

Ard=d:X

e At base type X this could be defined as A +d = d’ 1} X.
@ Should model declarative judgements.

o Problem: transitivity of algorithmic equality non-trivial because of
asymmetries.

@ Solution: two objects at base type shall be equal if they reify to
the same term.

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 16 / 27

Contextual reification

Reification converts values to n-long B-normal forms.

Reification of neutral objects x d involves reification of arguments
d; at their types.

Thus, must be parameterized by context A and type X.

Structure similar to algorithmic equality.

AF XN, A Set i
AFeNul X
AFd\, t)X

Reification of functions (n-expansion):

Ax: X EFFf-xNtf F-x
AFFN Axtff Fun X F

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 17 /27

Completeness

@ Objects that reify to the same term are algorithmically equal.

Lemma
IfFARdN th Xand A Fd \, t X then A -d=d { X. J

e Kripke logical relation between objects in a semantic typing
environment.
o for base types: A Fd: XQ@A ' Fd X if A Fd\, tf X and
A’ = d' N\t X’ for some t,
o for function types: A +f:FunXF® A’ + ' : Fun X' F' iff
AFd:X®A Fd:X implies
Arf-d:F-d®A Ff d:F.d.
e Symmetric and transitive by construction.

e Semantic equality A Fd=d" : Xif AFd: X®AFd:X.

Semantic Sn-Conversion DTP’08 18 / 27

-
Validity

o Define A Fp=p :Tif AF p(x)=p(x):T(x) for all x.

Theorem (Fundamental theorem)
IfTEt=t :Aand A tp=p :T then A tp=1tp : Ap.

o Implies completeness of algorithmic equality.

Semantic Sn-Conversion DTP’08 19 / 27

Soundness

Easy for algorithmic equality defined on terms.

Uses substitution principle for declarative judgements.

Substitution principle fails for algorithmic equality.

Axp: X Ef-xa="F -xaf F-xa
AFf=f{FinXF

@ But it should hold for all values that come from syntax.

e Need to strengthen our notion of semantic equality by
incorporating substitutions (Coquand et al., 2005).

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 20 / 27

Strong Semantic Equality

Equip D with reevaluation dp € D.

Define strong semantic equality by

OFd=d: X <= VAFp=p:0.Akdp=4dp : Xp

Algorithmic equality is sound for strong semantic equality.

Strong semantic equality models declarative judgements.

Semantic Bn-Conversion DTP’08 21 / 27

Logical Relation between Syntax and Semantics

Theorem (Soundness)
IfT Et,t' - Aand Tpiq F tpig = t'pia I Apig then T Et =1t : A.

Proof.

Define a Kripke logical relation ' - t: A® A F d : X between syntax
and semantics.
For base types X, it holds if A Fd\ ' f X and I Ft=1t": A O

Semantic Bn-Conversion DTP’08 22 /27

Conclusions

Verified (Bn-conversion test which scales to universes and large
eliminations.

Necessary tools came from Normalization-by-Evaluation.

From the distance: algorithm is g-evaluation followed by
n-expansion.

e Future work: scale to singleton types.

Abel Coquand Dybjer (LMU, CTH) Semantic Bn-Conversion DTP’08 23 / 27

Related Work

Martin-Lo6f 1975: NbE for Type Theory (weak conversion)
Martin-Lo6f 2004: Talk on NbE (philosophical justification)
Altenkirch Hofmann Streicher 1996: NbE for A-free System F
Gregoire Leroy 2002: B-normalization by compilation for CIC

Coquand Pollack Takeyama 2003: LF with singleton types
Danielsson 2006: strongly typed NbE for LF
Altenkirch Chapman 2007: big step normalization

Semantic Bn-Conversion DTP’08 24 / 27

N ——
Strong Validity

o Define A =p=p :Tiff AE p(x)=p/(x):T(x) for all x.

Theorem (Fundamental theorem)
Ifrtt=t:Aand AlEp=p :T then A tp=1tp : Ap. J

o Implies completeness of algorithmic equality.

Semantic Sn-Conversion DTP’08 25 / 27

Example: A Regular Expression Matcher in Agda
(N.A.Danielsson)

data RegExp : Set where

0 : RegExp —-- Matches nothing.
eps : RegExp -- Matches the empty string.
+ : RegExp -> RegExp —> RegExp -- Choice.

data in : [carrier] -> RegExp -> Set where
matches-eps : [] in eps

matches—-+1 : forall {xs re re’}
-> xs in re -> xs in (re + re’)
matches—+r : forall {xs re re’}

-> xs in re’ -> xs in (re + re’)

Semantic Bn-Conversion DTP’08 26 / 27

Example: A Regular Expression Matcher in Agda
(N.A.Danielsson)

matches : (xs : [carrier 1) -> (re : RegExp) ->
Maybe (xs in re)
matches [] eps = just matches-eps
matches xs (re + re’) with matches xs re
| just p = just (matches-+1 p)
| nothing with matches xs re’
| just p = just (matches-+r) p)
| nothing = nothing

Semantic Bn-Conversion DTP’08 27 /27

.

T. Coquand (1996). ‘An Algorithm for Type-Checking Dependent
Types’. In Mathematics of Program Construction. Selected Papers
from the Third International Conference on the Mathematics of
Program Construction (July 17-21, 1995, Kloster Irsee, Germany),
vol. 26 of Science of Computer Programming, pp. 167-177. Elsevier
Science.

T. Coquand, et al. (2005). ‘A Logical Framework with Dependently
Typed Records’. Fundamenta Informaticae 65(1-2):113-134.

B. Grégoire & X. Leroy (2002). ‘A compiled implementation of strong
reduction’. In Proceedings of the seventh ACM SIGPLAN
International Conference on Functional Programming (ICFP "02),
Pittsburgh, Pennsylvania, USA, October 4-6, 2002, vol. 37 of
SIGPLAN Notices, pp. 235—246. ACM Press.

R. Harper & F. Pfenning (2005). ‘On Equivalence and Canonical
Forms in the LF Type Theory’. ACM Transactions on
Computational Logic 6(1):61-101.

Semantic Bn-Conversion DTP’08 27 /27

	References

