Termination of Mutually Recursive Functions
Andreas Abel

POP Seminar, CMU Computer Science
May 26, 2000

1. Introduction
2. The foetus Project
Slide 1

3. Mutually Recursive Functions with One Argument

4. Mutually Recursive Functions with Several Arguments

Recursion over Inductive Types

e Functional programming languages and logical frameworks base upon
A-calculus enriched with inductive types.
Examples: ML, LEGO

Slide 2 e Definition of functions/constants by recursion over inductive type possible.
ide

e Standard means: recursor/elimination. Ensures totality.
Example:

half” = RN (AzB.0) AN AfB=N_ RB (f true) (1 + (f false)))
half = An'V.half’ n false

Drawback: Misses intuition, readability, usability.

Slide 3

Slide 4

Pattern Matching

o Alternative: “free recursive definitions”.
Example:

half 0
half 1
half n4+2 = (half n)+1

=0
=0

But: syntax permits non-total functions = totality check required!

e LEGO allows to implement proofs by pattern matching, but fails to perform
totality check = invalid proofs possible!

The foetus Project

1996 Munich Type Theory Implementation (T. Altenkirch)

1998 Implementation of termination checker foetus for a sublanguage of MuTTI
(A. Abel)

1999 Reimplementation of termination checker into Agda (C. Coquand,
Chalmers, Sweden)

1999 Verification I: Wellfoundedness of domains [AA99]

2000 Verification II: Single Recursive Functions [Abe00]
Verification III: Mutually Recursive Functions (in progress)

Slide 5

Slide 6

Wellfoundedness and Accessibility

Let S be a set and < a relation on S. The accessible part Accs. C S is defined as
the smallest set closed under

w € Accs <= Vv < w. v € Accs
Accessible part induction (wellfounded induction):

Yw e S. (Vv <w. P(v)) = P(w)
Yw € Accs.. P(w)

Wellfounded part WF C S:
weWFs (<= Af:N— 5. f(0)=wAVneN. f(n)> f(n+1)
Brouwer’s bar theorem (axiom of bar induction):
WEF< C Accs

(Classically provable.)

Single Recursive Function

e Assume a wellfounded domain (D, <), i.e., D = Accs.

e Provided that:

1. all statements (except the recursive calls) in f terminate

2. in each recursive call the argument v is smaller than the function input w
we can define termination of function f at argument w € D as:
Yo < w. fQu
fQw |

e Goal: Yw € D. fQuw |}

e Proof by wellfounded induction.

Mutually Recursive Functions with a Single Argument

Let F be a finite set of function symbols.

g=f<—=f—yg “f calls g”

Straightforward extension of predicate “terminates at”:

Slide 7
fQuw] <= Vg=<f, v<w. gQul|

FQwl = VfeF. fawl

Goal: Yw € D. FQw |}

Proof by wellfounded induction.

But: criterion to strict!

Call Graphs

e Sufficient: In each call cycle
f—g—...— f
the argument is decreased once.

e Functions and calls can be organized in a labelled directed graph:

f—9

h

<
Slide 8 ’ N
\/

e Indirect (combined) calls:

R R y
f—g9 f—"9g g—

Ftg e

<
<
<
?

=~ AN A
~ A A
~

Good Call Graphs

e Let C be a call graph.

n+1
C good <= v,fe}".v,fﬁflﬁ,._.ﬁf”ngR7

e Good call graphs have two properties:
Slide 9 b prop

Each cycle
R
f—1
1. contains only calls that are at least preserving:
Vi. R; € {<,<}

2. contains at least one decreasing call:

3. R =

No Infinite Call Sequences

e Goal: All call sequences f(w)~+ g(v) ~ ... terminate.
e Evaluation ordering < on F x D must fulfill
?
(g,0) < (fiw) < f—yg
<
VI(f—=gAv<w)

<
Slide 10 V(f——gAv<w)

e Theorem: For good call graphs the most general ordering < is wellfounded:

WF>>:]:X’D

e Proof: Consider an infinite call sequence. Since F is finite, one particular
function symbol f must appear infinitly often. Goodness of the call graph
implies an infinite descend on the argument of f. Contradiction!

Classical Termination Proof

New (weaker) termination predicate:

fQw |} <= V(g,v) < (f,w). g@Quv ||

Slide 11
e Goal: Vf e F,weD. fQw |} .
e Proof by wellfounded induction, making use of the bar theorem.
e Question 1: Can we proof termination constructively without bar
induction?
Alternative Goodness Characterization
e A call graph C is good if there is a bijective naming
FUR o fma L frme
of the function symbols in F s.th.
Slide 12 fr = R = i >

[= f22 = iy >0V (i =2 A j1 > j2)

filjl i, fizjz = i >y

e This characterization has been used, e.g., by Frank Pfenning and Carsten
Schiirmann for termination checking in the Twelf system [PS98].

e Question 2: Are the two criteria equivalent?

Ordering on Function Symbols

Define two relations <, <1 on F by
g=f = f—ghg/=>"f

, <
g f = f—=yg

Theorem: Both relations are wellfounded.

Slide 13
e Proof: In both cases the transitive closure is irreflexive. Since F is finite, this
entails wellfoundedness.
f=Yf = f—=TfNfTf
<
f<atf = f=7tFf (contradicts goodness)
e The modified lexicographic product < ®’ < is wellfounded, too, and can be
completed to a total ordering. Answer 2: yes!
g =@ f = g=<fV@=2frg<af)
Slide 14

Wellfounded Evaluation Ordering

e Define relation < on F x D:

(g:v) < (fiw) = g=<f
vV (g=f N v<w
V w<w Ag<af)
Slide 15
e Theorem: < is a wellfounded evaluation ordering.

e Proof: Wellfounded: < is a modified lexicographic product of wellfounded
relations.
Evaluation ordering;:

o
f—9 = g=<f (Goodness property 1)
fig/\v<w = g=3fAv<w

<
f—grhv<w = g3fAv<wAg<af

e Now we can proof Vw € D, f € F. fQuw || by wellfounded induction.
Slide 16 Answer 1: yes!

Towards Functions with Several Arguments

fun flat [] =[]
| flat (1::1s) = aux 1 1s
and aux [] 1ls = flat 1ls
Slide 17 | aux (x::xs) 1s = x :: aux xs ls;

Call Graphs for Functions with Several Arguments

e Let F be a finite set of function symbols with arity mapping ar : F — N
e A call graph is a labelled directed multi-graph with edges

f=%g
s.th.
o : ar(g) — ar(f) permutation of arguments
Slide 18 a : ar(g) — {<, <, 7} size change information

e A call graph is good iff
Vi 25 £ 3k o =id | kAlexE(a)
where we refer to k as number of relevant arguments and
lext (a) = I <k.a(k')=“<"AVi<k.a(i)=“<"
lex® (a) <= Vi<k. a(i)=“<"

Iexl;(a) = lexi(a) Vlext (a)

Complications

o Attributes “decreasing” (<) and “preserving” (<) of a call are no longer
global. The call f — g is decreasing for f and preserving for g.

(o)
(- ><i<>i><)

Slide 19 (:)

e Two call cycles may have a different number of relevant arguments. Here
k(g— f—g)=1land k(g —h—g) =2.

(F) (7 2)
f/\g/\h
o o

A

Argument Trace

e Arguments are being permuted = we need an argument trace

Tr—g :ar(g) — ar(f) for all f,g e F

Slide 20
e Requirements: For each cycle h —* f 2% g —* h with k relevant
arguments
Th—h = id [k (1)
Tfoh = 00Tgon |k (2)

10

e Example: 74,y =id, not 7y = (1 2).

Slide 21 fe—

Call Classification

e We classify the calls as decreasing resp. (strictly) preserving by
(Re{<,=<}):

classh(f 2% g) = VZ=h—* f 2% g —"h. |eX];g(Z)(

e Property 1. In each cycle each call is preserving

Slide 22 VZ =h—"f 2% g—" h. classl(f =% g)

e Classification of transitions:
f=g = mfVfTSg class™ (f 2% g)
/ é g = Vhrf3f 5y Classi(f LN q)
[y = g
h = f is defined as h —* f —* h.

11

Evaluation Ordering

Slide 23 °

We define g < f as before and

<
g fi=[f—=yg

Theorem: Both relations are wellfounded.

Define v <};Hq w as “v is smaller than w wrt. to h in a call from f to g”.
This relation is wellfounded.

Theorem: The relation < defined by
(g,v) < (fyw) <= g=<fVvgxfAr(Vhv S?—w w)
A ((Zh. v <j}»ﬂg w)Vg<f)
is a wellfounded evaluation ordering.

Proof: « is a lexicographic product of three wellfounded relations. The
second of these is a multiset ordering of wellfounded relations indexed by h.

Further Extensions

Weaken the definition of good to allow:

Multiset orderings.

Cycles of higher order. Example:

zip [] 1=
Slide 24 | (x::xs) 1 =x :: zip 1 xs;
References

[AA99] Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural

recursion. Submitted to the Journal of Functional Programming, December
1999.

[Abe00] Andreas Abel. Specification and verification of a formal system for structurally

recursive functions. Submitted to TYPES’99, January 2000.

12

[PS98] Frank Pfenning and Carsten Schiirmann. Twelf user’s guide. Technical report,
Slide 25 Carnegie Mellon University, 1998.

13

