
Wellfounded Recursion with Copatterns

Andreas Abel1

1Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

Coinduction Workshop
Shonan Village, near Tokyo, Japan

7-10 October 2013

This is joint work with Brigitte Pientka.

Abel (Chalmers) Copatterns Shonan 1 / 22

Talk in 1 Minute

Codata is described by observations.

Syntactically, these are copatterns.

Coinduction is induction on observation depth.

Observation depth is tracked via sized types.

Sized types realize a simple but powerful termination/productivity
checker,
which scales to higher-order and abstraction.

Abel (Chalmers) Copatterns Shonan 2 / 22

Introduction

Productivity Checking

Coinductive structures: streams, processes, servers, continuous
computation. . .

Productivity: each request returns an answer after some time.

Request on stream: give me the next element.

Dependently typed languages have a productivity checker:

nats = 0 :: map (1 +) nats

Rejected by Coq and Agda’s syntactic guardedness check.

Abel (Chalmers) Copatterns Shonan 3 / 22

Introduction

Better Productivity Checking with Sized Types?

MiniAgda: Prototypical implementation of sized types
(with Karl Mehltretter).

http://www.tcs.ifi.lmu.de/˜abel/miniagda/

On-paper approaches to sized types did not scale well to deep pattern
matching.

For corecursive definitions, a dual to patterns was called for:

Copatterns

Abel (Chalmers) Copatterns Shonan 4 / 22

http://www.tcs.ifi.lmu.de/~abel/miniagda/

Introduction

Coinduction and Dependent Types

Consider the corecursively defined stream a :: a :: a :: . . .

repeat a = a :: repeat a

A dilemma:

Checking dependent types needs strong reduction.
Corecursion needs lazy evaluation.

The current compromise (Coq, Agda):

Corecursive definitions are unfolded only under elimination.

repeat a 6−→
(repeat a).tail −→ (a :: repeat a).tail −→ repeat a

Reduction is context-sensitive.

Abel (Chalmers) Copatterns Shonan 5 / 22

Introduction

Issues with Context-Sensitive Reduction

Subject reduction is lost (Giménez 1996, Oury 2008).

The Fibonacci stream is still diverging:

fib = 0 :: 1 :: adds fib (fib.tail)

fib.tail −→ 1 :: adds fib (fib.tail)
−→ 1 :: adds fib (1 :: adds fib (fib.tail))
−→ . . .

At POPL, we presented a solution:

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer.
Copatterns: Programming infinite structures by observations.
In POPL’13, pages 27–38. ACM, 2013.

Abel (Chalmers) Copatterns Shonan 6 / 22

Copatterns

Copatterns — The Principle

Define infinite objects (streams, functions) by observations.

A function is defined by its applications.

A stream by its head and tail.

repeat a .head = a
repeat a .tail = repeat a

These equations are taken as reduction rules.

repeat a does not reduce by itself.

No extra laziness required.

Abel (Chalmers) Copatterns Shonan 7 / 22

Copatterns

Deep Observations

Any covering set of observations allowed for definition:

fib.head = 0
fib.tail.head = 1
fib.tail.tail = adds fib (fib.tail)

Now fib.tail is stuck. Good!

Depth 0 1 2 . . .

Observations id .head .tail.head . . .
.tail .tail.tail . . .

Abel (Chalmers) Copatterns Shonan 8 / 22

Productivity

Stream Productivity

Definition (Productive Stream)

A stream is productive if all observations on it converge.

Example of non-productiveness:

bla = 0 :: bla.tail

Observation bla.tail diverges.

This is apparent in copattern style...

bla .head = 0
bla .tail = bla .tail

Abel (Chalmers) Copatterns Shonan 9 / 22

Productivity

Proving Productivity

Theorem (repeat is productive)

repeat a .tailn converges for all n ≥ 0.

Proof.

By induction on n.

Base (repeat a).tail0 = repeat a does not reduce.

Step (repeat a).tailn+1 = (repeat a).tail.tailn −→ (repeat a).tailn which
converges by induction hypothesis.

Abel (Chalmers) Copatterns Shonan 10 / 22

Productivity

Productive Functions

Definition (Productive Function)

A function on streams is productive if it maps productive streams to
productive streams.

(adds s t).head = s.head + t.head
(adds s t).tail = adds (s.tail) (t.tail)

Productivity of adds not sufficient for fib!

Malicious adds:

adds′ s t = t.tail
fib.tail.tail −→ adds′ fib (fib.tail)

−→ fib.tail.tail −→ . . .

Abel (Chalmers) Copatterns Shonan 11 / 22

Productivity

i -Productivity

Definition (Productive Stream)

A stream s is i-productive if all observations of depth < i converge.
Notation: s : Streami .

Lemma

adds : Streami → Streami → Streami for all i .

Theorem

fib is i -productive for all i .

Proof, case i + 2: Show fib is (i + 2)-productive.

Show fib.tail.tail is i-productive.
IH: fib is (i + 1)-productive, so fib is i-productive. (Subtyping!)
IH: fib is (i + 1)-productive, so fib.tail is i-productive.
By Lemma, adds fib (fib.tail) is i-productive.

Abel (Chalmers) Copatterns Shonan 12 / 22

Type System

Type System for Productivity

“Church Fω with inflationary and deflationary fixed-point types”.

Coinductive types = deflationary iteration:

StreamiA =
⋂
j<i

(A× StreamjA)

Bidirectional type-checking:

Type inference Γ ` r ⇒ A and checking Γ ` t ⇔ A .

Γ ` r ⇒ StreamiA

Γ ` r .tail ⇒ ∀j<i .StreamjA Γ ` a < i

Γ ` r .tail a : StreamaA

Abel (Chalmers) Copatterns Shonan 13 / 22

Type System

Copattern typing

Fibonacci again (official syntax with explicit sizes).

fib : ∀i . |i | ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = adds k (fib k) (fib j .tail k)

Copattern inference ∆ | A ` ~q ⇒ C (linear).

· | StreamkN ` · ⇒ StreamkN
k<j | ∀k<j . StreamkN ` k ⇒ StreamkN
k<j | StreamjN ` .tail k ⇒ StreamkN

j<i , k<j | ∀j<i . StreamjN ` j .tail k ⇒ StreamkN
j<i , k<j | StreamiN ` .tail j .tail k ⇒ StreamkN

Type of recursive call fib : ∀i ′<i . Streami ′N
Abel (Chalmers) Copatterns Shonan 14 / 22

Type System

Pattern typing rules

∆; Γ `∆0 p ⇔ A Pattern typing (linear).

In: ∆0, p,A with ∆0 ` A. Out: ∆, Γ with ∆0,∆; Γ ` p ⇔ A.

·; x :A `∆0 x ⇔ A ·; · `∆0 () ⇔ 1

∆1; Γ1 `∆0 p1 ⇔ A1 ∆2; Γ2 `∆0 p2 ⇔ A2

∆1,∆2; Γ1, Γ2 `∆0 (p1, p2) ⇔ A1 × A2

∆; Γ `∆0 p ⇔ ∃j<a↑. Sc (µjS)

∆; Γ `∆0 c p ⇔ µaS

∆; Γ `∆0,X :κ p ⇔ F @κ X

X :κ,∆; Γ `∆0
Xp ⇔ ∃κF

Abel (Chalmers) Copatterns Shonan 15 / 22

Type System

Copattern typing rules

∆; Γ | A `∆0
~q ⇒ C Pattern spine typing. In: ∆0,A, ~q with ∆0 ` A.

Out: ∆, Γ,C with ∆0,∆; Γ ` C and ∆0,∆; Γ, z :A ` z ~q ⇒ C .

·; · | A `∆0 ·⇒ A

∆1; Γ1 `∆0 p ⇔ A ∆2; Γ2 | B `∆0
~q ⇒ C

∆1,∆2; Γ1, Γ2 | A→ B `∆0 p ~q ⇒ C

∆; Γ | ∀j<a↑.Rd (ν jR) `∆0
~q ⇒ C

∆; Γ | νaR `∆0 .d ~q ⇒ C

∆; Γ | F @κ X `∆0,X :κ ~q ⇒ C

X :κ,∆; Γ | ∀κF `∆0 X ~q ⇒ C

Abel (Chalmers) Copatterns Shonan 16 / 22

Type System

Semantics

Reduction:

~e / ~q ↘ σ

λ{~q → t}~e ~e ′ 7→ tσ~e ′
λDk ~e 7→ t

f ~e 7→ t
(f :A = ~D) ∈ Σ

Types are reducibility candidates A:

A is a set of strongly normalizing terms.
A is closed under reduction.
A is closed under addition of well-behaved neutrals (redexes and
terminally stuck terms).
A is closed under simulation:
r is simulated by r1..n if r ~e 7→ t implies rk ~e 7→ t for some k.

Abel (Chalmers) Copatterns Shonan 17 / 22

Type System

Conclusions

A unified approach to termination and productivity: Induction.
Recursion as induction on data size.
Corecursion as induction on observation depth.

Adaption of sized types to deep (co)patterns:

Shift to in-/deflationary fixed-point types.
Bounded size quantification.

Implementations:
MiniAgda: ready to play with!
Agda: under development.

Andreas Abel and Brigitte Pientka.
Wellfounded recursion with copatterns:
A unified approach to termination and productivity.
In International Conference on Functional Programming (ICFP 2013),
2013.

Abel (Chalmers) Copatterns Shonan 18 / 22

Type System

Some Related Work

Sized types: many authors (1996–)

Inflationary fixed-points: Dam & Sprenger (2003)

Observation-centric coinduction and coalgebras: Hagino (1987),
Cockett & Fukushima (Charity, 1992)

Focusing sequent calculus: Zeilberger & Licata & Harper (2008)

Form of termination measures taken from Xi (2002)

Guarded types: next talk!

Abel (Chalmers) Copatterns Shonan 19 / 22

	Introduction
	Copatterns
	Productivity
	Type System

