
Untyped Algorithmic Equality for Martin-Löf’s
Logical Framework with Surjective Pairs

Andreas Abel? and Thierry Coquand

Department of Computer Science, Chalmers University of Technology
abel,coquand@cs.chalmers.se

Abstract. An untyped algorithm to test βη-equality for Martin-Löf’s
Logical Framework with strongΣ-types is presented and proven complete
using a model of partial equivalence relations between untyped terms.

1 Introduction

Type checking in dependent type theories requires comparison of expressions
for equality. In theories with β-equality, an apparent method is to normalize
the objects and then compare their β-normal forms syntactically. In the theory
we want to consider, an extension of Martin-Löf’s logical framework with βη-
equality by dependent surjective pairs (strong Σ types), which we call MLFΣ ,
a naive normalize and compare syntactically approach fails since βη-reduction
with surjective pairing is known to be non-confluent [Klo80].

We therefore advocate the incremental βη-convertibility test which has been
given by the second author for dependently typed λ-terms [Coq91,Coq96], and
extend it to pairs. The algorithm computes the weak head normal forms of the
conversion candidates, and then analyzes the shape of the normal forms. In case
the head symbols do not match, conversion fails early. Otherwise, the subterms
are recursively weak head normalized and compared. There are two flavors of
this algorithm.

Type-directed conversion. In this style, the type of the two candidates dictates
the next step in the algorithm. If the candidates are of function type, both are
applied to a fresh variable, if they are of pair type, their left and right projec-
tions are recursively compared, and if they are of base type, they are compared
structurally, i. e., their head symbols and subterms are compared. Type-directed
conversion has been investigated by Harper and Pfenning [HP05]. The advan-
tage of this approach is that it can handle cases where the type provides extra
information which is not already present in the shape of terms. An example is
the unit type: any two terms of unit type, e. g., two variables, can be considered
equal. Harper and Pfenning report difficulties in showing transitivity of the con-
version algorithm, in case of dependent types. To circumvent this problem, they
? Research supported by the coordination action TYPES (510996) and thematic net-

work Applied Semantics II (IST-2001-38957) of the European Union and the project
Cover of the Swedish Foundation of Strategic Research (SSF).

erase the dependencies and obtain simple types to direct the equality algorithm.
In the theory they consider, the Edinburgh Logical Framework [HHP93], erasure
is sound, but in theories with types defined by cases (large eliminations), erasure
is unsound and it is not clear how to make their method work. In this article,
we investigate an alternative approach.

Shape-directed (untyped) conversion. As the name suggests, the shape of the
candidates directs the next step. If one of the objects is a λ-abstraction, both
objects are applied to a fresh variable, if one object is a pair, the algorithm
continues with the left and right projections of the candidates, and otherwise,
they are compared structurally. Since the algorithm does not depend on types,
it is in principle applicable to many type theories with functions and pairs. In
this article, we prove it complete for MLFΣ , but since we are not using erasure,
we expect the proof to extend to theories with large eliminations.

Main technical contributions of this article.

1. We extend the untyped conversion algorithm of the second author [Coq91] to
a type system with Σ-types and surjective pairing. Recall that reduction in
the untyped λ-calculus with surjective pairing is not Church-Rosser [Bar84]
and, thus, one cannot use a presentation of this type system with conversion
defined on raw terms.1

2. We take a modular approach for showing the completeness of the conversion
algorithm. This result is obtained using a special instance of a general PER
model construction. Furthermore this special instance can be described a
priori without references to the typing rules.

Contents. We start with a syntactical description of MLFΣ , in the style of
equality-as-judgement (Section 2). Then, we give an untyped algorithm to check
βη-equality of two expressions, which alternates weak head reduction and com-
parison phases (Section 3). The goal of this article is to show that the algorithmic
equality of MLFΣ is equivalent to the declarative one. Soundness is proven rather
directly in Section 4, requiring inversion for the typing judgement in order to es-
tablish subject reduction for weak head evaluation. Completeness, which implies
decidability of MLFΣ , requires construction of a model. Before giving a specific
model, we describe a class of PER models of MLFΣ based on a generic model of
the λ-calculus with pairs (Section 5). In Section 6 we turn to the specific model
of expressions modulo β-equality, on which we define an inductive η-equality. Its
transitive closure is regarded as the “universe” S of type interpretations, each
interpretation is shown to be a subset of S. As a consequence, two declaratively
equal terms are related by S. We complete the circle in Section 7 where we show
that well-typed S-related terms are algorithmically equal, using standardization
for λ-terms. Decidability of judgmental equality on well-typed terms in MLFΣ
ensues, which entails that type checking of normal forms is decidable as well.
1 In the absence of confluence, one cannot show injectivity of type constructors, hence

subject reduction fails.

2

The full version of the article, which contains additionally a bidirectional
type-checking algorithm for MLFΣ and more detailed proofs, is available on the
homepage of the first author [AC05].

2 Declarative Presentation of MLFΣ

This section presents the typing and equality rules for an extension of Martin-
Löf’s logical framework [NPS00] by dependent pairs. We show some standard
properties like weakening and substitution, as well as injectivity of function
and pair types and inversion of typing, which will be crucial for the further
development.

Wellformed contexts Γ ` ok.

cxt-empty � ` ok
cxt-ext

Γ ` A :Type

Γ, x :A ` ok

Type formation Γ ` A :Type.

set-f
Γ ` ok

Γ ` Set :Type
set-e

Γ ` t : Set

Γ ` El t :Type

fun-f
Γ, x :A ` B :Type

Γ ` FunA (λxB) :Type
pair-f

Γ, x :A ` B :Type

Γ ` PairA (λxB) :Type

Typing Γ ` t : A.

hyp
Γ ` ok (x :A) ∈ Γ

Γ ` x : A
conv

Γ ` t : A Γ ` A = B :Type

Γ ` t : B

fun-i
Γ, x :A ` t : B

Γ ` λxt : FunA (λxB)
fun-e

Γ ` r : FunA (λxB) Γ ` s : A

Γ ` r s : B[s/x]

pair-i
Γ, x :A ` B :Type Γ ` s : A Γ ` t : B[s/x]

Γ ` (s, t) : PairA (λxB)

pair-e-l
Γ ` r : PairA (λxB)

Γ ` r L : A
pair-e-r

Γ ` r : PairA (λxB)

Γ ` r R : B[r L/x]

Fig. 1. MLFΣ rules for contexts, types and typing.

Expressions (terms and types). We do not distinguish between terms and types
syntactically. Dependent function types, usually written Πx : A.B, are writ-
ten FunA (λxB); similarly, dependent pair types Σx : A.B are represented by

3

PairA (λxB). We write projections L and R postfix. The syntactic entities of
MLFΣ are given by the following grammar.

Var 3 x, y, z variables
Const 3 c ::= Fun | Pair | El | Set constants
Proj 3 p ::= L | R left and right projection
Exp 3 r, s, t, A,B,C ::= c | x | λxt | r s | (t, t′) | r p expressions
Cxt 3 Γ ::= � | Γ, x :A typing contexts

We identify terms and types up to α-conversion and adopt the convention that
in contexts Γ , all variables must be distinct; hence, the context extension Γ, x :A
presupposes (x :B) 6∈ Γ for any B.

The inhabitants of Set are type codes; El maps type codes to types. E. g.,
Fun Set (λa. Fun (El a) (λ .El a)) is the type of the polymorphic identity λaλxx.

Judgements are inductively defined relations. If D is a derivation of judgement
J , we write D :: J . The type theory MLFΣ is presented via five judgements:

Γ ` ok Γ is a well-formed context
Γ ` A :Type A is a well-formed type
Γ ` t : A t has type A
Γ ` A = A′ :Type A and A′ are equal types
Γ ` t = t′ : A t and t′ are equal terms of type A

Typing and well-formedness of types both have the form Γ ` : . We will refer
to them by the same judgement Γ ` t : A. If we mean typing only, we will
require A 6≡ Type. The same applies to the equality judgements. Typing rules
are given in Figure 1, together with the rules for well-formed contexts. The rules
for the equality judgements are given in Figure 2. Observe that we have chosen
a “parallel reduction” version for β- and η-rules, which has been inspired by
Harper and Pfenning [HP05] and Sarnat [Sar04], in order to make the proof of
functionality easier. In the following, we present properties of MLFΣ which have
easy syntactical proofs.

Admissible rules. MLFΣ enjoys the usual properties of weakening, context con-
version, substitution, functionality and inversion and injectivity for the type
expressions El t, FunA (λxB) and PairA (λxB). These rules can be found in the
extended version of this article [AC05]. Note that in Martin-Löf’s LF, injectivity
is almost trivial since computation is restricted to the level of terms. This is also
true for Harper and Pfenning’s version of the Edinburgh LF which lacks type-
level λ-abstraction [HP05]. In the Edinburgh LF with type-level λ it involves a
normalization argument and is proven using logical relations [VC02].

Lemma 1 (Syntactic validity).

1. Typing: If Γ ` t : A then Γ ` ok and either A ≡Type or Γ ` A :Type.
2. Equality: If Γ ` t = t′ : A then Γ ` t : A and Γ ` t′ : A.

4

Equivalence, hypotheses, conversion.

eq-sym
Γ ` t = t′ : A

Γ ` t′ = t : A
eq-trans

Γ ` r = s : A Γ ` s = t : A

Γ ` r = t : A

eq-hyp
Γ ` ok (x :A) ∈ Γ

Γ ` x = x : A
eq-conv

Γ ` t = t′ : A Γ ` A = B :Type

Γ ` t = t′ : B

Dependent functions.

eq-fun-i
Γ, x :A ` t = t′ : B

Γ ` λxt = λxt′ : FunA (λxB)

eq-fun-e
Γ ` r = r′ : FunA (λxB) Γ ` s = s′ : A

Γ ` r s = r′ s′ : B[s/x]

eq-fun-β
Γ, x :A ` t : B Γ ` s : A

Γ ` (λxt) s = t[s/x] : B[s/x]

eq-fun-η
Γ ` t : FunA (λxB)

Γ ` (λx. t x) = t : FunA (λxB)
x 6∈ FV(t)

Dependent pairs.

eq-pair-i
Γ ` s = s′ : A Γ ` t = t′ : B[s/x]

Γ ` (s, t) = (s′, t′) : PairA (λxB)

eq-pair-e-l
Γ ` r = r′ : PairA (λxB)

Γ ` r L = r′ L : A
eq-pair-e-r

Γ ` r = r′ : PairA (λxB)

Γ ` r R = r′ R : B[r L/x]

eq-pair-β-l
Γ ` s : A Γ ` t : B

Γ ` (s, t) L = s : A
eq-pair-β-r

Γ ` s : A Γ ` t : B

Γ ` (s, t) R = t : B

eq-pair-η
Γ ` r : PairA (λxB)

Γ ` (r L, rR) = r : PairA (λxB)

Fig. 2. MLFΣ term equality rules.

5

Lemma 2 (Inversion of Typing). Let C 6≡Type.

1. If Γ ` x : C then Γ ` Γ (x) = C :Type.
2. If Γ ` λxt : C then C ≡ FunA (λxB) and Γ, x :A ` t : B.
3. If Γ ` r s : C then Γ ` r : FunA (λxB) with Γ ` s : A and Γ ` B[s/x] =

C :Type.
4. If Γ ` (r, s) : C then C ≡ PairA (λxB) with Γ ` r : A and Γ ` s : B[r/x].
5. If Γ ` rL : A then Γ ` r : PairA (λxB).
6. If Γ ` rR : C then Γ ` r : PairA (λxB) and Γ ` B[rL/x] = C :Type.

3 Algorithmic Presentation

In this section, we present an algorithm for deciding equality. The goal of this
article is to prove it sound and complete.

Syntactic classes. The algorithm works on weak head normal forms WVal. For
convenience, we introduce separate categories for normal forms which can denote
a function and for those which can denote a pair. In the intersection of these
categories live the neutral expressions.

WElim 3 e ::= s | p eliminations
WNe 3 n ::= c | x | n e neutral expressions
WFun 3 wf ::= n | λxt weak head function values
WPair 3 wp ::= n | (t, t′) weak head pair values
WVal 3 w,W ::= wf | wp weak head values

Weak head evaluation t ↘ w and active elimination w@e ↘ w′ are simultane-
ously given by the following rules:

r ↘ wf wf@s↘ w

r s↘ w

r ↘ wp wp@p↘ w

r p↘ w t↘ t
t 6≡ r s | r p

n@e↘ n e

t[w/x]↘ w′

(λxt)@w ↘ w′
t↘ w

(t, t′)@L↘ w

t′ ↘ w

(t, t′)@R↘ w

Weak head evaluation t↘ w is equivalent to multi-step weak head reduction to
normal form. Since both judgements are deterministic, we can interpret them by
two partial functions

↓ ∈ Exp ⇀ WVal weak head evaluation,
@ ∈WVal×WElim ⇀ WVal active application.

6

Conversion. Two terms t, t′ are algorithmically equal if t ↘ w, t′ ↘ w′, and
w ∼ w′. We combine these three propositions to t↓ ∼ t′↓. The algorithmic
equality on weak head normal forms w ∼ w′ is given inductively by these rules:

aq-c
c ∼ c

aq-var
x ∼ x

aq-ne-fun
n ∼ n′ s↓ ∼ s′↓

n s ∼ n′ s′
aq-ne-pair

n ∼ n′

n p ∼ n′ p

aq-ext-fun
wf@x ∼ w′f@x

wf ∼ w′f
x 6∈ FV(wf , w′f)

aq-ext-pair
wp@L ∼ w′p@L wp@R ∼ w′p@R

wp ∼ w′p

For two neutral values, the rules (aq-ne-x) are preferred over aq-ext-fun and
aq-ext-pair. Thus, conversion is deterministic. It is easy to see that it is sym-
metric as well.

In our presentation, untyped conversion resembles type-directed conversion.
In the terminology of Harper and Pfenning [HP05,Sar04], the first four rules
aq-c, aq-var, aq-ne-fun and aq-ne-pair compute structural equality, whereas
the remaining two, the extensionality rules aq-ext-fun and aq-ext-pair, com-
pute type-directed equality. The difference is that in our formulation, the shape
of a value—function or pair— triggers application of the extensionality rules.

Remark 3. In contrast to the corresponding equality for λ-terms without pairs
[Coq91] (taking away aq-ne-pair and aq-ext-pair), this relation is not tran-
sitive. For instance, λx. n x ∼ n and n ∼ (nL, nR), but not λx. n x ∼ (nL, nR).

4 Soundness

The soundness proof for conversion in this section is entirely syntactical and
relies crucially on injectivity of El, Fun and Pair and inversion of typing. First,
we show soundness of weak head evaluation, which subsumes subject reduction.

Lemma 4 (Soundness of weak head evaluation).

1. If D :: t↘ w and Γ ` t : C then Γ ` t = w : C.
2. If D :: w@e↘ w′ and Γ ` w e : C then Γ ` w e = w′ : C.

Proof. Simultaneously by induction on D, making essential use of inversion laws.

Two algorithmically convertible well-typed expressions must also be equal in
the declarative sense. In case of neutral terms, we also obtain that their types
are equal. This is due to the fact that we can read off the type of the common
head variable and break it down through the sequence of eliminations.

7

Lemma 5 (Soundness of conversion).

1. Neutral non-types: If D :: n ∼ n′ and Γ ` n : C 6≡Type and Γ ` n′ : C ′ 6≡
Type then Γ ` n = n′ : C and Γ ` C = C ′ :Type.

2. Weak head values: If D :: w ∼ w′ and Γ ` w,w′ : C then Γ ` w = w′ : C.
3. All expressions: If t↓ ∼ t′↓ and Γ ` t, t′ : C then Γ ` t = t′ : C.

Proof. The third proposition is a consequence of the second, using soundness
of evaluation (Lemma 4) and transitivity. We prove the first two propositions
simultaneously by induction on D.

5 Models

To show completeness of algorithmic equality, we leave the syntactic discipline.
Although a syntactical proof should be possible following Goguen [Gog99,Gog05],
we prefer a model construction since it is more apt to extensions of the type the-
ory.

The contribution of this section is that any PER model over a λ-model with
full β-equality is a model of MLFΣ . Only in the next section will we decide on a
particular model which enables the completeness proof.

5.1 λ Models

We assume a set D with the four operations

· ∈ D× D→ D application,
L ∈ D→ D left projection,
R ∈ D→ D right projection, and
∈ Exp× Env→ D denotation.

Herein, we use the following entities:

c ∈ Const := {Set,El,Fun,Pair} constants
u, v, f, V, F ∈ D ⊇ Const domain of the model
ρ, σ ∈ Env := Var→ D environments

Let p range over the projection functions L and R. To simplify the notation, we
write also f v for f · v. Update of environment ρ by the binding x=v is written
ρ, x=v. The operations f · v, v p and tρ must satisfy the following laws:

den-const cρ = c if c ∈ Const
den-var xρ = ρ(x)
den-fun-e (r s)ρ = rρ (sρ)
den-pair-e (r p)ρ = rρ p

den-fun-β (λxt)ρ v = t(ρ, x=v)
den-pair-β-l (r, s)ρ L = rρ
den-pair-β-r (r, s)ρR = sρ

8

den-fun-ξ (λxt)ρ = (λxt′)ρ′ if t(ρ, x=v) = t′(ρ′, x=v) for all v ∈ D
den-pair-ξ (r, s)ρ = (r′, s′)ρ′ if rρ = r′ρ′ and sρ = s′ρ′

den-set-f-inj El v = El v′ implies v = v′

den-fun-f-inj FunV F = FunV ′ F ′ implies V = V ′ and F = F ′

den-pair-f-inj Pair V F = Pair V ′ F ′ implies V = V ′ and F = F ′

Lemma 6 (Irrelevance). If ρ(x) = ρ′(x) for all x ∈ FV(t), then tρ = tρ′.

Proof. By induction on t. Makes crucial use of the ξ rules.

Lemma 7 (Soundness of substitution). (t[s/x])ρ = t(ρ, x=sρ).

Proof. By induction on t, using the ξ rules and Lemma 6.

5.2 PER Models

In the definition of PER models, we follow a paper of the second author with
Pollack and Takeyama [CPT03] and Vaux [Vau04]. The only difference is, since
we have codes for types in D, we can define the semantical property of being a
type directly on elements of D, whereas the cited works introduce an intensional
type equality on closures tρ.

Partial equivalence relation (PER). A PER is a symmetric and transitive rela-
tion. Let Per denote the set of PERs over D. If A ∈ Per, we write v = v′ ∈ A if
(v, v′) ∈ A. We say v ∈ A if v is in the carrier of A, i. e., v = v ∈ A. On the other
hand, each set A ⊆ D can be understood as the discrete PER where v = v′ ∈ A
holds iff v = v′ and v ∈ A.

Equivalence classes and families. Let A ∈ Per. If v ∈ A, then vA := {v′ ∈ D |
v = v′ ∈ A} denotes the equivalence class of v in A. We write D/A for the set
of all equivalence classes in A. Let Fam(A) = D/A → Per. If F ∈ Fam(A) and
v ∈ A, we use F(v) as a shorthand for F(vA).

Constructions on PERs. Let A ∈ Per and F ∈ Fam(A). We define two PERs
Fun(A,F) and Pair(A,F) by

(f, f ′) ∈ Fun(A,F) iff f v = f ′ v′ ∈ F(v) for all v = v′ ∈ A,
(v, v′) ∈ Pair(A,F) iff v L = v′ L ∈ A and v R = v′ R ∈ F(v L).

Semantical types. In the following, assume some Set ∈ Per and some E` ∈
Fam(Set). We define inductively a new relation Type ∈ Per and a new function
[] ∈ Fam(Type):

Set = Set ∈ Type and [Set] is Set .
El v = El v′ ∈ Type if v = v′ ∈ Set . Then [El v] is E`(v).
Fun V F = Fun V ′ F ′ ∈ Type if V = V ′ ∈ Type and v = v′ ∈ [V] implies

F v = F ′ v′ ∈ Type. We define then [Fun V F] to be Fun([V], v 7−→ [F v]).

9

Pair V F = Pair V ′ F ′ ∈ Type if V = V ′ ∈ Type and v = v′ ∈ [V] implies
F v = F ′ v′ ∈ Type. We define then [Pair V F] to be Pair([V], v 7−→ [F v]).

This definition is possible by the laws den-set-f-inj, den-fun-f-inj, and
den-pair-f-inj. Notice that in the last two clauses, we have

Fun([V], v 7−→ [F v]) = Fun([V ′], v 7−→ [F ′ v]), and
Pair([V], v 7−→ [F v]) = Pair([V ′], v 7−→ [F ′ v]).

5.3 Validity

If Γ is a context, we define a corresponding PER on Env, written [Γ]. We define
ρ = ρ′ ∈ [Γ] to mean that, for all x:A in Γ , we have Aρ = Aρ′ ∈ Type and
ρ(x) = ρ′(x) ∈ [Aρ]. Semantical contexts Γ ∈ Cxt are defined inductively by the
following rules:

� ∈ Cxt
Γ ∈ Cxt Aρ = Aρ′ ∈ Type for all ρ = ρ′ ∈ [Γ]

(Γ, x :A) ∈ Cxt

Theorem 8 (Soundness of the rules of MLFΣ).

1. If D :: Γ ` ok then Γ ∈ Cxt.
2. If D :: Γ ` A :Type then Γ ∈ Cxt, and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type.
3. If D :: Γ ` t : A then Γ ∈ Cxt, and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type

and tρ = tρ′ ∈ [Aρ].
4. If D :: Γ ` A = A′ : Type then Γ ∈ Cxt, and if ρ = ρ′ ∈ [Γ] then Aρ =

A′ρ′ ∈ Type.
5. If D :: Γ ` t = t′ : A then Γ ∈ Cxt, and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type

and tρ = t′ρ′ ∈ [Aρ].

Proof. Each by induction on D, using lemmas 6 and 7.

5.4 Safe Types

We define an abstract notion of safety, similar to what Vaux calls “saturation”
[Vau04]. A PER is safe if it lies between a PER N on neutral expressions and a
PER S on safe expressions [Vou04]. In the following, we use set notation ⊆ and
∪ also for PERs.

Safety. N ,Sfun ,Spair ∈ Per form a safety range if the following conditions are
met:

safe-int N ⊆ S = Sfun ∪ Spair
safe-ne-fun u v = u′ v′ ∈ N if u = u′ ∈ N and v = v′ ∈ S
safe-ne-pair u p = u′ p ∈ N if u = u′ ∈ N
safe-ext-fun v = v′ ∈ Sfun if v u = v′ u′ ∈ S for all u = u′ ∈ N
safe-ext-pair v = v′ ∈ Spair if v L = v′ L ∈ S and v R = v′ R ∈ S

A relation A ∈ Per is called safe w. r. t. to a safety range (N ,Sfun ,Spair) if
N ⊆ A ⊆ S.

10

Lemma 9 (Fun and Pair preserve safety). If A ∈ Per is safe and F ∈
Fam(A) is such that F(v) is safe for all v ∈ A then Fun(A,F) and Pair(A,F)
are safe.

Proof. By monotonicity of Fun and Pair , if one considers the following refor-
mulation of the conditions:

safe-ne-fun N ⊆ Fun(S, 7−→ N)
safe-ne-pair N ⊆ Pair(N , 7−→ N)
safe-ext-fun Fun(N , 7−→ S) ⊆ Sfun
safe-ext-pair Pair(S, 7−→ S) ⊆ Spair

Lemma 10 (Type interpretations are safe). Let Set be safe and E`(v) be
safe for all v ∈ Set. If v ∈ Type then [v] is safe.

Proof. By induction on the proof that v ∈ Type, using Lemma 9.

6 Term Model

In this section, we instantiate the model of the previous section to the set of ex-
pressions modulo β-equality. Application is interpreted as expression application
and the projections of the model are mapped to projections for expressions.

Let r ∈ D denote the equivalence class of r ∈ Exp with regard to =β . We set
D := Exp/=β , r·s := r s, r L := r L, r R := r R, and tρ := t[ρ]. Herein, t[ρ] denotes
the substitution of ρ(x) for x in t, carried out in parallel for all x ∈ FV(t). In the
following, we abbreviate the equivalence class r by its representative r, if clear
from the context.

Value classes. The β-normal forms v ∈ Val, which can be described by the
following grammar, completely represent the β-equivalence classes t ∈ Exp/=β .

VNe 3 u ::= c | x | u v | u p neutral values
VFun 3 vf ::= u | λxv function values
VPair 3 vp ::= u | (v, v′) pair values
Val 3 v ::= vf | vp values

An η-equality on β-equivalence classes. We define a relation ' ⊆ Val × Val
inductively by the following rules.

eta-var
x ' x

eta-ne-fun
u ' u′ v ' v′

u v ' u′ v′
eta-ne-pair

u ' u′

u p ' u′ p

eta-c
c ' c

eta-ext-fun
vf x ' v′f x
vf ' v′f

x 6∈ FV(vf , v′f)

eta-ext-pair
vp L ' v′p L vp R ' v′p R

vp ' v′p

11

Note, since we are talking about equivalence classes, in the extensionality rules
eta-ext-fun and eta-ext-pair we actually mean the normal forms of the
expressions appearing in the hypotheses. In the conclusion of an extensionality
rule, we require one of the two values to be non-neutral.

As algorithmic equality, the relation ' is symmetric, but not transitive. To
turn it into a PER, we need to take the transitive closure '+ explicitly.

Lemma 11 (Admissible rules for '+). If we replace ' by '+ consistently
in the rules for ', we get admissible rules for '+. We denote the admissible rule
by appending a + to the rule name.

Lemma 12 (Safety range). Let S := '+, N := S ∩ (VNe × VNe), Sfun :=
S ∩ (VFun × VFun), and Spair := S ∩ (VPair × VPair). Then N ,Sfun ,Spair are
PERs and form a safety range.

Proof. safe-int is shown by definition of N ,Sfun ,Spair . safe-ext-fun is sat-
isfied by rule eta-ext-fun+ since x = x ∈ N for each variable. Each other
requirement has its directly matching admissible rule.

Lemma 13 (Context satisfiable). Let ρ0(x) := x for all x ∈ Var. If Γ ` ok,
then ρ0 ∈ [Γ].

Corollary 14 (Equal terms are related). If Γ ` t = t′ : C 6≡ Type then
t '+ t

′.

Proof. By soundness of MLFΣ (Thm. 8), tρ0 = t′ρ0 ∈ [Cρ0]. The claim follows
since [Cρ0] ⊆ S by Lemma 10.

It remains to show that t '+ t
′ implies t↓ ∼ t′↓, which means that both t

and t′ weak head normalize and these normal forms are algorithmically equal.

7 Completeness

We establish completeness of the algorithmic equality in two steps. First we
prove that η-equality of β-normal forms entails equality in the algorithmic sense.
Then we show that for well-typed terms, transitivity is admissible for algorithmic
equality. Combining this with the result of the last section, we are done.

Lemma 15 (Standardization).

1. If t =β u v then t↘ n s with n =β u and s =β v.
2. If t =β u p then t↘ n p with n =β u.
3. If t =β vf then t↘ wf with wf =β vf .
4. If t =β vp then t↘ wp with wp =β vp.

Proof. Fact about the λ-calculus [Bar84].

Lemma 16 (Completeness of ∼ w. r. t. '). If D :: n ' n′ then n ∼ n′ and
if D :: t ' t′ then t↓ ∼ t′↓.

12

Proof. Simultaneously by induction on D, using standardization.

While transitivity does not hold for the pure algorithmic equality (see Re-
mark 3), it can be established for terms of the same type. The presence of types
forbids comparison of function values with pair values, the stepping stone for
transitivity of the untyped equality.

For a derivation D of algorithmic equality, we define the measure |D| which
denotes the number of rule applications on the longest branch of D, counting
the rules aq-ext-fun and aq-ext-pair twice.2 We will use this measure for the
proof of transitivity and termination of algorithmic equality.

Lemma 17 (Transitivity of typed algorithmic equality).

1. Let Γ ` n1 : C1, Γ ` n2 : C2, and Γ ` n3 : C3. If D :: n1 ∼ n2 and
D′ :: n2 ∼ n3 then n1 ∼ n3.

2. Let Γ ` w1, w2, w3 : C. If D :: w1 ∼ w2 and D′ :: w2 ∼ w3 then w1 ∼ w3.
3. Let Γ ` t1, t2, t3 : C. If t1↓ ∼ t2↓ and t2↓ ∼ t3↓ then t1↓ ∼ t3↓.

Proof. The third proposition is an immediate consequence of the second, using
soundness of weak head evaluation. We prove 1. and 2. simultaneously by in-
duction on |D| + |D′|, using inversion for typing and soundness of algorithmic
equality.

Theorem 18 (Completeness of algorithmic equality).

1. If Γ ` t = t′ : C 6≡Type then t↓ ∼ t′↓.
2. If D :: Γ ` A = A′ :Type then A↓ ∼ A′↓.

Proof. Completeness for terms (1): By Cor. 14 we have t '+ t
′. Lemma 16

entails t↓ ∼+ t′↓, and since Γ ` t, t′ : C, we infer t↓ ∼ t′↓ by transitivity. The
completeness for types (2) is then shown by induction on D, using completeness
for terms in case eq-set-e.

We have shown that two judgmentally equal terms t, t′ weak-head normalize
to w,w′ and a derivation of w ∼ w′ exists, hence the equality algorithm, which
searches deterministically for such a derivation, terminates with success. What
remains to show is that the query t↓ ∼ t′↓ terminates for all welltyped t, t′, either
with success, if the derivation can be closed, or with failure, in case the search
arrives at a point where there is no matching rule. For the following lemma,
observe that w ∼ w iff w is weakly normalizing.

Lemma 19 (Termination of equality). If D1 :: w1 ∼ w1 and D2 :: w2 ∼ w2

then the query w1 ∼ w2 terminates.

Proof. By induction on |D1|+ |D2|.
2 A similar measure is used by Goguen [Gog05] to prove termination of algorithmic

equality restricted to pure λ-terms [Coq91].

13

Theorem 20 (Decidability of equality). If Γ ` t, t′ : C then the query
t↓ ∼ t′↓ succeeds or fails finitely and decides Γ ` t = t′ : C.

Proof. By Theorem 18, t ↘ w, t′ ↘ w′, w ∼ w, and w′ ∼ w′. By the previous
lemma, the query w ∼ w′ terminates. Since by soundness and completeness of
the algorithmic equality, w ∼ w′ if and only if Γ ` t = t′ : C, the query decides
judgmental equality.

8 Conclusion

We have presented a sound and complete conversion algorithm for MLFΣ . The
completeness proof builds on PERs over untyped expressions, hence, we need—in
contrast to Harper and Pfenning’s completeness proof for type-directed conver-
sion [HP05]—no Kripke model and no notion of erasure, what we consider an
arguably simpler procedure. We see in principle no obstacle to generalize our re-
sults to type theories with type definition by cases (large eliminations), whereas
it is not clear how to treat them with a technique based on erasure.

The disadvantage of untyped conversion, compared to type-directed conver-
sion, is that it cannot handle cases where the type of a term provides more
information on equality than the shape of a terms, e. g., unit types, singleton
types and signatures with manifest fields [CPT03].

A more general proof of completeness? Our proof uses a λ-model with full β-
equality thanks to the ξ-rules. We had also considered a weaker model without ξ-
rules which only equates weakly convertible objects. Combined with extensional
PERs this would have been the model closest to our algorithm. But due to the
use of substitution in the declarative formulation, we could not show MLFΣ ’s
rules to be valid in such a model. Whether it still can be done, remains an open
question.

Related work. The second author, Pollack, and Takeyama [CPT03] present a
model for βη-equality for an extension of the logical framework by singleton
types and signatures with manifest fields. Equality is tested by η-expansion, fol-
lowed by β-normalization and syntactic comparison. In contrast to this work, no
syntactic specification of the framework and no incremental conversion algorithm
are given.

Schürmann and Sarnat [Sar04] have been working on an extension of the
Edinburgh Logical Framework (ELF) by Σ-types (LFΣ), following Harper and
Pfenning [HP05]. In comparison to MLFΣ , syntactic validity (Lemma 1) and
injectivity are non-trivial in their formulation of ELF. Robin Adams [Ada01]
has extended Harper and Pfenning’s algorithm to Luo’s logical framework (i. e.,
MLF with typed λ-abstraction) with Σ-types and unit.

Goguen [Gog99] gives a typed operational semantics for Martin-Löf’s logical
framework. An extension to Σ-types has to our knowledge not yet been con-
sidered. Recently, Goguen [Gog05] has proven termination and completeness for

14

both the type-directed [HP05] and the shape-directed equality [Coq91] from the
standard meta-theoretical properties (strong normalization, confluence, subject
reduction, etc.) of the logical framework.

Acknowledgments. We are grateful to Lionel Vaux whose clear presentation of
models for this implicit calculus [Vau04] provided a guideline for our model
construction. Thanks to Ulf Norell for proof-reading. The first author is indebted
to Frank Pfenning who taught him type-directed equality at Carnegie Mellon
University in 2000, and to Carsten Schürmann for communication on LFΣ .

References

AC05. A. Abel and T. Coquand. Untyped algorithmic equality for Martin-Löf’s
logical framework with surjective pairs (extended version). Tech. rep., De-
partment of Computer Science, Chalmers, Göteborg, Sweden, 2005.

Ada01. R. Adams. Decidable equality in a logical framework with sigma kinds, 2001.
Unpublished note, see http://www.cs.man.ac.uk/˜radams/.

Bar84. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North
Holland, Amsterdam, 1984.

Coq91. T. Coquand. An algorithm for testing conversion in type theory. In G. Huet
and G. Plotkin, eds., Logical Frameworks, pp. 255–279. Cambridge University
Press, 1991.

Coq96. T. Coquand. An algorithm for type-checking dependent types. In Mathe-
matics of Program Construction (MPC 1995), vol. 26 of Science of Computer
Programming , pp. 167–177. Elsevier Science, 1996.

CPT03. T. Coquand, R. Pollack, and M. Takeyama. A logical framework with depen-
dently typed records. In Typed Lambda Calculus and Applications, TLCA’03 ,
vol. 2701 of Lecture Notes in Computer Science. Springer, 2003.

Gog99. H. Goguen. Soundness of the logical framework for its typed operational se-
mantics. In J.-Y. Girard, ed., Typed Lambda Calculi and Applications, TLCA
1999 , vol. 1581 of Lecture Notes in Computer Science. Springer, 1999.

Gog05. H. Goguen. Justifying algorithms for βη conversion. In FoSSaCS 2005. To
appear.

HHP93. R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
Journal of the Association of Computing Machinery , 40(1):143–184, 1993.

HP05. R. Harper and F. Pfenning. On equivalence and canonical forms in the LF
type theory. ACM Transactions on Computational Logic, 6(1):61–101, 2005.

Klo80. J. W. Klop. Combinatory reducion systems. Mathematical Center Tracts, 27,
1980.

NPS00. B. Nordström, K. Petersson, and J. Smith. Martin-löf’s type theory. In
Handbook of Logic in Computer Science, vol. 5. Oxford University Press, 2000.

Sar04. J. Sarnat. LFΣ : The metatheory of LF with Σ types, 2004. Unpublished
technical report, kindly provided by Carsten Schürmann.

Vau04. L. Vaux. A type system with implicit types, 2004. English version of his
mémoire de mâıtrise.

VC02. J. C. Vanderwaart and K. Crary. A simplified account of the metatheory of
Linear LF. Tech. rep., Dept. of Comp. Sci., Carnegie Mellon, 2002.

Vou04. J. Vouillon. Subtyping union types. In J. Marcinkowski and A. Tarlecki, eds.,
Computer Science Logic, CSL’04 , vol. 3210 of Lecture Notes in Computer
Science, pp. 415–429. Springer, 2004.

15

	Untyped Algorithmic Equality for Martin-Löf's Logical Framework with Surjective Pairs
	Andreas Abel and Thierry Coquand

