Wellfounded Recursion with Copatterns J

Andreas Abell

IDepartment of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

Coinduction Workshop
Shonan Village, near Tokyo, Japan
7-10 October 2013

This is joint work with Brigitte Pientka.

Abel (Chalmers) Copatterns Shonan 1/22

Talk in 1 Minute

Codata is described by observations.
Syntactically, these are copatterns.
Coinduction is induction on observation depth.

Observation depth is tracked via sized types.

Sized types realize a simple but powerful termination/productivity
checker,
which scales to higher-order and abstraction.

Abel (Chalmers) Copatterns Shonan 2/22

Introduction

Productivity Checking

Coinductive structures: streams, processes, servers, continuous
computation. ..

Productivity: each request returns an answer after some time.

Request on stream: give me the next element.

Dependently typed languages have a productivity checker:

nats = 0 :: map (1 + _) nats

Rejected by Coq and Agda’s syntactic guardedness check.

Abel (Chalmers) Copatterns Shonan 3/22

Introduction

Better Productivity Checking with Sized Types?

@ MiniAgda: Prototypical implementation of sized types
(with Karl Mehltretter).

http://www.tcs.ifi.lmu.de/ " abel/miniagda/

@ On-paper approaches to sized types did not scale well to deep pattern
matching.

@ For corecursive definitions, a dual to patterns was called for:

Copatterns

Abel (Chalmers) Copatterns Shonan 4 /22

http://www.tcs.ifi.lmu.de/~abel/miniagda/

Coinduction and Dependent Types
o Consider the corecursively defined stream a::a::a:: ...
repeat a = a :: repeat a

A dilemma:

o Checking dependent types needs strong reduction.
e Corecursion needs lazy evaluation.

@ The current compromise (Coq, Agda):

Corecursive definitions are unfolded only under elimination.

repeat a +—

(repeat a).tail — (a:: repeat a).tail — repeat a

Reduction is context-sensitive.

Abel (Chalmers) Copatterns Shonan 5/22

Introduction

Issues with Context-Sensitive Reduction

@ Subject reduction is lost (Giménez 1996, Oury 2008).

@ The Fibonacci stream is still diverging:

fib =0 :: 1:: adds fib (fib.tail)

fib.tail —> 1 :: adds fib (fib.tail)
— 1 adds fib (1 :: adds fib (fib.tail))
—

o At POPL, we presented a solution:

[3 A. Abel, B. Pientka, D. Thibodeau, and A. Setzer.
Copatterns: Programming infinite structures by observations.
In POPL’13, pages 27-38. ACM, 2013.

Abel (Chalmers) Copatterns Shonan 6 /22

Copatterns

Copatterns — The Principle

@ Define infinite objects (streams, functions) by observations.
@ A function is defined by its applications.
@ A stream by its head and tail.
repeat a .head = a
repeat a .tail = repeata
@ These equations are taken as reduction rules.
@ repeat a does not reduce by itself.
@ No extra laziness required.

Abel (Chalmers) Copatterns Shonan 7/22

Copatterns

Deep Observations

@ Any covering set of observations allowed for definition:

fib.head =0
fib.tail.lhead = 1
fib.tail.tail = adds fib (fib.tail)

@ Now fib.tail is stuck. Good!

Depth o 1 | 2 |..
Observations | id | .head | .tail.head | ...
.tail .tail.tail

Abel (Chalmers) Copatterns Shonan 8 /22

Productivity

Stream Productivity

Definition (Productive Stream)

A stream is productive if all observations on it converge.

@ Example of non-productiveness:
bla =0 :: bla.tail
@ Observation bla.tail diverges.
@ This is apparent in copattern style...
bla .head = 0

bla .tail = bla .tail

Abel (Chalmers) Copatterns Shonan

9/ 22

Productivity

Proving Productivity

Theorem (repeat is productive)

repeat a .tail” converges for all n > 0.

Proof.
By induction on n.
Base (repeat a).tail® = repeat a does not reduce.

Step (repeat a).tail”™! = (repeat a).tail.tail” — (repeat a).tail” which
converges by induction hypothesis.

Abel (Chalmers) Copatterns Shonan 10 / 22

Productivity

Productive Functions

Definition (Productive Function)

A function on streams is productive if it maps productive streams to
productive streams.

(adds s t).head = s.head + t.head
(adds s t).tail = adds (s.tail) (t.tail)

@ Productivity of adds not sufficient for fib!
@ Malicious adds:

adds’ s t = t.tail
fib.tail.tail — adds’ fib (fib.tail)
— fib.tail.tail — . ..

Abel (Chalmers) Copatterns Shonan 11 /22

i-Productivity

Definition (Productive Stream)

A stream s is /-productive if all observations of depth < / converge.
Notation: s : Stream’.

Lemma

adds : Stream’ — Stream’ — Stream’ for all i.

Theorem

fib is i-productive for all i.

Proof, case i + 2: Show fib is (i + 2)-productive.

Show fib.tail.tail is i-productive.

IH: fib is (/ + 1)-productive, so fib is i-productive. (Subtyping!)

IH: fib is (/ + 1)-productive, so fib.tail is i-productive.

By Lemma, adds fib (fib.tail) is i-productive. O

Abel (Chalmers) Copatterns Shonan 12 / 22

Type System

Type System for Productivity

“Church F¥ with inflationary and deflationary fixed-point types”.

Coinductive types = deflationary iteration:

Stream’A = ﬂ (A x Stream’ A)
Jj<i

Bidirectional type-checking:
Type inference [T = r = A| and checking | Ft &= Al

I+ r = Stream’A

[F r.tail = Vj<i.Stream/A Ma<i

I - r.tail a: Stream?A

Abel (Chalmers) Copatterns Shonan 13 / 22

Type System

Copattern typing

e Fibonacci again (official syntax with explicit sizes).

fib : Vi. |i| = Stream’'N

fib i .head j =0

fibj .tail j.head k = 1

fib i .tail j.tail k = adds k (fib k) (fib .tail k)
e Copattern inference ‘ AlAFG= C‘ (linear).

- Stream N | - = Stream*N
k<j | Yk<j.Stream*N k = Stream"N
k<j | Stream/N tail k = Stream*N

j<i k<j| Vj<i.StreamN F j .tailk = Stream*N
j<ik<j | Stream'N F .tail j .tail k = Stream*N

o Type of recursive call fib : Vi'</i. Stream’ N

Abel (Chalmers) Copatterns Shonan 14 / 22

Type System

Pattern typing rules

‘A; Fao pE A‘ Pattern typing (linear).
In: Ag, p, Awith Ag H A. Out: A, T with Ao, A;T Fpe= A

GXAFp, x EA coka,) 1

A1;T1 Fay p1 & A Ao Ty Fpy p2 &= Ao
Ay, Ag;T1,To Fag (p1, p2) & Ar X Ao

AT Fpa, pe=3j<al. Sc(wWS) AT Fagxs p = F 0 X

AT Fa, cp = p?S Xk, T Fp, Xp =3 F

Abel (Chalmers) Copatterns Shonan

15 / 22

Type System

Copattern typing rules

‘A; FrNAFA G= C‘ Pattern spine typing. In: Ag, A, g with Ay = A.
Out: AT, C with Ag, A;T F C and Ag, AT, zAFzg= C.

AT Fa, pEA A2;r2|BFA06:;C
G| Aba, A A, 80T, T2 | A= B Eagpg=C

AT |Vj<al.Ry(WR) Fa, = C ATIFO X Fagxnd= C
AT |[vaR Fp, dG= C Xk, AT | VoF Fa, XG= C

Abel (Chalmers) Copatterns Shonan 16 / 22

Type System

Semantics
@ Reduction:
§/G\ 0 ADy &+ t B}
fA=D)
Mi— 11 éé — to faot ¢)€

@ Types are reducibility candidates A:
e A is a set of strongly normalizing terms.
o A is closed under reduction.
o A is closed under addition of well-behaved neutrals (redexes and
terminally stuck terms).
o A is closed under simulation:
r is simulated by r_, if r € — t implies ry € — t for some k.

Abel (Chalmers) Copatterns Shonan

17 / 22

Type System

Conclusions

@ A unified approach to termination and productivity: Induction.
o Recursion as induction on data size.
o Corecursion as induction on observation depth.

e Adaption of sized types to deep (co)patterns:

o Shift to in-/deflationary fixed-point types.
e Bounded size quantification.
@ Implementations:
e MiniAgda: ready to play with!
o Agda: under development.

[3 Andreas Abel and Brigitte Pientka.
Wellfounded recursion with copatterns:
A unified approach to termination and productivity.
In International Conference on Functional Programming (ICFP 2013),
2013.
Copatterns Shonan 18 / 22

Type System

Some Related Work

Sized types: many authors (1996-)

Inflationary fixed-points: Dam & Sprenger (2003)

Observation-centric coinduction and coalgebras: Hagino (1987),
Cockett & Fukushima (Charity, 1992)

Focusing sequent calculus: Zeilberger & Licata & Harper (2008)

Form of termination measures taken from Xi (2002)

(]

Guarded types: next talk!

Abel (Chalmers) Copatterns Shonan 19 / 22

	Introduction
	Copatterns
	Productivity
	Type System

