
The Next 700 Modal Type Assignment Systems

Andreas Abel

Department of Computer Science and Engineering
Gothenburg University

We exhibit a generic modal type system for simply-typed lambda-calculus that subsumes
linear and relevance typing, strictness analysis, variance (positivity) checking, and other modal
typing disciplines. By identifying a common structure in these seemingly unrelated non-
standard type systems, we hope to gain better understanding and a means to combine several
analyses into one. This is work in progress.

Our modal type assignment system is parametrized by a (partially) ordered monoid (P , · ,
1, ≤) with a partial, monotone binary operation + and a default element p0 ∈ P . Types T,U
include at least a greatest type > and function types Q→ T , and form a partial ordering under
subtyping T ≤ T ′ with partial meet T ∧T ′. Modal types Q ::= pT support composition pQ and
partial meet Q ∧Q′ defined by p(qT) = (pq)T and pT ∧ qT = (p + q)T . Subtyping pT ≤ p′T ′

holds if p ≤ p′ and T ≤ T ′.
For typing contexts Γ,∆, which are total functions from term variables to modal types,

modality composition pΓ, subsumption Γ ≤ ∆, and meet Γ ∧∆ are defined pointwise. Finite
contexts x1 :Q1, . . . , xn :Qn are represented as Γ(xi) = Qi and Γ(y) = p0> for y 6= xi.

Judgements Γ ` t : T and Γ ` t : Q are given by the following (linear) typing rules:

p ≤ 1

x : pT ` x : T
hyp

Γ, x : Q ` t : T

Γ ` λxt : Q→ T
abs

Γ ` t : Q→ T ∆ ` u : Q

Γ ∧∆ ` t u : T
app

Γ ≤ ∆ ∆ ` t : T T ≤ U
Γ ` t : U

sub
Γ ` t : T

pΓ ` t : pT
mod

The default modality p0 controls weakening: We can use the subsumption rule sub with (Γ, x :
pT) ≤ Γ which holds if p ≤ p0 (as then pT ≤ p0> = Γ(x)). Meaningful instances of our modal
type assignment system abound, here are a few:

1. Simple typing: P = {1} with 1 + 1 = 1 and t well-typed if Γ ` t : T 6= >.

2. Quantitative typing: Take some P ⊆ P(N) closed under p · q = {nm | n ∈ p,m ∈ q}
and define p ≤ q as p ⊇ q and p + q as

⋂
{r ∈ P | r ⊇ {n + m | n ∈ p,m ∈ q}}. If

0 := {0} ∈ P , it is a zero.

The rule mod has an intuitive reading in quantitative typing: If t produces a T from
resources Γ, we can produce p times T from the p-fold resources pΓ. Subsumption sub
may allow us to produce less (or the same) from more (or the same) resources. A modal
function type pU → T requires p-fold U to deliver one T .

Instances of quantitative typing include:

(a) Linear typing: [4] P = {0,1} with unit 1 = {1} and default p0 = 0 forbidding
weakening with linear variables x : 1T (as 1 6≤ p0). Contraction is also forbidden as
1 + 1 is undefined.

(b) Affine typing: P = {0,1} with unit 1 = {0, 1}, allowing weakening as 1 ≤ p0 = 0.

(c) Relevant typing: P = {0,1} with unit 1 = N\0, allowing contraction as 1+1 = 1.

1

Next 700 Modal Type Systems A. Abel

(d) Linear and unrestricted hypotheses: P = {!,1} with 1 = {1} and p0 = ! = N.
Allows weakening and contraction for x : !T .

(e) Strictness typing: [2] P = {l, s} with lazy p0 = l = N and unit strict s = N \ 0.
We cannot weaken with strict variables. As p + q = s iff p = s or q = s, one strict
occurrence of a variable x suffices to classify a function λxt : sT → T ′ as strict,
whereas a function is lazy only if all occurrences of parameter x are lazy.

3. Variance (positivity): P = {∅,+,−,±} = P{+1,−1} with unit + = {+1} denoting
positive occurrence, − = {−1} negative occurrence, ± = {+1,−1} mixed occurrence, and
p0 = ∅ no occurrence. With p ≤ q iff p ⊇ q and pq = {ij | i ∈ p, j ∈ q} and p+ q = p ∪ q
we obtain variance typing aka positivity checking for type-level lambda calculi [1].

We can go further and give up the distinction between types and modal types, leading to
the types T,U ::= > | U → T | pT | . . . quotiented by p(qT) = (pq)T . This makes modal types
first class, and we can simplify the hypothesis rule to

x : T ` x : T
hyp.

Thus, we subsume further type systems:

1. Linear typing with exponential: As 2d, but now !T is a valid type.

2. Nakano’s modality for recursion [3]: Basic modalities are later . and always 2 with
2 · p = 2, generating the modalities P = {.n, .n2 | n ∈ N} with unit 1 = .0 and partial
order .k2 ≤ .l2 ≤ .l ≤ .m for k ≤ l ≤ m. Since x : U → T, y : U ` x y : T entails
x : .(U → T), y : .U ` x y : .T by mod, idiomatic application λxλy.xy : .(U → T) →
.U → .T is definable.

Acknowledgments. Thanks to the anonymous referees, who helped improving the quality of
this abstract through their feedback. This work was supported by Vetenskapsr̊adet through the
project Termination Certificates for Dependently-Typed Programs and Proofs via Refinement
Types.

References

[1] Andreas Abel. Polarized subtyping for sized types. Math. Struct. in Comput. Sci., 18:797–822,
2008. Special issue on subtyping, edited by Healfdene Goguen and Adriana Compagnoni.

[2] Stefan Holdermans and Jurriaan Hage. Making ”stricterness” more relevant. J. Higher-Order and
Symb. Comput., 23(3):315–335, 2010.

[3] Hiroshi Nakano. A modality for recursion. In Proc. of the 15th IEEE Symp. on Logic in Computer
Science (LICS 2000), pages 255–266. IEEE Computer Soc. Press, 2000.

[4] David Walker. Substructural type systems. In Benjamin C. Pierce, editor, Advanced Topics in
Types and Programming Languages, chapter 1. MIT Press, 2005.

2

