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Abstract. The problem of defining iteration for higher-order nested
datatypes of arbitrary (finite) rank is solved within the framework of
System Fω of higher-order parametric polymorphism. The proposed so-
lution heavily relies on a general notion of monotonicity as opposed to
a syntactic criterion on the shape of the type constructors such as posi-
tivity or even being polynomial. Its use is demonstrated for some rank-2
heterogeneous/nested datatypes such as powerlists and de Bruijn terms
with explicit substitutions. An important feature is the availability of an
iterative definition of the mapping operation (the functoriality) for those
rank-1 type transformers (i. e., functions from types to types) arising as
least fixed-points of monotone rank-2 type transformers. Strong normal-
ization is shown by an embedding into Fω. The results dualize to greatest
fixed-points, hence to coinductive constructors with coiteration.

1 Introduction

What is iteration for nested datatypes? It is a disciplined use of least fixed-points
of nested recursive definitions of types and type transformers which rewards the
programmer with a guarantee of termination and can usually be expressed in
terms of initial algebras. By “nested”, different concepts can be understood. The
easiest would be to first introduce the type of natural numbers by the equation
Nat = 1 + Nat and then the lists of naturals by NatList = 1 + Nat × NatList.
Here, Nat is nested within NatList. In proof theory, the general principle behind
it is called iterated inductive definitions [BFPS81]. More demanding would be
nesting by help of parameters: Let List(A) = 1 +A× List(A) be the type of lists
over A. Then FinTree = List(FinTree) is nested in the sense of an interleaving of
the definitions of FinTree and List(FinTree). Certainly, this can be represented as
a simultaneous definition. Nesting in the sense advocated in [BM98] is different:
? The first author gratefully acknowledges the support by the PhD Programme Logic

in Computer Science (GKLI) of the Deutsche Forschungs-Gemeinschaft.
?? The second author has benefitted from financial support by the EC ESPRIT project

21900 “TYPES” and the EU IST working group 29001 “TYPES”.



It is a definition of a family of types where the recursive calls may refer to other
members of the family, e. g.,

Lam(A) = A+ Lam(A)× Lam(A) + Lam(1 +A)

as a representation of untyped lambda terms [BP99b,AR99]. This is just a hetero-
geneous datatype because Lam itself is not used in determining to which family
member recursive calls are made. True nesting, called non-linear [BP99a], oc-
curs in the representation of untyped lambda terms with explicit substitution as
follows:

L̂am(A) = A+ L̂am(A)× L̂am(A) + L̂am(1 +A) + L̂am(L̂am(A)),

see example 4 below.
The aim of the present article is to shed more light on those nested inductive

types in terms of type theory, i. e., by a formulation in System Fω of higher-order
parametric polymorphism [Gir72]. We propose a system GMIC of general mono-
tone inductive and coinductive constructors of arbitrary kind of Fω which hence
also covers greatest fixed-points with associated coiteration. The system will be
given in Curry-style, hence does not need any type information for the term
rewrite rules. The well-known (at least, since [Wra89]) embeddings of induc-
tive and coinductive datatypes into System F can be extended to an embedding
of GMIC into Fω by a syntactic analogue of Kan extensions (mentioned in the
context of nested datatypes in [BP99a]).

A major effort has been made to ensure that there are iterative definitions of
closed terms of types such as ∀A∀B. (A→ B)→ L̂am(A)→ L̂am(B) which hence
witness monotonicity or “functoriality” of L̂am and the other type transformers
that are the solutions to these nested equations.

Unlike previous work of the second author [Mat01], we base our notion of
monotonicity on a non-standard definition of inequality. In the case of F,G being
definable functions from types to types, it is

F ≤ G := ∀A∀B. (A→ B)→ FA→ GB,

kindly suggested by Peter Hancock during his visit in Munich in late 2000. The
same notion has been used by Altenkirch/McBride [AM02] and Hinze [Hin02]
to define map functions generically.

A rough categorical motivation can be given as follows: If F,G were functors,
then ∀A.FA → GA would be the type of natural transformations α from F to
G. Then, given some f : A→ B, we would have Gf ◦ αA and αB ◦ Ff as equal
“morphisms” of type FA → GB. In our definition, we drop functoriality of F
and G but directly require the “diagonal” in the associated naturality diagram
from FA to GB (see Fig. 1).

The article is organized as follows: The present section is concluded by a
short overview of System Fω (with a more detailed account in appendix A and
the Church version in appendix B). Section 2 contains the definition of GMIC
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Fig. 1. “map”-like transformation ` : F ≤ G

and its specializations to (co-)inductive types and to (co-)inductive functors, in-
cluding several examples for programming in GMIC. A short argument is given
in 2.4 for subject reduction and confluence of GMIC. The syntactic analogue of
Kan extensions forms Section 3. They are in close relation with our non-standard
definition of ≤ for type constructors and are needed for our more advanced ex-
amples: substitution for de Bruijn terms and resolution of explicit substitutions
(Section 3.1). Section 3.2 shows that, logically, the notion of monotonicity in
[Mat01] is a special case of the one in GMIC. Section 4 gives the proof of strong
normalization by an embedding into System Fω. As mentioned before, appen-
dices A and B give details of our version of System Fω.

The Haskell implementation of (co)inductive types and functors plus most of
the examples can be obtained from the Web site of the first author [Abe03].

Acknowledgements: Many thanks to Peter Hancock for his suggestion of
the unusual notion of the definition of F ≤κ1 G, to Tarmo Uustalu for repeated
advice on syntactic Kan extensions and the representation of substitution and
to Thorsten Altenkirch for his valuable feedback on early versions of the present
article. We also thank the anonymous referees who provided helpful comments.

1.1 System Fω

Our development of higher-order datatypes takes place within a conservative
extension of Curry-style System Fω by finite sums and products and existential
quantification. It contains three syntactic categories:

Kinds. We denote kinds by the letter κ. For the pure kind of rank n we introduce
the special name κn.

κ ::= ∗ | κ→ κ′

κ0 := ∗
κ(n+ 1) := κn→ κn

Examples for pure kinds are κ0 = ∗, types, κ1 = ∗ → ∗, type transformers
and κ2 = (∗ → ∗) → ∗ → ∗ transformers of type transformers. Note that
each kind κ′ can be written as κ → ∗, where we write κ for κ1, . . . , κn, set
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κ1, . . . , κn → κ := κ1 → . . . → κn → κ and assume that → associates to the
right. Also set |κ1, . . . , κn| := n.

Constructors. Uppercase latin letters and the greek letters Φ and Ψ denote
constructors, given by the following grammar.

A,B, F,G ::= X | λX.F | F G | ∀Fκ. A | ∃Fκ. A | A→ B
| 0 | A+B | 1 | A×B

We identify β-equivalent constructors. A constructor F has kind κ if there is a
context Γ such that Γ ` F : κ. The kinding rules for the constructors can be
found in Appendix A. It also contains the typing rules for the terms and the
reduction rules.

Preferably we will use letters A,B,C,D for constructors of rank 0 (types),
F,G,H for constructors of rank 1 and Φ, Ψ for constructors of rank 2. If no
kinds are given and cannot be guessed from the context, we assume A,B,C,D :
∗, F,G,H : κ1 and Φ, Ψ : κ2. We write F ◦ G for constructor composition
λX.F (GX).

Objects (Curry terms). Lower case letters denote terms.

r, s, t ::= x | λx.t | r s | abort r | inl t | inr t | case (r, x. s, y. t)
| 〈〉 | 〈t1, t2〉 | r.0 | r.1 | pack t | open (r, x. s)

Most term constructors are standard; “pack” introduces and“open” eliminates
existential quantification. As for kinds, there is a “vector notation” t for a list
t1, . . . , tn of terms. The polymorphic identity λx.x : ∀A.A → A will be de-
noted by id. We write f ◦ g for function composition λx. f (g x). Application rs
associates to the left, hence rs = (. . . (rs1) . . . sn) for s = s1, . . . , sn.

A term t has type A if Γ ` t : A for some context Γ . The relation −→ denotes
the usual one-step β-reduction which is confluent, type preserving and strongly
normalizing. As mentioned above, the exact typing and reduction rules can be
found in Appendix A.

Church terms. We consider Church-style terms (again, following the distinction
between the styles à la Curry and à la Church proposed in [Bar92]) as a linear
notation for typing derivations. For details see appendix B. Whenever we write
a Church term, we mean the typing derivation of the corresponding Curry term.

In the following we will refer to the here defined system simply as “Fω”.

2 Monotone Inductive and Coinductive Constructors

For constructors F and G of kind κ we define the types F ⊆κ G and F ≤κ G by
recursion on κ as follows. Then general monotonicity monκ F for constructor F
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can be expressed in terms of ≤κ, and will also be a type.

F ⊆∗ G := F → G
F ⊆κ→κ′ G := ∀Xκ. F X ⊆κ′ GX
F ≤∗ G := F → G
F ≤κ→κ′ G := ∀Xκ∀Y κ. X ≤κ Y → F X ≤κ′ GY
monκ F := F ≤κ F

(When clear from the context, we will omit subscripts κ from ⊆, ≤ and mon. We
assume that ⊆ and ≤ bind stronger than → or ×.) The proposed (co-)inductive
constructors will not rely on some syntactic notion of positivity,1 but exclusively
on the above defined notion of monotonicity, hence giving a logical flavour to
the system. Monotonicity as an assertion/proposition is modelled as a type. The
propositions-as-types paradigm of type theory, first introduced as the Curry-
Howard-isomorphism [How80] for minimal propositional logic, has been an im-
portant guide in the development of the system.

Having monotonicity, we can enrich system Fω with some constructor and
term constants to obtain higher-order (co)inductive datatypes. Closed terms
receiving a type of the form monκ F will be called monotonicity witnesses for F .

Inductive constructors.

Formation. µκ : (κ→ κ)→ κ

Introduction. inκ : ∀Fκ→κ. F (µκF ) ⊆ µκF
Elimination. Itκ : ∀Fκ→κ. monF → ∀Gκ. F G ⊆ G→ µκF ≤ G
Reduction. Itκ→∗msf (inκ→∗ t) −→β s (m (Itκ→∗ms)f t)

In the last line we require |f | = |κ|. As a first example, define

Mµ
κ(m) := Itκm inκ

λm. Mµ
κ(m) : ∀Fκ→κ. monF → mon (µκF ).

Hence, there is a completely uniform way of inferring monotonicity of µκF from
that of F . Moreover, the defined monotonicity witness has the desired reduction
behavior: Mµ

κ(m)f (inκt) −→β inκ (m Mµ
κ(m)f t).

Coinductive constructors.

Formation. νκ : (κ→ κ)→ κ

Introduction. Coitκ : ∀Fκ→κ. monF → ∀Gκ. G ⊆ F G→ G ≤ νκF
Elimination. outκ : ∀Fκ→κ. νκF ⊆ F (νκF )

Reduction. outκ→∗ (Coitκ→∗msf t) −→β m (Coitκ→∗ms)f (s t)

1 Syntactic in the sense of being a criterion on the shape of the constructor. This
criterion is used in most the articles on inductive types [Hag87,Men87,Lei90,Geu92].
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Again, we require |f | = |κ|. Dually to the case of inductive constructors, define

Mν
κ(m) := Coitκm outκ

λm. Mν
κ(m) : ∀Fκ→κ.monF → mon (νκF ).

Hence, also monotonicity of νκF follows uniformly from monotonicity of F and
has the desired computation rule: outκ (Mν

κ(m)f t) −→β m Mν
κ(m)f (outκ t).

This completes the definition of the system GMIC of general monotone induc-
tive and coinductive constructors. To give a feel for the meaning of these dense
definitions we will specialize them to kinds κ0 and κ1 in the following sections.

2.1 (Co)Inductive Types

For kind κ0 we obtain monotone (co)inductive types as described in the second
author’s thesis [Mat98]. These include all interleaved positive datatypes, espe-
cially all homogeneous datatypes like natural numbers, lists, trees etc. which are
common in functional programming.

Inductive types (κ = ∗).

Formation. µ∗ : (∗ → ∗)→ ∗
Introduction. in∗ : ∀F ∗→∗. F (µ∗F )→ µ∗F
Elimination. It∗ : ∀F ∗→∗. monF → ∀A∗. (F A→ A)→ µ∗F → A

Reduction. It∗ms (in∗ t) −→β s (m (It∗ms) t)

For the examples to follow, we will need some basic monotonicity witnesses:

pair : mon(λAλB.A×B) := λfλgλp. 〈f (p.0), g (p.1)〉
fork : mon(λA.A×A) := λf. pair ff
either : mon(λAλB.A+B) := λfλgλx. case (x, a. inl (f a), b. inr (g b))
maybe : mon(λA.1 +A) := either id

Example 1 (Binary trees). As a preparation for Example 6, we show how to
encode a type BT of binary trees with constructors leaf : BT and span : BT →
BT→ BT and iterator ItBT : ∀A.(1 +A×A→ A)→ BT→ A.

BTF : ∗ → ∗ := λA. 1 +A×A
BT : ∗ := µ∗BTF

leaf : BT := in∗(inl 〈〉)
span : BT→ BT→ BT := λtλu. in∗(inr 〈t, u〉)
mon BTF : ∗ = ∀A∀B. (A→ B)→ (1 +A×A)→ (1 +B ×B)
btf : mon BTF := maybe ◦ fork
ItBT : ∀A.((1 +A×A)→ A)→ BT→ A := It∗ btf
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Coinductive types (κ = ∗).

Formation. ν∗ : (∗ → ∗)→ ∗
Introduction. Coit∗ : ∀F ∗→∗. monF → ∀A∗. (A→ F A)→ A→ ν∗F
Elimination. out∗ : ∀F ∗→∗. ν∗F → F (ν∗F )

Reduction. out∗ (Coit∗ms t) −→β m (Coit∗ms) (s t)

As for inductive types, these are just the usual definitions, with arbitrary mono-
tonicity witnesses (sometimes also called strength) instead of canonical ones for
positive type transformers F . For the positive (covariant) case, their justification
from the point of view of category theory has first been given in [Hag87], a very
good presentation of the ideas is to be found in [Geu92].

2.2 (Co)Inductive Functors

If we specialize to kind κ1, we get heterogeneous (non-regular) and so-called
(non-linear) nested datatypes. Prominent examples are powerlists [Hin00] and a
monadic representation of de Bruijn λ-terms [AR99,BP99b].

Inductive functors (κ = κ1). Recall that κ1 = ∗ → ∗ and κ2 = κ1→ κ1.

Formation. µκ1 : κ2→ κ1

Introduction. inκ1 : ∀Φκ2∀A. Φ (µκ1Φ)A→ µκ1ΦA
Elimination. Itκ1 : ∀Φκ2. monΦ→ ∀Gκ1. ΦG ⊆ G→

∀A∀B. (A→ B)→ µκ1ΦA→ GB

Reduction. Itκ1msf (inκ1 t) −→β s (m (Itκ1ms) f t)

The name “functors” is not by chance. Let Φ be monotone of kind κ2 and
m : monΦ a monotonicity witness. Then Mµ

κ1(m) is a monotonicity witness for
µκ1Φ, i. e.,

Mµ
κ1(m) : mon(µκ1Φ) = ∀A∀B. (A→ B)→ (µκ1Φ)A→ (µκ1Φ)B,

hence Mµ
κ1(m) is the “functorial action” or map function for µκ1Φ. Note, however,

that the functor laws are beyond our intensional treatment. They could be proven
in a theory with extensional equality.

Example 2 (Powerlists). A famous example for a heterogeneous datatype are
lists of length 2n, also called powerlists [BGJ00] or perfectly balanced, binary
leaf trees [Hin00]. This datatype is present in our system as the least fixed point
of the rank-2 constructor PListF = λFλA.A+ F (A×A).

We obtain the type of powerlists with its data constructors and its mono-
tonicity witness in a schematic way.

PList : ∗ → ∗ := µκ1 PListF
plistf : mon PListF := λsλf. either f (s (fork f))
plist : mon PList := Mµ

κ1(plistf)

zero : ∀A.A→ PListA := λa. inκ1(inl a)
succ : ∀A. PList(A×A)→ PListA := λl. inκ1(inr l)
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A reversal algorithm for powerlists is simply derived from a different monotonic-
ity witness for PListF.

swap : mon(λA.A×A) := λfλp. 〈f (p.1), f (p.0)〉
plistfrev : mon PListF := λsλf. either f (s (swap f))

rev′ : mon PList := Mµ
κ1(plistfrev)

rev : ∀A. PListA→ PListA := rev′ id

Note that the freedom in using monotonicity witnesses demonstrated by the
previous definition goes beyond the capabilities of Functorial ML [JBM98]. Al-
though that system uses constants witnessing monotonicity to describe iteration,
the behavior of those witnesses is fixed by the generic programming approach
and consequently only yields the behavior of fork in the case of λA.A×A.

Example 3 (de Bruijn terms). Bird & Paterson [BP99b] and Altenkirch & Reus
[AR99] have shown that nameless untyped λ-terms can be represented by a
heterogeneous datatype. In our system this type is obtained as the least fixed
point of the monotone rank-2 constructor LamF.

LamF : κ2 := λFλA.A+ (FA× FA+ F (1 +A))
lamf : mon LamF := λsλf. either f

(
either (fork (s f)) (s (maybe f))

)
Now we can define the datatype LamA of de Bruijn terms with free variables
in A, plus its constructors var, app and abs. Furthermore, we give an auxiliary
function weak which lifts each variable in a term to provide space for a fresh
variable.

Lam : κ1 := µκ1 LamF
lam : mon Lam := Mµ

κ1(lamf)

var : ∀A.A→ LamA := λa. inκ1(inl a)
app : ∀A. LamA→ LamA→ LamA := λt1λt2. inκ1(inr (inl 〈t1, t2〉))
abs : ∀A. Lam(1 +A)→ LamA := λr. inκ1(inr (inr r))

weak : ∀A. LamA→ Lam(1 +A) := lam (λa. inr a)

Example 4 (de Bruijn terms with explicit substitutions). We consider an exten-
sion of the untyped λ-calculus by explicit substitutions t{σ} where σ provides a
term ti for each of the n free variables xi of t. We can view t{σ} as a term which
has the same structure as t but with variables whose names are taken from the
set {t1, . . . , tn}. This means that the variable names are itself λ-terms. Hence,
for the data constructor êxs which makes an explicit substitution a term, the
type L̂am(L̂amA)→ L̂amA is justified. In this case we have to deal with a truly
nested datatype.

L̂amF : κ2 := λFλA. LamFFA+ F (FA)
l̂amf : mon L̂amF := λsλf. either (lamf s f) (s (s f))
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The nesting of the type transformers F in L̂am is reflected by the nesting of
the transformations s in the respective monotonicity witness. The datatype L̂am
with its constructors is now obtained mechanically.

L̂am : κ1 := µκ1 L̂amF

l̂am : mon L̂am := Mµ
κ1(l̂amf)

v̂ar : ∀A.A→ L̂amA := λa. inκ1(inl (inl a))
âpp : ∀A. L̂amA→ L̂amA→ L̂amA := λt1λt2. inκ1(inl (inr (inl 〈t1, t2〉)))
âbs : ∀A. L̂am(1 +A)→ L̂amA := λr. inκ1(inl (inr (inr r)))
êxs : ∀A. L̂am(L̂amA)→ L̂am(A) := λe. inκ1(inr e)

Example 5 (Host). Bird and Paterson [BP99a, Example 3.3] introduce the type
transformer Host as an instructive example of true nesting. In GMIC this datatype
can be represented as follows.

HostF : κ2 := λFλA. 1 +A× F (A× F A)
hostf : mon HostF := λsλf. maybe (pair f (s (pair f (s f))))

Host : κ1 := µκ1 HostF
host : mon Host := Mµ

κ1(hostf)

The mapping function host has the following reduction behavior.

host f ◦ inκ1 −→β inκ1 ◦ hostf host f
−→+ inκ1 ◦ maybe (pair f (host (pair f (host f))))

Note that the reduct corresponds to the right-hand side of the defining recursive
equation of host in the original work [BP99a]. However, their solution was only
considered to exist in the semantical model of functor categories. Our system
GMIC gives a direct operational justification—host is just an instance of the
iterator Itκ1. Contrast this with Bird and Paterson’s higher-order iterator hfold ,
which is too weak to implement mapping functions like this one.

To overcome the shortcomings of hfold , Bird and Paterson introduce gen-
eralized folds (gfold), which allow them to define desired operations on nested
datatypes like Host; we achieve the same with our notion of iteration and Kan
extensions (see Sect. 3.1 below). Existence of gfold relies on the existence of
mapping functions like host, whose termination is not thoroughly addressed in
their work, but justified by our results.

Coinductive functors (κ = κ1).

Formation. νκ1 : κ2→ κ1

Introduction. Coitκ1 : ∀Φκ2. monΦ→ ∀Gκ1. G ⊆ ΦG→
∀A∀B. (A→ B)→ GA→ νκ1ΦB

Elimination. outκ1 : ∀Φκ2∀A. νκ1ΦA→ Φ (νκ1Φ)A

Reduction. outκ1 (Coitκ1msf t) −→β m (Coitκ1ms) f (s t)

Similar to the inductive case, functoriality of νκ1Φ is witnessed by the uniform
construction Mν

κ1(m) for m any monotonicity witness for Φ.
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Example 6 (Functions over binary trees). Thorsten Altenkirch [Alt01] shows
how to encode functions over regular inductive types by elements of nested coin-
ductive types of rank 2. In the following we present his example of functions over
unlabelled binary trees (λA.BT→ A) as functor (TFun) in our system.

TFunF : κ2 := λFλA.A× F (FA)
tfunf : mon TFunF := λsλf. pair f (s (s f))

The coinductive type TFun is now obtained as the greatest fixed point of TFunF.
We can derive its two destructors head and tail from the general destructor out
for coinductive constructors.

TFun : κ1 := νκ1TFunF
head : ∀A.TFunA→ A := λb. (outκ1b).0
tail : ∀A.TFunA→ TFun(TFunA) := λb. (outκ1b).1

Every function g : BT → A can be transformed via the function lamBT into an
infinite object lamBT g : TFunA. We implement lamBT by coiteration.

lamBT′ : (λA.BT→ A) ≤ TFun
lamBT′ := Coitκ1 tfunf (λf. 〈f leaf, λlλr. f (span l r)〉)
lamBT : ∀A. (BT→ A)→ TFunA
lamBT := lamBT′ id

Conversely, an object b : TFunA can be applied to a binary tree t : BT to yield
an element appBT t b : A. The application function appBT can be encoded by
iteration on the tree t.

appBT : BT→ ∀A.TFunA→ A
appBT := ItBT(λtλb. case (t, . head b, p. (p.1 (p.0 (tail b))))

2.3 Beyond Rank 2

To the knowledge of the authors, inductive datatypes having type transformers
as arguments are rarely considered. An example would be

λA.µκ1→κ1→∗

(
λΦκ1→κ1→∗λFλG.F (FA) + (ΦF (G×G) + Φ(F ×G)(G×G))

)
with F × G := λA.FA × GA. It has been studied in [Oka99] for the efficient
representation of square matrices. Squareness is ensured by types but without
the use of dependent types, by which one would just express that there is an
n such that the matrix has n rows and n columns. The argument to µκ1→κ1→∗
clearly has a monotonicity witness.

As a toy example, we mention µκ1→∗Ψ with Ψ := λFκ1→∗λGκ1.G(F (G◦G)).
monΨ is inhabited by λsλt.t(s(t ◦ t)).
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2.4 Subject Reduction and Confluence

The extensions to system Fω we made to incorporate (co)inductive constructors
are orthogonal to the existing constructions like function space, products, sums
etc. The new reduction rules do not interfere with any of the old ones and
there are no critical pairs. Hence, confluence of GMIC immediately follows from
standard results. To show subject reduction for GMIC, we only have to make
sure that the new reduction rules preserve typing.

Proposition 1 ((Co)iteration is type-preserving). Let κ = κ → ∗ be an
arbitrary kind and F : κ → κ, G : κ and Xi, Yi : κi (for 1 ≤ i ≤ |κ|) be
constructors. Furthermore let fi : Xi ≤κi Yi be terms for 1 ≤ i ≤ |κ| and
m : monF .

1. Provided terms s : FG ⊆ G and t : F (µκF )X, the following typing deriva-
tions are correct.

ItκF mGsX Y f (inκF X t) : GY
−→Church

β sY
(
m (µκF )G (ItκF mGs)X Y f t

)
: GY

2. Provided terms s : G ⊆ FG and t : GX we have the following typings.

outκF Y (CoitκF mGsX Y f t) : F (νκF )Y
−→Church

β mG (νκF ) (CoitκF mGs)X Y f (sX t) : F (νκF )Y

Proof. By trivial type-checking. Note that the notation is slightly sloppy: instead
of X Y f , it should be X1Y1f1 . . . X|κ|Y|κ|f|κ|.

Subject reduction would follow trivially for a corresponding formulation of the
whole term rewrite system à la Church (where −→Church

β above would give the
reduction rules pertaining to iteration and coiteration), but consequently by
standard techniques also for our Curry-style presentation of GMIC. The desired
property of strong normalization requires more work; in the following we prepare
for an embedding into system Fω.

3 Kan Extensions

In this section we define Kan extensions for constructors of arbitrary rank, show
their most fundamental properties and demonstrate their use in programming
with iterators. Finally, we use them to establish logical equivalence between the
notion of monotonicity in [Mat01] and rank-2 monotonicity monκ2 Φ proposed
in this article.

Kan extensions along the identity. Let G : κ → ∗ and Yi : κi (0 ≤ i < |κ|) be
constructors. Then the right Kan extension of GY along the identity is a type
defined by recursion on the length of Y as follows:

RanG (·) := G
RanG (Y κ,Y ) := ∀Zκ. Y ≤κ Z → Ran (GZ) (Y )
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Similarily, the left Kan extension of GY along the identity is the following type:

LanG (·) := G
LanG (Y κ,Y ) := ∃Xκ. X ≤κ Y × Lan (GX) (Y )

These definitions are a syntactic rendering of the Kan extensions in category
theory [Lan98, chapter 10] which become especially simple due to the presence
of universal and existential types. We will not discuss any of their category-
theoretic properties. At this point, let us only note how Kan extensions relate
to our notion “≤κ”.

Proposition 2. Let F,G : κ→ ∗. The following types are logically equivalent:2

1. F ≤ G,
2. ∀Xκ. FX → RanG (X), and
3. ∀Y κ. LanF (Y )→ GY .

Proof. By induction on κ. Part 1. ⇐⇒ 2. is done by rearranging quantifiers
and arguments, Part 2. ⇐⇒ 3. by currying and uncurrying.

Rank-1 right Kan extension along a functor H. For programming with iterators
(see next section), we need the more general right Kan extension along H for
some type transformer H. We define for constructors G,H of pure kind κ1 the
type

RanH G (A) := ∀B. (A→ HB)→ GB

For the special case of the identity functor H = λA.A we obtain the right Kan
extension defined above. We will write RanH G for λA.RanH G (A) and RanG
for λA.RanG (A). The left Kan extension could be modified similarly, but for
our purposes the right Kan extension is sufficient.

3.1 Programming with Kan extensions

In this section we demonstrate how right Kan extensions provide a general tool
to program with rank-2 inductive datatypes. It is known [BP99a,Hin00] that
a function f : µκ1Φ ◦ H ⊆ G for G,H : κ1 cannot be defined by iteration
directly if H 6= λA.A. The solution to this difficulty proposed in the cited ar-
ticles is generalized iteration (also called “generalized fold”). Another solution
(but related to the first one as a method for the justification of generalized
iteration [BP99a, section 6.2]), is to define a more general auxiliary function
g of type µκ1Φ ≤ RanH G, from which we get f by the trivial specialization
f := λr. g id r id. We will demonstrate this technique by continuing our exam-
ples from Section 2.

2 A and B are called logically equivalent if there are closed terms in system Fω of
types A→ B and B → A. It is thus equivalence in second-order propositional logic.
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Example 7 (Summing up a powerlist). Assume a type Nat of natural numbers
with addition “+”, written infix. A function sum which adds up all entries in
a powerlist of naturals has type PList Nat → Nat. This is an instance of the
problem described above where G = H = λA.Nat. The right Kan extension of
G along H simplifies to λA. (A → Nat) → Nat, hence we define the following
auxiliary function.

sum′ : PList ≤ (λA. (A→ Nat)→ Nat)
sum′ := Itκ1 plistf stepSum

stepSum : PListF(λA. (A→ Nat)→ Nat) ⊆ (λA. (A→ Nat)→ Nat)
stepSum := λtλf. case (t, a. f a, l. l (λp. f (p.0) + f (p.1)))

Following our general recipe, the summation function is obtained as sum :=
λl. sum′ id l id.

Example 8 (Substitution for de Bruijn terms). De Bruijn terms constitute a
Kleisli triple (Lam, var, subst) with unit var : ∀A.A→ LamA and bind operation

subst : ∀A. LamA→ ∀B. (A→ LamB)→ LamB.

The reader will note that the type of subst can also be written as ∀A. LamA→
RanLam Lam (A). This suggests that substitution can be defined by iteration
(proven by Altenkirch/Reus [AR99]).

subst′ : Lam ≤ RanLam Lam
subst′ := Itκ1 lamf stepSub

stepSub : LamF (RanLam Lam) ⊆ RanLam Lam
stepSub := λtλσ. case (t, a. σ a, t′. case (t′,

p. app (p.0σ) (p.1σ),
r. abs (r λx. case (x, u. var (inlu), a. weak (σ a)))))

The substitution function is obtained by specialization: subst := subst′ id.
From the “Kleisli triple” formulation of Lam we get the “monad” formula-

tion (Lam, var, join) mechanically, since join : ∀A. Lam(LamA) → LamA can be
obtained from subst as join := λt. subst t id.

Example 9 (Resolving explicit substitutions). The set of de Bruijn terms Lam

can be embedded into the set of de Bruijn terms L̂am with explicit substitution.
The embedding function emb : ∀A. LamA→ L̂amA can be defined by iteration
in a straightforward manner. The other direction is handled by a function eval :
∀A. L̂amA→ LamA which has to resolve the explicit substitutions.

eval′ : L̂am ≤ Lam

eval′ := Itκ1 l̂amf stepEv

stepEv : L̂amF Lam ⊆ Lam
stepEv := λt. case (t, t′. inκ1 t

′, e. join e)

Note how join is used to carry out the substitutions. The evaluation function is
just eval := eval′ id.
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3.2 Comparison with Special Monotonicity [Mat01]

In [Mat01], the second author has introduced another notion of monotone induc-
tive and coinductive constructors with µκ and νκ exclusively for κ ∈ {∗, ∗ → ∗}.
The associated notions of monotonicity are for constructors of kind κ1 and κ2.
Certainly, for κ1, there is only the definition we use in the present article. How-
ever, the notion for κ2 has been the following:

monΦ := (∀F.monF → monΦF )× (∀G∀H.G ⊆ H →
(monG→ ΦG ⊆ ΦH)× (monH → ΦG ⊆ ΦH))

This “special” notion of monotonicity has been designed so that it is as close
as possible to what one expects from category theory, but departing from it as
much as needed so that, by help of Kan extensions, inhabitation of monΦ →
mon(µκ1Φ) could be shown. Moreover, many closure properties of monotonicity
could be established, going far beyond algebraic datatypes such as the ones in
our present examples. Unfortunately, that notion does not seem to extend to
other kinds of rank 2, not to speak of arbitrary ranks.

Here, we show that, from a logical point of view, there is no difference between
special monotonicity monΦ and general monotonicity monΦ, i. e., both types are
logically equivalent. With respect to the rewrite rules, there are differences which
cannot be addressed here for lack of space.

In this subsection, F,G,H always have kind κ1 and Φ has kind κ2. The
direction from general monotonicity to special monotonicity does not require
Kan extensions and can be programmed as follows:

c00 : ∀Φ. monΦ→ ∀F. monF → monΦF
c00 := λmλn.mn

monSubLeq : ∀G∀H. monG→ G ⊆ H → G ≤ H
monSubLeq := λmλgλfλx. g (mf x)

subMonLeq : ∀G∀H.G ⊆ H → monH → G ≤ H
subMonLeq := λgλmλfλx.mf (g x)

c10 : ∀Φ. monΦ→ ∀G∀H.G ⊆ H → monG→ ΦG ⊆ ΦH
c10 := λmλ`λnλt.m (monSubLeqn `) id t

c11 : ∀Φ. monΦ→ ∀G∀H.G ⊆ H → monH → ΦG ⊆ ΦH
c11 := λmλ`λnλt.m (subMonLeq ` n) id t

gmsm : ∀Φ. monΦ→ monΦ
gmsm := λm. 〈c00m,λ`. 〈c10 m`, c11 m`〉〉

We come to the interesting direction from special monotonicity to general mono-
tonicity: Under the assumptions monΦ, G ≤ H and A → B, we have to show
ΦGA → ΦHB. This is done via two intermediate types: We show ΦGA →
Φ(RanH)A → Φ(RanH)B → ΦHB. The first step is an instance of ΦG ⊆

14



Φ(RanH) which follows from monΦ, G ⊆ RanH and mon(RanH).

monRan : ∀H. mon(RanH)
monRan := λfλkλg. k (g ◦ f)

leqRan : ∀G∀H.G ≤ H → G ⊆ RanH (as an instance of proposition 2)
leqRan := λsλxλf. sfx

t1 : ∀Φ. monΦ→ ∀G∀H.G ≤ H → ΦG ⊆ Φ(RanH)
t1 := λmλs. (m.1 (leqRan s)).1 monRan

The second step is just monotonicity of Φ(RanH), following from monΦ and
mon(RanH).

t2 : ∀Φ. monΦ→ ∀H. mon(Φ(RanH))
t2 := λm. (m.0) monRan

The third step comes from Φ(RanH) ⊆ ΦH which in turn uses monΦ, RanH ⊆
H and, once again, mon(RanH).

subRan : ∀H. RanH ⊆ H
subRan := λk. k id

t3 : ∀Φ. monΦ→ ∀H.Φ(RanH) ⊆ ΦH
t3 := λm. (m.1 subRan).0 monRan

smgm : ∀Φ. monΦ→ monΦ
smgm := λmλsλfλx. t3m (t2mf (t1msx))

Apparently, the crucial idea is the formation of the monotone (even non-strictly
positive) constructor RanH from an arbitrary type transformer H.

4 Embedding into System Fω

The purpose of this section is a perspicuous proof of strong normalization of
GMIC. In fact, we show that the new constructor and term constants can already
be defined in System Fω so that typing is preserved, and that for the defined
terms, one has in Fω that

Itκ→∗msf (inκ→∗ t) −→+ s (m (Itκ→∗ms)f t)
outκ→∗ (Coitκ→∗msf t) −→+ m (Coitκ→∗ms)f (s t).

Therefore, if there is no typable term in Fω with an infinite reduction sequence,
there is neither a typable term in GMIC allowing an infinite sequence of reduction
steps. In other words, strong normalization is inherited from that of Fω which
in turn is a well-known fact [Gir72].3

3 In that original work, only weak normalization has been proven but an extension to
strong normalization is standard technology since [Tai75].
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Let κ = κ→ ∗, set n := |κ|, and define for |f | = n

µκ := λFκ→κλY κ. monF → ∀Gκ. (F G ⊆ G)→ (RanG (Y ))
Itκ := λmλsλfλr. rmsf

inκ := λtλmλsλf . s
(
m(Itκms)f t

)
νκ := λFκ→κλY κ. monF × ∃Gκ. (G ⊆ F G)× (LanG (Y ))
Coitκ := λmλsλfλt. 〈m, pack〈s, pack〈f1, . . . pack〈fn, t〉 . . .〉〉〉
outκ := λr. open (r.1, p0. open (p0.1, p1. . . . open (pn−1.1, pn. v) . . .))

with v := r.0
(

Coitκ(r.0)(p0.0)
)

(p1.0) . . . (pn.0)
(
p0.0 (pn.1)

)
Compared with the classical encoding of (co-)inductive datatypes [Wra89,Geu92],
the new ingredients are the relativization to monotone F and the use the Kan
extensions. Welltypedness and the purported reduction behaviour are a matter
of trivial calculation.

By the reasoning above, this yields the following theorem. (We now use “−→”
to denote the one-step reduction relation of the full system GMIC.)

Theorem 1 (Strong Normalization). Whenever Γ ` r : A in GMIC, then r
admits no infinite reduction sequence r −→ r1 −→ r2 −→ . . . ut

5 Conclusions and Further Work

The System GMIC presented in this article is an idealized programming language
with support for arbitrarily nested datatypes of arbitrary kind (i. e., higher order
type transformers). The key ingredient is a notion of monotonicity which is wider
than any notion of positivity and goes far beyond polynomial or algebraic higher-
order functors. We have shown that typical examples can be treated easily.

We would hope for many more examples that exploit the capabilities of
GMIC—examples that use

– nesting in the second sense of our introduction, i. e., simultaneous inductive
and coinductive constructors, combined with heterogeneity,

– non-strict positivity, i. e., arguments that occur an even time to the left of
an arrow →,

– monotonicity of µκ1Φ for the formation of new datatypes such as µ∗(µκ1Φ),
– µκ and νκ for rank rk(κ) > 1.
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A System Fω

In the following we present Curry-style System Fω enriched with binary sums and
products, empty and unit type and existential quantification over constructors.
Although we choose a human-friendly notation of variables, we actually mean the
nameless version à la de Bruijn which identifies α-equivalent terms. (Capture-
avoiding) Substitution of an expression e for a variable x in expression f is
denoted by f [x := e].

Kinds and rank.

κ ::= ∗ | κ→ κ′

rk(∗) := 0
rk(κ→ κ′) := max(rk(κ) + 1, rk(κ′))

Constructors. (Denoted by uppercase letters)

A,B, F,G ::= X | λX.F | F G | ∀Fκ. A | ∃Fκ. A | A→ B
| 0 | A+B | 1 | A×B
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Equivalence on constructors. Equivalence F = F ′ for constructors F and F ′ is
given as the compatible closure of the following axiom.

(λX.F )G =β F [X := G]

We identify constructors up to equivalence, which is a decidable relation due to
normalization and confluence of simply-typed λ-calculus (where our constructors
are the terms and our kinds are the types of that calculus).

Objects (Terms). (Denoted by lowercase letters)

r, s, t ::= x | λx.t | r s | abort r | inl t | inr t | case (r, x. s, y. t)
| 〈〉 | 〈t1, t2〉 | r.0 | r.1 | pack t | open (r, x. s)

Contexts. Variables in a context Γ are assumed to be distinct.

Γ ::= · | Γ,Xκ | Γ, x :A

Judgments. (Simultaneously defined)

Γ cxt Γ is a wellformed context
Γ ` F : κ F is a wellformed constructor of kind κ in context Γ
Γ ` t : A t is a wellformed term of type A in context Γ

Wellformed contexts. Γ cxt

· cxt

Γ cxt

Γ,Xκ cxt

Γ ` A : ∗

Γ, x :A cxt

Wellkinded constructors. Γ ` F : κ

Xκ ∈ Γ Γ cxt

Γ ` X : κ

Γ,Xκ ` F : κ′

Γ ` λX.F : κ→ κ′

Γ ` F : κ→ κ′ Γ ` G : κ

Γ ` F G : κ′

Γ,Xκ ` A : ∗

Γ ` ∀Xκ. A : ∗

Γ,Xκ ` A : ∗

Γ ` ∃Xκ. A : ∗

Γ ` A : ∗ Γ ` B : ∗

Γ ` A→ B : ∗
Γ cxt

Γ ` 0 : ∗

Γ ` A : ∗ Γ ` B : ∗

Γ ` A+B : ∗
Γ cxt

Γ ` 1 : ∗

Γ ` A : ∗ Γ ` B : ∗

Γ ` A×B : ∗

Welltyped terms. Γ ` t : A

(x :A) ∈ Γ Γ cxt

Γ ` x : A

Γ, x :A ` t : B

Γ ` λx.t : A→ B

Γ ` r : A→ B Γ ` s : A

Γ ` r s : B

Γ,Xκ ` t : A

Γ ` t : ∀Xκ.A

Γ ` t : ∀Xκ.A Γ ` F : κ

Γ ` t : A[X := F ]

19



Γ ` t : A[X := F ] Γ ` F : κ

Γ ` pack t : ∃Xκ.A

Γ ` r : ∃Xκ.A Γ,Xκ, x :A ` s : C

Γ ` open (r, x. s) : C
Γ cxt

Γ ` 〈〉 : 1

Γ ` t : A Γ ` B : ∗

Γ ` inl t : A+B

Γ ` t : B Γ ` A : ∗

Γ ` inr t : A+B

Γ ` r : A+B Γ, x :A ` s : C Γ, y :B ` t : C

Γ ` case (r, x. s, y. t) : C

Γ ` r : 0 Γ ` C : ∗

Γ ` abort r : C
Γ ` s : A Γ ` t : B

Γ ` 〈s, t〉 : A×B
Γ ` r : A0 ×A1 i ∈ {0, 1}

Γ ` r.i : Ai

Reduction. The one-step reduction relation t −→ t′ between terms t and t′ is
defined as the closure of the following axioms under all term constructors.

(λx.t) s −→β t[x := s]
case (inl r, x. s, y. t) −→β s[x := r]
case (inr r, x. s, y. t) −→β t[y := r]
〈t0, t1〉.i −→β ti if i ∈ {0, 1}
open (pack t, x. s) −→β s[x := t]

We denote the transitive closure of −→ by −→+ and the reflexive-transitive
closure by −→∗.

The defined system is a conservative extension of System Fω. Reduction is
type-preserving, confluent and strongly normalizing.

B Notation for Typing Derivations

As is usual, typing derivations for Fω will be communicated in a short-hand form,
namely by the raw terms of a Church-style variant for which, given a context,
typing and type-checking is a trivial matter. Here, we introduce those raw terms
simultaneously with their typing rules.

The rules for x, rs, 〈〉, 〈s, t〉 and r.i are the same as for Fω. The others are:

Γ, x :A ` t : B

Γ ` λxA.t : A→ B

Γ ` r : 0 Γ ` C : ∗

Γ ` abortC r : C

Γ,Xκ ` t : A

Γ ` ΛXκt : ∀Xκ.A

Γ ` t : ∀Xκ.A Γ ` F : κ

Γ ` tF : A[X := F ]

Γ ` F : κ Γ ` t : A[X := F ]

Γ ` pack∃Xκ.A(F, t) : ∃Xκ.A

Γ ` r : ∃Xκ.A Γ,Xκ, x :A ` s : C

Γ ` open (r, Xκ.xA. s) : C
Γ ` t : A Γ ` B : ∗

Γ ` inlB t : A+B

Γ ` t : B Γ ` A : ∗

Γ ` inrA t : A+B

Γ ` r : A+B Γ, x :A ` s : C Γ, y :B ` t : C

Γ ` case (r, xA. s, yB . t) : C
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