
Iteration and Coiteration Schemes for

Higher-Order and Nested Datatypes

Andreas Abel a,∗, Ralph Matthes b, Tarmo Uustalu c

aDepartment of Computer Science, Chalmers University of Technology
Rännvägen 6, SWE-41296 Göteborg, Sweden

bInstitut für Informatik der Ludwig-Maximilians-Universität München
Oettingenstraße 67, D-80538 München, Germany

cInstitute of Cybernetics, Tallinn Technical University
Akadeemia tee 21, EE-12618 Tallinn, Estonia

Abstract

This article studies the implementation of inductive and coinductive construc-
tors of higher kinds (higher-order nested datatypes) in typed term rewriting, with
emphasis on the choice of the iteration and coiteration constructions to support
as primitive. We propose and compare several well-behaved extensions of Sys-
tem Fω with some form of iteration and coiteration uniform in all kinds. In what
we call Mendler-style systems, the iterator and coiterator have a computational
behavior similar to the general recursor, but their types guarantee termination. In
conventional-style systems, monotonicity witnesses are used for a notion of mono-
tonicity defined uniformly for all kinds. Our most expressive systems GMItω and GItω

of generalized Mendler resp. conventional (co)iteration encompass Martin, Gibbons
and Bailey’s efficient folds for rank-2 inductive types. Strong normalization of all
systems considered is proved by providing an embedding of the basic Mendler-style
system MItω into System Fω.

Key words: Higher-Order Datatypes, Generalized Folds, Efficient Folds, Iteration,
Coiteration, System Fω, Higher-Order Polymorphism, Strong Normalization

∗ Corresponding author.
Email addresses: abel@cs.chalmers.se (Andreas Abel),

matthes@informatik.uni-muenchen.de (Ralph Matthes), tarmo@cs.ioc.ee
(Tarmo Uustalu).

Preprint submitted to Theoretical Computer Science 27 March 2004



1 Introduction and Overview

This article studies the implementation of higher-order inductive and coinduc-
tive constructors in the setting of typed rewriting. For introducing inductive
and coinductive types to typed lambda calculi, there are several well-known
non-controversial solutions. (Co)inductive types can be either added to first-
order simply typed lambda calculus together with (co)iteration or primitive
(co)recursion, or alternatively, (co)inductive types with (co)iteration may be
encoded in System F. The systems so obtained are all well-behaved. In par-
ticular, typed terms are strongly normalizable.

But besides inductive and coinductive types, in programming, one can also
encounter inductive and coinductive constructors of higher kinds. In the math-
ematics of program construction community, there is a line of work devoted to
programming with nested datatypes, or second-order inductive constructors,
which are least fixed-points of type transformer transformers. Therefore, basi-
cally, a nested datatype is a datatype with a type parameter, hence a family
of datatypes. But all of the family members are simultaneously defined by an
inductive definition, parametrically uniformly in the argument type by which
the family is indexed. Note that this does not include definitions of a family
of types by iteration on the build-up of the argument type, but it does allow
a reference in the definition of the type, indexed by A, to the family member,
indexed by, say 1 + A, for all types A.

Therefore, the notion of nested datatype is more liberal than that of a family
of inductive datatypes where each family member can be fully understood in
isolation from the rest of the family. The typical example of this simpler situ-
ation is the regular datatype constructor List, where, for any type A, the type
List A of finite lists of elements taken from A, is a separate inductive datatype.
Clearly, List can also be viewed as a quite trivial nested datatype. What inter-
ests us, however, are nested datatypes whose family members are interwoven.
Interesting examples of these nested datatypes, studied in the literature, in-
clude perfectly balanced trees, red-black trees, trie data structures and syntax
with variable binding. As early as 1998, Hinze employs nested datatypes for
efficient data structures. Hinze (2001) gives a more detailed explanation how
these datatypes are constructed. This includes a nested datatype for red-black
trees, where the invariants of red-black trees are ensured by the types—unlike
the implementation of the operations for red-black trees of Okasaki (1999b).
Kahrs (2001) shows that—with some refinement—one can even get back the ef-
ficiency of Okasaki’s implementation, despite this additional guarantee. Hence,
nested datatypes provide more information on the stored data, while they need
not slow down computation.

There already exist—see Section 9 for more bibliographical details—several
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suggestions concerning useful and well-behaved combinators for programming
with them, which are different versions of folds, or iteration—demonstrating
that, in higher kinds, it is not at all obvious what iteration should mean. Unfor-
tunately, however, these works do not provide or hint at answers to questions
central in rewriting such as reduction behaviours and, in particular, termina-
tion. This is because, in functional programming, the main motivation to pro-
gram in a disciplined fashion (e.g., to program with structured (co)recursion
combinators rather than with unstructured general recursion) is to be able to
construct programs or optimize (e.g., deforest) them “calculationally”, i.e., by
means of equational reasoning.

In the typed lambda calculi and proof assistants communities, the motivation
to rest on structured (co)recursion is more foundational—to ensure totality
of definable functions or termination of typed programs, which, in systems
of dependent types, is vital for type-checking purposes. This suggests the fol-
lowing research programme: take the solutions proposed within the functional
programming community and see whether they solve the rewriting problems
as well or, if they do not, admit elaborations which do. Another natural goal is
to strive for solutions that scale up to higher-order (co)inductive constructors.

Contents. Table 1 displays the organization of the remainder of this article.
In Section 2, we recapitulate System Fω of higher-order polymorphism as a
type assignment system for the λ-calculus with pairing (products), tagging
(disjoint sums) and packing (existentials). In the following sections, we extend
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Figure 1. Overview

Fω by constants for inductive and coinductive constructors for arbitrary finite
kinds together with iteration and coiteration schemes. Each scheme gives rise
to a separate system which is named after its iterator. In the following, we
will only talk about inductive constructors and iteration, although all systems
support the dual concepts of coinductive constructors and coiteration as well.
The superscript ω indicates that inductive constructors of all higher kinds are
available, which holds for all of our own systems, defined in sections 3–7.

Section 3 starts with an introduction to iteration à la Mendler for the first-
order case, i.e., inductive types. The transfer of the central ideas to higher
kinds by substituting natural transformations for functions results in the ba-
sic higher-order Mendler-style system MItω which is embeddable into Fω and
generic enough to simulate all other systems. Figure 1 displays all embeddings
carried out in the article. An arrow from A to B states that system A can be
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embedded into system B such that typing and reduction (i.e., computation)
in system A are simulated in system B. The arrow styles indicate how direct
the embedding is.

• A simple arrow from A to B, like from MItω to Fω, states that the new
constants of system A, which form, introduce and eliminate inductive con-
structors, can be defined as terms of system B. Hence, system A simply
provides new notation for existing constructs of system B. One also speaks
of a shallow embedding.

• In contrast, a dotted arrow indicates a deep embedding. This means, all
expressions of the source system have to be translated into appropriate
expressions of the target system to simulate typing and reduction.

• Finally, the most direct embedding is displayed as a double arrow from A to
B, meaning that system A is simply a restriction of system B. Consequently,
the corresponding translation is the identity.

As Figure 1 illustrates, all other systems are definable in MItω. But when it
comes to practical usability, this system does not satisfy all wishes. As we
will see in examples later, many programming tasks require a special pattern,
namely Kan extensions, to be used in conjunction with Mendler iteration.
Therefore, we have formulated the scheme of generalized Mendler iteration
GItω with hard-wired Kan extensions, presented in Section 4. The attribute
generalized has been chosen in resemblance of Bird and Paterson’s (1999a)
generalized folds. System GMItω has been first described in a previous publi-
cation (Abel, Matthes, and Uustalu, 2003) where a direct embedding into Fω

is given.

By now, the question how to generalize Mendler iteration—which resembles
programming with general recursion—to higher kinds seems to be answered
sufficiently. But what about conventional iteration, which is motivated by the
view of inductive types as initial algebras in category theory? Can conventional
iteration be generalized to higher kinds in the same way as Mendler iteration?
What is the precise relationship of Mendler iteration and conventional itera-
tion for higher kinds? These questions are addressed in the sections 5–7.

Conventional iteration can be formulated for types which are obtained as the
least fixed point of a monotone type transformer. A crucial task in finding
conventional iterators for higher kinds will therefore be the formulation of
higher-rank monotonicity. Section 5 investigates the most basic notion: A type
constructor is monotone if it preserves natural transformations. The resulting
system, Itω, is sufficiently strong to simulate Mendler iteration via a deep
embedding, but the notion of monotonicity lacks important closure properties.
Hence, a refined notion of monotonicity, which uses Kan extensions along the
identity, is put forth in Section 6. The induced System Itω= has been treated
before (Abel and Matthes, 2003). It is definable in Fω, but also in terms of
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Mendler iteration via a cut-down version of GMItω, called MItω=, which only
uses Kan extensions along the identity. As shown in loc. cit., programming in
Itω= often requires a second layer of Kan extensions. This flaw is remedied in
System GItω, the conventional counterpart of generalized Mendler iteration.

After completing the definition of our systems, some more examples demon-
strate the applicability of the different iteration schemes for different purposes
(Section 8). The remainder of the article is devoted to related work. Section 9
compares our work with iteration schemes for nested datatypes found in the
literature. Special attention is given to the efficient folds of Martin, Gibbons,
and Bayley (2003); a type-theoretic adaptation of their work is shown to be de-
finable in System GItω. Section 10 relates this work to generic and dependently
typed programming, type classes and other trends in functional programming
and type theory. Finally, the main contributions of this article are summarized
in Section 11.

Examples form an important part of the article since they allow an intuitive
comparison of the expressiveness of the systems. Therefore, the same program-
ming tasks are dealt with several times. Table 2 contains a complete list of
examples together with the system in which they have been implemented.
Our running example is summation for powerlists which is has been defined in
almost all of our systems. For the conventional iteration systems, most exam-
ples are centered around the representation of untyped de Bruijn-style lambda
terms as a nested datatype.

Relation to our previous work. This article is an extended and reworked
version of our conference paper (Abel, Matthes, and Uustalu, 2003) which
mostly discussed system GMItω (called MItω in that article). New in this article
are the basic systems MItω and Itω as well as the discussion of GItω and the
definability of efficient folds within GItω. The discussion of Itω= (a subsystem of
GItω) and some examples are taken from Abel and Matthes (2003). As in our
previous work, the typing and reduction rules for iteration and coiteration are
uniform in all kinds, in each of these systems.

2 System Fω

Our development of higher-order datatypes takes place within the Curry-style
version of system Fω, extended with binary sums and products, unit type
and existential quantification over type constructors. We employ the usual
named-variables syntax, but identify α-equivalent expressions that is properly
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achieved in the nameless version à la de Bruijn. Capture-avoiding substitution
of an expression e for a variable x in an expression f is denoted by f [x := e].

2.1 The Syntax

In System Fω, there are three categories of expressions: kinds, type construc-
tors and terms.

Kinds are generated from the kind ∗ for types by the binary function kind
former →, and are denoted by the letter κ:

κ ::= ∗ | κ → κ′

rk(∗) := 0

rk(κ → κ′) := max(rk(κ) + 1, rk(κ′))

The rank of kind κ is denoted by rk(κ). We introduce abbreviations for some
special kinds: k0 = ∗, types, k1 = ∗ → ∗, unary type transformers and k2 =
(∗ → ∗) → (∗ → ∗) unary transformers of type transformers. Then, rk(ki) = i
for i ∈ {0, 1, 2}.

Note that each kind κ′ can be uniquely written as ~κ → ∗, where we write ~κ
for the sequence κ1, . . . , κn and set ~κ → κ := κ1 → . . . → κn → κ, letting →
associate to the right. Provided another sequence ~κ′ = κ′1, . . . , κ

′
n of the same

length, i.e., |~κ′| = |~κ|, set the sequence ~κ → ~κ′ := κ1 → κ′1, . . . , κn → κ′n. This
last abbreviation does not conflict with the abbreviation ~κ → κ due to the
required |~κ′| = |~κ|.

Type constructors. (Denoted by uppercase latin letters.) Metavariable X
ranges over an infinite set of type constructor variables.

A, B, C, F, G ::= X | λX.F | F G | ∀Xκ. A | ∃Xκ. A | A → B

| A + B | A×B | 1

Note that the type constructors are given in Curry style although quantifi-
cation is written with kind annotation. This is because the semantics of the
quantifiers needs the kind κ. The type ∀Xκ. A should be conceived as an
abbreviation for ∀κλX.A where the lambda-abstracted variable is not kind
annotated. Sometimes, “ ” will be used as name of a variable which never
occurs free in a type constructor, hence we write λ .F for void abstraction.
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Type constructor application associates to the left, i.e., F G H stands for
(F G) H. For ~F = F1, . . . , Fn a vector of constructors, we abbreviate F F1 . . . Fn

as F ~F . We write Id for λX.X and F ◦G for λX. F (G X).

Objects (Terms). (Denoted by lowercase letters.) The metavariable x ranges
over an infinite set of object variables.

r, s, t ::= x | λx.t | r s | inl t | inr t | case (r, x. s, y. t)

| 〈〉 | 〈t1, t2〉 | fst r | snd r | pack t | open (r, x. s)

Most term forms are standard; “pack” introduces and “open” eliminates exis-
tential quantification, see below. The term former fst, whenever it is used with-
out argument, should be understood as the first projection function λx. fst x.
This holds analogously for snd, inl, inr and pack. The identity λx.x will be de-
noted by id. We write f◦g for the function composition λx. f (g x). Application
r s associates to the left, hence r~s = (. . . (r s1) . . . sn) for ~s = s1, . . . , sn.

Note that there is no distinguished form of recursion in the language of System
Fω. In the progression of this article, however, we will extend the system by
different forms of iteration.

2.2 Kinding and Typing

In the following, we define judgments to identify the “good” expressions. All
kinds are good by definition, but good type constructors need to be wellkinded
and good terms need to be welltyped. As an auxiliary notion, we need to
introduce contexts which record kinds resp. types of free variables.

Contexts. Variables in a context Γ are assumed to be distinct.

Γ ::= · | Γ, Xκ | Γ, x :A

Judgments. (The first two will be defined simultaneously, the third one
based on these.)

Γ cxt Γ is a wellformed context

Γ ` F : κ F is a wellformed type constructor of kind κ in context Γ

Γ ` t : A t is a wellformed term of type A in context Γ

9



Wellformed contexts. Γ cxt

· cxt

Γ cxt

Γ, Xκ cxt

Γ ` A : ∗
Γ, x :A cxt

Hence, contexts declare kinds for type variables and types (not arbitrary type
constructors!) for object variables.

Wellkinded type constructors. Γ ` F : κ

Xκ ∈ Γ Γ cxt

Γ ` X : κ

Γ, Xκ ` F : κ′

Γ ` λX.F : κ → κ′
Γ ` F : κ → κ′ Γ ` G : κ

Γ ` F G : κ′

Γ, Xκ ` A : ∗
Γ ` ∀Xκ. A : ∗

Γ, Xκ ` A : ∗
Γ ` ∃Xκ. A : ∗

Γ ` A : ∗ Γ ` B : ∗
Γ ` A → B : ∗

Γ ` A : ∗ Γ ` B : ∗
Γ ` A + B : ∗

Γ ` A : ∗ Γ ` B : ∗
Γ ` A×B : ∗

Γ cxt

Γ ` 1 : ∗

The rank of a type constructor is given by the rank of its kind. If no kinds
are given and cannot be guessed from the context of discourse, we assume
A, B, C,D : ∗, G, H, X, Y : k1 and F : k2. If the context is clear (by default,
we take the empty context “·”), we write F : κ for Γ ` F : κ. Sums and

products can be extended to all kinds: For κ = ~κ → ∗ with |~κ| = | ~X| = n, set

+κ := λFλGλ ~X. F ~X + G ~X and ×κ := λFλGλ ~X. F ~X ×G ~X.

Both these type constructors have kind κ → κ → κ. If no ambiguity arises,
the superscript is omitted.

Equivalence on wellkinded type constructors. The notion of β-equivalence
F = F ′ for wellkinded type constructors F and F ′ is given as the compati-
ble closure (i.e. closure under all type constructor forming operations) of the
following axiom.

(λX.F ) G =β F [X := G]

We identify wellkinded type constructors up to equivalence, which is a decid-
able relation due to normalization and confluence of simply typed λ-calculus
(where our type constructors are the terms and our kinds are the types of that
calculus).

As a consequence of this identification, wellkinded type constructor composi-
tion ◦ is associative.
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Welltyped terms. Γ ` t : A. The following chart recapitulates the typing
rules for pure Curry-style Fω.

(x :A) ∈ Γ Γ cxt

Γ ` x : A

Γ, x :A ` t : B

Γ ` λx.t : A → B

Γ ` r : A → B Γ ` s : A

Γ ` r s : B

Γ, Xκ ` t : A

Γ ` t : ∀Xκ.A

Γ ` t : ∀Xκ.A Γ ` F : κ

Γ ` t : A[X := F ]

More rules are needed for introduction and elimination of the System Fω ex-
tensions: unit type, binary sum and product types, and existential types.

Γ cxt

Γ ` 〈〉 : 1

Γ ` t : A Γ ` B : ∗
Γ ` inl t : A + B

Γ ` t : B Γ ` A : ∗
Γ ` inr t : A + B

Γ ` r : A + B Γ, x :A ` s : C Γ, y :B ` t : C

Γ ` case (r, x. s, y. t) : C

Γ ` t1 : A Γ ` t2 : B

Γ ` 〈t1, t2〉 : A×B

Γ ` r : A×B

Γ ` fst r : A

Γ ` r : A×B

Γ ` snd r : B

Γ ` t : A[X := F ] Γ ` F : κ

Γ ` pack t : ∃Xκ.A

Γ ` r : ∃Xκ.A Γ, Xκ, x :A ` s : C

Γ ` open (r, x. s) : C

As for wellkinded type constructors, we write t : A for Γ ` t : A if the context
is clear (by default, we again take the empty context “·”).

Logical equivalence. Let Γ ` A : ∗ and Γ ` B : ∗. We say A and B are
logically equivalent in context Γ iff there are terms r, s such that Γ ` r : A → B
and Γ ` s : B → A. If the context Γ is clear from the context of discourse, we
just write A ↔ B for logical equivalence of A and B.

2.3 Operational Semantics

Terms of System Fω denote functional programs whose operational meaning
is given by the following reduction relation.
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Reduction. The one-step reduction relation t −→ t′ between terms t and t′

is defined as the closure of the following axioms under all term formers. 1

(λx.t) s −→β t[x := s]

case (inl r, x. s, y. t) −→β s[x := r]
case (inr r, x. s, y. t) −→β t[y := r]

fst〈t1, t2〉 −→β t1
snd〈t1, t2〉 −→β t2

open (pack t, x. s) −→β s[x := t]

We denote the transitive closure of −→ by −→+ and the reflexive-transitive
closure by −→∗.

The defined system is a conservative extension of System Fω. Reduction is
type-preserving, confluent and strongly normalizing.

Example 1 (Booleans) We can encode the datatype of booleans Bool : ∗
in System Fω as Bool := 1 + 1, with data constructors true := inl〈〉 and
false := inr〈〉. Elimination of booleans is done by if-then-else, which is encoded
as if := λbλtλe. case (b, . t, . e). The reader is invited to check the typings
true : Bool, false : Bool and if : Bool → ∀A. A → A → A as well as the
operational behavior if true t e −→+ t and if false t e −→+ e.

2.4 Syntactic Sugar

The term language of System Fω is concise and easy to reason about, but for
programming, what we intend to do to a certain extent in this article, a little
too spartan. To make programs more readable, we introduce let binding and
pattern matching as a meta notation in this section. These new constructs
should not be regarded as extensions to System Fω; we formally describe a
transformation relation ; which eliminates all syntactic sugar.

Non-recursive let bindings. As implemented in some functional program-
ming languages, e. g., Scheme or Ocaml, let x=r in s shall denote the β-redex
(λx.s) r. This must not be confused with a recursive let; in our case, the vari-
able x bound by let cannot be used in r. Formally, let-bindings can be removed

1 This means, we may apply one of the −→β-rules to an arbitrary subterm of t in
order to obtain one step of reduction. This especially includes the ξ-rule which says
that t −→ t′ implies λx. t −→ λx. t′. Clearly, this rule is not implemented in the
usual functional programming languages. Since we prove strong normalization, we
are on the safe side.
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from programs by performing the following transformation steps on any part
of the program until no let-bindings remain.

let x=r in s ; (λx.s) r

Pattern matching. Patterns are terms constructed from variables and in-
troductions, except function type introduction (λ). Formally, they are given
by the grammar

p ::= x | 〈〉 | 〈p, p′〉 | inl p | inr p | pack p.

We use shorthand notations for groups of similar patterns. For instance, inl ~p
is an abbreviation for the list of patterns inl p1, . . . , inl pn where n = |~p|.

Pattern matching is introduced by the notation

match r with p1 7→ s1 | . . . | pn 7→ sn.

The order of the clauses pi 7→ si is irrelevant. For succinctness, we write
match r with (pi 7→ si)i=1..n or even match r with ~p 7→ ~s, for short. The
notation match r with ~p 7→ ~s | ~q 7→ ~t should also be easily understandable.

Pattern matching is expanded by the following new rules for the transforma-
tion relation ;. Patterns should only be used if they are well-typed, non-
overlapping, linear (no variable occurs twice) and exhaustive. We do not
present a theory of patterns, but just have them as a meta-syntactic device.
Therefore, we restrict the use of pattern matching to the situations where
these transformation rules succeed in removing the syntactic sugar.

match r with x 7→ s ; let x=r in s

match r with 〈〉 7→ s ; s

match r with
(
〈pi, p

′
j〉 7→ sij

)
i∈I,j∈J

; let x=r in
match (fst x) with(

pi 7→ match (snd x) with(
p′j 7→ sij

)
j∈J

)
i∈I

match r with inl ~p 7→ ~s

| inr ~q 7→ ~t ; case (r, x. match x with ~p 7→ ~s,

y. match y with ~q 7→ ~t)

match r with pack ~p 7→ ~s ; open (r, x. match x with ~p 7→ ~s)

In the case of matching against pairs, I and J denote finite index sets. Note
that a let expression has been inserted on the right hand side to avoid dupli-
cation of term r.
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Patterns in lets and abstractions. For a single-pattern matching, which
has the form match r with p 7→ s we introduce a more concise notation
let p = r in s, which is common in functional programming. Furthermore, an
abstraction of a variable x plus a matching over this variable, λx. let p=x in s,
can from now be shortened to λp.s. In both cases, in order to avoid clashes
with the existing syntax we need to exclude patterns p which consist just of a
single variable. Formally, we add two transformation rules:

let p=r in s ; match r with p 7→ s if p is not a variable

λp. s ; λx. match x with p 7→ s if p is not a variable

Sugar for term abbreviations. In the course of this article, we will often
define term abbreviations c of the form c := λx1 . . . λxn. s with n ≥ 0. For
such c, we allow the expression c◦~t to mean s[~x := ~t] where |~t| = n. In the
special case that s is a pattern p, the sugared expression c◦~x is just p, and we
can use it in a matching construct to increase readability of code.

In the next section, we will introduce a new term constant inκ and data con-
structors of the shape c := λ~x. inκp. The notation c−~t shall denote p[~x := ~t],
i.e., instantiation after removal of “inκ”. Summarizing, we have two additional
transformations:

c◦~t ; s[~x := ~t] if c := λ~x. s

c−~t ; p[~x := ~t] if c := λ~x. inκp

Example 2 (“Maybe” Type Transformer) To see the meta syntax in ac-
tion, consider the option datatype with two data constructors:

Maybe := λA. 1 + A : k1

nothing := inl〈〉 : ∀A. Maybe A
just := λa. inr a : ∀A. A → Maybe A

The type transformer Maybe is a monad with unit just and the following
multiplication operation:

bind : ∀A∀B. Maybe A → (A → Maybe B) → Maybe B
bind := λmλk. match m with

nothing◦ 7→ nothing
| just◦ a 7→ k a

We could have dropped the annotation “◦” in matching against “nothing◦”—
since “nothing” is a data constructor without arguments and the annotation
“◦” is changing nothing in this case—, but we included it for reasons of sym-
metry.
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3 System MItω of Basic Mendler Iteration and Coiteration

In this section, we will introduce System MItω, a conservative extension of Fω,
which provides schemes of iteration and coiteration for higher-order datatypes,
also called heterogeneous, nested or rank-n datatypes (n ≥ 2). But first we
will recall Mendler iteration for first-order (resp. homogeneous or rank-1) types
which we then generalize to higher ranks.

3.1 Mendler Iteration for Rank-1 Inductive Types

Recall a standard example for homogeneous inductive types: the type of lists
List(A) : ∗ over some element type A, which has two data constructors nil :
List(A) and cons : A → List(A) → List(A). Types like this one are called
homogeneous because the argument to the type constructor List is invariant in
the type of the data constructors. In our case the argument is always the fixed
type A. We will later see examples of heterogeneous types where the argument
A to the type constructor, call it T , varies in the different occurrences of T in
the type of a data constructor. The argument A can even contain T itself; in
this case we speak of truly nested datatypes.

We favor a view on inductive types that is motivated from category theory
and goes back to Hagino (1987). List(A) is defined as the least fixed-point of
an operator ListF(A) := λX. 1 + A ×X and we write List(A) := µ(ListF(A)).
There is just a single constructor in : ListF(A)(List(A)) → List(A) for lists.
The functions nil and cons can be defined in terms of in:

nil := in (inl 〈〉) : List(A)

cons := λaλas . in (inr 〈a, as〉) : A → List(A) → List(A)

To define operations on lists we need a means of recursion. In our theory all
functions should be total, hence we restrict to a scheme which we call Mendler
iteration for reasons that become apparent later. One function which falls into
this scheme is the general-purpose function map.

Example 3 (Map Function for Lists) It is part of the Haskell standard
library and could be defined like this:

map :: (a -> b) -> [a] -> [b]

map f = map’

where map’ [] = []

map’ (a : as) = (f a) : (map’ as)
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The recursive part of this definition is the interior function map’ which arises
as the fixed-point of a functional s = λmap ′. <body of map’> such that the
equation map’ = s map’ holds. (The name “s” stands for “step term”.) In gen-
eral it is undecidable whether such fixed-point equations are uniquely solvable
in total functions. But unique solvability can be guaranteed if the term s has
a special shape. In our case, a recursive call of map’ occurs only with argu-
ment “as” which is a direct subterm of the input (a : as). This already
ensures termination of map’. Furthermore, the sublist “as” is only used as an
argument to map’, hence the function is even iterative.

Mendler (1991) first observed that by a certain polymorphic typing of the
term s, one can determine the fixed-point of s to be an iterative function. The
trick is to assign a fresh type X to the direct subcomponent “as” and restrict
applications of the recursive function map’ to arguments of this type. This has
a twofold effect: Since X is a type we know nothing of, necessarily it holds
that

(1) the component “as” can neither be further analyzed nor used in any way
besides as an argument to map’, and

(2) the function map’ cannot be called recursively unless applied to “as”.

Mendler’s trick is implemented by requiring s to be of type (X → B) →
ListF(A)X → B for a fresh type variable X. The first parameter of s is the
name map ′ for the recursive function whose application is now restricted to
input of type X; the second parameter will later be bound to the term t of
the input “in t” of map’, but is now by its type ListF(A)X restricted to be
either the canonical inhabitant 〈〉 of type 1—for the case of the empty list nil
as input to map’—, or a pair of a head element of type A and a tail of type
X—for the cons case. In the nil case, s somehow has to produce a result of
type B, in the cons case, s can—among other possibilities—apply map ′ to the
tail in order to arrive at a result of type B.

We call the respective fixed-point combinator which produces iterative func-
tions Mendler iterator—written MIt(s) for a step term s. It has the following
reduction behavior:

MIt(s) (in t) −→β s MIt(s) t

During reduction, the type variable X is substituted by the inductive type
µF , in our example List(A). The fixed-point type µF is unrolled into F (µF ),
hence, the data constructor in is dropped. On the level of terms, this is exactly
what distinguishes Mendler iteration from general recursion. The reduction
can only take place when the data constructor “in” is present. This—and the
fact that it is removed by reduction—makes “in” act as a guard for unrolling
recursion and ensures strong normalization, as we will prove later.

Summing up, we can augment the higher-order polymorphic lambda-calculus
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with rank-1 iteration by adding the following constants, typing and reduction
rules:

Formation. µ : (∗ → ∗) → ∗

Introduction. in : ∀F ∗→∗. F (µF ) → µF

Elimination. Γ ` F : ∗ → ∗
Γ ` B : ∗
Γ ` s : ∀X∗. (X → B) → F X → B

Γ ` MIt(s) : µF → B

Reduction. MIt(s) (in t) −→β s MIt(s) t

Example 4 (Map Function for Lists) Using the syntax of Fω with the
meta-notation for pattern matching described in Section 2, we can encode
the Haskell function map with Mendler iteration as follows:

map : ∀A∀B. (A → B) → List(A) → List(B)

map := λf. MIt
(
λmap ′λt. match t with

nil− 7→ nil

| cons−a as 7→ cons (f a) (map ′ as)
)

In the following we give an assignment of bound variables to types from which
one can infer that map is well-typed.

f : A → B
map ′ : X → List(B)
t : ListF(A) X
a : A
as : X

Here, X : ∗ is a fresh type variable introduced by the Mendler iterator. Also
note that, according to the conventions introduced in Section 2, nil− = inl〈〉
and cons−a as = inr〈a, as〉. The −-notation discards the general constructor
in for inductive types, which is necessary since the Mendler iterator takes an
argument t of the unfolded inductive type.

3.2 Mendler Coiteration for Rank-1 Coinductive Types

In the previous section, we considered least fixed points of recursive type equa-
tions. If we consider greatest fixed points instead, we obtain coinductive types
νF which are dual to inductive types in the category-theoretic sense. Hence,
obtaining rules for Mendler-style coinductive types is a matter of reversing
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some arrows.

Formation. ν : (∗ → ∗) → ∗

Elimination. out : ∀F ∗→∗. νF → F (νF )

Introduction. Γ ` F : ∗ → ∗
Γ ` A : ∗
Γ ` s : ∀X∗. (A → X) → A → F X

Γ ` MCoit(s) : A → νF

Reduction. out (MCoit(s) t) −→β s MCoit(s) t

Dually to the general constructor in for inductive types, coinductive types pos-
sess a general destructor out which triggers unrolling of the coiterator MCoit in
the reduction rule. Since elements of coinductive types can be infinite objects,
they need to be constructed by a recursive process—this gives some intuition
why coinductive types are introduced by the coiterator.

Example 5 (Streams) The most popular coinductive type is the type of
infinite streams over some element type. In the system of Mendler coiteration,
it can be defined as follows:

Stream := λA. ν(λX. A×X) : ∗ → ∗

head := λr. fst (out r) : ∀A. Stream A → A

tail := λr. snd (out r) : ∀A. Stream A → Stream A

Example 6 (Sequence of Natural Numbers) Assume a type Nat of nat-
ural numbers with addition “+” and numerals 0, 1, 2, . . . . We can define the
sequence of all natural numbers starting at a number n as a stream using
Mendler coiteration:

upfrom := MCoit(λupfromλn. 〈n, upfrom (n + 1)〉)

: Nat → Stream Nat

3.3 Heterogeneous Datatypes

In contrast to the polymorphic types given in the previous sections, there are
recursive type constructors whose arguments vary in different occurrences in
their defining equation. For instance, consider the following Haskell types:

data PList a = Zero a | Succ (PList (a, a))

data Bush a = Nil | Cons a (Bush (Bush a))
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data Lam a = Var a | App (Lam a) (Lam a)

| Abs (Lam (Maybe a))

The first definition, PList, is the type of powerlists (Bird et al., 2000) resp.
perfectly balanced, binary leaf trees (Hinze, 2000a). Notice that the argument to
the type transformer PList on the right hand side is not simply the type vari-
able “a”, but (a, a) which is the Haskell notation for the Cartesian product
a × a. This is why PList is called a heterogeneous or nested type in con-
trast to homogeneous or non-nested types like List where in the definition the
argument is always the same type variable.

The second line defines “bushes” (Bird and Meertens, 1998) which are like
lists except that the element type gets bigger as we are traversing the list
from head to tail. On the right hand side of the defining equation the type
transformer Bush occurs as part of the argument to itself. We will speak of a
type with this property as a truly nested type, in contrast to the term nested
type which in the literature denotes just any heterogeneous type.

Finally, the third type Lam a is inhabited by de Bruijn representations of
untyped lambda terms over a set of free variables “a”. This type has been
studied by Altenkirch and Reus (1999) and Bird and Paterson (1999b); a
precursor of this type has been considered already by Pfenning and Lee (1989)
and Pierce et al. (1989). The constructor for lambda-abstraction Abs expects
a term over the extended set of free variables Maybe a, which is the Haskell
representation of the sum type 1 + a. The disjoint sum reflects the choice for
a bound variable under the abstraction: either it is the variable freshly bound
(left injection into the unit set “1”) or it is one of the variables that have been
available already (right injection into “a”).

We notice that all of the datatypes PList, Bush, Lam are first-order as type
constructors: they are of kind ∗ → ∗. It is possible, of course, also to com-
bine nestedness and higher-orderness, but this combination does not happen
in these three examples. Moreover, we do not find this combination very im-
portant conceptually, as the challenges are not in the kinds of the parameters
of a datatype, but in the kind of the µ-operator employed.

We will encounter all these three datatypes in examples later. For now we are
interested in encoding these types in a suitable extension of Fω. The encoding
is possible if a combinator µk1 : (k1 → k1) → k1 for least fixed-point types
of rank 1 is present. (Recall that k1 = ∗ → ∗.) In the following we give
representations of these three types as least fixed points µF of type transformer
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transformers F : k2.

PListF := λXλA. A + X (A× A) : k2

PList := µk1 PListF : k1

BushF := λXλA. 1 + A×X (X A) : k2

Bush := µk1 BushF : k1

LamF := λXλA. A + (X A×X A + X (1 + A)) : k2

Lam := µk1 LamF : k1

Similarly to the rank-1 case we just have one general datatype constructor ink1

which rolls an inhabitant of F (µk1F ) into the fixed point µk1F . Note, however,
that µk1F is not a type but a type constructor, hence, we need a polymorphic
data constructor ink1 : ∀A. F (µk1F ) A → µk1FA. Now, we are ready to define
the usual data constructors for the heterogeneous datatypes we are encoding:

zero := λa. ink1 (inl a) : ∀A. A → PList A

succ := λl. ink1 (inr l) : ∀A. PList(A× A) → PList A

bnil := ink1 (inl 〈〉) : ∀A. Bush A

bcons := λaλb. ink1 (inr 〈a, b〉) : ∀A. A → Bush (Bush A) → Bush A

var := λa. ink1 (inl a) : ∀A. A → Lam A

app := λt1λt2. in
k1 (inr (inl 〈t1, t2〉)) : ∀A. Lam A → Lam A → Lam A

abs := λr. ink1 (inr (inr r)) : ∀A. Lam (1 + A) → Lam A

Our aim is to define iteration for nested datatypes, a quest which recently has
attracted some interest in the functional programming community (Bird and
Paterson, 1999a; Hinze, 2000a; Martin, Gibbons, and Bayley, 2003). In the
remainder of this section we will show how to generalize Mendler iteration to
higher ranks and point out some difficulties with this approach. In the remain-
der of this article we will present refined iteration schemes which overcome the
shortcomings of plain Mendler iteration.

3.4 Mendler Iteration for Higher Ranks

To generalize Mendler iteration from types to type constructors, we introduce
a syntactic notion of natural transformations F ⊆κ G from type constructor
F : κ to G : κ. Since every kind κ can be written in the form ~κ → ∗, natural
transformations for kind κ can simply be defined as follows:

F ⊆~κ→∗ G := ∀ ~X~κ. F ~X → G ~X
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(Here, we have made use of the vector notation ∀ ~X~κ as an abbreviation for

∀Xκ1
1 . . . ∀Xκn

n where n = | ~X|.)

For types F, G : ∗, the type F ⊆∗ G of natural transformations from F to G is
just the ordinary function type F → G. As an example, we observe that the
general constructor ink1 from the last subsection is a natural transformation of
type F (µk1F ) ⊆k1 µk1F . The superscript κ in “⊆κ” will sometimes be omitted
for better readability.

Generalizing Mendler iteration to higher kinds κ is now just a matter of replac-
ing some arrows by natural transformations. We obtain the following family
of constants, typing and reduction rules, indexed by κ.

Formation. µκ : (κ → κ) → κ

Introduction. inκ : ∀F κ→κ. F (µκF ) ⊆κ µκF

Elimination. Γ ` F : κ → κ,

Γ ` G : κ

Γ ` s : ∀Xκ. X ⊆κ G → F X ⊆κ G

Γ ` MItκ(s) : µκF ⊆κ G

Reduction. MItκ(s) (inκ t) −→β s MItκ(s) t

Notice that for every type constructor F of kind κ → κ, µκF is a type con-
structor of kind κ. In Mendler’s original system (Mendler, 1991) as well as
its variant for the treatment of primitive (co-)recursion (Mendler, 1987), pos-
itivity of F is always required, which is a very natural concept in the case
κ = ∗. (A first-order type constructor F : ∗ → ∗ is said to be positive iff every
occurence of X in FX is positive in the sense of being enclosed in an even
number of left-hand sides of →.) For higher kinds, however, there is no such
canonical syntactic restriction. Anyway, in Uustalu and Vene (1997) it has
been observed that, in order to prove strong normalization, there is no need
for the restriction to positive inductive types—an observation, which has been
the cornerstone for the treatment of monotone inductive types in Matthes
(1998) and becomes even more useful for higher-order datatypes.

It remains to show that we have obtained a sensible system. Subject reduction
is easy to check for the new reduction rule; confluence is not jeopardized since
there are no critical pairs; and strong normalization will be shown later by an
embedding into Fω. In the following we will try to evaluate whether with MItκ

we have obtained a sensible and usable device for programming.

Example 7 (Retrieving a Leaf of a Perfectly Balanced Tree) Let t :
PList A be a binary leaf-labelled tree and p : Stream Bool a bit stream which
acts as a path to one of the leaves a of t. Using MItk1 we can implement a
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function get such that get t p retrieves element a.

get := MItk1
(
λget λt λp. match t with

zero− a 7→ a
| succ− l 7→ let 〈a1, a2〉 = get l (tail p) in

if (head p) a1 a2

)
: ∀A. PList A → Stream Bool → A
= PList ⊆k1 (λA. Stream Bool → A)

Here we reused the type of streams defined in Example 5 and the booleans
defined in Section 2. To verify welltypedness, observe that the bound variables
have the following types:

X : k1 (not visible due to Curry-style)

get : ∀A. X A → Stream Bool → A

A : ∗ (not visible due to Curry-style)

t : PListF X A = A + X (A× A)

p : Stream Bool

a, a1, a2 : A

l : X (A× A)

In the recursive calls, the polymorphic type of get is instantiated with the
product A×A which entails the typing get l (tail p) : A×A. It is now easy to
check welltypedness of the whole function body. Note that MItk1 facilitates a
kind of polymorphic recursion.

Example 8 (Summing up a Powerlist) Next, we want to define a func-
tion sum : PList Nat → Nat which sums up all elements of a powerlist by
iteration over its structure. In the case sum (zero n) we can simply return n.
The case sum (succ t), however, imposes some challenge since sum cannot be
directly applied to t : PList(Nat×Nat). The solution is to define a more general
function sum′ by polymorphic recursion, which has the following behavior.

sum′ : ∀A. PList A → (A → Nat) → Nat

sum′ (zero a) f −→+ f a
sum′ (succ l) f −→+ sum′ l (λ〈a1, a2〉. f a1 + f a2)

Here, the iteration process builds up a “continuation” f which in the end sums
up the contents packed into a. Having found out the desired behavior of sum′,
its implementation using MItk1 is a mechanical process which results in the
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following definition:

sum′ := MItk1
(
λsum ′λtλf. match t with

zero− a 7→ f a

| succ− l 7→ sum ′ l (λ〈a1, a2〉. f a1 + f a2)
)

: PList ⊆k1 (λA. (A → Nat) → Nat)

The postulated reduction behavior is verified by a simple calculation. From
sum′, the summation function is obtained by sum := λt. sum′ t id.

Let us remark here that the result type constructor G′ = λA. (A → Nat) →
Nat is an instance of a general scheme which is extremely useful for defining
functions over heterogeneous datatypes. For the constant type constructors
G = H = λB. Nat, the result type constructor G′ is equivalent to λA∀B. (A →
H B) → G B which is a syntactic form of the right Kan extension of G along
H. Kan extensions are so commonly used with nested datatypes that we will
present an elimination scheme in Section 4 with hardwired Kan extensions.

Having completed these two examples we are confident that MItκ is a useful
iterator for higher-rank inductive types. In the following, we will again dualize
our definition to handle also greatest fixed points of rank-n type constructors
(n ≥ 2).

3.5 Mendler Coiteration for Higher Ranks

Adding the following constructs, we obtain our System MItω, which is an
extension of Mendler’s system (1991) to finite kinds.

Formation. νκ : (κ → κ) → κ

Elimination. outκ : ∀F κ→κ. νκF ⊆κ F (νκF )

Introduction. Γ ` F : κ → κ,

Γ ` G : κ

Γ ` s : ∀Xκ. G ⊆κ X → G ⊆κ F X

Γ ` MCoitκ(s) : G ⊆κ νκF

Reduction. outκ (MCoitκ(s) t) −→β s MCoitκ(s) t

The reader is invited to check that no problems for subject reduction and con-
fluence arise from these definitions. To demonstrate the usefulness of MCoitk1

as a coiteration scheme, in the following we will develop a redecoration algo-
rithm for infinite triangular matrices, which can be defined as a heterogeneous
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coinductive type. To this end, we fix a type E : ∗ of matrix elements. The
type Tri A of triangular matrices with diagonal elements in A and ordinary
elements E can be obtained as follows:

TriF := λXλA. A×X(E × A) : k2

Tri := νk1 TriF : k1

We think of these triangles decomposed columnwise: The first column is a
singleton of type A, the second a pair of type E×A, the third a triple of type
E × (E × A), the fourth a quadruple of type E × (E × (E × A)) etc. Hence,
if some column has some type A′ we obtain the type of the next column as
E × A′. This explains the definition of TriF. We can visualize triangles like
this:

A E E E E . . .
A E E E . . .

A E E . . .
A E . . .

A . . .

The vertical lines hint at the decomposition scheme.

Example 9 (Triangle Decomposition) Using the destructor for coinduc-
tive types on a triangle Tri A, we can obtain the top element of type A and
the remainder of type Tri (E×A) which looks like an infinite trapezium in our
visualization.

top := λt. fst (outk1 t) : ∀A. Tri A → A

rest := λt. snd (outk1 t) : ∀A. Tri A → Tri (E × A)

Cutting off the top row of a trapezium Tri (E × A) to obtain a triangle Tri A
can be implemented using Mendler coiteration for rank 2:

cut := MCoitk1
(
λcutλt. 〈snd (top t), cut (rest t)〉

)
: (λA. Tri (E × A)) ⊆k1 Tri

Remark 1 (Corrigendum) In Abel, Matthes, and Uustalu (2003) we used
tri snd instead of cut, where tri is the mapping function for Tri and snd the
second projection. This does type-check yet not yield the right operational
behavior, since it cuts off the side diagonal rather than the top row.

Redecoration is an operation that takes a redecoration rule f (an assign-
ment of B-decorations to A-decorated trees) and an A-decorated tree t, and
returns a B-decorated tree t′. (By an A-decorated tree we mean a tree with

24



A-labelled branching nodes.) The return tree t′ is obtained from t by B-
redecorating every node based on the A-decorated subtree it roots, as in-
structed by the redecoration rule f . For streams, for instance

redec : ∀A∀B. (Stream A → B) → Stream A → Stream B

takes f : Stream A → B and t : Stream A and returns redec f t, which is a
B-stream obtained from t by replacing each of its elements by what f assigns
to the sub stream this element heads.

Example 10 (Stream Redecoration) Markus Schnell posted an implemen-
tation of stream redecoration to the Haskell Mailing List (2002).

slide :: ([a] -> b) -> [a] -> [b]

slide f [] = []

slide f xs = f xs : slide f (tail xs)

He showed how to encode a lowpass digital filter using slide. Here is the
implementation of a smoothening filter which replaces each stream element
by the average of n adjacent elements.

smooth :: Int -> [Float] -> [Float]

smooth n = slide (\ xs -> sum (take n xs) / fromInt n)

Theoretically, redecoration is an operation dual to substitution in trees T A
over some label type A. Viewing T as a monad, substitution (A → T B) →
T A → T B of B-labelled trees for A-labels is the monad multiplication op-
eration. Viewing T as a comonad, redecoration (T A → B) → T A → T B
becomes the comultiplication (Uustalu and Vene, 2002).

Example 11 (Triangle Redecoration) For triangles, redecoration works
as follows: In the triangle

A E E E E . . .
A E E E . . .

A E E . . .
A E . . .

A . . .

the underlined A (as an example) gets replaced by the B assigned by the
redecoration rule to the sub triangle cut out by the horizontal line; similarly,
every other A is replaced by a B. Redecoration redec has type ∀A∀B. (Tri A →
B) → Tri A → Tri B. Therefore, it cannot be implemented directly using
Mendler coiteration, but via an auxiliary function redec′ with an isomorphic
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type in the proper format.

redec := λfλt. redec′ (pack 〈f, t〉)
: ∀A∀B. (Tri A → B) → Tri A → Tri B

redec′ := MCoitk1
(
λredec′λ(pack〈f, t〉).
〈f t, redec′ (pack 〈lift f, rest t〉)〉

)
: (λB∃A. (Tri A → B)× Tri A) ⊆k1 Tri

Here we make use of a function lift : ∀A∀B. (Tri A → B) → Tri(E × A) →
(E × B) which lifts the redecoration rule to trapeziums such that it can be
used with the trapezium rest t.

lift := λfλt. 〈fst (top t), f (cut t)〉

: ∀A∀B. (Tri A → B) → Tri(E × A) → E ×B

Hence, if f is a redecoration rule, the new redecoration rule lift f for trapeziums
takes a trapezium t of type Tri(E × A) and yields a diagonal element of a
trapezium in Tri(E × B), which means a pair 〈e, b〉 of type E × B. Since
the elements outside the diagonal do not have to be transformed, the left
component e stays fixed. The right component b comes from applying f to the
triangle which results from cutting off the top row from t.

For the typing of redec′ let G′ := λB∃A. (Tri A → B) × Tri A. If the variable
redec′ receives the type G′ ⊆k1 X and pack 〈f, t〉 is matched, then f gets
type Tri A → B and t gets type Tri A. Hence f t : B, and the term starting
with redec′ gets type X(E × B) because the argument to redec′ gets type
G′(E × B): The existential quantifier for A is instantiated with E × A, the
universal quantifiers for A and B in the type of lift are just instantiated by A
and B themselves. It is clear that one gets the following reduction behavior.

outk1(redec′ (pack 〈f, t〉)) −→+ 〈f t, redec′ (pack 〈lift f, rest t〉)〉

top (redec f t) −→+ f t
rest (redec f t) −→+ redec◦ (lift f) (rest t)

On the last line we have used the ◦-notation because simply redec (lift f) (rest t)
is no β-reduct of the left hand side. Without the ◦-notation we could only state
that left and right hand side are β-equal, i. e., have a common reduct.

The source type constructor G′ of function redec′ is a left Kan extension of Tri
along Tri, since it is an instance of the general scheme λB∃A. (H A → B)×G A
with G = H = Tri. In Section 4 we will introduce a generalized coiteration
scheme with hardwired Kan extensions. This will allow us to define redec
directly and not via an uncurried auxiliary function redec′.
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3.6 Embedding into Fω

In this subsection, we will show strong normalization for System MItω by em-
bedding it into Fω. Since this shows that MItω is just a conservative extension
of Fω, we can conclude that higher-order datatypes and Mendler iteration
schemes are already present in Fω. The quest for a precise formulation of this
fact led to the definition of MItω in which these concepts are isolated and
named.

Embeddings of (co)inductive type constructors into Fω can be obtained via
the following recipe:

(1) Read off the encoding of (co)inductive type constructors from the type
of the (co)iterator.

(2) Find the encoding of the (co)iterator, which usually just consists of some
lambda-abstractions and some shuffling resp. packing of the abstracted
variables.

(3) Take the right-hand side of the reduction rule for (co)iteration as the
encoding of the general data constructor resp. destructor.

To implement this scheme, we start by performing some simple equivalence
conversions on the type of λs. MItκ(s). For the remainder of this section, let
kind κ = ~κ → ∗.

∀F κ→κ∀Gκ. (∀Xκ. X ⊆ G → F X ⊆ G) → µκF ⊆ G

≡ ∀F κ→κ∀Gκ. (∀Xκ. X ⊆ G → F X ⊆ G) → ∀~Y ~κ. µκF ~Y → G ~Y

↔ ∀F κ→κ∀~Y ~κ. µκF ~Y → ∀Gκ. (∀Xκ. X ⊆ G → F X ⊆ G) → G ~Y

This equivalent type for λs. MItκ(s) states that there is a mapping of µκF ~Y

into some other type. Now we simply define µκF ~Y to be that other type. The
definitions of MItκ(s) and inκ then simply fall into place:

µκ : (κ → κ) → ~κ → ∗
µκ := λFλ~Y ∀Gκ. (∀Xκ. X ⊆ G → F X ⊆ G) → G ~Y

MItκ(s) : µκF ⊆ G for s : ∀Xκ. X ⊆ G → F X ⊆ G
MItκ(s) := λr. r s

inκ : ∀F κ→κ. F (µκF ) ⊆ µκF
inκ := λtλs. s MItκ(s) t

Lemma 1 With the definitions above, MItκ(s) (inκ t) −→+ s MItκ(s) t in
System Fω.
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Proof. By simple calculation. 2

To find an encoding of (co)inductive type constructors, we consider the type
of the (universal) coiterator λs. MCoitκ(s):

∀F κ→κ∀Gκ. (∀Xκ. G ⊆ X → G ⊆ F X) → G ⊆ νκF

≡ ∀F κ→κ∀Gκ. (∀Xκ. G ⊆ X → G ⊆ F X) → ∀~Y ~κ. G ~Y → νκF ~Y

↔ ∀F κ→κ∀~Y ~κ. (∃Gκ. (∀Xκ. G ⊆ X → G ⊆ F X)×G ~Y ) → νκF ~Y

These considerations lead to the following definitions:

νκ : (κ → κ) → ~κ → ∗
νκ := λFλ~Y ∃Gκ. (∀Xκ. G ⊆ X → G ⊆ F X)×G ~Y

MCoitκ(s) : G ⊆ νκF for s : ∀Xκ. G ⊆ X → G ⊆ F X
MCoitκ(s) := λt. pack 〈s, t〉

outκ : ∀F κ→κ. νκF ⊆ F (νκF )
outκ := λ(pack〈s, t〉). s MCoitκ(s) t

Lemma 2 With the definitions above, outκ (MCoitκ(s) t) −→+ s MCoitκ(s) t
in System Fω.

Proof. By simple calculation. 2

Theorem 1 (Strong normalization) System MItω is strongly normalizing,
i.e., for each welltyped term t0 there is no infinite reduction sequence t0 −→
t1 −→ t2 −→ . . .

Proof. By lemmata 1 and 2, such a reduction sequence would translate into
the infinite sequence t0 −→+ t1 −→+ t2 −→+ . . . of well-typed terms of Sys-
tem Fω (here, the above definitions are meant to be unfolded), a contradiction
to the strong normalization property of Fω. 2

4 System GMItω: Refined and Generalized Mendler (Co)Iteration

The system GMItω of this section is a minor variant of the system MItω in
Abel, Matthes, and Uustalu (2003). Its intension is to ease programming with
Mendler iteration in case Kan extensions have to be used (cf. examples 8 and
11 in Section 3). In a sense, we are just hard-wiring the Kan extensions into
the (co)iteration scheme of MItω.
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4.1 Containment of Type Constructors

The key idea consists in identifying an appropriate containment relation for
type constructors of the same kind κ. For types, the canonical choice is impli-
cation. For an arbitrary kind κ, the easiest notion is “pointwise implication”
⊆κ, used in the previous section for the definition of MItω.

Refined containment. A more refined notion is ≤κ, which first appeared in
Hinze’s work (1999) as the polykinded type Map of generic mapping functions.
We learned it first from Peter Hancock in 2000 and employed it already in
earlier work (Abel and Matthes, 2003) which studied iteration for monotone
inductive type constructors of higher kinds:

F ≤∗ G := F → G

F ≤κ→κ′
G := ∀Xκ∀Y κ. X ≤κ Y → F X ≤κ′

G Y

Hence, for F, G : k1, F ≤k1 G = ∀A∀B.(A → B) → FA → GB. Here, one
does not only have to pass from F to G, but this has to be stable under
changing the argument type from A to B.

This notion will give rise to a notion of monotonicity on the basis of which
traditional-style iteration and coiteration can be extended to arbitrary ranks—
see Section 6.

Relativized refined containment. In order to extend Mendler (co)itera-
tion to higher kinds such that generalized and efficient folds (Hinze, 2000a;
Martin, Gibbons, and Bayley, 2003) are directly covered, we have to relativize

the notion ≤κ, for κ = ~κ → ∗, to a vector ~H of type constructors of kinds
~κ → ~κ, i. e., H1 : κ1 → κ1, H2 : κ2 → κ2, . . . In addition to a variation of
the argument type constructor as in the definition of ≤κ→κ′

, moreover, Hi

is applied to the i-th “target argument” (below, another definition similarly
modifies the “source argument”).

For every kind κ = ~κ → ∗, define a type constructor ≤κ
(−): (~κ → ~κ) → κ →

κ → ∗ by structural recursion on κ as follows:

F ≤∗ G := F → G

F ≤κ→κ′

H, ~H
G := ∀Xκ∀Y κ. X ≤κ H Y → F X ≤κ′

~H
G Y

Note that, in the second line, H has kind κ → κ. For ~H a vector of identity
type constructors ~Id, the new notion≤κ

~H
coincides with≤κ. Similarly, we define
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another type constructor (−)≤κ: (~κ → ~κ) → κ → κ → ∗, where the base case
is the same as before, hence no ambiguity with the notation arises.

F ≤∗ G := F → G

F H, ~H≤κ→κ′
G := ∀Xκ∀Y κ. H X ≤κ Y → F X ~H≤κ′

G Y

As an example, for F, G, H : k1, one has

F ≤k1
H G = ∀A∀B. (A → HB) → FA → GB,

F H≤k1 G = ∀A∀B. (HA → B) → FA → GB.

Even more concretely, we have the following types which will be used in the
examples 12 and 14:

PList ≤k1
λB.Nat λB.Nat = ∀A∀B.(A → Nat) → PList A → Nat

Tri Tri≤k1 Tri = ∀A∀B.(Tri A → B) → Tri A → Tri B

4.2 Definition of GMItω

Now we are ready to define generalized Mendler-style iteration and coiteration,
which specialize to ordinary Mendler-style iteration and coiteration in the
case of rank-1 (co)inductive types, and to a scheme encompassing generalized
folds (Bird and Paterson, 1999a; Hinze, 2000a; Martin, Gibbons, and Bayley,
2003) and the dual scheme for coinductive type constructors of rank 2. The
generalized scheme for coinductive type constructors is a new principle of
programming with non-wellfounded datatypes.

The system GMItω is given as an extension of Fω by wellkinded type constructor
constants µκ and νκ, and welltyped term constants inκ, outκ as for MItω, and
the elimination rule GMItκ(s) and the introduction rule GMCoitκ(s) for every
kind κ, and new term reduction rules.
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Inductive type constructors. Let κ = ~κ → ∗.

Formation. µκ : (κ → κ) → κ

Introduction. inκ : ∀F κ→κ. F (µκF ) ⊆κ µκF

Elimination. Γ ` F : κ → κ

Γ ` G : κ

Γ ` ~H : ~κ → ~κ

Γ ` s : ∀Xκ. X ≤κ
~H

G → F X ≤κ
~H

G

Γ ` GMItκ(s) : µκF ≤κ
~H

G

Reduction. GMItκ(s) ~f (inκ t) −→β s GMItκ(s) ~f t

where |~f | = |~κ|.

Example 12 (Summing up a Powerlist, Revisited) The function sum′

for powerlists (see Example 8) can be naturally implemented with GMItk1. The
difference to the original implementation confines itself to swapping the argu-
ments t (powerlist) and f (continuation). The swapping is necessary since for
this example GMItk1 yields a recursive function of type PList ≤k1

λB.Nat λB.Nat,
which can be simplified to ∀A. (A → Nat) → PList A → Nat by removing the
void quantification over B.

Example 13 (Summing up a Bush) Recall the nested datatype of “bushy
lists” given in Section 3.3 and first considered in Bird and Meertens (1998)
within Haskell.

BushF = λXλA. 1 + A×X (X A) : k2
Bush = µk1 BushF : k1

bnil = ink1 (inl 〈〉) : ∀A. Bush A
bcons = λaλb. ink1 (inr 〈a, b〉) : ∀A. A → Bush (Bush A) → Bush A

Similarly to powerlists, we can define a summation function sum′ for bushes:

bsum′ := GMItk1
(
λbsum ′λfλt. match t with

bnil− 7→ 0

| bcons− a b 7→ f a + bsum ′ (bsum ′ f) b
)

: ∀A. (A → Nat) → Bush A → Nat

The 0 in the first case is the supposed zero in Nat. The types would be assigned
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as follows:
bsum ′ : X ≤k1

λB.Nat λB.Nat

f : A → Nat

t : 1 + A×X(XA)

a : A

b : X(XA)

bsum ′f : XA → Nat

bsum ′ (bsum ′f) : X(XA) → Nat

While termination of sum′ for powerlists is already observable from the reduc-
tion behavior, this cannot be said for bsum′ where the nesting in the datatype
is reflected in the nesting of the recursive calls:

bsum′ f bnil −→+ 0

bsum′ f (bcons a b) −→+ f a + bsum′ (bsum′f) b

Note that in the outer recursive call the second argument decreases struc-
turally: on the left-hand side, one has bcons a b, one the right-hand side only
b. But, the inner call bsum′f does not specify a second argument. One could
force the second argument by η-expanding it to λx. bsum′ f x, which does not
help much because the fresh variable x does not stand in any visible relation to
the input bcons a b. Consequently, proving termination of bsum′ using a term
ordering seems to be problematic, whereas in our system it is just a byproduct
of type checking (see Theorem 1).

Coinductive type constructors. Let κ = ~κ → ∗.

Formation. νκ : (κ → κ) → κ

Elimination. outκ : ∀F κ→κ. νκF ⊆κ F (νκF )

Introduction. Γ ` F : κ → κ

Γ ` G : κ

Γ ` ~H : ~κ → ~κ

Γ ` s : ∀Xκ. G ~H≤κ X → G ~H≤κ F X

Γ ` GMCoitκ(s) : G ~H≤κ νκF

Reduction. outκ(GMCoitκ(s) ~f t) −→β s GMCoitκ(s) ~f t

where |~f | = |~κ|.

Example 14 (Triangle Redecoration, Revisited) Using GMCoitk1, trian-
gle redecoration can be implemented much more concisely. In the context of

32



Example 11 we obtain the function redec directly as follows.

redec := GMCoitk1
(
λredec λfλt. 〈f t, redec (lift f) (rest t)〉

)
: ∀A∀B. (Tri A → B) → Tri A → Tri B = Tri Tri≤k1 Tri

Thus, one can enforce the desired reduction behavior without any detours. In
MItω, where we implemented triangle redecoration in Example 11, we were
required to implement an auxiliary function redec′ first which used a tagged
argument pair pack〈f, t〉. In contrast, the curried version redec above can
handle f and t as two separate arguments directly. This leads to a very natural
reduction behavior:

top (redec f t) −→+ f t

rest (redec f t) −→+ redec (lift f) (rest t)

In Example 11, we had the small spot ◦ in the picture in that only redec◦ for
the function redec we defined there appeared on the right-hand side.

4.3 Embedding GMItω into MItω

The embedding of GMItω into MItω shown in this section preserves reductions.
Hence, GMItω inherits strong normalization from MItω. The embedding can
even be read as a definition of GMItκ(s) and GMCoitκ(s) within MItω. There-
fore, we will later freely use these constructions within the system MItω.

For the sake of the embedding, we use a syntactic version of Kan extensions
(see Mac Lane, 1998, Chapter 10). In conjunction with nested datatypes, Kan
extensions appear already in Bird and Paterson (1999a, Section 6.2), but not
as a tool of programming with nested types, but a means to categorically
justify the uniqueness of generalized folds as elimination principles for nested
datatypes. In this article, for the examples 8 and 11 within MItω, special Kan
extensions have been used already. The same programming tasks have been
accomplished directly within GMItω in the examples 12 and 14. In the sequel,
this will be clarified: Just by choosing the target type constructor of iteration
to be an appropriate Kan extension, one gets the behavior of GMItκ(s) within
MItω, and similarly for the source type constructor in the coinductive case.

Compared to Abel and Matthes (2003), Kan extensions “along” are now de-
fined for all kinds, not just for rank 1.
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Right Kan extension along ~H. Let κ = ~κ → ∗ and ~κ′ = ~κ → ~κ and
define for G : κ, ~H : ~κ′ and ~X : ~κ the type (Ranκ

~H
G) ~X by iteration on |~κ|:

Ran∗ G := G

(Ranκ1→κ̃

H, ~H
G) X ~X := ∀Y κ1. X ≤κ1 HY → (Ranκ̃

~H
(G Y )) ~X

Here, κ1 → κ̃ is the general format for a composed kind κ. Clearly, κ̃ =
κ2, . . . , κ|~κ| → ∗.

Left Kan Extension along ~H. Let again κ = ~κ → ∗ and ~κ′ = ~κ → ~κ and
define for F : κ, ~H : ~κ′ and ~Y : ~κ the type (Lanκ

~H
F )~Y by iteration on |~κ|:

Lan∗ F := F

(Lanκ1→κ̃

H, ~H
F ) Y ~Y := ∃Xκ1. HX ≤κ1 Y × (Lanκ̃

~H
(FX)) ~Y

The kind κ̃ is to be understood as in the previous definition.

We omit the index ~H if it is just a vector of identities Id.

Lemma 3 Let κ = ~κ → ∗, F, G : κ and ~H : ~κ → ~κ. The following pairs of
types are logically equivalent:

(1) F ≤κ
~H

G and F ⊆κ Ranκ
~H

G.
(2) F ~H≤κ G and Lanκ

~H
F ⊆κ G.

Proof. For κ = ∗, all these types are just F → G. Otherwise, let ~κ′ := ~κ → ~κ,
n := |~κ| and define

leqRanκ := λgλtλ~f. g ~f t

: ∀F κ∀Gκ∀ ~H~κ′
. F ≤κ

~H
G → F ⊆κ Ranκ

~H
G

ranLeqκ := λhλ~fλr. h r ~f

: ∀F κ∀Gκ∀ ~H~κ′
. F ⊆κ Ranκ

~H
G → F ≤κ

~H
G

leqLanκ := λgλ(pack〈f1, pack〈f2, . . . pack〈fn, t〉 . . .〉〉). g ~f t

: ∀F κ∀Gκ∀ ~H~κ′
. F ~H≤κ G → Lanκ

~H
F ⊆κ G

lanLeqκ := λhλ~fλt. h pack〈f1, pack〈f2, . . . pack〈fn, t〉 . . .〉〉
: ∀F κ∀Gκ∀ ~H~κ′

. Lanκ
~H

F ⊆κ G → F ~H≤κ G

(The definition for right Kan extension would even work for κ = ∗, the one
for left Kan extension would be incorrect in that case.) 2
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We can now simply define the new function symbols of GMItω in MItω in case
κ 6= ∗ (otherwise, the typing and reduction rules are just the same for both
systems):

GMItκ(s) := ranLeqκ (MItκ (leqRanκ ◦ s ◦ ranLeqκ))

GMCoitκ(s) := lanLeqκ (MCoitκ (leqLanκ ◦ s ◦ lanLeqκ))

Then GMItκ(s) and GMCoitκ(s) have precisely the typing behavior as required
for GMItω. We only treat the inductive case, the coinductive one is analogous.
Assume the step term s for GMItκ(s) of type ∀Xκ. X ≤κ

~H
G → F X ≤κ

~H
G.

Then,

ŝ := leqRanκ ◦ s ◦ ranLeqκ : ∀Xκ. X ⊆κ Ranκ
~H

G → F X ⊆κ Ranκ
~H

G.

Therefore, MItκ(ŝ) : µκF ⊆κ Ranκ
~H

G, finally GMItκ(s) : µκF ≤κ
~H

G.

We calculate, using the above abbreviation ŝ,

GMItκ(s) ~f (inκ t) −→+ MItκ(ŝ) (inκ t) ~f

−→ ŝ MItκ(ŝ) t ~f

−→+ s (ranLeqκ(MItκ(ŝ))) ~f t

With a similar, but notationally more tedious calculation for the coinductive
case, we get, with these definitions, in MItω:

GMItκ(s) ~f (inκ t) −→+ s GMItκ(s) ~f t

outκ(GMCoitκ(s) ~f t) −→+ s GMCoitκ(s) ~f t

Since one step of reduction in GMItω is replaced by at least one reduction step
of the encoding in MItω, GMItω inherits strong normalization of MItω. Since
the number of steps is fixed for every kind κ, in the examples we will just
treat GMItω as a subsystem of MItω in the sense that we assume that both
iteration and both coiteration schemes are present in MItω together with their
reduction rules.

5 Basic Conventional Iteration

We are looking for a system of conventional iteration into which we can embed
MItω in a way which sends Mendler iteration into conventional iteration.

Systems of conventional iteration, unlike Mendler-style systems, directly follow
the idea of initial algebras in category theory. In that model, F : κ → κ would
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have to be an endofunctor on a category associated with κ. The fixed-point
µκF would be the carrier of an initial F -algebra, and inκ : F (µκF ) −→ µκF
be its structure map. In the Mendler-style systems of this article, we have
chosen to represent those morphisms by terms of type F (µκF ) ⊆κ µκF . This
decision for the type of the data constructor inκ will remain fixed throughout
the article. The main open question is the choice of the syntactic representation
of being a functor. Certainly, we cannot require the equational functor laws
in our framework of Fω, but have to concentrate on the types: If a functor
F is applied to a morphism s : A −→ B, then the result is a morphism
Fs : FA −→ FB. If F is a type constructor, i. e., of kind k1, then this can be
represented by the existence of a term m of type

monk1 F := ∀A∀B. (A → B) → FA → FB,

which is nothing but monotonicity of F . Then, s : A → B implies m s : FA →
FB.

The notion monk1 F is the most logically-minded definition of rank-1-functors:
It is free from the analysis of the shape of F (polynomial, strictly positive,
non-strictly positive). Moreover, it is the only possible definition that is based
on the existence of a witness of monotonicity, i. e., a term inhabiting the type
expressing functoriality. This is no longer so for higher kinds. We will stick
to the logical approach, but face several possible definitions of monotonicity
expressing functoriality. In this section, we will start with basic monotonicity,
and in Section 6, a more refined definition will be studied.

Basic Monotonicity Define

monκ→κ′
:= λF. ∀Xκ∀Y κ. X ⊆κ Y → F X ⊆κ′

F Y : (κ → κ′) → ∗

This will be our notion of monotonicity of type constructors F : κ → κ′,
and hence our representation of functoriality. Consequently, we only use our
inductive constructor µκF in the presence of some term m of type monκ→κ F .
As has been observed in Matthes (1998), there is no need to require a fixed
term m beforehand. It is sufficient to give it as an argument to either the data
constructor or the iterator. Moreover, it does not need to be closed, hence
giving rise to conditional monotonicity or (in the case m is just a variable) to
hypothetical monotonicity. Anyhow, in loc. cit., it has been shown that strong
normalization holds for inductive types. There, only monk1 enters the defini-
tions. Clearly, monk1 F = monk1 F .

In the next subsection, we will see that a canonical formulation of (co)iteration,
based on basic monotonicity monκ→κ for all kinds κ, is a subsystem of MItω.
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5.1 Defining Basic Conventional Iteration in Terms of Mendler Iteration

Define the basic conventional iterators and coiterators by

Itκ(m, s) := MItκ(λitλt. s (m it t))

Coitκ(m, s) := MCoitκ(λcoit λt.m coit (s t))

Then, one immediately gets the following derived typing rules

Γ ` F : κ → κ Γ ` m : monκ→κ F Γ ` G : κ Γ ` s : F G ⊆κ G

Γ ` Itκ(m, s) : µκF ⊆κ G

Γ ` F : κ → κ Γ ` m : monκ→κ F Γ ` G : κ Γ ` s : G ⊆κ F G

Γ ` Coitκ(m, s) : G ⊆κ νκF

and reduction behavior as follows

Itκ(m, s) (inκ t) −→+ s (m Itκ(m, s) t)

outκ (Coitκ(m, s) t) −→+ m Coitκ(m, s) (s t)

The interpretation of the typing rule for Itκ(m, s) is as follows: Given a mono-
tonicity witness m for F and an F -algebra s, i. e., a type constructor G and a
term s of type F G ⊆κ G, “initiality” of µκF yields a “morphism” from µκF
to G. This “morphism” is witnessed by Itκ(m, s) of type µκF ⊆κ G.

Also the reduction behavior is as expected (see Matthes, 1999): If Itκ(m, s) is
given the constructor term inκ t, this reduces to the step term (the F -algebra)
s, applied to the recursive call, where m organizes how the whole function
Itκ(m, s) is applied to the term t which was the argument to inκ.

The rules for νκF are just found by dualization.

Example 15 (Summing up a Powerlist, Conventional Style) We redo
Example 8 with Itk1. Again, we define a more general function

sum′ : ∀A. PList A → (A → Nat) → Nat = PList ⊆k1 G′
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with G′ := λA. (A → Nat) → Nat : k1. This is done as follows:

PListF := λXλA. A + X (A× A)
: k2

plistfb := λsλt. match t with
zero− a 7→ zero− a
| succ− l 7→ succ− (s l)

: monk2 PListF

s := λtλf. match t with
zero− a 7→ f a
| succ− res 7→ res (λ〈a1, a2〉. f a1 + f a2)

: PListF G′ ⊆k1 G′

sum′ := Itk1(plistfb, s)
: PList ⊆k1 G′

An easy calculation shows that, as in Example 8, we get the reduction behavior

sum′ : ∀A. PList A → (A → Nat) → Nat

sum′ (zero a) f −→+ f a
sum′ (succ l) f −→+ sum′ l (λ〈a1, a2〉. f a1 + f a2)

We want to isolate these means of basic conventional iteration and coiteration
in the form of a system Itω in order to make it the target of an embedding.

5.2 Definition of Itω: Basic Conventional Iteration and Coiteration

Let the system Itω be given by the extension of system Fω by the follow-
ing constants, function symbols, typing and reduction rules for iteration and
coiteration, starting with those for iteration:

Formation. µκ : (κ → κ) → κ

Introduction. inκ : ∀F κ→κ. F (µκF ) ⊆κ µκF

Elimination. Γ ` F : κ → κ,

Γ ` m : monκ→κ F

Γ ` G : κ

Γ ` s : F G ⊆κ G

Γ ` Itκ(m, s) : µκF ⊆κ G

Reduction. Itκ(m, s) (inκ t) −→β s (m Itκ(m, s) t)
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As has been promised, this is nothing more than a system version of the
definitions in the previous subsection. Since the embedding of MItω into Itω

in the next subsection will even change the type constructors (not only the
terms), also the name of the fixed-point former µκ has been changed into µκ, as
well as the name of the general data constructor inκ, which has been changed
to inκ. Similar remarks apply to coiteration, given as follows:

Formation. νκ : (κ → κ) → κ

Elimination. outκ : ∀F κ→κ. νκF ⊆κ F (νκF )

Introduction. Γ ` F : κ → κ,

Γ ` m : monκ→κ F

Γ ` G : κ

Γ ` s : G ⊆κ F G

Γ ` Coitκ(m, s) : G ⊆κ νκF

Reduction. outκ (Coitκ(m, s) t) −→β m Coitκ(m, s) (s t)

Using the definitions in the previous subsection, Itω embeds into MItω. The
interesting result, however, is the embedding in the converse direction: MItω

even embeds into Itω.

5.3 Embedding Mendler Iteration into Conventional Iteration

Here, we present a somewhat surprising embedding of MItω into Itω. Cer-
tainly, there is the embedding through Fω that polymorphically encodes the
(co)inductive constructors (see section 3.6) and ignores the additional capabil-
ities of Itω. An interesting embedding has to send the Mendler (co)iterators of
MItω to the conventional (co)iterators of Itω. Unlike the embedding of GMItω

into MItω, our embedding will not just be a “notational definition”, but also
transforms the (co)inductive constructors. As before, Kan extensions play a
central role.

Naive Kan extensions along the identity. In the following, we define
a naive form of Kan extensions (unlike in previous papers and above). Let

κ := κ0 → ~κ → ∗, F : κ, G : κ0 and Gi : κi for 1 ≤ |~κ|. The types (Ranκ F ) G ~G
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and (Lanκ F ) G ~G are defined as follows:

(Ranκ F ) G ~G := ∀Y κ0. G ⊆κ0 Y → F Y ~G

(Lanκ F ) G ~G := ∃Xκ0. X ⊆κ0 G × F X ~G

Alternatively, Ranκ and Lanκ can be seen as type constructors of kind κ → κ.

Notice that, trivially, always Ran F ⊆ F and F ⊆ Lan F . More precisely, we
can define for κ 6= ∗

ranId : Ranκ ⊆κ Id by ranId := λx.x id

lanId : Id ⊆κ Lanκ by lanId := λx. pack〈id, x〉

Lemma 4 For any F, F ′ : κ → κ and G : κ, we have the following logical
equivalences (already in Fω):

(∀Xκ. G ⊆ X → G ⊆ F X) ↔ G ⊆ (Ranκ→κ F ) G (1)

(∀Xκ∀Y κ. X ⊆ Y → F X ⊆ F ′ Y ) ↔ F ⊆ Ranκ→κ′
F ′ (2)

monκ→κ′
F ↔ F ⊆ Ranκ→κ′

F (3)

(∀Xκ. X ⊆ G → F X ⊆ G) ↔ (Lanκ→κ F ) G ⊆ G (4)

(∀Xκ∀Y κ. X ⊆ Y → F X ⊆ F ′ Y ) ↔ Lanκ→κ′
F ⊆ F ′ (5)

monκ→κ′
F ↔ Lanκ→κ′

F ⊆ F (6)

Proof. The first two equivalences are proven by Schönfinkel’s transposition
operator T := λsλtλf. s f t—in either direction. For the fourth and fifth equiv-
alence from left to right, the proof is U := λsλ(pack〈f, t〉). s f t, a kind of un-
currying operator, and λsλfλt. s (pack〈f, t〉) for the reverse direction, a cur-
rying procedure. Obviously, (3) is an instance of (2), and (6) is an instance of
(5). 2

The terms T := λsλtλf. s f t and U := λsλ(pack〈f, t〉). s f t in the previous
proof will be used in the embedding below.

The following is a crucial property of Itω: There is a uniform proof of mono-
tonicity for all Kan extensions. (Recall that κ 6= ∗.)

Mκ
Lan := λgλ(pack〈f, t〉). pack〈g ◦ f, t〉 : ∀Gκ. monκ (Lanκ G)

Mκ
Ran := λgλtλf. t (f ◦ g) : ∀Gκ. monκ (Ranκ G)
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The embedding p·q of System MItω of Mendler iteration and coiteration into
Itω is now straightforward. Kinds are left fixed; the translation of most type-
constructor and term formers is homomorphic, e.g., a type application pF Gq
is encoded as a type application pFq pGq. Only syntax related to least and
greatest fixed-points has to be translated non-homomorphically:

Formation. pµκq : (κ → κ) → κ

pµκq := µκ ◦ Lanκ→κ

Introduction. pinκq : ∀F κ→κ. F pµκFq ⊆ µκ(Lanκ→κ F )

pinκq := λt. inκ (lanId t)

Elimination.
F : κ → κ G : κ s : ∀Xκ. X ⊆ G → F X ⊆ G

pMItκ(s)q : pµκFq ⊆ pGq

pMItκ(s)q := λx. Itκ(Mκ
Lan, U psq) x where

U psq : Lanκ→κ pFq pGq ⊆ pGq

Reduction. MItκ(s) (inκ t) −→ s MItκ(s) t

This behavior is simulated by finitely many steps inside Itω:

pMItκ(s) (inκ t)q −→+ Itκ(Mκ
Lan, U psq) (inκ (lanId ptq))

−→ U psq (Mκ
Lan Itκ(Mκ

Lan, U psq) (lanId ptq))

−→ U psq (Mκ
Lan Itκ(Mκ

Lan, U psq) pack〈id, ptq〉)

−→+ U psq pack〈Itκ(Mκ
Lan, U psq) ◦ id, ptq〉

−→+ psq (Itκ(Mκ
Lan, U psq) ◦ id) ptq

−→ psq (λx. Itκ(Mκ
Lan, U psq) x) ptq

= ps MItκ(s) tq

Notice that the embedding employs a left Kan extension for the inductive
case while the embedding of GMItω into MItω uses a right Kan extension for
that purpose. Hence, there is a real need for the existential quantifier also for
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inductive constructors alone. We come to the coinductive case.

Formation. pνκq : (κ → κ) → κ

pνκq := νκ ◦ Ranκ→κ

Elimination. poutκq : ∀F κ→κ. νκ(Ranκ→κ F ) ⊆ F pνκFq

poutκq := λr. ranId (outκ r)

Introduction.
F : κ → κ G : κ s : ∀Xκ. G ⊆ X → G ⊆ F X

pMCoitκ(s)q : pGq ⊆ pνκFq

pMCoitκ(s)q := λx. Coitκ(Mκ
Ran, T psq) x where

T psq : pGq ⊆ Ranκ→κ pFq pGq

Reduction. outκ (MCoitκ(s) t) −→ s MCoitκ(s) t

poutκ (MCoitκ(s) t)q −→+ ranId
(
outκ (Coitκ(Mκ

Ran, T psq) ptq)
)

−→ ranId
(
Mκ

Ran Coitκ(Mκ
Ran, T psq) (T psq ptq)

)
−→+ ranId

(
λf. T psq ptq (f ◦ Coitκ(Mκ

Ran, T psq))
)

−→+ T psq ptq (id ◦Coitκ(Mκ
Ran, T psq))

−→+ psq (λx. Coitκ(Mκ
Ran, T psq) x) ptq

= ps MCoitκ(s) tq

5.4 Remarks on Monotonicity

Although sufficient to cover all of MItω, our basic notion of monotonicity has
several defects which will be overcome in the next section.

Lemma 5 There is no closed term of type monk2(λX. X ◦X) in Fω.

Proof. Assume, to the contrary,

m : ∀X∀Y. (∀A. XA → Y A) → ∀A. X(XA) → Y (Y A).

Assume a type variable Z and consider X := λA. A → ⊥ with ⊥ := ∀Z.Z,
and Y := λA. A → Z. Then, s := λtλa. t a : ∀A. XA → Y A. Therefore,
m s : X(XZ) → Y (Y Z) = ¬¬Z → (Z → Z) → Z, with ¬A := A → ⊥.
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Hence, λu. m s u id : ∀Z.¬¬Z → Z. This is impossible, since Fω is not classi-
cal (to be proven using normalization). 2

The lemma hinges on our definition of monotonicity: The notion of mono-
tonicity studied in the next section will cover λXλA.X(XA).

A motivation why the lemma holds can be given as follows: How would we
go from X(XA) to Y (Y A)? Two possibilities seem to exist: either through
X(Y A) or through Y (XA). However, in the first case, we would badly need
monotonicity (in the only possible sense) of X to exhibit X(XA) → X(Y A),
in the second case, we would need monotonicity of Y to pass from Y (XA) to
Y (Y A). If neither X nor Y are monotone, we cannot expect at all to succeed.
The above lemma even gives an appropriate example.

The definition of monotonicity is naive in the sense that the following prop-
erties do not hold in general:

monκ→κ′
F, monκ X imply monκ′

(F X),

monκ→κ F implies monκ(µκF ).

This means monotonicity of a least fixed-point µκF : κ is not inherited from
monotonicity of F : κ → κ. Still, this notion of monotonicity has been shown
to be suitable to define iteration and coiteration in the sense of Itω.

Both non-implications are exemplified with the single example F := λ λA.¬A.
Trivially, monk2 F is inhabited by mF := λx. id. Certainly, F X = λA.¬A is
not monotone: If m : monk1(λA.¬A), then m : (⊥ → A) → (⊥ → ⊥) → ¬A,
hence m id id : ∀A.¬A, hence logical inconsistency of Fω ensues. Also µk1F
is not monotone because this type constructor is logically equivalent with
λA.¬A: The data constructor ink1 yields one direction, the other comes from

Itk1(mF , id) : (µk1F ) ⊆ F (µk1F )

= ∀A. (µk1F ) A → ¬A

Remark 2 (Another notion of monotonicity) Consider a modified no-
tion of monotonicity which excludes some more type constructors.

vmon~κ→∗ F := ∀ ~X~κ∀~Y ~κ. ~X ⊆~κ ~Y → F ~X → F ~Y

This notion is monotonicity preserving in a very strong sense: vmonκ→κ′
F

alone implies vmonκ′
(F X), but it fails to give a good target system for MItω.

This is because for the appropriate modification of left Kan extension Lanκ,
(although a term MLan exists here as well,) the step term of MItκ does not have
a type isomorphic to Lanκ→κ F G ⊆κ G.
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Although we have shown that monotonicity of F : κ → κ fails to entail mono-
tonicity of µκF in general, it does work if F additionally preserves mono-
tonicity of its first argument. More precisely, if there is a term p which trans-
forms every monotonicity witness n : monκ X into a monotonicity witness
p n : monκ(F X), then µκF : κ is monotone, canonically. To see this, define

Mκ
µ(p, m) := λfλt. It

(
m, λt′λf ′. inκ (m ranId (p Mκ

Ran f ′ t′))
)

t f.

Then F : κ → κ, p : ∀Xκ. monκ X → monκ(F X) and m : monκ→κ F imply
that the step term s has type F (Ranκ(µκF )) ⊆κ Ranκ(µκF ) and

Mκ
µ(p, m) : monκ(µκF )

Mκ
µ(p, m) f (inκ t) −→+ inκ (m ranIdκ (p Mκ

Ran f (m Itκ(m, s) t)))

For well-behaved F , p and m (such as the regular rank-2 constructors and their
canonical monotonicity-preservation and monotonicity witnesses described in
Section 9), the right-hand side is reducible further, and we get a common−→+-
reduct for the terms Mκ

µ(p, m) f (inκ t) and inκ (p Mκ
µ(p, m) f t). For general F

and m, however, such further simplification is obviously impossible (take F
to be a constructor variable and m an object variable assumed to inhabit
monκ→κ F ).

It is also true that if a monotone F : κ → κ preserves monotonicity, then
νκF : κ is canonically monotone.

6 Refined Conventional Iteration

Let MItω= be the restriction of GMItω where the vector ~H : ~κ′ of H’s in the
typing of GMItκ and GMCoitκ only consists of identities Id. Consequently, one
changes the name of GMItκ to MItκ= and GMCoitκ to MCoitκ=. The reduction
rules do not change (except for the names just introduced).

We shall now proceed to the presentation of a system of conventional iteration
corresponding to the system MItω=. The system will be called Itω= and is the
system discussed in Abel and Matthes (2003). In Section 7, arbitrary vectors
~H will be reintroduced and a system GItω, corresponding to the full system
GMItω, will be studied.

As a first step, we have to employ a notion of monotonicity different from
mon, with the basic containment notion ⊆ replaced with the refined notion of
containment ≤.
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Refined monotonicity We define monκ := λF. F ≤κ F , hence

monκ→κ′
= λF. F ≤κ→κ′

F

= λF. ∀Xκ∀Y κ. X ≤κ Y → F X ≤κ′
F Y : (κ → κ′) → ∗

The type monκ F , seen as a proposition, asserts essentially that F is monotone
in all argument positions, for monotone argument values. The same type is
used in polytypic programming for generic map functions in Hinze (2002) as
well as in Altenkirch and McBride (2003). Contrast this with monκ F which
asserts that F is monotone in its first argument position, for all argument
values.

Notice that for k1 = ∗ → ∗, the new definition of monotonicity, mon, coincides
with the old one, mon. For higher ranks, however, the notions differ consider-
ably. For instance, the type constructor λX. X ◦X : (κ → κ) → κ → κ, which
for κ = ∗ we disproved to be monotonic w. r. t. the old notion in Lemma 5, is
monotonic w. r. t. the new notion:

λeλf. e (e f) : mon(κ→κ)→κ→κ(λXλY. X (X Y ))

Also, the new definition is compatible with application: If F : κ → κ′ and
X : κ are monotone, then F X : κ′ is monotone as well:

m : monκ→κ′
F and n : monκ X imply m n : monκ′

(F X)

The following are the canonical monotonicity witnesses for some closed F
which we will need in examples later.

pair := λfλgλ〈a, b〉. 〈f a, g b〉 : mon∗→∗→∗ (λAλB.A×B)

fork := λf. pair◦ f f : mon∗→∗ (λA. A× A)

either := λfλgλx. case (x, a. inl (f a), b. inr (g b)) : mon∗→∗→∗ (λAλB.A + B)

maybe := either id : mon∗→∗ (λA. C + A)

In the definition of maybe, we assume that A does not occur free in C.

6.1 Definition of Itω=

The system Itω= is an extension of Fω specified by the following typing and
reduction rules.
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Inductive constructors. Let κ = ~κ → ∗.

Formation. µκ : (κ → κ) → κ

Introduction. inκ : ∀F κ→κ. F (µκF ) ⊆κ µκF

Elimination. Γ ` F : κ → κ,

Γ ` m : monκ→κ F

Γ ` G : κ

Γ ` s : F G ⊆κ G

Γ ` Itκ=(m, s) : µκF ≤κ G

Reduction. Itκ=(m, s) ~f (inκ t) −→β s (m Itκ=(m, s) ~f t)

where |~f | = |~κ|.

This system is “conventional” in the sense Itω is conventional: Iteration is only
possible in the presence of a monotonicity witness m, being our representa-
tion of functoriality. And the argument s to Itκ= (the “step term”) has the
type F G ⊆κ G, making (G, s) the syntactic representation of an F -algebra.
Somewhat surprisingly, the type of Itκ=(m, s) is not µκF ⊆κ G, hence there
seems to be a mismatch: The type of inκ and the step term are based on the
view of functors inhabiting types of the form F1 ⊆κ F2 but the result type of
iteration is of the stronger form F1 ≤κ F2. But this strengthening is needed to
ensure subject reduction since the monotonicity witness m is applied to the
iterator. It is also crucial for the following fact:

Lemma 6 (Monotonicity of Least Fixed-Points) If type constructor F :
κ → κ is monotone, witnessed by m : monκ→κ F , then µκF is again monotone,
witnessed by

Mκ
µ(m) := Itκ=(m, inκ) : monκ(µκF ), where

Mκ
µ(m) ~f (inκ t) −→ inκ (m Mκ

µ(m) ~f t).

Proof. Directly by instantiation of the typing and reduction rules for Itκ=. 2

Remark 3 (Alternative Introduction Rule) To overcome the mismatch
between step term and iterator mentioned above, one might accept the type
of the iterator term Itκ=(m, s) as it stands, but would use ≤κ instead of ⊆κ

for the types of data constructor inκ and step term s. In fact, this was the
typing rule underlying the original submission of Abel and Matthes (2003)
and a similar typing rule was suggested to us also by Peter Aczel in May
2003. However, a data constructor of type inκ : F (µκF ) ≤κ µκF would have
the drawback that the canonical inhabitants of higher-order inductive types
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would be of the form inκ ~g t, where the gi are functions. As a consequence,
a single data object could have several, even infinitely many distinct normal
forms. For instance, ink1 (λn. n + 5) (inl 10) and ink1 id (inl 15) would both
denote the powerlist containing solely the number 15. For ground types, i. e.,
inductive types without embedded function spaces like powerlists, this seems
unsatisfactory.

Coinductive constructors. Let κ = ~κ → ∗.

Formation. νκ : (κ → κ) → κ

Elimination. outκ : ∀F κ→κ. νκF ⊆κ F (νκF )

Introduction. Γ ` F : κ → κ,

Γ ` m : monκ→κ F

Γ ` G : κ

Γ ` s : G ⊆κ F G

Γ ` Coitκ=(m, s) : G ≤κ νκF

Reduction. outκ (Coitκ=(m, s) ~f t) −→β m Coitκ=(m, s) ~f (s t)

where |~f | = |~κ|.

As for least fixed-points, monotonicity of greatest fixed-points can be defined
canonically.

Lemma 7 (Monotonicity of Greatest Fixed-Points) If type constructor
F : κ → κ is monotone, witnessed by m : monκ→κ F , then νκF is again mono-
tone, witnessed by

Mκ
ν(m) := Coitκ=(m, outκ) : monκ(νκF ), where

outκ (Mκ
ν(m) ~f t) −→ m Mκ

ν(m) ~f (outκ t).

6.2 Examples

The following two developments exemplify the use of Mk1
µ , i. e., the preser-

vation of monotonicity under formation of least fixed-points. More examples
for programming in Itω=, also with Coitk1= , can be found in Abel and Matthes
(2003).

Example 16 (Free Variable Renaming for de Bruijn Terms) The free
variables of a de Bruijn term may be renamed by the canonical monotonicity
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witness of Lam, called lam below.

lamf := λeλf. either f (either (fork (e f)) (e (maybe f))) : monk2 LamF

lam := Mk1
µ (lamf) : monk1 Lam

The reduction behavior shows that we have indeed obtained the mapping
function for de Bruijn terms:

lam f (var a) −→+ var◦ (f a)

lam f (app t1 t2) −→+ app◦ (lam f t1) (lam f t2)

lam f (abs r) −→+ abs◦ (lam (maybe f) r)

A special case of free variable renaming extends the free variable supply (the
context) of a given term with a new variable (0) and renames the original free
variable supply accordingly (n 7→ n + 1). We call the corresponding program
weak, as it corresponds to the weakening rule of natural deduction.

weak := lam inr : ∀A. Lam A → Lam (1 + A)

Example 17 (Reversing a Powerlist) A reversal program for powerlists is
obtainable from the monotonicity witness of PList canonically generated from
a noncanonical monotonicity witness of PListF.

The canonical monotonicity witnesses of PListF and PList are

plistf := λeλf. either f (e (fork f)) : monk2 PListF

plist := Mk1
µ (plistf) : monk1 PList

The reversal program, however, does not make use of the canonical mono-
tonicity witnesses. It is manufactured as follows:

swap := λfλ〈a1, a2〉. 〈f a2, f a1〉 : monk1 (λA.A× A)
revf ′ := λeλf. either f (e (swap f)) : monk2 PListF

rev′ := Mk1
µ (revf ′) : monk1 PList

rev := rev′ id : PList ⊆k1 PList

rev′ f (zero a) −→+ zero◦ (f a)
rev′ f (succ l) −→+ succ◦ (rev′ (swap f) l)

Specializing f to id in the reduction rules, it becomes traceable that rev reverses
a powerlist.
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6.3 Embedding Itω= into MItω=

The iterator and coiterator of Itω= are definable within MItω= (see the beginning
of this section) so that the typing rules are obeyed and reduction is simulated.
We define:

Itκ=(m, s) := MItκ=(λitλ~fλt. s (m it ~f t))

Coitκ=(m, s) := MCoitκ=(λcoitλ~fλt. m coit ~f (s t))

Embedding MItω= into Itω= in a typing- and reduction-preserving way seems to
be impossible, except for the uninformative embedding through Fω.

7 Generalized Refined Conventional Iteration

Similar to MItω=, it is also possible to define a conventional-style counterpart
to GMItω. We will now present a system GItω that accomplishes this. One
important aspect is that the efficient folds of Martin, Gibbons, and Bayley
(2003) are directly definable in this system. This will be shown later on in
Section 9.

7.1 Definition of System GItω

System GItω recasts the generality of System GMItω following the design of
System Itω=. It generalizes Itω= in two directions: ≤ is generalized to ≤ ~H , and
an additional type constructor parameter F ′ : κ → κ appearing in the type of
m adds further flexibility. Compared to Itω=, only the typing rules are changed;
the reduction rules are the same. Significantly, the term m in GItκ(m, s) is no
longer a monotonicity witness in general, because of the changed type. Still,
we consider it to be a form of conventional iteration as the division of work
between the step term s and the pseudo monotonicity witness m is exactly the
same as in the case of iteration of system Itω=: The term s handles assembling
the result of a call of the iterative function from the results of the recursive
calls while m organizes the recursive calls.

GItω is specified by the following constants and typing and reduction rules.
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Inductive constructors. Let κ = ~κ → ∗.

Formation. µκ : (κ → κ) → κ

Introduction. inκ : ∀F κ→κ. F (µκF ) ⊆κ µκF

Elimination. Γ ` F, F ′ : κ → κ

Γ ` ~H : ~κ → ~κ

Γ ` m : ∀Xκ∀Y κ. X ≤κ
~H

Y → F X ≤κ
~H

F ′ Y

Γ ` G : κ

Γ ` s : F ′ G ⊆κ G

Γ ` GItκ(m, s) : µκF ≤κ
~H

G

Reduction. GItκ(m, s) ~f (inκ t) −→β s (m GItκ(m, s) ~f t)

where |~f | = |~κ|.

Coinductive constructors. Let κ = ~κ → ∗.

Formation. νκ : (κ → κ) → κ

Elimination. outκ : ∀F κ→κ. νκF ⊆κ F (νκF )

Introduction. Γ ` F ′, F : κ → κ

Γ ` ~H : ~κ → ~κ

Γ ` m : ∀Xκ∀Y κ. X ~H≤κ Y → F ′ X ~H≤κ F Y

Γ ` G : κ

Γ ` s : G ⊆κ F ′ G

Γ ` GCoitκ(m, s) : G ~H≤κ νκF

Reduction. outκ (GCoitκ(m, s) ~f t) −→β m GCoitκ(m, s) ~f (s t)

where |~f | = |~κ|.

Evidently, Itω= is (apart from different names for iterators and coiterators) just

the special case with F ′ = F and ~H = ~Id.

7.2 Examples

We demonstrate programming in GItω on two examples.

Example 18 (Summing up a Powerlist, Revisited) In GItω, the imple-
mentation of the summation of a powerlist in system GMItω (Example 12) can
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be closely mimicked. We can define

sum′ := GItk1(m, s)

: PList ≤k1
H G = ∀A∀ . (A → Nat) → PList A → Nat

where

G := λ . Nat : k1

H := λ . Nat : k1

Q := anything : k1

F ′ := λXλA. Nat + X (Q A) : k2

m := λeλf. either f
(
e (λ〈a1, a2〉. f a1 + f a2)

)
: ∀X∀Y. X ≤k1

λ . Nat Y → PListF X ≤k1
λ . Nat F ′ Y

= ∀X∀Y.
(
∀A′∀B. (A′ → Nat) → X A′ → Y B

)
→ ∀A∀B′. (A → Nat) → A + X (A× A) → Nat + Y (Q B′)

s := λt. match t with inl n 7→ n | inr n 7→ n

: F ′ (λ . Nat) ⊆k1 λ . Nat = ∀ . Nat + Nat → Nat

The reduction behavior is precisely that of sum′ in Example 12, but the work
accomplished by s in that example is now divided between m and s. Crucially,
the addition (the non-polymorphic operation of the recursive definition) takes
place in m. The reason why any type constructor of kind k1 can be used as Q is
that the type constructors G and H used by the iterator are constant, which is
a degenerate situation. (In Example 25, Q will be chosen in a canonical way.)

We see that one should not at all think of real monotonicity witnesses in
GItω. The pseudo monotonicity witnesses are meant to do work specific to the
programming task at hand. Example 17 of powerlist reversal by means of a
noncanonical monotonicity witness demonstrated this idea as well.

The next example shows that the iterator of GItω turns out to be very handy
when one wants to move on from variable renaming in de Bruijn terms to
substitution.

Example 19 (Substitution for de Bruijn Terms) In GItω, the following
smooth definition of substitution for de Bruijn terms as an iteration is possi-
ble, where we first define lifting as in the structurally inductive approach in
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Altenkirch and Reus (1999).

lift := λfλx. case (x, u. var (inl u), a. weak (f a))

: ∀A∀B. (A → Lam B) → 1 + A → Lam (1 + B)

subst := GItk1(m, s)

: Lam ≤k1
Lam Lam = ∀A∀B. (A → Lam B) → (Lam A → Lam B)

where

F ′ := λXλA. Lam A + (X A×X A + X (1 + A)) : k2

m := λeλf. either f
(
either (fork (e f)) (e (lift f))

)
: ∀X∀Y. X ≤k1

Lam Y → LamF X ≤k1
Lam F ′ Y

= ∀X∀Y. (∀A∀B. (A → Lam B) → X A → Y B)

→ ∀A∀B. (A → Lam B)

→ A + (X A×X A + X (1 + A))

→ Lam B + (Y B × Y B + Y (1 + B))

s := λt. match t with inl u 7→ u | inr t′ 7→ ink1(inr t′)

: F ′ Lam ⊆k1 Lam

= ∀A. Lam A + (Lam A× Lam A + Lam (1 + A)) → Lam A

Notice that we use weakening weak of Example 16 in the definition of the lifting
function lift, implicitly embedding Itω= into GItω. The program subst has exactly
the expected reduction behavior in the sense that, if f : A → Lam B is a
substitution rule, then subst f : Lam A → Lam B behaves as the corresponding
substitution function replacing the variables of its de Bruijn term argument
according to the rule f :

subst f (var a) −→+ f a

subst f (app t1 t2) −→+ app◦ (subst f t1) (subst f t2)

subst f (abs r) −→+ abs◦ (subst (lift f) r)

Alternatively, one might program substitution within Itω=, but this would ne-
cessitate an explicit use of a right Kan extension—a fact swept under the
carpet in Altenkirch and Reus (1999). In GItω, this more liberal format is part
of the design.
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7.3 Embeddings between GItω and GMItω

GItω embeds into GMItω much the same way as Itω= embeds into MItω=:

GItκ(m, s) := GMItκ(λitλ~fλt. s (m it ~f t))

GCoitκ(m, s) := GMCoitκ(λcoitλ~fλt. m coit ~f (s t))

The embedding of GMItω into GItω is much more interesting and again just a
definitional embedding.

GMItκ(s) := GItκ(lanLeqκ→κ id, leqLanκ→κ s)

GMCoitκ(s) := GCoitκ(ranLeqκ→κ id, leqRanκ→κ s)

Here, we used the definitions in the proof of Lemma 3. It is easy to check that,
with these definitions,

GMItκ(s) ~f (inκ t) −→+ s GMItκ(s) ~f t

outκ(GMCoitκ(s) ~f t) −→+ s GMCoitκ(s) ~f t

Hence, the reductions are simulated. Type-preservation has not yet been ad-
dressed; however, it is a consequence of the following lemma.

Lemma 8 Assume κ = ~κ → ∗, n = |~κ|, ~κ′ = ~κ → ~κ, F : κ → κ and ~H : ~κ′.
Define the constructor

F ′ := λY λ~Y ∃Xκ. X ≤κ
~H

Y → Lanκ(F X)( ~H ~Y ) : κ → κ.

Here, ( ~H ~Y ) means (H1 Y1) . . . (Hn Yn). Then, we have the following typings:

lanLeqκ→κ : ∀Xκ∀Y κ. F ′Y ⊆κ F ′Y → X ≤κ
~H

Y → F X ≤κ
~H

F ′ Y

leqLanκ→κ : ∀Gκ. (∀Xκ. X ≤κ
~H

G → F X ≤κ
~H

G) → F ′ G ⊆κ G

Redefine the constructor F ′ to be

F ′ := λXλ ~X∀Y κ. X ~H≤
κ Y → Ranκ(F Y )( ~H ~X).

Then, types can be assigned as follows:

ranLeqκ→κ : ∀Xκ∀Y κ. F ′X ⊆κ F ′X → X ~H≤κ Y → F ′ X ~H≤κ F Y

leqRanκ→κ : ∀Gκ. (∀Xκ. G ~H≤κ X → G ~H≤κ F X) → G ⊆κ F ′ G
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Proof. By simple unfolding of the definitions of Lanκ and Ranκ. Observe that
the vector ~H enters only the arguments; the Kan extensions are not formed
along ~H. The premisses F ′Y ⊆κ F ′Y and F ′X ⊆κ F ′X are there just for
perfect fit with the definitions of lanLeq and ranLeq. They will later always be
instantiated by id. 2

With the lemma at hand, the above-defined embedding is easily seen to be
type-preserving. Certainly, the name F ′ has been chosen to name the addi-
tional constructor which can freely be chosen in GItω. For the inductive case,
it is the definition involving Lanκ, for the coinductive case, F ′ needs Ranκ.

While all of GMItω can be embedded into GItω—using canonical definitions
of F ′ and canonical terms m which do not have an interesting operational
meaning—we have seen in the Example 18 that the term m can really be
problem-specific and even do the essential part of the computation. Many more
such terms will be shown in Section 9. They will be found in a systematic way
by induction on the build-up of regular rank-2 constructors. Hence, they are
still generic but much less uniform than those constructed in the embedding
shown above.

8 Advanced Examples

Since all of the systems considered in this article definitionally embed into
MItω, we do the following examples in MItω and freely use the iteration schemes
from everywhere (since, for −→+, there is no difference between the original
systems and the embeddings). Therefore, we can also use every definition from
the previous examples.

Example 20 (Explicit Substitutions) Examples 16 and 19 have shown
that de Bruijn terms constitute a Kleisli triple (Lam, var, subst) with unit
var : ∀A. A → Lam A and bind operation

subst : ∀A∀B. (A → Lam B) → (Lam A → Lam B).

From the “Kleisli triple” formulation of Lam we mechanically get the “monad”
formulation (Lam, var, flatten) with flatten the join or multiplication operation
of the monad, since flatten : ∀A. Lam (Lam A) → Lam A can be obtained from
subst as flatten := subst id.

Consider now an extension of de Bruijn terms with explicit flattening which is
a special form of explicit substitution. This truly nested datatype is definable
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as follows: 2

L̂amF := λXλA. LamF X A + X (X A) : k2

L̂am := µk1 L̂amF : k1

v̂ar := λb. ink1 (inl (inl b)) : ∀A. A → L̂am A

âpp := λt1λt2. in
k1 (inl (inr (inl 〈t1, t2〉))) : ∀A. L̂am A → L̂am A → L̂am A

âbs := λr. ink1 (inl (inr (inr r))) : ∀A. L̂am (1 + A) → L̂am A

fl̂at := λe. ink1 (inr e) : ∀A. L̂am (L̂am A) → L̂am A

Renaming of free variables in a term is implemented by the canonical mono-
tonicity witness of L̂am, derived from the following generic monotonicity wit-
ness l̂amf for the datatype functor L̂amF, using lamf from example 16:

l̂amf := λgλf. either (lamf g f) (g (g f)) : monk2 L̂amF

l̂am := Mk1
µ (l̂amf) = Itk1= (l̂amf, ink1) : monk1 L̂am

Note that the treatment of explicit flattening in the definition of l̂amf would
be impossible with basic monotonicity monk1, see Lemma 5. The following
reduction behavior immediately follows:

l̂am f (v̂ar◦ a) −→+ v̂ar◦ (f a)

l̂am f (âpp◦ t1 t2) −→+ âpp◦ (l̂am f t1) (l̂am f t2)

l̂am f (âbs
◦
r) −→+ âbs

◦
(l̂am (maybe f) r)

l̂am f (fl̂at
◦
e) −→+ fl̂at

◦
(l̂am (l̂am f) e)

As was the case with the summation for the truly nested datatype Bush in
Example 13, the termination of l̂am is not obvious at all: In the recursive call
in the last line, the parameter f is changed to l̂am f , hence using the whole
iteratively defined function l̂am f . Nevertheless, termination holds by strong
normalization of MItω.

Using l̂am, we can represent full explicit substitution

esubst : ∀A∀B. (A → L̂am B) → (L̂am A → L̂am B)

esubst := λfλt. fl̂at (l̂am f t)

2 This presentation should be compared with the slightly unmotivated extension
of de Bruijn’s notation in Bird and Paterson (1999b, Sect. 5), where âbs and fl̂at

are replaced by just one constructor of type ∀A. L̂am (1 + L̂am A) → L̂am A, which
again gives rise to true nesting. However, that constructor could easily be defined
as fl̂at ◦ âbs in the present system.
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esubst is explicit substitution in the sense that a term of the form fl̂at (r) is
returned for esubst f t, hence only renaming but no substitution is carried out.

Alternatively, one can represent full explicit substitution by way of a data
constructor like fl̂at. If we redefine L̂am to be

L̂am := µk1
(
λXλA. LamF X A + ∃B. (B → X A)×X B

)
,

we may set êxs := λfλt. ink1 (inr (pack〈f, t〉)), which (after exchanging the
bound variables A and B) receives the type we have above for esubst. Notice
that ∃B. (B → X A)×X B = (Lank1 X) (X A), with the naive Kan extension
defined in Section 5.3. From Lemma 4, it follows that (Lank1 X) (X A) and

X (X A) are logically equivalent if X is monotone. Since the fixed point L̂am
is monotone, the variant just discussed is logically equivalent with our example
above. The formulation with explicit flattening has the advantage of not using
quantifiers in the datatype definition. Instead of that, it needs true nesting.

Example 21 (Resolution of Explicit Substitutions) The set of de Bruijn

terms Lam can be embedded into the set of de Bruijn terms L̂am with explicit
flattening. The embedding function emb : ∀A. Lam A → L̂am A can be de-
fined by iteration in a straightforward manner. The other direction is handled
by a function eval : ∀A. L̂am A → Lam A which has to resolve the explicit
flattenings. With the help of Itk1= , this is defined by

eval′ := Itk1= (l̂amf, s) : L̂am ≤k1 Lam

eval := eval′ id : L̂am ⊆k1 Lam

where s := λt. case (t, t′. ink1 t′, e. flatten e) : L̂amF Lam ⊆k1 Lam, with flatten
taken from the previous example. The most interesting case of the reduction
behavior is

eval′ f (fl̂at e) −→+ flatten (eval′ (eval′ f) e).

As in the last example, the nesting in the definition of datatype L̂am is reflected
in the nested recursion in eval′.

Example 22 (Redecoration of Finite Triangles) In the following, we
reimplement the redecoration algorithms for finite triangles, as opposed to
infinite ones. Passing from coinductive to inductive types, we need to apply
rather different programming methodologies.

Again, fix a type E : ∗ of matrix elements. The type FTri A of finite triangular
matrices with diagonal elements in A and ordinary elements E can be obtained
as follows:

FTriF := λXλA. A× (1 + X (E × A)) : k2

FTri := µk1 FTriF : k1
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The columnwise decomposition and visualization of elements of type FTri A
is done as for the infinite triangles of type Tri A. Finiteness arises from taking
the least fixed-point. By taking the left injection into the sum 1+ . . ., one can
construct elements without further recurrence, hence the type FTri A is not
empty unless A is. More generally, elements of type FTri A are constructed by
means of

sg := λa. ink1 〈a, inl 〈〉〉 : ∀A. A → FTri A, and

cons := λaλr. ink1 〈a, inr r〉 : ∀A. A → FTri (E × A) → FTri A.

There are two monotonicity witnesses for FTriF, for monk2 and for monk2:

ftrif := λg. pair id (maybe g) : monk2

ftrif := λgλf. pair f (maybe (g (pair id f))) : monk2

ftri := Mk1
µ (ftrif) : monk1 FTri

Note that the last definition uses means of Itω=. For the definition of redeco-
ration we need methods to decompose triangles. The following function ftop
returns the first column of a triangle, which happens to be just the topmost
diagonal element. Later we will define another function fcut which takes the
remaining trapezium and removes its top row.

ftop : ∀A. FTri A → A

ftop := Itk1(ftrif, fst)

This function uses the iterator from Itω. It could be also be implemented in
Itω= as Itk1= (ftrif, fst) id. Either way, reduction is as expected:

ftop (sg a) −→+ a
ftop (cons a r) −→+ a

As announced above, we need to define a function fcut that cuts off the top row
of a trapezium FTri (E × A) to obtain a triangle FTri A. Since in the domain
type of this function, the argument to FTri is not a type variable, it does not
fit directly into any of our iteration schemes. Aiming at using GMItω, we need
to define a more general function fcut′ : FTri ≤k1

H FTri with H := λA. E × A.
Note that this is a rare instance of the scheme µF ≤κ1

H G with G 6= H 6= Id.

fcut′ : ∀A∀B. (A → E ×B) → FTri A → FTri B

fcut′ := GMItk1
(
λfcut ′λf. pair (snd ◦f) (maybe (fcut ′ (pair id f)))

)
fcut′ f (sg a) −→+ sg◦ (snd (f a))
fcut′ f (cons a r) −→+ cons◦ (snd (f a)) (fcut′ (pair id f) r)
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The cut function is obtained by specializing f to the identity.

fcut : ∀A. FTri (E × A) → FTri A
fcut := fcut′ id

Unfortunately, in the β-theory alone we do not get the desired reduction be-
havior. It holds that

fcut (sg 〈e, a〉) −→+ a, and
fcut (cons 〈e, a〉 r) −→+ cons a (fcut′ (pair id id) r), but

fcut (cons 〈e, a〉 r) −→/ + cons a (fcut r).

However, if one added a tiny bit of extensionality, one would have extensional
equality of pair id id and id, which would imply extensional equality of left and
right hand side of the last relation.

For the definition of redecoration, we will again need a means of lifting a
redecoration rule on triangles to one on trapeziums. It is defined precisely as
in Example 11, but with the new auxiliary functions.

flift : ∀A∀B. (FTri A → B) → FTri (E × A) → E ×B

flift := λfλt. 〈fst (ftop t), f (fcut t)〉

Finally, we can define redecoration fredec. Its description is the same as that
for redec that works on infinite triangles in Example 11. The only difference
is that we swapped its arguments such that its type now is

∀A. FTri A → ∀B. (FTri A → B) → FTri B = FTri ⊆k1 G,

where ∀B. (FTri A → B) → FTri B =: G.

Unfortunately, G is not a right Kan extension (which might have allowed a di-
rect definition of fredec inside GMItω), but G = (Rank1

Id FTri) ◦ FTri. Moreover,
fredec essentially will need primitive recursion, not just iteration. Since the
present article confines itself to iteration, the standard trick with products is
adopted to represent primitive recursion: We will define a more general func-
tion fredec′ : FTri ⊆k1 FTri×k1G. It seems that any hardwired Kan extensions
in the system would only complicate the following definition which is done in
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plain MItω.

fredec′ : ∀A. FTri A → (FTri A× (∀B. (FTri A → B) → FTri B))

fredec′ := MItk1
(
λfredec′λt.

let fid = fst ◦ fredec′ in
let fredec = snd ◦ fredec′ in
let r = ink1(ftrif fid t) in〈

r, λf. match t with

sg− 7→ sg (f r)

cons− x 7→ cons (f r) (fredec x (flift f))
〉

The function fredec′ actually defines two functions simultaneously: fid :=
fst ◦ fredec′ : FTri ⊆k1 FTri, an iterative identity on finite triangles, and fredec :=
snd ◦ fredec′ : FTri ⊆k1 G, the actual redecoration function. The iterative iden-
tity is needed to reconstruct the current function argument r from its unfolded
version t. Why a simple “r = ink1t” does not do the job can be seen from the
types of the bound variables:

fredec′ : X ⊆k1 FTri×k1G

t : FTriF X A = A× (1 + X (E × A))

fid : X ⊆k1 FTri

r : FTri A

f : FTri A → B

x : X (E × A)

fredec : X (E × A) → (FTri (E × A) → (E ×B)) → FTri (E ×B)

Since in the Mendler discipline t is not of type FTriF FTri A, we cannot apply
ink1 to t directly, but need a conversion function of type X ⊆k1 FTri. The
functionality of fredec′ can be understood through its reduction behavior:

fredec′ (sg a) −→+
〈
sg◦ a, λf. sg (f (sg◦ a))

〉
fredec′ (cons a x) −→+

〈
cons◦ a (fid x),

λf. cons
(
f (cons◦ a (fid x))

) (
fredec x (flift f)

)〉

Untangling the two intertwined functions within fredec′, we get the following
reduction relations from which correctness of the implementation becomes
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apparent.

fid (sg a) −→+ sg◦ a
fid (cons a x) −→+ cons◦ a (fid x)

fredec (sg a) f −→+ sg (f (sg◦ a))
fredec (cons a x) f −→+ cons (f (cons◦ a (fid x))) (fredec x (flift f))

Since fid is an iteratively defined identity, fid x with x a variable does not
reduce to x. Apart from this deficiency, which could be overcome if a scheme
of primitive recursion was available, fredec behaves as specified.

9 Efficient Folds

In this section, we relate our iteration schemes to other approaches found in the
literature. Bird and Meertens (1998) were the first to publish iteration schemes
for nested datatypes, called simple folds, which correspond to our System Itω.
To overcome their limited usability, Bird and Paterson (1999a) formulated
generalized folds. Their proposal inspired our work on System GMItω, but our
attempts to establish a clear relationship between their and our approach
failed, for reasons we can explain better at the end of this section.

The generalized folds of Bird and Paterson exhibit an inefficiency in their com-
putational behavior. To mend this flaw, Hinze (2000a) proposed an alternative
system of folds for nested datatypes. Inspired from that, Martin, Gibbons and
Bayley (2003) presented their efficient folds, or efolds for short, which are
closest to Bird and Paterson’s generalized folds.

All of the abovementioned approaches only deal with least fixed points µk1F of
special type constructors F : k2 of rank 2, which are called hofunctors (short
for higher-order functors). Since our systems have no such restrictions, it may
well be possible that the other approaches can be simulated in our systems. In
the following, we will demonstrate this for the proposal of Martin, Gibbons,
and Bayley (2003). Their efolds can be expressed in System GItω.
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Hofunctors. Following Martin, Gibbons, and Bayley (2003), hofunctors are
type constructors F : k2 of one of the following shapes:

(a) λ .Q with mQ : monk1 (note Q : k1) constant

(b) λX.X identity

(c) F0 +k2 F1 with F0, F1 hofunctors disjoint sum

(d) F0 ×k2 F1 with F0, F1 hofunctors product

(e) λX. Q ◦ (F0 X) with mQ : monk1 and F0 hofunctor composition

(f) λX. X ◦ (F0 X) with F0 hofunctor nesting

Note that this inductive characterization is not deterministic, e. g., one can
always apply rule (e) with Q = Id without modifying the hofunctor extension-
ally. Even more, case (b) is a special case of (f) with F0 = λ . Id. Probably, case
(b) is present in Martin, Gibbons, and Bayley (2003) in order to characterize
non-nested hofunctors by rules (a) – (e).

Example 23 (Hofunctors) All of the type constructors F : k2 whose fixed-
points we considered in the previous examples are hofunctors. For instance,

PListF := λXλA.A + X (A× A)

= (λ . Id) +k2 λX. X ◦
(
((λ . Id)×k2 (λ . Id)) X

)
BushF := λXλA. 1 + X (X A)

= (λ λ .1) +k2 λX. X ◦ ((λX. X) X)

LamF := λXλA.A + ((X A×X A) + X (1 + A))

= (λ . Id) +k2
(
(Id×k2 Id) +k2 λX. X ◦ ((λ λA. 1 + A) X)

)

Efficient folds are another means to construct functions of type µk1F ≤k1
H G

which eliminate inhabitants of the nested datatype µk1F . As in the previous
sections, F : k2 and G, H : k1, but now F additionally needs to be a hofunctor.
By induction on the generation of hofunctor F we define a type constructor
FF

H : k2 which is parametric in H, a sequence of types ~DF
H all of which are

parametric in H, and a term

MF (~d ) : ∀X∀Y. X ≤k1
H Y → F X ≤k1

H FF
H Y

which is dependent on a sequence of terms ~d : ~DF
H . How exactly we obtain FF

H ,
~DF

H and MF (·) will be explained later. With these definition, we can introduce
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typing and reduction for efolds.

Elimination. Γ ` F : k2 hofunctor

Γ ` H : k1

Γ ` ~d : ~DF
H

Γ ` G : k1

Γ ` s : FF
H G ⊆k1 G

Γ ` efoldF (~d, s) : µk1F ≤k1
H G

Reduction. efoldF (~d, s) f (ink1 t) −→β s (MF (~d ) efoldF (~d, s) f t)

Embedding into GItω. Efficient folds are simply an instance of generalized
conventional iteration for kind k1.

efoldF (~d, s) := GItk1(MF (~d ), s)

To see that this definition preserves typing and reduction, recall the k1 elimi-
nation and computation rule for generalized conventional iteration:

Elimination. Γ ` m : ∀X∀Y. X ≤k1
H Y → F X ≤k1

H F ′ Y

Γ ` s : F ′ G ⊆k1 G

Γ ` GItk1(m, s) : µk1F ≤k1
H G

Reduction. GItk1(m, s) f (ink1 t) −→β s (m GItk1(m, s) f t)

The free parameter F ′ : k2 in the elimination rule is instantiated by the
type constructer FF

H generated from F , and m is replaced by MF (~d ), which

assembles the simpler terms ~d into a pseudo monotonicity witness. Hence,
efficient folds can be viewed as a user interface for GItk1, which takes on the
difficult task of choosing an appropriate F ′.

Definition of efficient folds. To complete the description of efolds, the
hofunctor FF

H , the types ~DF
H and the term MF are defined inductively by the

hofunctoriality of F . In principle, any consistent definition gives rise to a
class of efficient folds, the question is only how useful they will be, i. e., which
functions can be programmed as instances of these efolds. Figure 2 lists Martin,
Gibbon and Bayley’s (2003) choices of FF

H , ~DF
H and MF for each rule (a – f) how

to generate a hofunctor. Especially interesting are cases (b), (e) and (f) where
a new term d is assumed. We will comment on the role of these terms later.
Also observe, that in the last two cases FF

H is defined via F0, not recursively
via FF0

H . This is due to the emission of a new term d.
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F FF
H

~d : ~DF
H

MF (~d ) e f

(a) λ .Q λ . Q ◦H

mQ f

(b) λX.X λX.X d : H ⊆k1 H

e (d ◦ f)

(c) F0 +k2 F1 FF0
H +k2 FF1

H
~d0 : ~DF0

H ,

~d1 : ~DF1
H

either (MF0(~d0) e f) (MF1(~d1) e f)

(d) F0 ×k2 F1 FF0
H ×k2 FF1

H
~d0 : ~DF0

H ,

~d1 : ~DF1
H

pair (MF0(~d0) e f) (MF1(~d1) e f)

(e) λX. Q ◦ (F0 X) λX. Q ◦H ◦ (F0 X) d : ∀X. FF0
H X ⊆k1 H ◦ (F0 X),

~d0 : ~DF0
H

mQ (d ◦ (MF0(~d0) e f))

(f) λX. X ◦ (F0 X) λX. X ◦ (F0 X) d : ∀X. FF0
H X ⊆k1 H ◦ (F0 X),

~d0 : ~DF0
H

e (d ◦ (MF0(~d0) e f))

Figure 2. Definition of efficient folds

Example 24 (Efolds for Powerlists, Typing) Recall that the general typ-
ing rule for efold was

Γ ` ~d : ~DF
H

Γ ` s : FF
H G ⊆k1 G

Γ ` efoldF (~d, s) : µk1F ≤k1
H G

where we took the freedom to omit the kinding judgements of F , G and H
for conciseness. The typing of an efficient fold for a concrete hofunctor F
requires only the recursively computed FF

H and ~DF
H . For powerlists, we obtain
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the following instances.

PListF = λXλA. A + X (A× A)

FPListF
H = λXλA. H A + X (A× A)

~DPListF
H = (∀X∀A. H A×H A → H (A× A))

Instantiating the general rule for efficient folds and expanding the definitions
of ⊆k1 and ≤k1

H , we obtain efficient folds for powerlists.

Γ ` d : ∀A. H A×H A → H (A× A)

Γ ` s : ∀A. H A + G (A× A) → G A

Γ ` efoldPListF(d, s) : ∀A∀B. (A → H B) → PList A → G B

We will refer to d as distributivity term for reasons its type makes apparent:
d witnesses that the product constructor × distributes over constructor H.

Example 25 (Summing up a Powerlist, Typing) We can define function
sum′ of Example 18 using efficient folds for powerlists. We set G := H :=
λ .Nat, as in the previous implementations of sum′, and

sum′ := efoldPListF(d, s) : ∀A. (A → Nat) → PList A → Nat, where

d := λ〈n, m〉. n + m : Nat× Nat → Nat, and

s := λx. case (x, n. n, n. n) : Nat + Nat → Nat.

The given implementation is type-correct, we will verify the reduction behavior
later.

As in the implementation using GItk1 in Example 18, the task of the step term
s is trivial whereas the addition happens in the other term. Back then, we
could use F ′ := λXλA. Nat + X (Q A) with Q any constructor in k1. With
the special choice F ′ := FPListF

λ .Nat, which the given definition of efficient folds
takes, Q is fixed to λA. A× A.

Example 26 (Efolds for Powerlists, Reduction) Setting mId := λfλx. f x
for the canonical monotonicity witness of Id : k1, we can compute the pseudo
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monotonicity witness for efficient powerlist folds according to Figure 2.

d : ∀A. H A×H A → H (A× A)

MPListF(d) : ∀X∀Y. X ≤k1
H Y → PListF X ≤k1

H FPListF
H Y

= ∀X∀Y. X ≤k1
H Y → ∀A∀B. (A → H B) →

A + X (A× A) → H B + Y (B ×B)

MPListF(d) e f := either (mId f) (e (d ◦ (pair (mId f) (mId f))))

−→+ either (λx. f x) (e (d ◦ (fork◦ f)))

Note that fork is defined in terms of pair◦ on page 45. Using this pseudo
monotonicity witness in the general reduction rule for efolds, which was

efoldF (~d, s) f (ink1 t) −→β s (MF (~d ) efoldF (~d, s) f t),

we get the following reduction behavior for powerlist efolds:

efoldPListF(d, s) f (zero a) −→+ s (inl (f a))

= s (zero− (f a))

efoldPListF(d, s) f (succ l) −→+ s (inr (efoldPListF(d, s) (d ◦ (fork◦ f)) l))

= s (succ− (efoldPListF(d, s) (d ◦ (fork◦ f)) l))

Example 27 (Summing up a Powerlist, Reduction) Instantiating the above
scheme for

sum′ := efoldPListF(d, s), where

d := λ〈n,m〉. n + m, and

s := λx. case (x, n. n, n. n),

we obtain the precise reduction behavior of Example 18.

Example 28 (Efolds for de Bruijn Terms) As shown in Example 23, the
generating type constructor LamF for de Bruijn terms is a hofunctor. Hence,
we can calculate FLamF

H and ~DLamF
H according to Figure 2.

LamF = λXλA. A + (X A×X A + X (1 + A))

FLamF
H = λXλA. H A + (X A×X A + X (1 + A))

~DLamF
H = (∀A. H A → H A,

∀A. H A → H A,
∀X∀A. 1 + H A → H (1 + A))

The first two components of ~DLamF
H arise from the two homogeneous applica-

tions X A in LamF, the third from the heterogeneous application X (1 + A).
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The efficient fold for de Bruijn terms is typed as follows:

Γ ` d1 : ∀A. H A → H A

Γ ` d2 : ∀A. H A → H A

Γ ` d3 : ∀A. 1 + H A → H (1 + A)

Γ ` s : ∀A. H A + (G A×G A + G (1 + A)) → G A

Γ ` efoldLamF(d1, d2, d3, s) : ∀A∀B. (A → H B) → Lam A → G B

Recall that maybe is the canonical monotonicity witness for λA. 1 + A. The
pseudo monotonicity witness MLamF is computed as

MLamF(d1, d2, d3) e f = either (mId f)

(either (pair (e (d1 ◦ f)) (e (d2 ◦ f)))

(e (d3 ◦ (maybe f)))).

Setting e := efoldLamF(d1, d2, d3, s) this yields the following reduction behavior
for this special efficient fold.

e f (var a) −→+ s (inl (f a))

= s (var− (f a))

e f (app t1 t2) −→+ s (inr (inl 〈e (d1 ◦ f) t1, e (d2 ◦ f) t2〉))

= s (app− (e (d1 ◦ f) t1) (e (d2 ◦ f) t2))

e f (abs r) −→+ s (inr (inr (e (d3 ◦ (maybe f)) r)))

= s (abs− (e (d3 ◦ (maybe f)) r))

Example 29 (Renaming and Substitution for de Bruijn Terms)
The functions lam of Example 16 and subst of Example 19 can be expressed
with efficient folds as

lam := efoldLamF(id, id, id, ink1) : Lam ≤k1
Id Lam

subst := efoldLamF(id, id, lift id, s) : Lam ≤k1
Lam Lam,

where we use lift and s from Example 19.

Since composition with the identity η-expands terms, the reduction behavior
of lam is not exactly as in Example 16. This problem is even more visible for
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subst:

subst f (var a) −→+ f a

subst f (app t1 t2) −→+ app (subst (λx. f x) t1) (subst (λx. f x) t2)

subst f (abs r) −→+ abs (subst (λx. lift id (maybe f x)) r)

We would have liked to see lift f instead of λx. lift id (maybe f x). Extension-
ally, they are equal: Both −→+-reduce to var (inl u) for argument inl u, and
both −→+-reduce to weak (f a) for argument inr a. Certainly, also λx. f x and
f are extensionally equal.

A second look at efficient folds. As we pointed out before, Figure 2 de-
scribes just one possible definition of efficient folds. One might wonder whether
it could not be simplified at bit. The first case worth a discussion is (b) iden-
tity: Is it really necessary to emit a distributivity witness d : H ⊆k1 H here?
This question has been raised already by Bird and Paterson (1999a, Sec. 4.1)
for their version of generalized folds. In the last example, these terms are
just instantiated with the identity id. So supposedly, they could be dropped,
leading to the simpler definition

MλX.X() e f := e f .

Another questionable clause is (e) composition. As mentioned in the begin-
ning of this section, clause (e) can be iterated with Q := Id in the proof of
hofunctoriality for a type constructor F . This means that one can also obtain
an arbitrary number of different definitions of an efficient fold for such an
F . Each iteration of the rule would emit another distributivity term d. We
therefore suggest different definition clauses for case (e):

F = λX. Q ◦ (F0 X)

FF
H := λX. Q ◦ (FF0

H X)

~DF
H := ~DF0

H

MF (~d ) e f := mQ (MF0(~d ) e f)

In contrast to the original definition, this variant defines FF
H recursively through

FF0
H . Iteration of these clauses with Q = Id do now neither change the typing

rule for the efficient fold nor the reduction behavior of the pseudo monotonic-
ity witness MF . Now, the only case where the need of a distributivity term
d arises is (f) nesting. This means that for a homogeneous hofunctor F and

H = Id, it holds that FF
H = F , ~DF

H is empty, MF is the canonical monotonicity
witness of F and the eliminator efoldF is identical to Itk1= .
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Comparison with Bird and Paterson (1999a). Whilst for a fixed ho-
functor F : k2, the efficient fold “e” is of type µk1F ≤k1

H G, Bird and Paterson
define a generalized fold “g” of type (µk1F )◦H ⊆k1 G. As observed by Martin,
Gibbons, and Bayley (2003), both kinds of folds are interdefinable, extension-
ally:

g = e id

e = λf. g ◦ (mµF f)

where mµF is the canonical monotonicity witness of µk1F . These equations
explain why e is called “efficient”: it combines two traversals of a datastructure,
a fold and a map, into a single traversal.

One might wonder whether generalized folds can also be expressed in Sys-
tem GMItω. Recall the reduction rule for efficient folds:

e f (ink1 t) −→β s (MF (~d ) e f t)

If we could alter the definition of MF in such a way that in the resulting term
MF (~d ) e f t the variable e occurred only in the form e id, then by setting f = id
we would obtain a reduction rule for g which is simulated in System GMItω. The
necessary changes affect certainly clause (f) with F = FF

H = λX. X ◦ (F0 X) of
the definition of MF , which we recall in a somewhat sketchy form as follows:

Provided e : ∀A∀B. (A → H B) → X A → Y B
and f : A → H B,

MF (. . .) e f : F X A → FF
H Y B

= X (F0 X A) → Y (F0 Y B)

MF (. . .) e f := e f ′,

where f ′ : F0 X A → H (F0 Y B)
f ′ := . . .

In order to obtain the reduction behavior of Bird and Paterson (1999a) we
need to change the definition of MF (. . .) e f to e id ◦ (mµF f ′). But this is not
well-typed. Typing requires monotonicity mX for the abstract type constructor
X instead of mµF .

To summarize this discussion, we might say that Bird and Paterson’s gen-
eralized folds are not an instance of GMItω due to their inefficient reduction
behavior. Whether they can be simulated in System Fω in a different way,
remains an open question.
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10 Related and Future Work

A discussion of related work on iteration schemes for higher-order datatypes
can be found in the previous section. This section tries to develop a broader
perspective—especially with respect to possible applications in the field of
generic programming.

Generic Programming (also called polytypic programming) aims at pro-
gramming functions operating “canonically” on all the datatypes associated
with a class of admissible F ’s, which are typically the regular datatypes.
For an extensive overview of generic programming, see Backhouse, Jansson,
Jeuring, and Meertens (1999). The tutorial also includes a description of the
generic programming language PolyP (Jansson and Jeuring, 1997). Typically
for generic programming, as well as for Jay’s Constructor Calculus (Jay, 2001),
admissible F ’s are built in a combinatorial, i. e., λ-free calculus. 3 Polytypic
functions are then constructed by recursion on the generation of their type
parameter F . In contrast, our constructions of fixed points and the associ-
ated schemes of iteration and coiteration just assume some arbitrary type
constructor F : κ → κ. In this respect, we follow the approach in category
theory where an arbitrary endofunctor on some category would be given (for
the definition of initial algebras and final coalgebras—not for existence theo-
rems). There is no analysis of the form of F , and thus, our constructions have
to work uniformly in F . Unlike the category-theoretic situation, we do not
even impose any equational laws on F . In the conventional-style systems, the
usage—as opposed to the existence—of the schemes rests on terms inhabiting
one of our notions of monotonicity. In Itω=, there would be a canonical choice of
a witness of monotonicity for a wide range of type constructors F , including,
for instance, the hofunctors of Section 9. The canonical monotonicity witness
could be computed by recursion on the structure of all these admissible F ’s.
Note, however, that “ungeneric” powerlist reversal (Example 17) uses some
monotonicity witness that cannot be found generically.

Type Classes. Norell and Jansson (2003) describe an implementation of
the polytypic programming language PolyP within the Haskell programming
language, using the type-class mechanism (Wadler and Blott, 1989). The lat-
ter is a form of ad-hoc polymorphism where a class name is associated with a
number of functions, called the dictionary, whose types may involve the type
parameter of the class. A type becomes a member of the class by providing

3 This even holds for the related work on nested datatypes we mentioned in Sec-
tion 9.
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implementations of the dictionary functions. Most importantly, the type sys-
tem allows to provide an implementation for type H A under the assumption
that already A belongs to the class, and hence by using the assumed imple-
mentations of the dictionary functions for A.

Summing Up with Type Classes. Our running example of powerlist sum-
mation may be recast in the framework of type classes by defining a type class
Summable so that type A belongs to it iff there is an implementation of the
function sum : A → Nat. (For a Haskell implementation, see below.) Triv-
ially, Nat is summable, and if A is summable then so is A × A. The crucial
step is to show that summability of A entails that of PList A. The argument
f : A → Nat to sum′ in Example 8 is no longer needed because one can just
take sum for type A. On the other hand, the freedom to manipulate f is also
lost, and no function λ〈a1, a2〉. f a1 + f a2 can be given as an additional ar-
gument. Fortunately, λ〈a1, a2〉. sum a1 + sum a2 is precisely the function sum
for type A×A. Finally, sum at type PList Nat is the function we were after in
the first place. Certainly, its termination is not guaranteed by this construc-
tion, but intuitively holds, anyway. This is more delicate with summation for
bushes (Example 13). In terms of type class Summable it just requires that for
summable A, also Bush A is summable. The crucial definition clause is then
sum (bcons a b) := sum a + sum b. The first summand uses the assumed func-
tion sum for type A (which used to be f in that example), the second one uses
polymorphic recursion: the term b is of type Bush (Bush A), hence the same
definition of sum is invoked with Bush A in place of A. Its hidden argument f
is therefore sum f , in accordance with the reduction behavior shown in Exam-
ple 13. Again, no termination guarantee is provided by this implementation.
Moreover, bsum′ in the example works for arbitrary types A as soon as a func-
tion f : A → Nat is provided. This includes different functions for the very
same type A, not just the one derived by the type class instantiation mecha-
nism. For instance, the first argument—bsum′f—in the recursive call may be
modified to, e. g., bsum′ (λx. f x+1), keeping typability and thus termination.
Using type class Summable, there is just no room for such an “ungeneric”
modification, as is clear from the explanation above.

The following Haskell code corresponds to the above discussion and can be
executed with current extensions to the Haskell 98 standard. These extensions
are only needed because we instantiate Summable(a,a) with two occurrences
of a.

data PList a = Zero a | Succ (PList(a, a))

data Bush a = Nil | Cons a (Bush (Bush a))

class Summable a where

sum:: a -> Integer
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instance Summable Integer where

sum = id

instance Summable a => Summable (a,a) where

sum (a1,a2) = sum a1 + sum a2

instance Summable a => Summable (PList a) where

sum (Zero a) = sum a

sum (Succ l) = sum l

instance Summable a => Summable (Bush a) where

sum Nil = 0

sum (Cons a b) = sum a + sum b

Generic Haskell (Clarke, Jeuring, and Löh, 2002) is a system of generic
programming in all kinds: A family of functions may be programmed where
the indices range over all type constructors F of all kinds. The type τ(F ) of the
function indexed by F is calculated from the kind of F , hence has a polykinded
type (Hinze, 2002). The idea of this calculation roughly follows the idea of the
type-class mechanism, e. g., the function associated with PList : ∗ → ∗ takes
any function for any type A and yields a function for the type PList A, i. e.,
τ(PList) = ∀A. τ(A) → τ(PList A). Therefore, only the types τ(A) for A a
veritable type (type constructor of kind ∗, also called a manifest type) can be
freely chosen.

Clearly, the iteration schemes of this article do not follow that discipline:
By no means is an iterator for µκ1→κ2F explained in terms of an iterator
for µκ2(F G) for some or any G : κ1. However, programming iterators in-
side Generic Haskell would counteract its philosophy. In fact, Generic Haskell
leaves the programmer from the burden to consider the fixed points that come
from the definitions of datatypes. The associated instances are automatically
generated by the compiler—without any clause in the generic program refer-
ring to them. Likewise, type abstraction and type instantiation are dealt with
automatically (Hinze, Jeuring, and Löh, 2003), using a model of the kinded
type constructor system based on applicative structures. 4 The most recent

4 Intensional type analysis (Harper and Morrisett, 1995) is a compilation technology
which uses an intermediate language with “intensional polymorphism”, i. e., with
structural recursion over types. In the extension to all kinds that has been moti-
vated by Generic Haskell, Weirich (2002) directly encodes the notion of set-theoretic
model for the lambda calculus, including environments, in order to describe the in-
stantiation mechanism. This might also help in understanding the output of the
Generic Haskell compiler.
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presentation of Generic Haskell is given by Hinze and Jeuring (2003b); there
is also a collection containing the three most interesting examples (Hinze and
Jeuring, 2003a), among which the generalization of the trie data structure to
datatypes of all kinds (Hinze, 2000b). The tries over a regular datatype are
often already truly nested datatypes, hence the latter ones arise naturally also
in this context. Since the merging functions for tries are recursive in two ar-
guments (Hinze and Jeuring, 2003a, Sect. 2.7), we would need to extend our
iteration schemes in order to cover them, too.

As becomes clear from all the examples cited above, there is usually no need
to have any kind of recursive calls inside the programs in Generic Haskell.
Therefore, a useful version of Generic Haskell could well be imagined that
only uses program clauses taken from System Fω. We would hope to extend
our Mendler-style iteration schemes in order to be able to provide a syntactic
analysis of those restricted Generic Haskell programs that allows to conclude
that any instantiated function (as being generated by the Generic Haskell
compiler) terminates as well, as long as only fixed points of monotone type
constructors are formed. Here, we would use Mendler-style systems since they
directly allow to express the algorithms. The step term s of the iterator would
be provided by a modification of the compiler for generic programs. In the
other direction, we might get help from generic programming in building li-
braries of pseudo monotonicity witnesses for System GItω, hence with a generic
definition for every specific task at hand; recall that real work is also delegated
to the witnesses in that system. In general, our conventional schemes would
typically be used with some generically found monotonicity witness.

Dependent Types. Let us comment on systems with dependent types (i. e.,
with types that depend on terms) and universes. These are very rich systems
in which higher-order datatypes can easily be expressed. Impredicative depen-
dent type theories, like the Calculus of Constructions, encompass System Fω,
hence our schemes. Interestingly, the native fixed-point constructions of all
of these theories, especially the systems Coq and LEGO, exclude non-strictly
positive type constructors. But non-strictly positive dependencies immediately
arise with Kan extensions. For our intended extensions to systems with prim-
itive recursion, one would have to require non-strictly positive “native” fixed
points in the system. On the other hand, there is plenty of work on predicative
systems of dependent types. One would use small universes as the system of
admissible type indices of the families in question. Hence, one gives up the
uniform treatment of all possible indices, see Altenkirch and McBride (2003).
The operational behavior of the datatypes thus obtained has to be studied
further. Interestingly, a nontrivial part of programming with dependent types
can be simulated within Haskell (McBride, 2002; Chen et al., 2003).

72



Type Checking and Type Inference. This article deliberately neglects
the important practical problem of finding the types which are given to the
example programs throughout the article. It is well-known that already type-
checking for Curry-style System F is undecidable (Wells, 1999). Nevertheless,
we have chosen the unannotated Curry-style due to its succintness. The type
annotations are only given on the informal level of presentation. With these,
the terms in Church-style formulation, hence with explicit type abstraction,
type instantiation and type annotations for every bound variable have suc-
cessfully been reconstructed with a prototype implementation 5 , at least for
the examples that have been tried, and these were the majority of the pro-
gramming examples in the article. Note that, in systems of dependent types,
termination of well-typed programs would be a necessity for type checking,
since the types may depend on the terms. Our systems are layered, hence
these problems are not intertwined.

The problem of type inference is deeper than that of type checking—already
polymorphic recursion, i. e., recursion where different instances of a universally
quantified target type have to be inferred, makes type inference undecidable
(Henglein, 1993; Kfoury, Tiuryn, and Urzyczyn, 1993a,b). Type abstraction in
Haskell is only partly solved in Neubauer and Thiemann (2002) by providing
a restricted amount of lambda expressions. The problem is also known for the
programming language family ML as the “quest for type inference with first-
class polymorphic types” (Le Botlan and Rémy, 2003). A practical system
would certainly allow the user to communicate her typing intuitions. In this
respect, Haskell is half way: help with types is accepted, but not with kinds.

On “higher-order nested”. In this article, “higher-order nested” means
that fixed-points of higher ranks are formed and that recursive calls are het-
erogeneous. “True nesting” means nested calls to the datatype, as in Exam-
ple 20, where the least fixed-point of λXλA. . . .+X (X A) is considered. This
datatype would be called “doubly nested” in Bird and Paterson (1999b), and
in general, true nesting is called “non-linear nests” in Hinze (2001). Okasaki
(1999a) considers the fixed-point (called square ) of

λFλV λW. V (V A) + F V (W ×k1 W ) + F (V ×k1 W ) (W ×k1 W ),

with V, W : k1. The type constructor V is even nested, but it is just a pa-
rameter which is used heterogeneously. Nevertheless, this would be called a
higher-order nest by Hinze (1998), regardless of the component V (V A), but
because the higher-order parameters V and W (which are not types but type
transformers) are given as arguments to the variable F , representing the fixed
point. Hinze (2001) contains plenty of examples where higher-order parame-
ters are varied in the recursive calls to the datatype being defined, but nowhere

5 Fomega 0.10 alpha, by the first author, available on his homepage
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“true nesting”. Truly nested datatypes may seem to be esoteric, but they oc-
cur naturally in the representation of explicit substitution (see Example 20),
a fact which might explain why termination questions in connection with ex-
plicit substitutions are notoriously difficult. Certainly, we would like to see
more natural examples of true nesting. As indicated above, trie data struc-
tures (Hinze, 2000b) serve this purpose.

Extensional Equality. Finally, an important subject for future research
would be the study of the equational laws for our proposed iteration and coit-
eration schemes in order to use the mathematics of program calculation for
the verification of programs expressed by them. After all, this is seen as the
major benefit of a programming discipline with iterators in a setting of par-
tial functions, e. g., the “algebra of programming” (Bird and de Moor, 1997).
Note that these calculations would always be carried out within an exten-
sional framework, such as parametric equality theory. The goal would be to
demonstrate that a given program denotes some specified element in some
semantics which, e. g., could be total functions. This article views a program
as an algorithm which is explored in its behavior, e.g., whether it is strongly
normalizing as a term rewrite system. Parametricity would, e. g., be used for
establishing that our syntactic natural transformations would also be natural
in the category-theoretic sense. For an introduction to these ideas, see Wadler
(1989), more details are to be found in Wadler (2003), and interleaved posi-
tive (co)inductive types are treated in Altenkirch (1999). An interesting new
field is the connection between parametric equality and generic programming:
Backhouse and Hoogendijk (2003) show that, under reasonable naturality and
functoriality assumptions on the family of zip functions, exactly one such zip
exists for all “regular relators”.

11 Conclusion

We have put forth and compared the expressive power of several possible for-
mulations of iteration and coiteration for (co)inductive constructors of higher
kinds. All of them have a clear logical underpinning (exploiting the well-known
Curry-Howard isomorphism) and uniformly extend from rank-2 type construc-
tors to rank-n type constructors, for arbitrary n.

The main technical problem we faced with the formulation of (co)iteration
schemes, is the absence of a canonical definition of admissible constructor for
forming the least/greatest fixed-points. In our approach, every constructor is
allowed for the formation of the fixed-points. For conventional-style schemes
(inspired from initial algebras in category theory), the search for an optimal
type-based approach led to several plausible notions of monotonicity, which
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is required when applying the (co)iteration scheme in the systems Itω, Itω=
and GItω, respectively. In the even more radical line of thought (inspired by
Mendler’s work, but not derived from it), every constructor is allowed for
the (co)iteration, but the typing requirements for its step term nevertheless
guarantee termination for our Mendler-style systems MItω, MItω= and GMItω.

Of the systems considered here, GMItω and GItω are clearly the most advanced
in terms of direct expressive power. In particular, this is witnessed by the
fact that the efolds of Martin, Gibbons, and Bayley (2003) are very straight-
forwardly defined in GItω. But for many applications, the more basic Itω and
MItω are perfectly sufficient and invoking GMItω or GItω is simply not nec-
essary. There are many interesting cases where the more basic systems Itω

and MItω do not suffice to express the algorithmic idea appropriately, but
where the freedom in choosing the additional parameters ~H in both GMItω

and GItω, and parameter F ′ in GItω, is not needed. These more rigid typings
are embodied in the intermediary systems MItω= and Itω=, which have exactly
the reduction behavior of their “generalized” versions GMItω and GItω but are
easier to typecheck in practice.

In GMItω and MItω, where the iterator and coiterator are Mendler-style, their
computational behavior is very close to letrec, except that termination of
computations is guaranteed. Thus, through type checking, these systems pro-
vide termination checking for given algorithmic ideas. The conventional-style
systems aid more in finding algorithms: According to the type of the function
to be programmed, one chooses the generic (pseudo) monotonicity witness m
and tries to find a term s of the right type. Certainly, this “type-directed pro-
gramming” might fail, see Remark 1, but has proven its usefulness in many
cases.

As demonstrated with the advanced examples, in practice, an eclectic view is
most helpful: in principle, we would program in MItω, but constantly use the
expressive capabilities of the other systems, viewed as macro definitions on
top of MItω.
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