On Proof-Relevant Relations and Evidence-Aware Programming

Andreas Abel ${ }^{1}$
${ }^{1}$ Department of Computer Science and Engineering Chalmers and Gothenburg University, Sweden

TCS Oberseminar
Ludwig-Maximilians-Universität München
11 January 2019

Proof-relevance and evidence manipulation

- Curry-Howard-Isomorphism (CHI):
- propsitions-as-types
- proofs-as-programs
- Dependently-typed programming languages implement the CHI : e.g. Agda, Coq, Idris, Lean
- Allows maintainance and processing of evidence.
- For practical impact, we need a also programming culture; c.f. GoF, Design Patterns: Elements of Reusable Object-Oriented Software.

List membership

- Membership $a \in$ as inductively definable:

$$
\text { zero } \overline{a \in(a:: a s)} \quad \operatorname{suc} \frac{a \in a s}{a \in(b:: a s)}
$$

- Proofs of $a \in$ as are indices of a in as (unary natural numbers).
- Two different derivations of $3 \in(3:: 7:: 3::[])$, correspond to the occurrences of 3 :

$$
\begin{array}{rll}
\text { zero } & : & 3 \in(3:: 7:: 3::[]) \\
\text { suc (suc zero) } & : & 3 \in(3:: 7:: 3::[])
\end{array}
$$

Sublists

- Inductive sublist relation as $\subseteq b s$:

$$
\text { skip } \frac{a s \subseteq b s}{a s \subseteq(b:: b s)} \quad \text { keep } \frac{a s \subseteq b s}{(a:: a s) \subseteq(a:: b s)} \quad \text { done } \overline{[] \subseteq[]}
$$

- A proof of as $\subseteq b s$ describes which elements of bs should be dropped (skip) to arrive at as.
skip (keep done) : $(a::[]) \subseteq(a:: a::[])$

- \subseteq is a category.

$$
\begin{array}{lll}
\text { id } & : a s \subseteq a s & \text { reflexivity } \\
-_{-}- & :(a s \subseteq b s) \rightarrow(b s \subseteq c s) \rightarrow(a s \subseteq c s) & \text { transitivity }
\end{array}
$$

- Single extension

$$
\text { sgw }: \text { as } \subseteq(a:: a s)
$$

Membership in sublists

- Membership is inherited from sublists:

$$
\text { reindex }: \quad(a s \subseteq b s) \rightarrow(a \in a s) \rightarrow(a \in b s)
$$

adjusts the index of a in as to point to the corresponding a in $b s$.

- Trivium: reindex is a functor from _ $\subseteq_{\text {- to }}\left(a \in_{-}\right) \rightarrow\left(a \in_{-}\right)$.
- In category speak: reindex is a presheaf on $\subseteq^{\circ p}$.

Types, sets, propositions, singletons

- Our meta-language is (Martin-Löf) type theory: $a \in$ as and as $\subseteq b s$ are types, their proofs are inhabitants.
- Following Vladimir Voewodsky \dagger, types are stratified by their h-level into singletons (0), propositions (1), sets (2), groupoids (3),
(1) A type with a unique inhabitant is a singleton ("contractible").
(2) A type with at most one inhabitant is a proposition. In other words, a type with contractible equality is a proposition.
(3) A type with propositional equality is a set.
(9) A type with a set equality is a groupoid.

A type is of h-level $n+1$ if its equality is of h-level n.

- $a s \subseteq a s$ is a singleton; so is $a \in(a::[])$.
- as $\subseteq[]$ is a proposition; so is $a \in(b::[])$.
- In general $a \in$ as and $a s \subseteq b s$ are sets.

Natural deduction

- Inference rules of intuitionstic implicational logic $\Gamma \vdash A$:

$$
\operatorname{var} \frac{A \in \Gamma}{\Gamma \vdash A} \quad \text { app } \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \quad \text { abs } \frac{(A:: \Gamma) \vdash B}{\Gamma \vdash A \Rightarrow B}
$$

- Derivations of $\Gamma \vdash A$ are simply-typed lambda-terms with variables represented by de Bruijn indices $x:(A \in \Gamma)$.

```
t:= app (var zero) (var (suc zero)) : ( }A=>B::A::[]\vdashB
abs(abst) : ([] \vdashA=>(A=>B)=>B)
abs(abs (var (suc zero))) : A = (A=>A)
abs(abs(var zero)) : A = (A=>A)
```


Weakening

- Inferences stay valid under additional hypotheses (monotonicity):

$$
\text { weak : }(\Gamma \subseteq \Delta) \rightarrow(\Gamma \vdash A) \rightarrow(\Delta \vdash A)
$$

adjust indices of hypotheses (var)

- weak is a functor from $__{-} \subseteq$ to $(-\vdash A) \rightarrow(-\vdash A)$.

List.All: true on every element

- All P as: Predicate P holds on all elements of list as.

$$
[] \frac{}{\text { All } P[]} \quad\left(-::_{-}\right) \frac{P a \quad \text { All } P a s}{\text { All } P(a:: a s)}
$$

- Proofs of All P as are decorations of each list element a with further data of type $P a$.
- Soundness is retrieval of this data, completeness tabulation:

$$
\begin{array}{ll}
\text { lookup } & : A l l P a s \rightarrow a \in a s \rightarrow P a \\
\text { tabulate } & :(\forall a . a \in a s \rightarrow P a) \rightarrow \text { All } P \text { as }
\end{array}
$$

- Universal truth is passed down to sublists:

$$
\text { select }: \quad a s \subseteq b s \rightarrow \text { All } P \text { bs } \rightarrow \text { All } P \text { as }
$$

Substitution

- Inhabitants of All ($\left.\Gamma \vdash{ }_{-}\right) \Delta$ are
- proofs that all formulas in Δ are derivable from hypotheses Γ
- substitutions from Δ to Γ
- Parallel substitution
subst : All $\left(\Gamma \vdash{ }_{-}\right) \Delta \rightarrow \Delta \vdash A \rightarrow \Gamma \vdash A$
replaces hypotheses $A \in \Delta$ by derivations of $\Gamma \vdash A$.
- Subst $\Gamma \Delta:=\operatorname{All}\left(\Gamma \vdash_{-}\right) \Delta$ is a category:
id : SubstГГ
comp : Subst $\Gamma \Delta \rightarrow$ Subst $\Delta \Phi \rightarrow$ Subst $\Gamma \Phi$
- Singleton substitution

$$
\text { sg }: \Gamma \vdash A \rightarrow \operatorname{Subst} \Gamma(A:: \Gamma)
$$

Term equality and normal forms

- For $t, t^{\prime}:(\Gamma \vdash A)$ define $\beta \eta$-equality $t={ }_{\beta \eta} t^{\prime}$ as the least congruence over

$$
\begin{aligned}
& \beta \frac{t:(A:: \Gamma \vdash B) \quad u: \Gamma \vdash A}{\operatorname{app}(\operatorname{abs} t) u={ }_{\beta \eta} \operatorname{subst}(\operatorname{sg} u) t} \\
& \\
& \quad \eta \frac{t:(\Gamma \vdash A \Rightarrow B)}{t={ }_{\beta \eta} \text { abs }(\operatorname{app}(\text { weak sgw } t)(\text { var zero }))}
\end{aligned}
$$

- $\beta \eta$-normality $\operatorname{Nf} t$ and neutrality $\operatorname{Ne} t$ (where o base formula):

$$
\begin{aligned}
& \operatorname{var} \frac{x: A \in \Gamma}{\operatorname{Ne}(\operatorname{var} x)} \quad \text { app } \frac{\mathrm{Ne} t \quad \mathrm{Nf} u}{\mathrm{Ne}(\operatorname{app} t u)} \\
& \text { ne } \frac{\mathrm{Ne} t}{\mathrm{Nf} t} t:(\Gamma \vdash o) \quad \text { abs } \frac{\mathrm{Nf} t}{\mathrm{Nf}(\operatorname{abs} t)}
\end{aligned}
$$

Normalization

- Having a normal/neutral form:

$$
\begin{aligned}
& \mathrm{NF} t=\exists t^{\prime}={ }_{\beta \eta} t . \mathrm{Nf} t^{\prime} \\
& \mathrm{NE} t=\exists t^{\prime}={ }_{\beta \eta} t . \mathrm{Ne} t^{\prime}
\end{aligned}
$$

- Interpretation of formulas as types:

$$
\begin{array}{ll}
\llbracket A \rrbracket_{\Gamma} & : \Gamma \vdash A \rightarrow \text { Type } \\
\llbracket o \rrbracket_{\Gamma} t & = \\
\llbracket A E t \\
\llbracket A \rrbracket_{\Gamma} t= & \forall \Delta(w: \Gamma \subseteq \Delta)(u: \Delta \vdash A) \\
& \rightarrow \llbracket A \rrbracket_{\Delta} u \\
& \rightarrow \llbracket B \rrbracket_{\Delta}(\operatorname{app}(\text { weak } w t) u)
\end{array}
$$

- Soundness and completeness (combine to normalization):

$$
\begin{array}{ll}
\text { sound } & :(t: \Gamma \vdash A)(\sigma: \text { Subst } \Delta \Gamma) \rightarrow \llbracket\left\ulcorner\rrbracket_{\Delta} \sigma \rightarrow \llbracket A \rrbracket_{\Delta}(\text { subst } \sigma t)\right. \\
\text { complete } & : \llbracket A \rrbracket_{\Gamma} t \rightarrow \mathrm{NF} t
\end{array}
$$

Formal languages

- A context-free grammar (CFG) be given by
- terminals a, b, c, \ldots (words u, v, w, \ldots)
- non-terminals X, Y, Z, \ldots
- sentential forms α, β, e.g. XabY
- rules r given by a type family _ $::=$ _. We write $r:(X::=\alpha)$ if $X \rightarrow \alpha$ is a rule of the CFG.
- Word membership $w \in \alpha$:

$$
\begin{aligned}
& \text { red } \frac{X::=\alpha \quad w \in \alpha}{w \in X} \\
& \varepsilon \frac{\operatorname{tm} \frac{w \in \beta}{\varepsilon \in \varepsilon} \quad \text { nt } \frac{u \in X \quad v \in \beta}{u v \in X \beta}}{l}
\end{aligned}
$$

- Proofs of $w \in \alpha$ are parse trees.

Earley parser

- Judgement $u . X \rightsquigarrow v . \beta$

$$
\begin{aligned}
& \text { init } \frac{\text { predict } \frac{u . X \rightsquigarrow v . Y \beta \quad Y::=\alpha}{\varepsilon . S \rightsquigarrow \varepsilon . S}}{u v . Y \rightsquigarrow \varepsilon . \alpha} \\
& \text { scan } \frac{u \cdot X \rightsquigarrow v . a \beta}{u . X \rightsquigarrow v a . \beta} \quad \text { combine } \frac{u . X \rightsquigarrow v . Y \beta \quad u v . Y \rightsquigarrow w . \varepsilon}{u . X \rightsquigarrow v w . \beta}
\end{aligned}
$$

- To parse $w \in S$ derive $\varepsilon . S \rightsquigarrow w . \varepsilon$.
- Soundness: If $u . X \rightsquigarrow v . \beta$ and $w \in \beta$ then $v w \in X$.
- Completeness: If $u . X \rightsquigarrow v . \alpha \beta$ and $w \in \alpha$ then $u . X \rightsquigarrow v w . \beta$.

Conclusion

- Many CHI design patterns to discover!
- Current trend: revisit parsing theory from a type-theoretic perspective.
- Edwin Brady: bootstrapping Blodwen in Idris.
- Large project: bootstrap Agda.

