
On Proof-Relevant Relations and Evidence-Aware
Programming

Andreas Abel1

1Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

TCS Oberseminar
Ludwig-Maximilians-Universität München

11 January 2019

Abel Proof-Relevant Relations OSem Jan 2019 1 / 15

Introduction

Proof-relevance and evidence manipulation

Curry-Howard-Isomorphism (CHI):

propsitions-as-types
proofs-as-programs

Dependently-typed programming languages implement the CHI: e.g.
Agda, Coq, Idris, Lean

Allows maintainance and processing of evidence.

For practical impact, we need a also programming culture; c.f. GoF,
Design Patterns: Elements of Reusable Object-Oriented Software.

Abel Proof-Relevant Relations OSem Jan 2019 2 / 15

Lists

List membership

Membership a ∈ as inductively definable:

zero
a ∈ (a :: as)

suc
a ∈ as

a ∈ (b :: as)

Proofs of a ∈ as are indices of a in as (unary natural numbers).

Two different derivations of 3 ∈ (3 :: 7 :: 3 :: []), correspond to the
occurrences of 3:

zero : 3 ∈ (3 :: 7 :: 3 :: [])
suc (suc zero) : 3 ∈ (3 :: 7 :: 3 :: [])

Abel Proof-Relevant Relations OSem Jan 2019 3 / 15

Lists

Sublists
Inductive sublist relation as ⊆ bs:

skip
as ⊆ bs

as ⊆ (b :: bs)
keep

as ⊆ bs

(a :: as) ⊆ (a :: bs)
done

[] ⊆ []

A proof of as ⊆ bs describes which elements of bs should be dropped
(skip) to arrive at as.

skip (keep done) : (a :: []) ⊆ (a :: a :: [])
keep (skip done) : (a :: []) ⊆ (a :: a :: [])

⊆ is a category.

id : as ⊆ as reflexivity
◦ : (as ⊆ bs)→ (bs ⊆ cs)→ (as ⊆ cs) transitivity

Single extension

sgw : as ⊆ (a :: as)

Abel Proof-Relevant Relations OSem Jan 2019 4 / 15

Lists

Membership in sublists

Membership is inherited from sublists:

reindex : (as ⊆ bs)→ (a ∈ as)→ (a ∈ bs)

adjusts the index of a in as to point to the corresponding a in bs.

Trivium: reindex is a functor from ⊆ to (a ∈)→ (a ∈).

In category speak: reindex is a presheaf on ⊆op.

Abel Proof-Relevant Relations OSem Jan 2019 5 / 15

Lists

Types, sets, propositions, singletons

Our meta-language is (Martin-Löf) type theory: a ∈ as and as ⊆ bs
are types, their proofs are inhabitants.

Following Vladimir Voewodsky†, types are stratified by their h-level
into singletons (0), propositions (1), sets (2), groupoids (3),

1 A type with a unique inhabitant is a singleton (“contractible”).
2 A type with at most one inhabitant is a proposition. In other words, a

type with contractible equality is a proposition.
3 A type with propositional equality is a set.
4 A type with a set equality is a groupoid.

A type is of h-level n + 1 if its equality is of h-level n.

as ⊆ as is a singleton; so is a ∈ (a :: []).

as ⊆ [] is a proposition; so is a ∈ (b :: []).

In general a ∈ as and as ⊆ bs are sets.

Abel Proof-Relevant Relations OSem Jan 2019 6 / 15

Simply-Typed Lambda-Calculus

Natural deduction

Inference rules of intuitionstic implicational logic Γ ` A:

var
A ∈ Γ

Γ ` A
app

Γ ` A⇒ B Γ ` A

Γ ` B
abs

(A :: Γ) ` B

Γ ` A⇒ B

Derivations of Γ ` A are simply-typed lambda-terms with variables
represented by de Bruijn indices x : (A ∈ Γ).

t := app (var zero) (var (suc zero)) : (A⇒ B :: A :: [] ` B)
abs (abs t) : ([] ` A⇒ (A⇒ B)⇒ B)
abs (abs (var (suc zero))) : A⇒ (A⇒ A)
abs (abs (var zero)) : A⇒ (A⇒ A)

Abel Proof-Relevant Relations OSem Jan 2019 7 / 15

Simply-Typed Lambda-Calculus

Weakening

Inferences stay valid under additional hypotheses (monotonicity):

weak : (Γ ⊆ ∆)→ (Γ ` A)→ (∆ ` A)

adjust indices of hypotheses (var)

weak is a functor from ⊆ to (` A)→ (` A).

Abel Proof-Relevant Relations OSem Jan 2019 8 / 15

Simply-Typed Lambda-Calculus

List.All: true on every element

AllP as: Predicate P holds on all elements of list as.

[]
AllP []

(::)
P a AllP as

AllP (a :: as)

Proofs of AllP as are decorations of each list element a with further
data of type P a.

Soundness is retrieval of this data, completeness tabulation:

lookup : AllP as → a ∈ as → P a
tabulate : (∀a. a ∈ as → P a)→ AllP as

Universal truth is passed down to sublists:

select : as ⊆ bs → AllP bs → AllP as

Abel Proof-Relevant Relations OSem Jan 2019 9 / 15

Simply-Typed Lambda-Calculus

Substitution
Inhabitants of All (Γ `) ∆ are

proofs that all formulas in ∆ are derivable from hypotheses Γ
substitutions from ∆ to Γ

Parallel substitution

subst : All (Γ `) ∆→ ∆ ` A→ Γ ` A

replaces hypotheses A ∈ ∆ by derivations of Γ ` A.

Subst Γ ∆ := All (Γ `) ∆ is a category:

id : Subst Γ Γ
comp : Subst Γ ∆→ Subst ∆ Φ→ Subst Γ Φ

Singleton substitution

sg : Γ ` A→ Subst Γ (A :: Γ)

Abel Proof-Relevant Relations OSem Jan 2019 10 / 15

Simply-Typed Lambda-Calculus

Term equality and normal forms

For t, t ′ : (Γ ` A) define βη-equality t =βη t ′ as the least congruence
over

β
t : (A :: Γ ` B) u : Γ ` A

app (abs t) u =βη subst (sg u) t

η
t : (Γ ` A⇒ B)

t =βη abs (app (weak sgw t) (var zero))

βη-normality Nf t and neutrality Ne t (where o base formula):

var
x : A ∈ Γ

Ne (var x)
app

Ne t Nf u

Ne (app t u)

ne
Ne t

Nf t
t : (Γ ` o) abs

Nf t

Nf (abs t)

Abel Proof-Relevant Relations OSem Jan 2019 11 / 15

Simply-Typed Lambda-Calculus

Normalization
Having a normal/neutral form:

NF t = ∃t ′ =βη t. Nf t ′

NE t = ∃t ′ =βη t. Ne t ′

Interpretation of formulas as types:

[[A]]Γ : Γ ` A→ Type
[[o]]Γt = NE t
[[A⇒ B]]Γt = ∀∆ (w : Γ ⊆ ∆)(u : ∆ ` A)

→ [[A]]∆u
→ [[B]]∆(app (weakw t) u)

Soundness and completeness (combine to normalization):

sound : (t : Γ ` A)(σ : Subst ∆ Γ)→ [[Γ]]∆σ → [[A]]∆(substσ t)
complete : [[A]]Γt → NF t

Abel Proof-Relevant Relations OSem Jan 2019 12 / 15

Formal languages and Parsing

Formal languages

A context-free grammar (CFG) be given by

terminals a, b, c , . . . (words u, v ,w , . . .)
non-terminals X ,Y ,Z , . . .
sentential forms α, β, e.g. XabY
rules r given by a type family ::= . We write r : (X ::= α) if X → α
is a rule of the CFG.

Word membership w ∈ α:

red
X ::= α w ∈ α

w ∈ X

ε
ε ∈ ε

tm
w ∈ β
aw ∈ aβ

nt
u ∈ X v ∈ β

uv ∈ Xβ

Proofs of w ∈ α are parse trees.

Abel Proof-Relevant Relations OSem Jan 2019 13 / 15

Formal languages and Parsing

Earley parser

Judgement u.X v .β

init
ε.S ε.S

predict
u.X v .Y β Y ::= α

uv .Y ε.α

scan
u.X v .aβ

u.X va.β
combine

u.X v .Y β uv .Y w .ε

u.X vw .β

To parse w ∈ S derive ε.S w .ε.

Soundness: If u.X v .β and w ∈ β then vw ∈ X .

Completeness: If u.X v .αβ and w ∈ α then u.X vw .β.

Abel Proof-Relevant Relations OSem Jan 2019 14 / 15

Formal languages and Parsing

Conclusion

Many CHI design patterns to discover!

Current trend: revisit parsing theory from a type-theoretic perspective.

Edwin Brady: bootstrapping Blodwen in Idris.

Large project: bootstrap Agda.

Abel Proof-Relevant Relations OSem Jan 2019 15 / 15

	Introduction
	Lists
	Simply-Typed Lambda-Calculus
	Formal languages and Parsing

