The Next 700 Modal Type Assignment Systems

Andreas Abel

Department of Computer Science and Engineering Gothenburg University

We exhibit a generic modal type system for simply-typed lambda-calculus that subsumes linear and relevance typing, strictness analysis, variance (positivity) checking, and other modal typing disciplines. By identifying a common structure in these seemingly unrelated nonstandard type systems, we hope to gain better understanding and a means to combine several analyses into one. This is work in progress.

Our modal type assignment system is parametrized by a (partially) ordered monoid $(P, \ldots, 1, \leq)$ with a partial, monotone binary operation $_+_$ and a default element $p_0 \in P$. Types T, U include at least a greatest type \top and function types $Q \to T$, and form a partial ordering under subtyping $T \leq T'$ with partial meet $T \wedge T'$. Modal types Q ::= pT support composition pQ and partial meet $Q \wedge Q'$ defined by p(qT) = (pq)T and $pT \wedge qT = (p+q)T$. Subtyping $pT \leq p'T'$ holds if $p \leq p'$ and $T \leq T'$.

For typing contexts Γ, Δ , which are total functions from term variables to modal types, modality composition $p\Gamma$, subsumption $\Gamma \leq \Delta$, and meet $\Gamma \wedge \Delta$ are defined pointwise. Finite contexts $x_1: Q_1, \ldots, x_n: Q_n$ are represented as $\Gamma(x_i) = Q_i$ and $\Gamma(y) = p_0 \top$ for $y \neq x_i$.

Judgements $\Gamma \vdash t : T$ and $\Gamma \vdash t : Q$ are given by the following (linear) typing rules:

$$\frac{p \leq \mathbb{1}}{x : pT \vdash x : T} \text{ HYP} \qquad \frac{\Gamma, x : Q \vdash t : T}{\Gamma \vdash \lambda xt : Q \to T} \text{ ABS} \qquad \frac{\Gamma \vdash t : Q \to T}{\Gamma \land \Delta \vdash t u : T} \text{ APF}$$
$$\frac{\Gamma \leq \Delta \qquad \Delta \vdash t : T}{\Gamma \vdash t : U} \text{ SUB} \qquad \frac{\Gamma \vdash t : T}{p\Gamma \vdash t : pT} \text{ MOD}$$

The default modality p_0 controls weakening: We can use the subsumption rule SUB with $(\Gamma, x: pT) \leq \Gamma$ which holds if $p \leq p_0$ (as then $pT \leq p_0 \top = \Gamma(x)$). Meaningful instances of our modal type assignment system abound, here are a few:

- 1. Simple typing: $P = \{1\}$ with 1 + 1 = 1 and t well-typed if $\Gamma \vdash t : T \neq \top$.
- 2. Quantitative typing: Take some $P \subseteq \mathcal{P}(\mathbb{N})$ closed under $p \cdot q = \{nm \mid n \in p, m \in q\}$ and define $p \leq q$ as $p \supseteq q$ and p + q as $\bigcap \{r \in P \mid r \supseteq \{n + m \mid n \in p, m \in q\}\}$. If $\emptyset := \{0\} \in P$, it is a zero.

The rule MOD has an intuitive reading in quantitative typing: If t produces a T from resources Γ , we can produce p times T from the p-fold resources $p\Gamma$. Subsumption SUB may allow us to produce less (or the same) from more (or the same) resources. A modal function type $pU \to T$ requires p-fold U to deliver one T.

Instances of quantitative typing include:

- (a) **Linear typing:** [4] $P = \{0, 1\}$ with unit $1 = \{1\}$ and default $p_0 = 0$ forbidding weakening with linear variables x : 1T (as $1 \leq p_0$). Contraction is also forbidden as 1 + 1 is undefined.
- (b) Affine typing: $P = \{0, 1\}$ with unit $1 = \{0, 1\}$, allowing weakening as $1 \le p_0 = 0$.
- (c) **Relevant typing:** $P = \{0, 1\}$ with unit $1 = \mathbb{N} \setminus 0$, allowing contraction as 1+1 = 1.

Next 700 Modal Type Systems

- (d) Linear and unrestricted hypotheses: $P = \{!, \mathbb{1}\}$ with $\mathbb{1} = \{1\}$ and $p_0 = ! = \mathbb{N}$. Allows weakening and contraction for x : !T.
- (e) **Strictness typing:** [2] $P = \{l, s\}$ with *lazy* $p_0 = l = \mathbb{N}$ and unit *strict* $s = \mathbb{N} \setminus \mathbb{O}$. We cannot weaken with strict variables. As p + q = s iff p = s or q = s, one strict occurrence of a variable x suffices to classify a function $\lambda xt : sT \to T'$ as strict, whereas a function is lazy only if all occurrences of parameter x are lazy.
- 3. Variance (positivity): $P = \{\emptyset, +, -, \pm\} = \mathcal{P}\{+1, -1\}$ with unit $+ = \{+1\}$ denoting positive occurrence, $= \{-1\}$ negative occurrence, $\pm = \{+1, -1\}$ mixed occurrence, and $p_0 = \emptyset$ no occurrence. With $p \le q$ iff $p \supseteq q$ and $pq = \{ij \mid i \in p, j \in q\}$ and $p + q = p \cup q$ we obtain variance typing aka positivity checking for type-level lambda calculi [1].

We can go further and give up the distinction between types and modal types, leading to the types $T, U ::= \top | U \to T | pT | \dots$ quotiented by p(qT) = (pq)T. This makes modal types first class, and we can simplify the hypothesis rule to

$$\overline{x:T \vdash x:T}$$
 HYP.

Thus, we subsume further type systems:

- 1. Linear typing with exponential: As 2d, but now !T is a valid type.
- 2. Nakano's modality for recursion [3]: Basic modalities are *later* \triangleright and *always* \square with $\square \cdot p = \square$, generating the modalities $P = \{ \triangleright^n, \triangleright^n \square \mid n \in \mathbb{N} \}$ with unit $\mathbb{1} = \triangleright^0$ and partial order $\triangleright^k \square \leq \triangleright^l \square \leq \triangleright^l \leq \triangleright^m$ for $k \leq l \leq m$. Since $x : U \to T, y : U \vdash xy : T$ entails $x : \triangleright(U \to T), y : \triangleright U \vdash xy : \triangleright T$ by MOD, idiomatic application $\lambda x \lambda y.xy : \triangleright(U \to T) \to \triangleright U \to \triangleright T$ is definable.

Acknowledgments. Thanks to the anonymous referees, who helped improving the quality of this abstract through their feedback. This work was supported by Vetenskapsrådet through the project *Termination Certificates for Dependently-Typed Programs and Proofs via Refinement Types*.

References

- Andreas Abel. Polarized subtyping for sized types. Math. Struct. in Comput. Sci., 18:797–822, 2008. Special issue on subtyping, edited by Healfdene Goguen and Adriana Compagnoni.
- [2] Stefan Holdermans and Jurriaan Hage. Making "stricterness" more relevant. J. Higher-Order and Symb. Comput., 23(3):315–335, 2010.
- Hiroshi Nakano. A modality for recursion. In Proc. of the 15th IEEE Symp. on Logic in Computer Science (LICS 2000), pages 255–266. IEEE Computer Soc. Press, 2000.
- [4] David Walker. Substructural type systems. In Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages, chapter 1. MIT Press, 2005.