
Normalization by Evaluation in the Delay Monad

Andreas Abel1 and James Chapman2

1 Chalmers and Gothenburg University, Sweden
andreas.abel@gu.su

2 University of Strathclyde, Glasgow, Scotland
james.chapman@strath.ac.uk

We present an Agda formalization of a normalization proof for simply-typed lambda terms.
The normalizer consists of two coinductively defined functions in the delay monad: One is a
standard evaluator of lambda terms to closures, the other a type-directed reifier from values to
η-long β-normal forms. Their composition, normalization-by-evaluation, is shown to be a total
function a posteriori, using a standard logical-relations argument. The normalizer is then shown
to be sound and complete. The completeness proof proof is dependent on termination. We also
discuss a variation on this normalizer where environments used by the evaluator contain delayed
values which can be proven complete independently of termination using weak bisimilarity.
This approach would be a realisation of an aim of this work to present a modular proof of
normalization where termination, soundness and completeness are independent.

The successful formalization serves as a proof-of-concept for coinductive programming and
reasoning using sized types and copatterns [3], a new and presently experimental feature of
Agda [4].

Termination of a normalizer was described in [2]. The soundness and completeness proofs
are new[1] and the alternative normalizer with delayed environments and accompanying nor-
malization proof is ongoing work.

Delay Monad and potential non-termination. The delay monad [5] captures the idea of
a computation that may return a value eventually or not at all. We represent functions that
have not yet been proven terminating and are therefore untrusted as functions from values of
type A to delayed computations of type Delay B. Proving termination (asserting a basic level
of trustworthiness) amounts to proving that for any input value the delayed computation will
converge to a value. Given a constructive proof of termination one can derive a function from
values of type A to values of type B.

Normalization algorithm. The normalization algorithm consists of two main components:
(1) an evaluator that takes typed terms to intermediate values given an environment explaining
the variables; and (2) a typed directed reifyer that takes intermediate values to syntact η-long
β-normal forms. Neither component is apriori terminating but we can nonetheless combine
them using monadic bind.

eval : Tm Γ σ → Env ∆ Γ → Delay (Val ∆ σ)
reify : Val ∆ σ → Delay (Nf ∆ σ)
nf : Tm ∆ σ → Delay (Nf ∆ σ)
nf t = eval id t >>= reify

Normalization theorem. We prove three theorems about the normalization algorithm:

termination : ∀ (t : Tm ∆ σ) → ∃ (n : Val ∆ σ). nf t ⇓ n
soundness : ∀ (t : Tm ∆ σ) → t ∼=βη nf t
completeness : ∀ (t t′ : Tm ∆ σ) → t ∼=βη t′ → nf t ≡ nf t′



Normalization by Evaluation in the Delay Monad Andreas Abel and James Chapman

Decoupling soundess and completeness from termination amounts to a lifing of the soundness
predicate and completeness relation to the the Delay monad, i.e., saying that the predicate/rela-
tion would hold eventually. In the relation case this is bisimilarity. For the algorithm specified
above this is possible for soundness but not completeness. For a modified algorithm where envi-
ronments contain delayed values completeness should also be possible but this presents technical
challenges such as potentially moving to a sized version of the Delay monad which is not well
supported by current versions of Agda and moving from reasoning up to equality to reasoning
up to weak bisimularity.

References

[1] Andreas Abel and James Chapman. Normalization by evaluation in the delay monad: Formaliza-
tion. http://github.com/andreasabel/continuous-normalization.

[2] Andreas Abel and James Chapman. Normalization by evaluation in the delay monad: A case study
for coinduction via copatterns and sized types. In Paul Levy and Neel Krishnaswami, editors, Pro-
ceedings 5th Workshop on Mathematically Structured Functional Programming, Grenoble, France,
12 April 2014, volume 153 of Electronic Proceedings in Theoretical Computer Science, pages 51–67.
Open Publishing Association, 2014.

[3] Andreas Abel and Brigitte Pientka. Well-founded recursion with copatterns and sized types. Journal
of Functional Programming, 26:61, 2016. ICFP 2013 special issue.

[4] AgdaTeam. The Agda Wiki, 2016.

[5] Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer Science,
1(2), 2005.

2

http://github.com/andreasabel/continuous-normalization

