
Sprinkles of extensionality

for your vanilla type theory

Jesper Cockx1 and Andreas Abel2

1 DistriNet – KU Leuven
2 Department of Computer Science and Engineering – Gothenburg University

Dependent types can make your developments (be they programs or proofs) dramatically
safer by allowing you to prove that you implemented what you intended. Unfortunately, they
can also make your developments dramatically more boring by requiring you to elaborate those
proofs in often painstaking detail. For this reason, dependently typed languages typically allow
you to cheat by postulating some facts as axioms. However, type theory is not just about which
types are inhabited; it’s about how things compute. Computationally, an axiom is a stuck term,
so it prevents you from evaluating your programs. What if you could postulate not just axioms,
but also arbitrary evaluation rules?

1. A typical frustration for people new to proof assistants like Agda or Coq is that 0 + x
evaluates to x for arbitrary x, but x + 0 doesn’t. Of course, a lemma for x + 0 = x
is easy to prove, but having to appeal to this lemma explicitly in all subsequent uses
is bothersome. By adding an evaluation rule x + 0 −→ x, you can get the automatic
application of this lemma. Similarly, you can add a rule x + suc y −→ suc (x + y), or
(x+ y) + z −→ x+ (y + z).

2. Allais, McBride, and Boutillier [2013] present a series of evaluation rules of this type
(which they call ν-rules) for functions on pairs and lists. For example, they have a rule for
concatenating with an empty list (l++ [] −→ l), but also rules for simplifying expressions
involving map and fold (e.g. map (λx. x) l −→ l).

3. Homotopy type theory [The Univalent Foundations Program, 2013] presents the concept
of higher inductive types, inductive types that have not only regular constructors, but also
path constructors that introduce additional equalities. However, current implementations
of higher inductive types only have evaluation rules for applying a function to a regular
constructor, but not for applying them to a path constructor. By adding evaluation rules
to the eliminator of a higher inductive type, working with higher inductive types becomes
easier and much more natural.

4. In observational type theory [Altenkirch, McBride, and Swierstra, 2007], the equality type
x =A y is defined by case analysis on the type A. This can be emulated in other theories
by a few custom evaluation rules, thus giving you the advantages of observational type
theory, such as functional extensionality.

5. Custom rewrite rules also make it possible to define shallow embeddings of other languages
in your language, making it possible to import developments into your own language without
losing their computational properties. In fact, some languages like Dedukti [Boespflug,
Carbonneaux, and Hermant, 2012] are built completely around this concept.

All these examples show how nice it can be to mix up the already sweet taste of vanilla
intensional type theory with some extensional sprinkles in the form of rewrite rules. For
this purpose we added a new facility to Agda, available from version 2.4.2.4 onwards with

1



Sprinkles of extensionality for your vanilla type theory Jesper Cockx Andreas Abel

some improvements in 2.5.1, allowing you to specify rewrite rules that are plugged into the
evaluation mechanism of the typechecker. Concretely, you can declare the identity type to
be the rewrite relation by the pragma {-# BUILTIN REWRITE ≡ #-}, and then declare the
proof plus0 : x + 0 ≡ x to be a rewrite rule by the pragma {-# REWRITE plus0 #-}. By
adding this lemma as a rewrite rule, it holds for arbitrary open terms, thus simplifying the
definition of functions involving natural numbers in their types. For example, if you also add
plusSuc : (x y : N)→ x+ (suc y)≡ suc (x+ y) as a rewrite rule, then the following proof just
works, instead of complaining that x+ 0 6= x or x+ (suc y) 6= suc (x+ y):

plus-comm : (x y : N)→ x+ y ≡ y + x
plus-comm zero y = refl

plus-comm (suc x) y = cong suc (plus-comm x y)

Our implementation of rewrite rules can also handle examples 2 and 3 without problems. We
haven’t tried 4 or 5 yet, but we see no reason why these examples wouldn’t work as well.

By adding more definitional equalities, the size of your proof terms can be reduced quite
drastically. Rewrite rules also allow advanced users to experiment with new evaluation rules,
without actually modifying the typechecker. On the other hand, you shouldn’t just use any kind
of sprinkles. Even more than with axioms, rewrite rules can break the type system completely:
not only soundness, but also confluence, termination, and even subject reduction are in danger.
This means typechecking may become undecidable, and the typechecker may loop indefinitely. It
is possible (though quite difficult) to regain these properties by checking confluence, termination,
and completeness of the added rewrite rules [Blanqui, 2005]. An example of a fully developed
system incorporating these checks is CoqMT [Strub, 2010]. But no matter how good these
checks are, there will always be cases where they are too restrictive and stand in the way of
experimentation. So we’d rather let you decide which evaluation rules you want to add, as long
as you promise to be extra careful. After all, sometimes it is more important to be able to
experiment freely than it is to be 100% safe, and this is precisely the kind of situations we aim
for. What can you do with the power of arbitrary evaluation rules? We invite you to try it for
yourself!

References

Guillaume Allais, Conor McBride, and Pierre Boutillier. New equations for neutral terms:
A sound and complete decision procedure, formalized. In Workshop on Dependently-typed
Programming, 2013.

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now! In
Programming languages meets program verification, 2007.

Frédéric Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical
Structures in Computer Science, 2005.

Mathieu Boespflug, Quentin Carbonneaux, and Olivier Hermant. The λΠ-calculus modulo as a
universal proof language. In Second International Workshop on Proof Exchange for Theorem
Proving, 2012.

Pierre-Yves Strub. Coq modulo theory. In Computer Science Logic, 2010.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

2

http://homotopytypetheory.org/book

