On Proof-Relevant Relations and Evidence-Aware
Programming

Andreas Abel!

IDepartment of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

TCS Oberseminar
Ludwig-Maximilians-Universitat Miinchen
11 January 2019

Proof-Relevant Relations OSem Jan 2019 1/15

Introduction

Proof-relevance and evidence manipulation

e Curry-Howard-Isomorphism (CHI):
@ propsitions-as-types
e proofs-as-programs

@ Dependently-typed programming languages implement the CHI: e.g.
Agda, Coq, Idris, Lean

@ Allows maintainance and processing of evidence.

@ For practical impact, we need a also programming culture; c.f. GoF,
Design Patterns: Elements of Reusable Object-Oriented Software.

Proof-Relevant Relations OSem Jan 2019 2/15

List membership
@ Membership a € as inductively definable:

acas
zero ————— suc ——
ac(a:as) ac (b:: as)

@ Proofs of a € as are indices of a in as (unary natural numbers).

e Two different derivations of 3 € (3::7 :: 3::[]), correspond to the
occurrences of 3:

zero @ 3€(3:7:3:)
suc(suczero) : 3€(3:7:3:)

Proof-Relevant Relations OSem Jan 2019

3/15

Sublists
@ Inductive sublist relation as C bs:
as C bs as C bs

kip —————— k
wp as C (b :: bs) oP (a:as) C(a:: bs)

done

Dci

@ A proof of as C bs describes which elements of bs should be dropped
(skip) to arrive at as.

skip (keepdone) : (a:[]) C(a:a:])
keep (skipdone) : (a::[]) C

@ C is a category.

id . as C as reflexivity
o : (as C bs) — (bs C cs) — (as C cs) transitivity
@ Single extension
sgw : asC (a: as)
Proof-Relevant Relations OSem Jan 2019 4/15

Membership in sublists

@ Membership is inherited from sublists:
reindex : (as C bs) — (a € as) — (a € bs)
adjusts the index of a in as to point to the corresponding a in bs.

@ Trivium: reindex is a functor from - C _to (a €) — (a €).

@ In category speak: reindex is a presheaf on C°P,

Proof-Relevant Relations OSem Jan 2019 5/15

Types, sets, propositions, singletons

@ Our meta-language is (Martin-Lof) type theory: a € as and as C bs
are types, their proofs are inhabitants.

e Following Vladimir Voewodskyt, types are stratified by their h-level
into singletons (0), propositions (1), sets (2), groupoids (3),
O A type with a unique inhabitant is a singleton (“contractible”).
@ A type with at most one inhabitant is a proposition. In other words, a
type with contractible equality is a proposition.
© A type with propositional equality is a set.
© A type with a set equality is a groupoid.

A type is of h-level n+ 1 if its equality is of h-level n.
@ as C as is a singleton; sois a € (a:: []).
@ as C [] is a proposition; so is a € (b :: []).

@ In general a € as and as C bs are sets.

Proof-Relevant Relations OSem Jan 2019 6/15

Simply-Typed Lambda-Calculus

Natural deduction

@ Inference rules of intuitionstic implicational logic I - A:

Ael r'-A=2B r=A (A=T)EB
app abs —
Fr=A r=B r'-A=2B

@ Derivations of [= A are simply-typed lambda-terms with variables
represented by de Bruijn indices x : (A€ IN).

t := app (var zero) (var (suczero)) : (A= B:A:[] FB)

abs (abs t) : (J]FA= (A= B)=B)
abs (abs (var (suc zero))) . A= (A= A)
abs (abs (var zero)) . A= (A= A)

Proof-Relevant Relations OSem Jan 2019 7/15

Weakening

@ Inferences stay valid under additional hypotheses (monotonicity):
weak @ (FTCA)—=(TFA) = (AFA
adjust indices of hypotheses (var)

e weak is a functor from - C _to (- - A) — (- F A).

Proof-Relevant Relations OSem Jan 2019 8/15

Simply-Typed Lambda-Calculus

List.All: true on every element

@ All P as: Predicate P holds on all elements of list as.

Pa All P as
AllP (a:: as)

i (:)

All P[]

@ Proofs of All P as are decorations of each list element a with further
data of type P a.

@ Soundness is retrieval of this data, completeness tabulation:

lookup : AllPas —>acas— Pa
tabulate : (Va.a€as— Pa) — AllPas

@ Universal truth is passed down to sublists:

select : as C bs — All P bs — All P as

Proof-Relevant Relations OSem Jan 2019 9/15

Simply-Typed Lambda-Calculus

Substitution
@ Inhabitants of All (I F _) A are

e proofs that all formulas in A are derivable from hypotheses I
e substitutions from A to '

o Parallel substitution
subst : AT+)A—-AFA—-TFEA

replaces hypotheses A € A by derivations of [- A.
@ Substl A :=All(I" = _) A is a category:

id : Substl'T
comp : Substl A — Subst A ® — Substl ®

@ Singleton substitution

sg : HA—Substl (A::T)

Proof-Relevant Relations OSem Jan 2019

10/15

Simply-Typed Lambda-Calculus

Term equality and normal forms

e For t,t': (I = A) define fn-equality t =g, t’ as the least congruence

over
t:(A=T FB) u:THA
app (abs t) u =g, subst (sg u) t

t:(T-A= B)

n

@ (n-normality Nf t and neutrality Ne ¢ (where o base formula):

x:Ael Ne t Nf u
var ———— app ————
Ne (var x) PP "Ne (apptu)
Ne t Nf t

t:(I'Fo) ab

ne

® Nf (abst)

Proof-Relevant Relations OSem Jan 2019

t =g, abs (app (weak sgw t) (var zero))

11/15

Simply-Typed Lambda-Calculus

Normalization

e Having a normal/neutral form:

NFt = 3t/ =g, t. Nf ¢/
NEt = 3t/ =g, t. Net

@ Interpretation of formulas as types:

[Al; - T'HFA—= Type
ol t = NEt¢
[A= B];t = VYA (w:T CA)(u:AFA)

= [Alav
— [B]a(app (weak w t) u)

@ Soundness and completeness (combine to normalization):

sound : (t:T FA)(o:Subst AT) — [[a0 — [A]a(substo t)
complete : [A]t — NFt

Proof-Relevant Relations OSem Jan 2019 12 /15

Formal languages and Parsing

Formal languages

@ A context-free grammar (CFG) be given by
terminals a, b, c,... (words u, v, w,...)
non-terminals X, Y, Z, ...

sentential forms «, 3, e.g. XabY

is a rule of the CFG.
@ Word membership w € a:

X =« W E «
red
we X
w e ue X vep
€ tm — nt
EE€e¢ aw € af uv € Xp

@ Proofs of w € « are parse trees.

Proof-Relevant Relations OSem Jan 2019

rules r given by a type family _::= _. We write r: (X = a) if X — «

13/15

Formal languages and Parsing

Earley parser
o Judgement u.X ~» v.f8

uX~~~v.Yp Y =«

int —— predict
€S ~eS uv.Y ~ .«
uX ~v.af ouX~v.YpS uv.Y ~> w.e
scan ——— combine
u.X ~ va. uX ~ vw.

o To parse w € S derive .5 ~ w.c.
@ Soundness: If u.X ~ v.3 and w € (§ then vw € X.

o Completeness: If u.X ~ v.af and w € « then u.X ~ vw.f.

Proof-Relevant Relations OSem Jan 2019 14 /15

Conclusion
Many CHI design patterns to discover!

Current trend: revisit parsing theory from a type-theoretic perspective.

Edwin Brady: bootstrapping Blodwen in Idris.

Large project: bootstrap Agda.

Proof-Relevant Relations OSem Jan 2019 15/15

	Introduction
	Lists
	Simply-Typed Lambda-Calculus
	Formal languages and Parsing

