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Abstract
This paper describes the first successful attempt, of which we are
aware, to define an automatic, type-based static analysis of resource
bounds for lazy functional programs. Our analysis uses the au-
tomatic amortisation approach developed by Hofmann and Jost,
which was previously restricted to eager evaluation. In this paper,
we extend this work to a lazy setting by capturing the costs of un-
evaluated expressions in type annotations and by amortising the
payment of these costs using a notion of lazy potential. We present
our analysis as a proof system for predicting heap allocations of
a minimal functional language (including higher-order functions
and recursive data types) and define a formal cost model based on
Launchbury’s natural semantics for lazy evaluation. We prove the
soundness of our analysis with respect to the cost model. Our ap-
proach is illustrated by a number of representative and non-trivial
examples that have been analysed using a prototype implementa-
tion of our analysis.

1. Introduction
Non-strict functional programming languages, such as Haskell [36],
offer important benefits in terms of modularity and abstraction [23].
A key practical obstacle to their wider use, however, is that extra-
functional properties, such as time- and space-behaviour, are often
difficult to determine prior to actually running the program. Recent
advances in static cost analyses, such as sized-timed types [43, 44]
and type-based amortisation [18, 19] have enabled the automatic
prediction of resource bounds for eager functional programs, in-
cluding uses of higher-order functions [29]. This paper extends
type-based amortisation to lazy evaluation, describing a static anal-
ysis for determining a-priori worst-case bounds on execution costs
(specifically, dynamic memory allocations).
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This paper makes the following novel contributions:

a) we present the first successful attempt, of which we are aware,
to produce an automatic, type-based, static analysis of resource
bounds for lazy evaluation;

b) we introduce a cost model for heap allocations for a minimal
lazy functional language based on Launchbury’s natural seman-
tics for lazy evaluation [30], and use this as the basis for devel-
oping a resource analysis;

c) we have proved the soundness of our analysis with respect to
the cost-instrumented semantics (due to space limitations, we
present only a proof sketch); and

d) we provide results from a prototype implementation to show the
applicability of our analysis to some non-trivial examples.∗

Our amortised analysis derives costs with respect to a cost seman-
tics for lazy evaluation that derives from Launchbury’s natural op-
erational semantics of graph reduction. It deals with both first-order
and higher-order functions, but does not consider polymorphism.
For simplicity, we restrict our attention to heap allocations†, but
previous results have shown that the amortised analysis approach
also extends to other countable resources, such as worst-case exe-
cution time [28]. In order to ensure a good separation of concerns,
our analysis assumes the availability of Hindley-Milner type infor-
mation. We extend Hofmann and Jost’s type annotations for cap-
turing potential costs [19] with information about the lazy evalu-
ation context. The analysis produces a set of constraints over cost
variables that we solve in our prototype implementation using an
external LP-solver. We have thus demonstrated all the steps that
are necessary to produce a fully-automatic analysis for determin-
ing bounds on resource usage for lazily-evaluated programs.

2. A Cost Model for Lazy Evaluation
Our cost model is built on Sestoft’s revision [40] of Launchbury’s
natural semantics for lazy evaluation [30]. Launchbury’s seman-
tics forms one of the earliest and most widely-used operational
accounts of lazy evaluation for the λ-calculus. De la Encina and
Peña-Marı́ [13, 14] subsequently proved that the Spineless Tagless
G-Machine [24] is sound and complete w.r.t. one of Sestoft’s ab-

∗ The detailed soundness proof and a web version of the analysis is available
at http://www.dcc.fc.up.pt/~pbv/cgi/aalazy.cgi
†Note that, because we do not consider deallocation, we model total allo-
cation but not residency.
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stract machines. We therefore have a high degree of confidence that
the cost model for lazy evaluation developed here is not just theo-
retically sound, but also that it could, in principle, be extended to
model real implementations of lazy evaluation.

2.1 Syntax
The syntax of initial expressions (the subject of our cost analysis) is
the λ-calculus extended with local bindings, data constructors and
pattern matching:

e ::= x | λx. e | e x

| let x = e1 in e2 | letcons x = c(~y) in e

| match e0 with c(~x) -> e1 otherwise e2

As in Launchbury’s semantics, we restrict the arguments of ap-
plications to be variables and we require that nested applications
be translated into nested let-bindings.‡ let-expressions bind vari-
ables to possibly recursive terms. In line with common practice in
non-strict functional languages, we do not have a separate letrec
form, as in ML. For simplicity, we consider only single-variable
let-bindings: multiple let-bindings can be encoded, if needed, using
pairs and projections. Note that constructor applications c(~x) will
never occur in the initial expression. They are only ever introduced
through evaluation of letcons-expressions. This is the main differ-
ence between our notation and those of Launchbury or Sestoft. The
difference is motivated by the need to syntactically distinguish al-
locating a new constructor from simply referencing an existing one.
De la Encina and Peña-Marı́ use a similar notation. Our operational
semantics is defined over augmented expressions, ê, that include
these constructor applications:

ê ::= e | c(~̀)

An evaluation result is then an (augmented) expression w, which
is in weak head normal form (whnf ), i.e. it is a λ-abstraction or
constructor application.

w ::= λx.e | c(~̀)

In the remainder of this paper we will use lowercase letters x, y for
bound variables in initial expressions and `, k for “fresh” variables
(designated locations) that are introduced through evaluation of let-
and letcons-expressions.

2.2 Cost-instrumented operational semantics
Figure 1 defines an instrumented big-step operational semantics for
lazy evaluation that we will use as the basis for our analysis. Our
semantics is given as a relation H, S,L m

m′ ê ⇓ w,H′, where ê
is an augmented expression; H is a heap mapping variables to aug-
mented expressions (thunks, that may require evaluation to weak
head normal form); S is a set of bound variables that are used to
ensure the freshness condition in the LET⇓/LETCONS⇓ rules; and
L is a set of variables used to record thunks that are under eval-
uation and to prevent cyclic evaluation (similar to the well-known
“black-hole” technique used in [30]). The result of evaluation is
an expression w in whnf and a final heap H′. The parameters
m,m′ are non-negative integers representing the number of avail-
able heap locations before and after evaluation, respectively. The
purpose of the analysis that will be developed in Section 3 is to ob-
tain a static approximation for m that will safely allow execution
to proceed. For readability, we may omit the resource information
from judgements when they are not otherwise mentioned, writing
simply H, S,L ` ê ⇓ w,H′ instead of H, S,L m

m′ ê ⇓ w,H′.

‡ This transformation does not increase worst-case costs because, in a call-
by-need setting, function arguments must, in general, be heap-allocated in
order to allow in-place update and sharing of normal forms.

w is in whnf
H, S,L m

m w ⇓ w,H (WHNF⇓)

` 6∈ L H, S,L ∪ {`} m

m′ H(`) ⇓ w,H′

H, S,L m

m′ ` ⇓ w,H′[` 7→ w]
(VAR⇓)

` is fresh e′1 = e1[`/x] e′2 = e2[`/x]
H[` 7→ e′1], S,L m

m′ e′2 ⇓ w,H′

H, S,L m + 1

m′ let x = e1 in e2 ⇓ w,H′
(LET⇓)

` is fresh y′i = yi[`/x] e′ = e[`/x]

H[` 7→ c(~y′)], S,L m

m′ e′ ⇓ w,H′

H, S,L m + 1

m′ letcons x = c(~y) in e ⇓ w,H′
(LETCONS⇓)

H, S,L m

m′ e ⇓ λx. e′,H′ H′, S,L m′
m′′ e′[`/x] ⇓ w,H′′

H, S,L m

m′′ e ` ⇓ w,H′′
(APP⇓)

H, S ∪ {~x} ∪ BV(e1) ∪ BV(e2),L m

m′ e0 ⇓ c(~̀),H′

H′, S,L m′
m′′ e1[~̀/~x] ⇓ w,H′′

H, S,L m

m′′ match e0 with c(~x)->e1 otherwise e2 ⇓ w,H′′
(MATCH⇓)

H, S ∪ {~x} ∪ BV(e1) ∪ BV(e2),L m

m′ e0 ⇓ w′,H′

w′ 6= c(~̀) H′, S,L m′
m′′ e2 ⇓ w,H′′

H, S,L m

m′′ match e0 with c(~x)->e1 otherwise e2 ⇓ w,H′′
(FAIL⇓)

Figure 1. Cost-instrumented Operational Semantics

The only rules that bind variables to expressions in the heap
are LET⇓ and LETCONS⇓. These are therefore the only places
where new fresh locations are needed. These heap allocations
may either allocate new constructors (letcons), or thunks or λ-
abstractions (let). For simplicity, but without loss of generality, we
choose to use a uniform cost model: evaluation will cost one (heap)
unit for each fresh heap location that is needed during evaluation.
Other cost models are also possible [28], modelling the usage of
other countable resources such as execution time, or stack usage,
for example. The WHNF⇓ rule for weak-head normal forms (λ-
expressions and constructors) incurs no cost. Any costs must have
been already accounted for by an initial let- or letcons-expression.
The VAR⇓ and APP⇓ rules are identical to the equivalent ones
in Launchbury’s semantics. The VAR⇓ rule is restricted to loca-
tions that are not marked as being under evaluation (so enforcing
“black-holing”). The MATCH⇓ and FAIL⇓ cases deal respectively
with successful/unsuccessful pattern matches against a construc-
tor. These rules record the bound variables in e1 plus the new
bound variables in ~x solely in order to ensure freshness in the
LET⇓/LETCONS⇓ rules.

We now give the auxiliary definition§ that formalises the notion
of freshness of variables and a lemma regarding the preservation of
locations that are marked as “black-holes”.

Definition 2.1 (Freshness). A variable x is fresh in judgement
H, S,L ` ê ⇓ w,H′ if x does not occur in either dom(H), L
or S nor does it occur bound in either ê or ran(H).

§Due to de La Encina and Peña-Marı́ [13].
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Lemma 2.2 (Invariant Black Holes). If H, S,L ` ê ⇓ w,H′

then for all ` ∈ L we have H′(`) = H(`). In other words,
heap locations that are under evaluation are preserved during
intermediate evaluations.

Proof. By inspection of the operational semantics (Figure 1) we
observe that VAR⇓ is the only rule that modifies an existing location
` and that this rule does not apply when ` ∈ L.

2.3 Example: call-by-need versus call-by-value/call-by-name
Consider the expression below, which includes a divergent term:

let z = z in (λx. λy. y) z (2.1)

Under a call-by-value semantics, this would fail to terminate, be-
cause z does not admit a normal form. In our call-by-need seman-
tics, however, evaluation succeeds:

H, S,L 1
0 let z = z in (λx. λy. y) z ⇓ λy. y,H[`3 7→ `3]

The final heap is augmented with a fresh location `3 whose content
is a cyclic self-reference; because the argument z is discarded by
the application, its evaluation is never attempted. We can see that
the semantics is call-by-need rather than call-by-name by observing
the sharing of normal forms. Consider,

let f = let z = z in (λx. λy. y) z

in let i = λx. x in let v = f i in f v
(2.2)

where f is bound to the thunk (2.1) and applied twice to the identity
function. Evaluation of f v forces the thunk. After the thunk is
evaluated, the location `0 that is associated with f is updated
with the corresponding whnf, λy. y. The second evaluation of f
does not not re-evaluate the thunk (2.1). Starting from the empty
configuration, we derive:

∅, ∅, ∅ 4
0 (2.2) ⇓ λx. x,

[`0 7→ λy. y, `1 7→ λx. x, `2 7→ λx. x, `3 7→ `3]

Evaluating expression (2.2) thus costs four heap cells, that is, one
cell for each let-expression. Under a call-by-name semantics, the
cost would instead be 5, since the let-expression that is bound to f
would then be evaluated twice, rather than once as here.

3. An Amortised Analysis for Lazy Evaluation
Our type-based cost analysis is based on the principle of amor-
tisation, that is, averaging the costs of individual operations over
a sequence of such operations. It is often possible to obtain bet-
ter worst-case bounds by amortisation than by reasoning about the
costs of single operations. For example, we may obtain a worst-
case bound of O(n) for a sequence of n operations even if some
of the individual operations cost more thanO(1). Amortisation has
been successfully used in manual complexity analysis of data struc-
tures in both imperative [42] and functional settings [35] and for
automatic resource analysis of strict functional languages [18, 19,
27, 29]. It has never been previously used for automatic resource
analysis of lazy evaluation. One method for deriving amortised
bounds starts by defining a potential function from data structures
to real numbers. The amortised cost of an operation is defined as
t + φ′−φ, where t is the actual cost of the operation (e.g. time or
memory) and φ, φ′ are the potentials of the data before and after
the operation. The key objective is to choose the potential func-
tion so that it simplifies the amortised costs, e.g. so that the change
in potential offsets any variation in actual costs, and the amortised
costs are therefore constant.

We assign potential to data structures in a type-directed way:
recursive data types are annotated with positive coefficients that
specify the contribution of each constructor to the potential of the

data structure. For example, if we annotate the empty list construc-
tor with qnil and the non-empty list constructor with qcons, then the
overall potential of a list of n elements (ignoring any potential for
the list elements themselves) is qnil + n × qcons, as expected. The
principal advantage of this choice is that we can use efficient linear
constraint solvers to automatically determine suitable type annota-
tions. The main limitation is that we can only express potentials
and costs that are linear functions of the number of constructors in
a data structure. Recent work by Hoffmann et al. [18] shows that
multivariate polynomial cost functions can also be efficiently in-
ferred, however, and still only require linear constraint solving.

A crucial difference between classic amortised analysis [35, 42]
and type-based amortised analysis is that the type system can keep
track of data sharing through an explicit structural rule. This allows
potential to be defined per-reference reflecting how often a data
structure is accessed. The advantage is that we do not require
ephemeral usage of data structures to ensure the soundness of
amortisation. The disadvantage is that (fully evaluated) cyclic data
can only be assigned either zero or infinite potential, and that the
type system requires an extra structural rule.

It is important to note that, although we are defining a static
analysis, the overall potential for any actual data structure can only
be known dynamically, when the concrete data size is known. We
never actually need to compute this potential, however, but rather
concern ourselves with the change in potential along all possible
computation paths.

3.1 Annotated types and contexts
The syntax of annotated types includes type variables, functions,
thunks and (possibly recursive) data types over labelled sums of
products, representing the types of each constructor.

A, B, C ::= X | A−→
q

q′ B | Tq
q′(A)

| µX.{c1 : (q1, ~B1)| · · · |cn : (qn, ~Bn)}

We use meta-variables A, B, C for types, X,Y for type variables
and p, q for annotations (i.e. non-negative rational numbers, rep-
resenting potential). Typing contexts are multisets of pairs x:A of
variables and annotated types; we use multisets to allow separate
potential to be accounted for in multiple references. We use Γ,∆
etc for contexts and Γ�x for the multiset of types associated with x
in Γ, i.e. Γ�x = {A | x:A ∈ Γ}.

The annotations q, q′ in the function type A−→
q

q′ B express the
resources before and after evaluation (hence its cost); similarly, the
annotations q, q′ in a type Tq

q′(A) capture the cost of evaluating
a thunk (this can be zero if the thunk is known to be in whnf ).
For simplicity, we exclude resource parametricity [29], since this
is only important for functions that are re-used in different circum-
stances, and not for thunks that are evaluated at most once. It is thus
orthogonal to this paper.

In a (possibly recursive) data type µX.{c1 : (q1, ~B1)| . . . |cn :

(qn, ~Bn)} each coefficient qi represents the potential associated
with one application of constructor ci. We consider only recur-
sive data types that are non-interleaving [32], i.e. we exclude
µ-types whose bound variables overlap in scope (e.g. µX.

{
c1 :(

. . . , µY .{c2 : (. . . , X)}
)}

). This helps us prove a crucial lemma
on cyclic structures in the key soundness proof (Theorem 1). Note
that this restriction does not prohibit nested data types; e.g. the
type of lists of lists of naturals is µY.{nil : (q′n, ()), cons :
(q′c, (LN, Y ))}, where N = µX.{zero : (qz, ()), succ : (qs, X)}
is the type of naturals and LN = µY.{nil : (qn, ()), cons :
(qc, (N, Y ))} is the type of list of naturals. Note also that distinct
lists can be assigned different constructor annotations in their types,
thus improving the precision of the cost analysis.
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.(A | ∅ )
(SHAREEMPTY)

.(X |X, . . . ,X )
(SHAREVAR)

Bi = µX.
{
c1 : (qi1, ~Bi1)| · · · |cm : (qim, ~Bim)

}
.
(
~Aj

∣∣∣ ~B1j , . . . , ~Bnj

)
pj ≥

∑n
i=1 qij (1 ≤ i ≤ n, 1 ≤ j ≤ m)

.
(
µX.

{
c1 : (p1, ~A1)| · · · |cm : (pm, ~Am)

}
| B1, . . . , Bn

) (SHAREDAT)

.(Ai |A ) .(B |Bi ) qi ≥ q qi − q ≥ q′i − q′ (1 ≤ i ≤ n)

.
(
A−→

q

q′ B
∣∣∣A1
−→q1
q′1

B1, . . . , An
−−→qn
q′n

Bn

) (SHAREFUN)

.(A |A1, . . . , An ) qi ≥ q qi − q ≥ q′i − q′ (1 ≤ i ≤ n)

.
(

Tq
q′(A)

∣∣∣Tq1
q′1

(A1) , . . . ,Tqn
q′n

(An)
) (SHARETHUNK)

.(Aj |B1j , . . . , Bnj ) m = | ~A| = | ~Bi| (1 ≤ i ≤ n, 1 ≤ j ≤ m)

.
(
~A
∣∣∣ ~B1, . . . , ~Bn

) (SHAREVEC)

.(Γ | ∅ )
(SHAREEMPTYCTX)

.(A | B1, . . . , Bn ) .(Γ |∆)

.(x : A, Γ | x : B1, . . . , x : Bn,∆)
(SHARECTX)

Figure 2. Sharing Relation

3.2 Sharing and Subtyping
Figure 2 shows the syntactical rules for an auxiliary judgement
.(A |B1, . . . , Bn ) that is used to share a type A among a finite
multiset of types {B1, . . . , Bn}. It is used to limit contraction in
our type system. Datatype annotations for potential associated with
A are linearly distributed by the . relation among B1, . . . , Bn,
whereas cost annotations for functions and thunks are preserved.
Sharing also allows the relaxing of annotations to subsume subtyp-
ing (i.e. potential annotations can decrease, cost annotations may
increase). It is important to note that a decrease of cost annotations
for thunks (possibly down to zero) can only be achieved through
the PREPAY structural rule (Figure 4) and not through these shar-
ing rules. “Pre-paying” allows us to correctly model the reduced
costs of lazy evaluation by allowing costs to be accounted only
once for a thunk. The SHAREEMPTY, SHAREVAR and SHAREVEC
rules are trivial. The SHAREDAT rule allows potential from the
data constructors that comprise A to be shared among the Bi. The
SHAREFUN and SHARETHUNK rules allow any costs for functions
and thunks, respectively, to be replicated. The SHARECTXEMPTY
and SHARECTX rules extend the sharing relation for typing con-
texts in a pointwise manner: Γ shares to ∆ iff for each type as-
signment x:A in Γ there exists x:B1, . . . , x:Bn in ∆ and A shares
to B1, . . . , Bn. The special case of sharing one type to a single
other corresponds to a subtyping relation; we define the shorthand
notation A<:B to mean .(A |B ). This relation expresses the re-
laxation of potentials and costs: informally, A<:B implies that
A, B have identical underlying types but B has lower or equal po-
tential and greater or equal cost than that of A. As usual in struc-
tural subtyping, this relation is contravariant in the left argument
of functions (SHAREFUN). A special case occurs when sharing a
type or context to itself: because of non-negativity .(A |A,A ) (re-
spectively .(Γ |Γ,Γ)), requires that the potential annotations in A
(respectively Γ) be zero. We use this property to impose a con-
straint that types or contexts carry no potential. A variant of this is

.(A |A,A′ ), which implies thatA′ is a subtype ofA that holds no
potential.

3.3 Typing judgements
Our analysis is presented in Figures 3 and 4 as a proof system that
derives judgments of the form Γ

p

p′ ê : A, where Γ is a typing
context, ê is an augmented expression, A is an annotated type and
p, p′ are non-negative numbers approximating the resources avail-
able before and after the evaluation of ê, respectively. For simplic-
ity, we will omit these annotations whenever they are not explic-
itly mentioned. Because variables reference heap expressions, rules
dealing with the introduction and elimination of variables also deal
with the introduction and elimination of thunk types: VAR elimi-
nates an assumption of a thunk type, i.e. of the form x : Tq

q′(A).
Dually, LET and LETCONS introduce an assumption of a thunk
type. Note that LETCONS is not simply identical to a LET rule that
allows augmented expressions to be bound, since it accounts for
the constructor potential q differently. In order to avoid duplicat-
ing potential where a λ-abstraction is applied more than once, ABS
ensures that Γ does not carry potential, by forcing it to share with
itself. APP ensures that the argument and function types match and
includes the cost of the function in the final result. The CONS rule
simply ensures consistency between the arguments and the result
type. Since constructors cannot appear in source forms, the rule
is used only when we need to assign types either to heap expres-
sions or to evaluation results. The MATCH rule deals with pattern-
matching over an expression of a (possibly recursive) data type.
The rule requires that both branches admit an identical result type
and that estimated resources after execution of either branch are
equal; fulfilling such a condition may require relaxing type and/or
cost information using the structural rules below. The matching
branch uses extra resources corresponding to the potential anno-
tation on the matched constructor. The structural rules of Figure 4
allow the analysis to be relaxed in various ways: WEAK allows the
introduction of an extra hypothesis in the typing context; RELAX
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x:Tp
p′(A)

p

p′ x : A
(VAR)

x 6∈ dom(Γ,∆) .(A |A,A′ ) q ≥ q′ Γ, x:T0
0(A
′)

q

q′ e1 : A ∆, x:Tq
q′(A)

p

p′ e2 : C

Γ,∆
1 + p

p′ let x = e1 in e2 : C
(LET)

A = µX.{· · · |c : (q, ~B)| · · · } x 6∈ dom(Γ,∆) .(A |A,A′ )
Γ, x:T0

0(A
′) 0

0 c(~y) : A ∆, x:T0
0(A)

p

p′ e : C

Γ,∆
1 + q + p

p′ letcons x = c(~y) in e : C
(LETCONS)

Γ, x:A
q

q′ e : C x 6∈ dom(Γ) .(Γ |Γ,Γ)

Γ 0
0 λx.e : A−→

q

q′ C
(ABS)

Γ
p

p′ e : A−→
q

q′ C

Γ, y:A
p + q

p′ + q′ e y : C
(APP)

B = µX.{· · · |c : (q, ~A)| · · · }
y1:A1[B/X], . . . , yk:Ak[B/X] 0

0 c(~y) : B
(CONS)

B = µX.{· · · |c : (q, ~A)| · · · } | ~A| = |~x| = k xi 6∈ dom(∆) , for all i
Γ

p

p′ e0 : B ∆
p′

p′′ e2 : C ∆, x1:A1[B/X], . . . , xk:Ak[B/X]
p′ + q

p′′ e1 : C

Γ,∆
p

p′′ match e0 with c(~x)->e1 otherwise e2 : C
(MATCH)

Figure 3. Syntax Directed Type Rules

Γ
p

p′ e : C

Γ, x:A
p

p′ e : C
(WEAK)

Γ
p0

p′0
e : A p ≥ p0 p− p0 ≥ p′ − p′0

Γ
p

p′ e : A
(RELAX)

Γ, x:Tq0
q′(A)

p

p′ e : C q0 ≥ q′

Γ, x:Tq0+q1
q′ (A)

p + q1

p′ e : C
(PREPAY)

Γ, x:A1, x:A2
p

p′ e : C .(A |A1, A2 )

Γ, x:A
p

p′ e : C
(SHARE)

Γ, x : B
p

p′ e : C A<:B

Γ, x : A
p

p′ e : C
(SUPERTYPE)

Γ
p

p′ e : B B<:C

Γ
p

p′ e : C
(SUBTYPE)

Figure 4. Structural Type Rules

allows argument costs to be relaxed; PREPAY allows (part of) the
cost of a thunk to be paid for, so reducing the cost of further uses;
SUPERTYPE and SUBTYPE allow supertyping in a hypothesis and
subtyping in the conclusion, respectively; finally, SHARE allows the
use of sharing to split potential in a hypothesis.

Because our semantics does not deallocate resources, it can be
expected that all the “lower” annotations in the type system can be
set to zero, i.e. the p′ in a type judgement, and the q′ in function and
thunk types (but not the m′ in an evaluation judgement). However,
fixing them to zero would increase the complexity of our soundness
proof [26, Section 2.1] and we have therefore retained them.

3.4 Worked examples
We now present type derivations for the examples from Section 2.3
in order to illustrate how the type rules of Figures 3 and 4 model

the costs of our operational semantics. Recall example (2.1) which
demonstrates that unneeded redexes are not reduced (i.e., that the
semantics is non-strict):

let z = z in (λx. λy. y) z

Evaluation of this term in our operational semantics succeeds and
requires one heap cell (for allocating the thunk named by z):

H, S,L 1
0 let z = z in (λx. λy. y) z ⇓ λy.y,H′

An analysis for this term is given in Figure 5 as an annotated type
derivation with the following final judgement:

∅ 1
0 let z = z in (λx.λy.y) z : Tq

q′(B) −→
q

q′ B

The annotations in the turnstile of this judgement give a cost esti-
mate of one heap cell, matching the exact cost of the operational se-
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VAR
z:T0

0(A) 0
0 z : A

VAR
y:Tq

q′(B)
q

q′ y : B
ABS

∅ 0
0 λy.y : Tq

q′(B) −→
q

q′ B
WEAK

x:Tp
p′(A) 0

0 λy.y : Tq
q′(B) −→

q

q′ B
ABS

∅ 0
0 λx.λy.y : Tp

p′(A) −→
0

0 Tq
q′(B) −→

q

q′ B
APP

z:Tp
p′(A) 0

0 (λx.λy.y) z : Tq
q′(B) −→

q

q′ B
LET

∅ 1
0 let z = z in (λx.λy.y) z : Tq

q′(B) −→
q

q′ B

where p ≥ p′, q ≥ q′,.(A |A,A ) (3.1)

Figure 5. Type derivation for non-strict evaluation example (2.1).

mantics. The result of the evaluation is the identity function, λy.y.
The type annotations q, q′ represent the cost of the thunk for the ar-
gument. These parameters can be arbitrary, subject only to the side
conditions q ≥ q′. The type B is similarly arbitrary.

The second example (2.2) illustrates the sharing of normal
forms, i.e. lazy evaluation:

let f = let z = z in (λx. λy. y) z

in let i = λx. x in let v = f i in f v

Evaluating f v forces the thunk f ; following evaluation, the loca-
tion associated with f is updated with the whnf. Subsequent eval-
uation of f re-uses this result. Evaluation of the overall expression
therefore costs 4 cells:
∅, ∅, ∅ 4

0 (2.2) ⇓ λx. x,
[`0 7→ λy. y, `1 7→ λx. x, `2 7→ λx. x, `3 7→ `3]

The type derivation in Figure 6 shows the analysis for this example,
with the final type judgement replicating the exact operational cost
of 4 heap cells. Note that we use the structural rule PREPAY to
pay the cost of the thunk that is bound to f precisely once. We
also employ SHARE to allow the function f to be used twice. The
duplication is justified because the type of f carries no potential
(i.e. it shares to itself).

4. Experimental results
We have constructed a prototype implementation of an inference
algorithm for the type system of Figures 3 and 4.¶ The inference
algorithm is fully automatic (it does not require type annotations
from the programmer) and may either produce an admissible anno-
tated typing or fail (meaning that cost bounds could not be found).
Our analysis is therefore a whole program analysis. Inference is
conducted in three stages:

a) We first perform Damas-Milner type inference to obtain an
unannotated Hindley-Milner version of the type derivation us-
ing the syntax-directed rules in Figure 3. The unannotated types
form a free algebra and can be determined using standard first-
order unification.

b) We then decorate the Hindley-Milner types with fresh annota-
tion variables for the types of thunks, arrows and data construc-
tors and perform a traversal of the type derivation gathering lin-
ear constraints among annotations according to the sharing and
subtyping conditions.

¶Available at http://www.dcc.fc.up.pt/~pbv/cgi/aalazy.cgi.

c) Finally, we feed the linear constraints to a standard linear pro-
gramming solver‖ with the objective of minimizing the overall
expression cost. Any solution gives rise to a valid annotated
typing derivation, and hence to a concrete formula bounding
evaluation costs in terms of the program’s input data sizes.

The implementation allows some trivial syntactic extensions to the
term language, namely, multiple constructor branches in match-
expressions and omission of the default alternative. Also, as in ML
or Haskell, we require that data constructors are associated with
a single data type. This ensures that the use of the CONS rule is
syntax-directed.

It remains to explain how to decide when to use the structural
rules from Figure 4. We use SHARE to split the context Γ into two
Γ1,Γ2 when typing sub-expressions (e.g. when typing e1 and e2
in let x = e1 in e2); note that this does not lose precision un-
necessarily, since the unused types can be assigned zero potential.
We consequently delegate the task of finding the best assignment
(i.e. one yielding the least cost) to the LP solver. We use WEAK
depending on the remaining free variables in the sub-expressions.
We allow PREPAY to be used for the body e2 of any let-expression
let x = e1 in e2. Once again, this does not lose precision because
the rule can be used to pay any part of the cost (possibly zero);
hence, we allow the LP solver to decide how to use it for each
individual thunk in order to achieve an overall optimal solution. Fi-
nally, we allow the use of RELAX at every node of the derivation
and SUBTYPE at the application rule (to enforce compatibility be-
tween the function and its argument) and at the MATCH rule (to ob-
tain a compatible result type). This may generate more constraints
and variables for intermediate types than necessary; the resulting
increase in size has negligible cost for current LP-solvers (in fact,
all our examples were solved by a typical desktop computer in less
than one second). Hoffman and Jost have shown that the LP prob-
lems that are generated for the eager amortised analysis exhibit reg-
ularities that allow lower complexity than general LP solving [19].
We conjecture that this should also be true for our analysis.

4.1 List reversal
Our first recursive example is the classical list reversal using an
accumulating parameter:

let rev_acc = \xs ys -> match xs with
Nil () -> ys

| Cons(x,xs’) -> letcons ys’ = Cons(x,ys)
in rev_acc xs’ ys’

The analysis fails to find an annotated typing for the above frag-
ment. This is because the recursion is over the first argument of a
Curried function and the ABS rule only allows potential in the last
argument (since it requires the context to share to itself in order
to avoid duplicating potential). Two solutions are possible: either
rewrite the function to use a pair of lists instead of using Currying
or simply flip the argument order. We choose the latter:

let rev_acc’ = \ys xs -> match xs with
Nil () -> ys

| Cons(x,xs’) -> letcons ys’ = Cons(x,ys)
in rev_acc’ ys’ xs’

The analysis can now yield an informative type. If we abbreviate
the type of lists of A as:

L(qc, qn, A)
def
=

µX.{ Cons : (qc, (T0
0(A),T0

0(X))) | Nil : (qn, ()) }

‖We use the GLPK library: http://www.gnu.org/software/glpk.
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(Figure 5)
WEAK

f :T1
0(T0

0(B) −→
0

0 B) 1
0 let z = z in (λx.λy. y) z : T0

0(B) −→
0

0 B

VAR
x:T0

0(B) 0
0 x : B

ABS
∅ 0

0 λx. x : B
WEAK

i : T0
0(B) 0

0 λx. x : B

VAR
f :T0

0(T0
0(B) −→

0

0 B) 0
0 f : T0

0(B) −→
0

0 B
APP

f :T0
0(T0

0(B) −→
0

0 B), i:T0
0(B) 0

0 f i : B

VAR
f :T0

0(T0
0(B) −→

0

0 B) 0
0 f : T0

0(B) −→
0

0 B
APP

f :T0
0(T0

0(B) −→
0

0 B), v:T0
0(B) 0

0 f v : B
LET

f :T0
0(T0

0(B) −→
0

0 B), f :T0
0(T0

0(B) −→
0

0 B), i:T0
0(B) 1

0 let v = f i in f v : B
SHARE

f :T0
0(T0

0(B) −→
0

0 B), i:T0
0(B) 1

0 let v = f i in f v : B
LET

f :T0
0(T0

0(B) −→
0

0 B) 2
0 let i = λx. x in . . . : B

PREPAY
f :T1

0(T0
0(B) −→

0

0 B) 3
0 let i = λx. x in . . . : B

LET
∅ 4

0 let f = (let z = z in (λx.λy. y) z) in let i = λx. x in let v = f i in f v : B , where B = T0
0(C) −→

0

0 C

Figure 6. Type derivation for lazy-evaluation example (2.2).

then we obtain:

rev acc’ : T0
0(L(0, 0, A))−→

0

0 T0
0(L(1, 0, A))−→

0

0 L(0, 0, A)

This annotated type assigns a potential of 1 heap cell to each Cons
in the recursion argument xs. The first argument ys and the result
both have no potential. Thus, the analysis gives a bound of n heap
cells for reversing a list of length n, which is, in fact, the exact cost.

4.2 Functional queues
We now consider Okasaki’s purely functional queues, implemented
as pairs of lists [35]. This data structure allows O(1) amortised ac-
cess time to both ends of the queue, and is commonly used as an ex-
ample for deriving amortised bounds. The translation into our lan-
guage is shown in Figure 7. It consists of three functions: mkqueue
normalizes a pair of front and back lists by reversing the back list
when the front list is empty, so ensuring that the front is empty iff
the queue as a whole is empty; the enqueue function adds an ele-
ment to the back of the queue; and the dequeue function returns a
new queue without the front element. We omit the auxiliary defini-
tion of reverse which uses rev acc’ from Section 4.1. Assuming
normalized queues, the enqueue function has constant worst-case
cost. The dequeue function may involve reversing a variable-size
list, so its worst-case is O(n); however, the amortised cost for both
operations isO(1). The types inferred by our analysis are shown in
Figure 8. They express amortised bounds that correspond exactly
to Okasaki’s analysis, which assigns 1 unit of potential for each
element in the back list of the queue. More precisely:

• mkqueue consumes a fixed cost of 3 heap cells plus 1 cell
for each node in the back list; furthermore, the result queue
preserves 1 unit of potential for each node in the new back list;

• enqueue and dequeue have fixed amortised costs (5 & 3 units,
respectively), preserving 1 unit of potential in the back list.

4.3 Infinite structures
Our next example concerns the use of lazy evaluation to define
infinite lists (i.e. streams). Consider two definitions of a function
that generates a stream of identical values:

let repeat = \x -> letcons ys = Cons(x,ys)
in ys

let mkqueue = \f r -> match f with
Nil() -> let f’ = reverse r

in letcons r’ = Nil()
in letcons q = Pair(f’,r’)
in q

otherwise letcons q = Pair(f,r) in q

let enqueue = \x q -> match q with
Pair(f,r) -> letcons r’ = Cons(x,r)

in mkqueue f r’

let dequeue = \q -> match q with
Pair(f,b) -> match f with

Cons(x,f’) -> mkqueue f’ b

Figure 7. Okasaki’s purely functional queues.

let repeat’ = \x -> let xs = repeat’ x
in letcons ys = Cons(x,xs)
in ys

The two definitions yield exactly the same infinite list of values.
However, the first one is more efficient: repeat will generate a
cyclic structure occupying a single heap node, while repeat’ will
allocate many (identical) nodes as the result stream is traversed.
We can observe these non-functional properties in the types that
our analysis infers for the two definitions:

repeat : T0
0(A)−→

1

0 µX.{Cons : (0, (T0
0(A),T0

0(X))) | . . .}

repeat’ : T0
0(A)−→

2

0 µX.{Cons : (0, (T0
0(A),T2

0(X))) | . . .}

First note that, because the results of both functions are infinite
structures, they must have zero potential, hence the zero annota-
tion on Cons. The type for repeat shows that it costs 1 heap cell
to generate the first node and that subsequent nodes have no fur-
ther cost (because the thunk annotations are zero). The type for
repeat’, however, shows that evaluating each tail thunk of the re-
sult list costs 2 cells (plus 2 cells for the first node).

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use only. Not for redistribution.



mkqueue : T0
0(L(0, 0, A))−→

0

0 T0
0(L(1, 0, A))−→

3

0 T0
0(L(0, 0, A))× T0

0(L(1, 0, A))

enqueue : T0
0(A)−→

0

0 T0
0(T0

0(L(0, 0, A))× T0
0(L(1, 0, A)))−→

5

0 T0
0(L(0, 0, A))× T0

0(L(1, 0, A))

dequeue : T0
0(T0

0(L(0, 0, A))× T0
0(L(1, 0, A)))−→

3

0 T0
0(L(0, 0, A))× T0

0(L(1, 0, A))

Figure 8. Analysis of the functional queues example.

map : T0
0(T0

0(A)−→
0

0 B)−→
0

0 T0
0(µX.{Cons : (3, (T0

0(A),T0
0(X)))|Nil : (1, ())})−→

0

0 µX.{Cons : (0, (T0
0(B),T0

0(X)))| . . .} (4.1)

map : T0
0(T0

0(A)−→
1

0 B)−→
0

0 T0
0(µX.{Cons : (3, (T0

0(A),T0
0(X)))|Nil : (1, ())})−→

0

0 µX.{Cons : (0, (T1
0(B),T0

0(X)))| . . .} (4.2)

map : T0
0(T0

0(A)−→
0

0 B)−→
0

0 T0
0(µX.{Cons : (0, (T0

0(A),T0
0(X)))|Nil : (0, ())})−→

3

0 µX.{Cons : (0, (T0
0(B),T3

0(X)))| . . .} (4.3)

map : T0
0(T0

0(A)−→
1

0 B)−→
0

0 T0
0(µX.{Cons : (0, (T0

0(A),T0
0(X)))|Nil : (0, ())})−→

3

0 µX.{Cons : (0, (T1
0(B),T3

0(X)))| . . .} (4.4)

Figure 9. Analyses of map for finite (4.1) (4.2) and infinite lists (4.3) (4.4).

4.4 Higher order functions over lists
Consider now the higher-order function map that applies a function
to every element in a list:

let map = \f xs -> match xs with
Nil () -> letcons nil=Nil() in nil

| Cons(x,xs’) -> let y = f x
in let ys’ = map f xs’
in letcons ys = Cons(y,ys’)
in ys

Figure 9 shows four distinct typings inferred depending on use:
(4.1) and (4.2) were inferred for mapping over a finite list (which
can carry potential) while (4.3) and (4.4) were inferred for mapping
over an infinite one (which must have zero potential). Thus, the
first two typings (4.1) and (4.2) offset costs with potential from
the argument list (three heap cells for each Cons and one for each
Nil) while (4.3) and (4.4) defer costs to the tail thunk of the result
lists. Note also that (4.1) and (4.3) allow a zero-cost argument
function while (4.2) and (4.4) allow a unit-cost argument function;
the effect of this change is reflected on the thunk costs for the head
of the result lists. Finally, we remark that the analysis chooses these
typings automatically according to use.∗∗

5. Soundness
This section establishes the soundness of our analysis with respect
to the operational semantics of Section 2. We begin by stating
some auxiliary proof lemmas and preliminary definitions, notably
formalizing the notion of potential from Section 3. We then define
the principal invariants of our system, namely, type consistency and
type compatibility relations between a heap configuration of the
operational semantics and global types, contexts and balance. We
conclude with the soundness result proper (Theorem 1).
5.1 Auxiliary Lemmas
We now present some auxiliary proof lemmas for our type system.
The first lemma allows us to replace variables in type derivations.
Note that because of the lazy evaluation semantics (and unlike the
usual substitution lemma for the λ-calculus), we substitute only
variables but not arbitrary expressions.

Lemma 5.1 (Substitution). If Γ, x:A
p

p′ ê : C and y /∈ dom(Γ)∪
FV(ê) then also Γ, y:A

p

p′ ê[y/x] : C.

∗∗Note, however, that using the same definition with both finite and infi-
nite structures would generate infeasible constraints due to the absence of
“resource parametricity” (introduced in [29]).

Proof. By induction on the height of derivation of Γ, x:A
p

p′ ê :
C, simply replacing any occurrences of x for y.

The next two lemmas establish inversion properties for constructors
and λ-abstractions.

Lemma 5.2 (CONS inversion). If Γ ` c(~y) : B then B =

µX.{. . . |c : (q, ~A)| . . . } and .(Γ | ~y: ~A[B/X] ).

Lemma 5.3 (ABS inversion). If Γ ` λx.e : A−→
q

q′ C then there
exists Γ′ such that .(Γ |Γ′ ), .(Γ′ |Γ′,Γ′ ), x /∈ dom(Γ′) and
Γ′, x:A

q

q′ e : C.

Proof Sketch for both lemmas. A typing with conclusion Γ `
c(~y) : B must result from axiom CONS followed by (possibly zero)
uses of structural rules. Similarly, a typing Γ ` λx.e : A−→

q

q′ C
must result from an application of the rule ABS followed by uses
of structural rules. The proof follows by induction on the structural
rules, considering each rule separately.

The final auxiliary lemma allows splitting contexts used for typing
expressions in whnf according to a split of the result type.

Lemma 5.4 (Context Splitting). If Γ 0
0 w : A, where w is an

expression in whnf and .(A |A1, A2 ); then there exists Γ1,Γ2

such that .(Γ |Γ1,Γ2 ), Γ1
0
0 w : A1 and Γ2

0
0 w : A2.

Proof Sketch. The proof follows from an application of Lemma 5.2
(ifw is a constructor) or Lemma 5.3 (ifw is an abstraction) together
with the definition of sharing.

5.2 Global Types, Contexts and Balance
We now define some auxiliary mappings that will be necessary
for formulating the soundness of our type system. The mapping
M from locations to types, written {`1 7→ A1, . . . , `n 7→ An},
records the global type of a location, which accounts for all poten-
tial in all references to that location. The mapping C from locations
to typing contexts, written {`1 7→ Γ1, . . . , `n 7→ Γn}, associates
each location with its global context that justifies its global type.
We extend the projection operation from (local) contexts to global
contexts in the natural way:

C�` = {`1 7→ Γ1, . . . , `n 7→ Γn}�`
def
= (Γ1, . . . ,Γn)�`

We also extend subtyping to global types in the natural way,
namely M<:M′ if and only if dom(M) ⊆ dom(M′) and for
all ` ∈ dom(M) we have M(`)<:M(`′). This relation will be
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used to assert that the potential assigned to global types is always
non-increasing during execution. Furthermore, we introduce an
auxiliary balance (or lazy potential) mapping B from locations
to non-negative rational numbers. This keeps track of the partial
costs of thunks that have been paid in advance by applications of
the PREPAY rule. Note that these auxiliary mappings are needed
only in the soundness proof of the analysis for bookkeeping pur-
poses, but are not part of the operational semantics — in particular,
they do not incur runtime costs.
5.3 Potential
We define the potential of an augmented expression with respect
to a heap and an annotated type. The potential of expressions that
are not whnf s (i.e. thunks) and λ-abstractions is always zero. For
data constructors, the potential is obtained by summing the type
annotation with the (recursive) potential contributed by each of the
arguments. Note that for cyclic data structures, the potential is only
defined if all the type annotations of all nodes encountered along a
cycle are zero (the overall potential must therefore also be zero).

Definition 5.5 (Potential). The potential assigned to an augmented
expression ê of type A under heap H, written φH(ê:A), is defined
in (5.1) within Figure 10.

Equation (5.2) extends the definition to typing contexts in the nat-
ural way. Equation (5.3) defines potential for global contexts, but
considers only thunks that are not under evaluation. Finally, (5.4)
defines a convenient shorthand notation for a similar summation
over the balance. The next two lemmas formalize the intuition that
sharing splits the potential of a type and that a supertype of a type
A has potential that is no greater than A.

Lemma 5.6 (Potential Splitting). If .(A |A1, . . . , An ) then for
all ê such that the potentials are defined, we have φH(ê:A) ≥∑

i φH(ê:Ai).

This lemma has an important special case when A occurs as one
of the types on the right hand side: if .(A |A,B1, . . . , Bn ) then
φH(ê:Bi) = 0 for all i.

Proof Sketch. First note that the results follow immediately if ê is
not in whnf or is a λ-abstraction (because potentials are zero in
those cases). The potential is also zero if ê is a constructor that
is part of a cycle (since otherwise it would be undefined). The
remaining case is for a constructor with no cycles, i.e. a directed
acyclic graph (DAG). The proof is then by induction on the length
of the longest path.

Lemma 5.7 (Potential Subtype). If A<:B then for all ê such that
the potentials are defined, we have φH(ê:A) ≥ φH(ê:B).

Proof. By the definition of subtyping, this is a direct corollary of
Lemma 5.6 for the case when n = 1.

5.4 Consistency and Compatibility
We now define the principal invariants for proving the soundness
of our analysis, namely, consistency and compatibility relations
between a heap configuration and the global types, contexts and
balance. We proceed by first defining type consistency of a single
location and then extend it to a whole heap.

Definition 5.8 (Type consistency of locations). We say that loca-
tion ` admits type Tq

q′(A) under context Γ, balance B, heap config-
uration (H,L), and write Γ,B;H,L `LOC ` : Tq

q′(A), if q ≥ q′

and one of the following cases holds:

(LOC1) H(`) is in whnf and Γ 0
0 H(`) : A

(LOC2) H(`) not in whnf and ` 6∈ L and Γ
q + B(`)

q′ H(`) : A

(LOC3) H(`) not in whnf and ` ∈ L and Γ = ∅
The three cases in the above definition are mutually exclusive:
LOC1 applies when the expression in the heap is already in whnf ;
otherwise LOC2 and LOC3 apply, depending on whether the thunk
is or is not under evaluation. For LOC2, the balance B(`) asso-
ciated with location ` is added to the available resources for typ-
ing the thunk H(`), effectively reducing its cost by the prepaid
amount. Once evaluation has begun (LOC3), or once it has com-
pleted (LOC1), the balance is considered spent. However, we never
lower or reset the balance, since it is simply ignored in such cases.

Definition 5.9 (Type consistency of heaps). We say that a heap
state (H,L) is consistent with global contexts, global types and
balance, and write C,B `MEM (H,L) : M, if and only if for all
` ∈ dom(H): C(`),B;H,L `LOC ` : M(`) holds.

Definition 5.10 (Global compatibility). We say that a global type
M is compatible with context Γ and a global context C, written
.(M |Γ,C ), if and only if .(M(`) |Γ�` ,C�` ) for all ` ∈ dom(M).

Definition 5.9 requires the type consistency of each specific loca-
tion. Definition 5.10 requires that the global type of each location
accounts for the joint potential of all references to it in either the
local or global contexts.
5.5 Soundness of the proof system
We can now state the soundness of our analysis as an augmented
type preservation result.

Theorem 1 (Soundness). Let t ∈ Q+ be fixed, but arbitrary. If the
following statements hold

Γ
p

p′ e : A (1.A)

C,B `MEM (H,L) : M (1.B)
.(M | (Γ,Θ),C ) (1.C)

H, S,L ` e ⇓ w,H′ (1.D)

then for all m ∈ N such that

m ≥ t+ p+ φH(Γ) + φH(Θ) + ΦL
H(C) + ΦL

H(B) (1.E )

there exist m′, Γ′, C′, B′ and M′ such that

M<:M′ (1.F )
Γ′ 0

0 w : A (1.G)
C
′,B′ `MEM (H′,L) : M′ (1.H)

.(M′ | (Γ′,Θ),C′ ) (1.I )
H, S,L m

m′ e ⇓ w,H′ (1.J )

m′ ≥ t+ p′ + φH′(w:A) + φH′(Θ) + ΦL
H′
(
C
′)+ ΦL

H′
(
B
′)

(1.K)

Informally, the soundness theorem reads as follows: if an ex-
pression e admits a type A (1.A), the heap can be consistently
typed (1.B) (1.C) and the evaluation is successful (1.D), then
the result whnf also admits type A (1.G). Furthermore, the re-
sulting heap can can also be typed (1.H) (1.I ) and the static
bounds that are obtained from the typing of e give safe resource
estimates for evaluation (1.E ) (1.J ) (1.K). The arbitrary value
t is used to carry over excess potential which is not used for
the immediate evaluation but will be needed in subsequent ones
(i.e. for the argument of an application). Similarly, the context
Θ is used to preserve types for variables that are not in the cur-
rent scope but that are necessary for subsequent evaluations (i.e.
the alternatives of the match). Because of space limitations, we
present here only a proof sketch; a detailed proof is available at
http://www.dcc.fc.up.pt/~pbv/AALazyExtended.pdf.
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φH(ê:A)
def
=


p+

∑
i φH(H(`i):Bi[A/X]) if A = µX.{· · · |c:(p, ~B)| · · · } and ê = c(~̀)

φH(ê:B) if A = Tq
q′(B)

0 otherwise
(5.1)

φH(Γ)
def
=
∑{

φH(H(x):A)
∣∣ x:A ∈ Γ

}
(5.2)

ΦL
H(C)

def
=
∑{

φH(C(`))
∣∣ ` ∈ dom(H) and ` /∈ L and H(`) is not a whnf

}
(5.3)

ΦL
H(B)

def
=
∑{

B(`)
∣∣ ` ∈ dom(H) and ` /∈ L and H(`) is not a whnf

}
(5.4)

Figure 10. Potential

Proof Sketch. The proof is by induction on the lengths of the
derivations of (1.D) and (1.A) ordered lexicographically, with
the derivation of the evaluation taking priority over the typing
derivation. We proceed by case analysis of the typing rule used
in premise (1.A), considering just some representative cases.

Case VAR: The typing premise `:Tp
p′(A)

p

p′ ` : A is an axiom.
By inversion of the evaluation premise, we obtain H, S,L ∪ {`} `
H(`) ⇓ w,H′. In order to apply induction to the evaluation of the
thunk H(`), we take the typing context from the hypothesis of type
consistency for the location `. We apply induction to a typing with
the global type M(`) rather than the local type Tp

p′(A) in the local
context. This gives us a stronger conclusion with a context that we
can then split using Lemma 5.6 to justify type consistency for the
heap update and the local context answer for the answer. Finally, we
require an auxiliary result to ensure that if the update introduces a
cycle, the locations on the cycle can be assigned a type with zero
potential (a lemma contained in the full proof).

Case LET: The typing premise is Γ,∆
1 + p

p′ let x = e1 in e2 :

C and evaluation premise gives H0, S,L ` e2[`/x] ⇓ w,H′ where
H0 = H[` 7→ e1[`/x]] is the heap extended with a new location `
and thunk. To apply induction to the evaluation of e2[`/x] we re-
establish the consistency to the new location `; this is done using Γ
from the typing hypothesis together with an idempotent type for
self-references to `. Applying induction then yields all required
conclusions.

Case MATCH: The typing premise is:

Γ,∆
p

p′′ match e0 with c(~x)->e1 otherwise e2 : C

By inversion of the type rule, we get a typing Γ
p

p′ e0 : B for
e0, where B = µX.{· · · |c : (q, ~A)| · · · } is some data type with
a constructor c. We apply induction to the evaluation of e0 and
then do a case analysis on the evaluation rule used (i.e. MATCH⇓
or FAIL⇓). We then apply induction to either e1[~̀/~x] or e2 and
obtain the proof obligation. To establish the premise (1.E ) onm for
the MATCH⇓ case, we use definition of potential: φH(c(~̀):B) =
q +

∑
i φH(`i:Ai[B/X]) — i.e. the potential of the constructor is

the sum of the type annotation q plus the potential of its context.

6. Related Work
As described above, we build heavily on Launchbury’s natural se-
mantics for lazy evaluation [30], as subsequently adapted by Ses-
toft, and exploit ideas that were developed by de la Encina and
Peña-Marı́ [14, 15]. There is a significant body of other work on
the semantics of call-by-need evaluation. Pre-dating Launchbury’s
work, Josephs [25] gave a denotational semantics of lazy evalua-
tion, using a continuation-based semantics to model sharing, and
including an explicit store. However, this approach doesn’t fit well
with standard proof techniques. Maraist et al. [31] subsequently

defined both natural and reduction semantics for the call-by-need
lambda calculus, so enabling equational reasoning, and a similar
approach was independently described by Ariola and Felleisen [4].

Bakewell and Runciman [6] have previously defined an oper-
ational semantics for Core Haskell that gives time and space exe-
cution costs in terms of Sestoft’s semantics for his Mark 1 abstract
machine. The work has subsequently been extended to give a model
that can be used to determine space leaks by comparing the space
usage for two evaluators using a bisimulation approach [5]. Gus-
tavsson and Sands [17] have similarly defined a space-improvement
relation that guarantees that some optimisation can never lead to
asymptotically worse space behaviour for call-by-need programs
and Moran and Sands [33] have defined an improvement relation
for call-by-need programs that can be used to determine whether
one terminating program improves another in all possible contexts.

Finally, like de la Encina and Peña-Marı́, Mountjoy [34] derived
an operational semantics for the Spineless Tagless G-Machine from
the natural semantics of Launchbury and Sestoft, including poly-
applicative λ-expressions. The main differences between these ap-
proaches are that de la Encina and Peña-Marı́ correct some mistakes
in Mountjoy’s presentation, that they provide correctness proofs,
that their semantics correctly deals with partial applications in the
Spineless Tagless G-Machine, that they deal with partial appli-
cations as normal forms, and that they consider two distinct im-
plementation variants, based on push/enter versus apply/eval. Our
own work differs from this body of earlier work in that we not
only provide an operational semantics to model lazy evaluation, but
also provide a corresponding cost semantics from which we derive
a static analysis to automatically determine upper bounds on the
memory requirements of lazily evaluated programs.

Resource analysis based on profiling and manual code inspec-
tion has long formed the state-of-the-art and still is current practice
in many cases. Indeed, for non-strict functional languages, such
as Haskell, ad-hoc techniques, manual analysis or symbolic pro-
filing are the only currently viable approaches: as we have seen,
the dynamic demand-driven nature of lazy functional program-
ming creates particular problems for resource analysis, whether
manual or automatic. There has therefore been very little work
on static resource analysis for lazy functional programs, and, to
our knowledge, no previous automatic analysis has ever been pro-
duced. The most significant previous work in the area is that by
Sands [37, 38], whose PhD thesis proposed a cost calculus for rea-
soning about sufficient and necessary execution time for lazily eval-
uated higher-order programs, using an approach based on evalua-
tion contexts [39, 45] to capture information about evaluation de-
gree and appropriate projections [47] to project this information
to the required approach. Wadler [45] had earlier proposed a sim-
ilar approach to that taken by Sands, but using strictness analy-
sis combined with appropriate projections, rather than the need-
edness analysis that Sands uses. A primary disadvantage of such
approaches lies in the complexity of the domain structure and as-
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sociated projections that must be used when analysing even simple
data structures such as lists. In contrast, our approach easily ex-
tends to arbitrarily complex data structures. A secondary disadvan-
tage is that, unlike the self-contained analysis we have described,
projection-based approaches rely on the existence of a complex and
powerful external neededness analysis to determine evaluation con-
texts for expressions. These are serious practical disadvantages: in
fact, to date, we are not aware of any fully automatic static analysis
that has been produced using these techniques.

A number of authors have proposed analysis approaches based
on transforming lazy programs to eager ones (e.g. Bjerner and
Holmström [7], Fradet and Métayer [16]). The resulting programs
may then be analysed using (simpler) techniques for eagerly evalu-
ated programs, such as the automatic amortised analysis we have
previously developed [19, 28, 29]. Unlike our work, these ap-
proaches are generally restricted to first-order programs, and suf-
fer from the problems that they are, in general, not cost-preserving,
that they lead to potentially exponential code explosion, and that,
because they alter the program, they are not suitable for use with
standard compilers for lazy functional languages.

Several authors have proposed symbolic profiling approaches,
where programs are annotated with additional cost parameters.
For example, Wadler [46] uses monads to capture execution costs
through a tick-counting function; Albert et al. [1] adds additional
cost parameters to each function, using logic variables to capture
sharing information and so avoid cost duplication; and Hope [22]
describes how to derive an instrumented function for determining
time and space usage, including a simple deallocation model, for a
strict functional language and outlines how this could be extended
to lazy evaluation. Danielsson [12] takes this work a stage further,
describing a library that can be used to annotate (lazy) functions
with the time that is needed to compute their result. An anno-
tated monad is then used to combine these time complexity an-
notations. This can be used to verify (but not infer) the time com-
plexity of (lazy) functional data structures and algorithms against
Launchbury’s semantics, using a dependent type approach. Pro-
vided the cost model is sufficiently accurate, symbolic profiling ap-
proaches can give “exact” costs for specific program inputs. They
are also easy to implement. However, unlike the work described
here, the cost information is input-dependent, cannot give a guaran-
teed worst-case except in trivial cases, and transforms the program
in a way that may not be cost-preserving for all metrics. Unlike our
analysis, such approaches therefore cannot produce upper bounds
on resource usage for all possible program inputs.

The amortised analysis approach has been previously studied
by a number of authors, but has never previously been used to au-
tomatically determine the costs of lazy evaluation. Tarjan [42] first
described amortised analysis, but as a manual technique. Okasaki
[35] subsequently described how Tarjan’s approach could be ap-
plied to (lazy) data structures, but again as a manual technique.
While there has subsequently been significant interest in the use of
amortised analysis for automatic resource usage analysis, using an
advanced per-reference potential, none of this newer work, how-
ever, considers lazy evaluation. Hofmann and Jost [19] were the
first to develop an automatic amortised analysis for heap consump-
tion, exploiting a difference metric similar to that used by Crary and
Weirich [11] (the latter, however, only check bounds, and therefore
do not perform an automatic static analysis of the kind we require);
Hofmann et al. have extended their method to cover a comprehen-
sive subset of Java, including imperative updates, inheritance and
type casts [20, 21]; Shkaravska et al. [41] subsequently considered
heap consumption inference for first-order polymorphic lists; and
Campbell [9] has developed the ideas of depth-based and tempo-
rary credit uses to give better results for stack usage. Hoffmann
et al. [18] achieved another breakthrough by extending the tech-

nique to infer multivariate polynomial cost functions, still only re-
quiring efficient LP solving. Finally, several authors have recently
studied analyses for heap usage in eager languages, without consid-
ering lazy evaluation. For example, Albert et al. [2] present a fully
automatic, live heap-space analysis for an object-oriented bytecode
language with a scoped-memory manager, and have subsequently
extended this to consider garbage collection [3], but, unlike our sys-
tem, data-dependencies cannot be expressed. Braberman et al. [8]
infer polynomial bounds on the live heap usage for a Java-like lan-
guage with automatic memory management, but do not cover gen-
eral recursive methods. Finally, Chin et al. [10] present a linearly-
bounded heap and stack analysis for a low-level (assembler) lan-
guage with explicit (de)-allocation, but do not cover lazy evaluation
or high-level functional programming constructs.

7. Conclusions and Further Work

This paper has introduced a new automatic type-based analysis
for accurately determining bounds on the execution costs of lazy
(higher-order) functional programs. The analysis uses the new idea
of lazy potential as part of an amortised analysis technique that
is capable of directly analysing lazy programs without requiring
defunctionalisation or other non-cost-preserving program transfor-
mations. Our analysis deals with (potentially infinite) recursive data
structures, nested data structures, and cyclic data structures. It is de-
fined for arbitrary data types (including e.g. trees). We have proved
the soundness of this analysis against an operational semantics de-
rived from Launchbury’s natural semantics of graph reduction, and
analysed some non-trivial examples of lazy evaluation using a pro-
totype implementation of the analysis.

A number of extensions to this work would repay further in-
vestigation. Firstly, to reduce complexity, our system is restricted
to monomorphic definitions. It should be straightforward, albeit la-
borious, to adapt our previous work on polymorphism [29] to also
cover the lazy setting, including “resource parametricity”, which
allows function applications to have different costs depending on
context. Secondly, we have only considered linear cost functions.
Although it would increase complexity, Hoffmann et al. [18]’s ap-
proach to polynomial cost functions, which infers asymptotically
tight bounds for many practical examples, should also be applicable
here. Thirdly, while we have previously constructed [28, 29] anal-
yses that are capable of dealing with arbitrary countable resources
for strict languages, for simplicity, in this paper we have restricted
our attention to heap allocations. Analysing time and stack usage
should follow a similar structure to that presented here, but requires
a richer operational semantics than that given by Launchbury. Fi-
nally, it would be interesting to extend this work to a full production
abstract machine such as the Spineless Tagless G-Machine [24].
This would allow us to confirm our results against real functional
programs written in non-strict languages such as Haskell.
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