Static Prediction of Heap Space Usage for
First-Order Functional Programs

(Extended Version)

Martin Hofmann

Steffen Jost

LMU Mdinchen, Institut fir Informatik
OettingenstraBBe 67, 80538 Mlnchen, Germany
{mhofmann, jost} @informatik.uni-muenchen.de

ABSTRACT

We show how to efficiently obtain linear a priori bounds on
the heap space consumption of first-order functional pro-
grams.

The analysis takes space reuse by explicit deallocation into
account and also furnishes an upper bound on the heap us-
age in the presence of garbage collection. It covers a wide
variety of examples including, for instance, the familiar sort-
ing algorithms for lists, including quicksort.

The analysis relies on a type system with resource anno-
tations. Linear programming (LP) is used to automatically
infer derivations in this enriched type system.

We also show that integral solutions to the linear pro-
grams derived correspond to programs that can be evaluated
without any operating system support for memory manage-
ment. The particular integer linear programs arising in this
way are shown to be feasibly solvable under mild assump-
tions.

Categories and Subject Descriptors

F.3.2 [Logics and Meanings of Programs|: Seman-
tics of Programming Languages— Program analysis; D.1.1
[Programming Techniques]: Applicative (functional)
programming; D.3.3 [Programming Languages|: Lan-
guage Constructs and Features—Dynamic storage manage-
ment

General Terms
Languages, Theory, Reliability, Performance.

Keywords

Functional Programming, Resources, Heap, Garbage Collec-
tion, Program Analysis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

POPL’03, January 15-17, 2003, New Orleans, Louisiana, USA.

Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00.

1. INTRODUCTION

This paper addresses the following problem. Given a func-
tional program containing a function f of type, say, L(B) —
L(B), i.e., turning lists of booleans into lists of booleans find
a function v such that the the computation f(w) requires
no more than v(w) additional heap cells.

In this generality, the problem admits the following trivial
solution: We can instrument the code for f by a counter
that is augmented each time we require allocation of a heap
cell. The function v is then the function computed by this
instrumented code followed by a projection that discards the
output and only keeps the value of the counter.

Even if we require that v depend only on the length of the
input w and not w itself, we could for a given input length [
run the instrumented code on all boolean lists of length [and
take the maximum. We still have a computable function
that bounds the heap space required by the computation
of f.

This trivial solution suffers from two flaws. First, eval-
uating v requires as many resources as evaluating f itself.
Moreover, even though the code for v constitutes a math-
ematical description of the bounding function v, it is in a
form that allows one to say very little about its global be-
haviour. Both flaws are unacceptable in a scenario where
independently verifiable certificates on resource usage of mo-
bile code are desired [14} [1].

What one would rather expect in this situation is a state-
ment of the form: running f on an input of length n will
require no more than b(n) heap cells where b(n) is an expres-
sion like 3n+7 or 2.5n34+4n? or 215" Tt is only from such an
expression that one can glean immediate information about
the expected behavior of the code to be run.

In this paper we describe a method for automatically ob-
taining linear bounds on the heap space usage of functional
programs. Of course, it is undecidable whether a given pro-
gram admits such a linear bound, so we must accept certain
restrictions. We claim, however, that the restrictions we
make are quite natural and moreover, our analysis is prov-
ably efficient in this case.

An important limitation of our work is that only first-
order programs are considered. This means that a program
is a mutual recursive definition of first-order top level func-
tions. While perhaps being against the credo of functional
programming it offers us surprising benefits and moreover
many uses of higher-order functions are actually a defini-
tional extension of first-order functional programming: in

Extended version, for WWW only — July 2, 2009

principle one can eliminate them by code duplication. We
comment on this and on the difficulties encountered with
fully general higher-order functions later in Section

1.1 Overview of results

We assume an operational semantics that maintains a free-
list which is reduced whenever a constructor function like
cons is evaluated. On the other hand, we assume that cer-
tain pattern matches returns the matched cell to the freelist
which accordingly increases in the branches of the match. If
we try to evaluate a constructor under an insufficiently large
freelist the evaluation gets stuck.

We then devise an annotation of typing derivations with
nonnegative rational values which allows for prediction of
the freelist size required to evaluate the program. For in-
stance, if we derive z : L(L(B,1),2),3 F e : L(B,4),5
then this signifies that if we evaluate e in a situation which
binds x to a list [l1,...,ln] then a freelist of size at least
3+2m+13,|l;| suffices to prevent evaluation from getting
stuck. If the evaluation terminates with a result [then the
freelist will have size 5 4 4|l|. Here |-| denotes the length of
a list.

We note two crucial features: First, the size estimate for
the freelist left after evaluation is given as a function of
the result type rather than the input. Second, estimates
do not just depend on the overall size of arguments but
may attach different weight to various parts of the data.
In the example the length of the input list counts twice,
whereas the lengths of the component lists only count once.
We find that these features allow for a surprisingly smooth
compositional formulation of the annotations.

Given a concrete program P we then set up a “skeleton”
of an annotated derivation which contains variables in place
of actual annotations. The various side conditions in our
rules then take the form of linear inequalities between these
variables. We thus obtain a linear program L(P) whose solu-
tions are in one-to-one correspondence to valid annotations.
As is well-known such solutions can be efficiently computed.

We also show that integral solutions to the L(P) are in
1-1 correspondence to enriched versions of P in the pro-
gramming language LFPL [8] which bypasses memory man-
agement by explicitly passing around memory cells as part of
the data. Programs in LFPL largely behave like imperative
programs that modify heap-allocated data in-place rather
than claiming fresh memory for results of computations and
returning unused memory. In this way, our inference can
also be viewed as type inference for LFPL.

It must be said, though, that not all possible LFPL pro-
grams arise as reconstructions from solutions of the con-
straint system. The problem of reconstructing arbitrary
LFPL programs is considered in more detail in [11].

While obtaining integral solutions to linear programs is
in general NP hard, we prove that in several important and
natural sub-cases of our setting they can be obtained effi-
ciently.

We emphasize that our functional programs are not nec-
essarily required to be linearly typed. Indeed, we have a
contraction rule corresponding to aliasing that allows us to
identify two variables provided we split the resource anno-
tations accordingly.

For example, if we have z:L(B,3),y:L(B,6),5F e : C,6
then the contraction rule allows us to derive z:L(B,9) ,5 - e :
C, 6. Operationally, x,y point to a shared memory region.

If we use this contraction rule then validity of our analysis
relies on the following semantic condition: if at any point in
the evaluation of a program a heap cell is deallocated in a
destructive pattern match then this cell must not be acces-
sible from the variables occurring in the remaining program
fragment. We speak of benign sharing in this case. A viola-
tion of the property is called malignant sharing.

Notice that if a program exhibits malignant sharing then it
will not necessarily crash due to null pointer access because
it might not actually follow the path to the dangling refer-
ence even though this is possible. One may thus compare
benign sharing to the property ensured by garbage collec-
tion.

We formalise benign sharing on the level of the operational
semantics as a judgment S,o F e ~»P v, 0’ which asserts
that in stack S and heap o the evaluation of e results in
value v and new heap o’ and, moreover, all sharing during
that evaluation is benign.

For particular programs we may be able to assert benign
sharing by inspection or logical reasoning. More interest-
ingly, we would like to guarantee it by some static type
system. We already know that linear typing, i.e., the ab-
sence of contraction, provides such a guarantee; we conjec-
ture that the more general read-only type systems and anal-
yses described in |2} |12} |15, [1§] all are able to provide such a
guarantee as well, by suitably restricting but not altogether
excluding the contraction rule.

The important point here is that the semantic formalisa-
tion of benign sharing makes no reference to resource an-
notations so that discharging the extra assumption made is
orthogonal to the work described in this paper.

We also mention that, of course, we can recursively define
cloning functions in the strictly linear fragment, for instance
clone : L(B,2) — L(B,0)®L(B,0). The two copies returned
are not aliased but one of them is constructed using fresh
heap space.

Notation: The set of natural numbers denoted N is
assumed to contain zero. We let Q* denote the set of non-
negative rational numbers.

If f is a finite function we write f\z for f| (dom f\ {z}),
that is, the restriction of f to its domain less the element x.
We write f[z—v] to denote the finite function that maps z
to v and acts like f otherwise.

FV(e) denotes the set of free variables occurring within
the term e. The substitution of a free variable v by ¢ in
term e is denoted by e[t/v].

If | denotes a list, then |I| denotes the length of the list.
Equivalently, |/| is the number of nodes of ! in a machine
representation.

Acknowledgements: Part of this research was carried
out within the EU project IST-2001-33149 “Mobile Resource
Guarantees”. We also acknowledge financial support by the
Deutsche Forschungsgemeinschaft (DFG).

2. FUNCTIONAL LANGUAGE

We define a first-order typed functional language LF as fol-
lows.

A:=1|B|L(A)|A®A|A+ A
F:=(A...,A)— A

zero-order types:

first-order types:

Extended version, for WWW only — July 2, 2009

Here B is the type of Booleans, L(A) is the type of lists
with entries from A, sum and product are denoted by +, ®.
Finally, 1 is a singleton type. We can also include labelled
trees, but refrain from doing so to save space. However, one
of our examples uses trees.

Since we are interested in memory consumption, we define
at this point a function SIZE : LF-type — N for later use:

SIZE (1) = SIZE (B) = SIZE (L(A)) = 1
SIZE (A® C) = SIZE (A) + SIZE (C)
SIZE (A + C) = 1+ max(SIZE (A), SIZE (C))

The values choosen in this definition should fit the intended
machine model, but are abitrary otherwise. We will exploit
a different (constant) choice in section

The terms of LF are given by the following grammar:

e= x| true| false
| «
| f@,. . zn)

| let z=e;1 in ez

| if = then e; else ey

| 21 @ x2

| match = with z1 ® z2 = e

| inl(z) | inr(z)

| match z with linl(y) = e; linr(y) = e

| nil

| cons(z1, z2)

| match z with Inil = e; I cons(z1,z2) = ez
| match’ = with Inil = e; I cons(z1,z2) = ez

In each of the following typing rules, let ¥ denote a LF
signature mapping a finite set of function identifiers to LF
first-order types, I' be a LF typing context mapping a finite
set of identifiers to LF zero-order types.

We use I'1, 'z to denote the union of contexts I'1 and I's,
provided dom(I'1) Ndom(I'2) = @. If this notation occurs in
a typing rule then disjointness is an implicit side condition.

Letters e, eq,ep, ... represent arbitrary LF terms accord-

ing to the given grammar, and A, B, C denote arbitrary LF
zero-order types.
ksl (LF:ConsT UNIT)

¢ a boolean constant

(LF:ConsT BooL)

I'ts e:B
z € dom(T")
_ LF:Va
I'ks z:(x) (R)
(f) = (Ag,...,A C
() = (A v — (LF:FuN)
Dyz1:Ar, . xpiAp by (o, .., 2p):C
IR (A Ty, x:Al :C
L= 2 - = 2 (LF:LET)
I'i, T2 Fx let x=e1 in e2:C
'k :C 'k :C
= ct Ll (LF:IF)

I',2:B ks if « then e; else ef:C

I x1:A1,22: A2 by 21 @ 22:A1 ® A2 (LF:PAIR)

F, 931:A1, $2:A2 Fz} 6:C
I'2:A1 ® Az s match x with 21 ® 22 = e:C
(LF:PAIR-ELIM)

I'z:Absinl(z):A+ B (LF:INL)

I'x:BFsinr(z):A+ B (LF:INR)
T y:Abys er:C I y:B s ex:C

I',z:A + B Fx match z with linl(y) = e; linr(y) = e2:C
(LF:Sum-ELIMm)

T b nil:L(A) (LF:NIL)

I, zn:A, ze:L(A) Fs cons(zp, ¢):L(A) (LF:CoONs)

I |—2 61:C F,thA,LBtZL(A) |—2 62:0
I, 2:L(A) Fx match z with Inil = e; | cons(zp,) = e2:C
(LF:LisT-ELIM)

I'zAyAbs eC
I, z:A by elz/x, 2/y]:C

(LF:SHARE)

The LF typing rule for match’, LF:LisT-ELIM’, is identical
to the one for match, LF:LisT-ELIM. The difference lies in
the intended operational semantics: while match deallocates
the location matched against, it is preserved by match’ for
subsequent use. Thus match’ shall stand for ‘read-only ac-
cess’. Accordingly, the rules for resource inference will also
be different for the two constructs.

We also point out that the typing rules are formulated in
a linear style. That is, multiple occurrences of a variables
are explicitly introduced via the rule LF:SHARE.

An LF program P consists of a signature ¥ and a col-
lection of terms ej for each f € dom(X) such that for
all f € dom(X) one has yi:A1,...,yx:Ax Fs ey:C when
2(f) = (A1, ..., Ar) — C. In concrete examples we indi-
cate the association of defining terms with function symbols
by writing down equations of the form f(y1,...,yx) = ef.

We usually consider a fixed but arbitrary program P
throughout the following.

We denote by LF'™ the fragment of LF which neither
contains the term constructor match’ nor the typing rules
LF:SHARE, LF:LisT-ELIM’. Note that LF'™ is an affine lin-
ear functional language.

2.1 Examples

Throughout the examples, the type A is any fixed (but arbi-
trary) LF-type. In an implemented version of LF one would
presumably want to allow type variables and possibly even
polymorphic quantification over these.

Extended version, for WWW only — July 2, 2009

Ezample 1. The following example defines a function that
reverses the order of the elements in a list of booleans.

reverse : (L(A)) — L(A)
rev_aux : (L(4),L(A)) — L(A4)

reverse(l) = rev_aux(l, nil)
rev_aux(l, acc) = match [with
I'nil = acc

I'cons(h,t) = rev_aux(t, cons(h, acc))

We furthermore define reverse’ and rev_aux’ similarly, just
replacing match by match’.

Ezample 2. The next example corresponds to the well-
known insertion sort algorithm:

sort : (L(A)) — L(A)
ins: (4,L(4)) — L(A4)
leg: (A®A) - B®(A® A)

ins(n,l) = match [with
I'nil = cons(n, nil)
Icons(h,t) =
match leq(n, h) with b® (n' ® h') =
if b then cons(n’, cons(h’,t))
else cons(h’,ins(n’,t))
sort(l) = match [with I nil = nil
Icons(h,t) = ins(h, sort(t))
To simplify notation we have used some syntactic sugar in
these examples: notably we allow nesting of terms which ex-
pands into nested let-constructs and also allow nested pat-
terns as in line 4 of ins which expand into a sequence of
nested matches.
Here we assume the comparison function leq to return its

arguments so that this example makes sense in the fragment
L Fl'm .

We conclude by two somewhat contrived examples which
require allocation of fresh memory.

Ezample 3. The function clone doubles its input:

clone : (L(B)) — L(B) ® L(B)
clone(l) = match [with Inil = nil ® nil Icons(h,t) =
match clone(t) with t1 ® t2 =
if h then cons(true,t1) ® cons(true, t2)

else cons(false, t1) ® cons(false, t2)

Ezxample 4. The function tos replaces each third element
of a list by a value depending on its two predecessors, so it
does not change the length of the list, but this implemen-
tation of tos is composed of two auxiliary functions, which
do change the length of the list in between. Namely, sec
deletes every third element whereas tpo inserts a new ele-
ment in every third position.

The significance of the type B ® B as opposed to B or an

unspecified type will be explained in Section [7]
tos : (L(B®B)) — L(B® B)
sec: (L(B®B)) — L(B® B)
tpo: (L(B®B)) — L(B® B)

tos(l) = tpo(sec(l))
sec(l) = match [with
Inil = nil
lcons(h1,t1) = match t1 with
I'nil = cons(hq, nil)
I cons(hz, t2) = match ¢z with
Inil = cons(h1, cons(hz, nil))
I cons(hs, t3) = cons(hi,cons(ha, sec(ts)))
tpo(l) = match [with
Inil = nil
Icons(hi1,t1) = match t1 with
I'nil = cons(h1, nil)
I cons(ha, t2) =

cons (h1 , cons(hg7 cons(h1, tpo(tg))))

3. OPERATIONAL SEMANTICS

We use a freelist containing available heap cells. We treat
this freelist simply as an integer value giving the number of
free words.

Issues of alignment are assumed to be dealt with by an ap-
propriate defragmentation routine to be launched whenever
a request for t aligned words cannot be met although the
freelist has size larger or equal than ¢. Admittedly, defrag-
mentation is costly to implement. If desired, we can avoid
fragmentation by assuming that all allocated blocks are of
the same size. See also the remark on garbage collection at
the end of this section.

Let Loc be a set of locations which model memory ad-
dresses on a heap abstracted over possible renaming that
may become necessary upon defragmentation. We use ¢ to
range over elements of Loc. Next we define a set of wval-
ues Val, ranged over by v which occur as values of program
variables, results, and values bound to locations in a heap.

v == ¢ | £ | NULL | (v,v) | inl(v) | inr(v)

A value is either a boolean constant ¢, a location ¢, a null
value NULL, a pair of values (v,v) or a value marked with
either inl or inr. Occasionally we use a short hand notation
for tuples, e.g. we write (v,v,v) instead of (v, (v,v)).

We assume that the LF type derivation is implicitly ac-
cessible (e.g. by adding a pointer to a type to each value as
is done in Java), hence we allow ourselves to extend the size
function to SIZE : Val — N. The idea is that value v occupies
SIZE (v) words when stored in the heap. We are aware that
this is not rigorous, however, the reduction on notational
clutter outweighs the formal disadvantages by far.

A stack S:Var — Val is a finite partial mapping from vari-
ables to values, and a heap o:Loc — Val is a finite partial
mapping from locations to values. Evaluation of an expres-
sion e takes place with respect to a given stack and heap,
and yields a value and a possibly updated heap. Moreover,

Extended version, for WWW only — July 2, 2009

the size of the freelist may shrink or grow upon evaluation.
Thus we have a relation of the form

/ /
m,S,ocFe~wv,0,m

expressing that the evaluation of e under stack S and heap
o succeeds in the presence of a freelist of size m and results
in value v. As a side effect the heap is modified to ¢’ and
the size of the freelist becomes m’. The values m and m’
are arbitrary natural numbers.

The stack is extended with additional variable bindings
whenever we enter a new scope, inside subterms in the
premises of the evaluation rules. When we evaluate a func-
tion body we use a stack which only mentions the actual
parameters, intuitively preventing access beyond the stack
frame. Notice that the stack may contain pointers into the
heap (i.e., locations), but there are no pointers going from
the heap into the stack.

The operational semantics is given with respect to a fixed
signature and program.

m, S,o F % ~» NULL, 0, m (~¢:UNIT CONST)
m, S, o F true ~ tt, 0, m (~¢: TRUE CONST)

m, S, o - false ~ ff, 0, m (~¢:FALSE CONST)

m,S,o bz~ S(z),0,m (~¢:VAR)
S(z1) =v1 -+ S(xn) = vn
m, [Y101, . .., YnUn], 0 F ep ~> v, 0", m/
the y; are the symbolic arguments of ey (Fux)
~¢o FUN
m,S,oF f(z1,...,%n) ~ v,0’,m’ ©
m,S,Ul—el’\»’UhUo,mo
mo, S[z—wv1],00 F ez ~ v 0’ m’ (LeT)
~+¢o:LET
m,S,o Flet x=e; in ez~ wv,0’,m’ ©
S(z) =t m,S,oF e~ v,0,m' (Tr7)
~s:IF-T
m, S,o if x then e; else ef ~ v,0’, m’ ¢
S(x) =ff m,S,oFe;~ v, ,m'
() il / L (~:IF-F)

m, S,o - if then e; else ef ~ v,0’,m
m,S,0 b x1 @ xa~ (S(z1),S(x2)),0,m (~¢:PAIR)

S(z) = (v1,v2) m,Slx1—v1][w2—v2],0 F e~ v, 0, m/

m, S,o - match x with (71 ® 2) = e ~ v,0’,m’
(~¢ :MATCH-PAIR)

S(m) = .
m, S, ot inl(z) ~ inl(v),o,m (~ro:INL)
o= (~¢:INR)

m, S,o Finr(x) ~ inr(v),o,m

S(z) =inl(v")
m, S,o F match z with linl(y) = e1 ~ v,0’,m’

linr(y) = e2
(~¢:MATCH-INL)

m, S[y—v'] Fe1 ~ v, o', m’

S(x) = inr(v)
m, S,o F match z with linl(y) = e1 ~ v,0’, m’

linr(y) = e2
(~¢:MATCH-INR)

m, S[y—v'] F ea ~ v, o', m’

m, S, o F nil~ NULL, o, m (~ro:NIL)

v = (S(xn), S(x)) ¢ ¢ dom(o)
m + SIZE (v) , S, 0 F cons(zp, zi) ~> £, o[l—v], m
(~r¢:CONS)

S(z)=NULL m,S,oF e1~ v,0’,m

m, S, o - match xz with Inil = e;

~v,0,m
Icons(zp, xt) = e2
(~o:MATCH-NIL)

S()y=¢ o) =(vn,v) mo=m+SIZE(o(())
mo, Slznup][ze—v], 0 \ L+ ez ~ v, 0, m/

m, S,o F match z with Inil = ¢e; ~ v, ,m

lcons(zn, x¢) = €2
(~¢:MATCH-CONS)
S(x) = NULL

m, S, - match’ x with Inil = e;

/ /
m,S,cFe1~v,0,m

~v,0',m
lcons(zp, xt) = e2
(~o:MATCH’-NIL)

S(z)=1¢ o(l) = (v, ve)

m, S[zp—up] [z, 0 F e2 ~ v, 07, m/

m,S,o F match’ x with Inil = e; ~ v, ,m

Icons(zp, x¢) = €2
(~r¢:MATCH’-CONS)

The only rules that deserve an explanation are the ones
pertaining to the match constructs for lists. It is assumed
that the match construct immediately deallocates the node
matched against, whereas it is preserved in a match’ con-
struct. Accordingly the freelist grows in the branches of a
match whereas it stays the same in a match’. At this point,
the programmer decides which one to use. It is conceiv-
able that this decision can be automated in such a way that
the best possible resource behaviour is obtained. This is,
however, left for future research.

Note that given m, S, o0, e it need not be the case that
there exist v,o’,m’ with m,S,o0 F e ~» v,0’,m’ for one of
the following reasons:

e Non-termination (this manifests itself as an infinite
backwards application of rule ~»¢:FUN)

e Wrong elements in stack or heap, e.g. a Boolean where
either NULL or a pair is expected.

e Insufficiently large freelist, e.g. m = 0, e = cons(1, nil).

We choose to accept nontermination and rely on a standard
typing discipline to deal with wrong elements. The main
contribution here is to devise static methods that ensure
absence of insufficiently large freelists.

We remark at this point that the judgement m, S, o - e ~
v,0’,m' admits the following alternative interpretation. If
we evaluate e using a garbage collector which collects after
every pattern match then the heap size during the evaluation
will not exceed the initial heap size by more than m.

Extended version, for WWW only — July 2, 2009

3.1 Operational semantics without freelist

In order to be able to formally state correctness of the static
analysis we are going to describe, it is convenient to in-
troduce an auxiliary operational semantics which does not
rely on freelists. To this end, we introduce a judgment
S,0 F e ~+ v,0’ which intuitively reads as “in stack S and
heap o expression e evaluates to result v and leaves heap
o'”. The rules defining this judgment are like the ones that
define the instrumented judgment m,S,c F e ~+ v,0’,m’
but without all reference to freelist sizes. For example, we
have the rule

v = (S(zn),S(x:)) ¢ ¢ dom(o)

S, 0t cons(zp,) ~ £, o[l—v]

(~:CoNSs)

We can understand this judgment as formalizing evaluation
in a C-like environment where space is allocated whenever
a cons-cell is formed and deallocated whenever we match
against a cons-cell.

In earlier work [8, [2] it was shown that under a linear
typing discipline, in particular in LF"®, this judgment rep-
resents the intended functional semantics. In this paper, we
will rely on the essence of these earlier results and do not
speak about functional semantics at all. More precisely, we
will establish a result of the following kind.

CORRECTNESS PROPERTY. If T ks e:A in LF and our
static analysis derives a minimum freelist size n then when-
ever S, I e~ v, 0’ without malignant sharing then for all
m > n there exists m' such that m,S,oc e~ v,0’,m’.

3.2 Formalisation of benign sharing
We define a variant of the operational semantics:

S0t e~ 0,0
which differs from the original operational semantics in that
it prohibits malignant sharing in the sense described in the
Introduction.
The auxiliary function R : heap x Val — P(Loc) is de-
fined as follows:

R(o,c) =0 R(o,NULL) =0
R(o, (v1,v2)) = R(o,v1) UR(0,v2) R(o,inl(v)) = R(o,v)
R(o,€) = {£} UR(o,0(¢)) R(o,inr(v)) = R(o,v)

We set R(o,0(£)) := 0 when £ ¢ dom(c). We extend R to
stacks by:

R(o,S) =

U R(0, S(x))

z€dom S

Intuitively, R(o,S) is the set of locations accessible from S.

The judgment S,o + e ~" v, ¢’ is now inductively de-
fined by the rules for the ordinary (resource-free) operational
semantics except for the rules ~»:LET and ~»:MATCH-CONS
which are replaced by the following ones. The rules concern-
ing match’ are not altered.

S, ok e1 ~P v, 00
Slx—v1],00 - €2 ~P% . o
ol R(a,8") = a0l R(a,S") S’ = SIFV(e2)

bs !

- (~P%:LET)
S,oblet x=e; in ex~" v, 0

S(x) =14 o(€) = (vn,ve)
0 & R(o, S[zn—vn][ze—ve] [FV(e2))
Slzn—vn][zi—vi], 0 \ £ F ea ~P v, ¢’

b

S, o F match x with I nil = e; I cons(zp,) = ez ~"° v, 0’

(~"*:MATCH-CONS)

Since these rules have strengthened preconditions com-
pared to their counterparts we clearly have

LEMMA 1. 0,5 F e~ 0,0 = 0,SFe~v,0

Let us consider short program fragments illustrating malig-
nant sharing: let z=reverse(y) in y, where reverse is de-
fined as in Example[l] The function reverse reverses the list
y destructively, hence the rule ~»":LET is not applicable, as
y is contained in the reachable region and changes after eval-
uation of reverse(y). Note that the rule ~:LET would go
through. If the fragment would call reverse’ instead, which
produces a reversed copy via the use of match’ instead of
match, the program fragment above would be acceptable.
However, the difference would be revealed in the different
resource consumption as will be shown in Section

Now consider the fragment let x=y in = +- y, where the in-
fix + denotes list appending (see definition in Example E[)
Here the rule ~"*:LET would be applicable, but fails since
x4+ y cannot be evaluated, unless S(y) = NULL. The rea-
son is that the evaluation of x H y deallocates x, but the
locations reachable from x can also be reached via y, hence
the precondition added to ~»**:MaTcH-CONS is violated. Of
course, we could define a copying version of “append” us-
ing match’. Note that our semantics does not cater for in
place update. We can either create a new cell or deallo-
cate a cell, but never change the contents of an existing cell.
This precludes, in particular, the creation of circular data
structures.

The annotated version '\»gs is formulated similarly, the
resource related constraints do not change.

4. LF WITH RESOURCE ANNOTATIONS

In this section we introduce resource annotations for LF
which will allow us to predict the amount of heap space
needed to evaluate a program. This prediction will be a
linear expression involving the sizes of the arguments.

We call this annotated version LF(. Accordingly, the lin-
early typed fragment not containing the rule LFy:SHARE and
the match’-term constructors will be called Lan.

The term grammar for LF, is identical to the one given for
LF. The types of LF¢ are given by the following grammar:

pure zero-order: P:=1|B|P®P| R+ R|L(R)
rich zero-order: R := (P,k) (for k € Q")
first-order: F = (P,...,P,k) —» R (for k € Q")

The underlying LF-type of an LFy-type is defined by || :
LFy-type — LF-type

=1 IL(A)[= L(AD
B|=8B A Cl=Al®|C]|
I(A,n)] = A A+ Cl= Al +[C]

(A1, ..., Ap,n) = O = (JAul,-.., [4p]) — |C]

Furthermore we define SIZE : LFy-type — N by
SIZE (A) := SIZE (JA]), thus SIZE (A) does not depend on
the annotations contained in A.

Extended version, for WWW only — July 2, 2009

Let ¥ be an LF(, signature mapping a finite set of func-
tion identifiers to LF first-order types, I' be an LF¢ typing
context mapping a finite set of identifiers to LF, pure zero-
order types, and let n,n’ be positive rationals. An LF, typ-
ing judgment ', n Fx. e:A,n’ then reads “under signature X,
in typing context I' and with n memory resources available,
the LFo term e has type A with n’ unused resources left
over”. In each of the following typing rules, let furthermore
A, B,C denote arbitrary LFy zero-order types and n,k,p,
possibly decorated, denote arbitrary values in Q.

n>n'
m (LF(}CONST UNIT)
n>n'
¢ a boolean constant
T Fy 6B (LFy:ConsT BooL)
x € dom(I") n>n'
= LFs: VAR
Inbs z:(z),n (LFo)
E(f) = (A17 . '7AP7k) — (C7k,)
n>k n—k+k'>n (LFo FUN)
T,z1:A1, ..., xp:Ap,nbs f(x1,...,3p):C,n’ o
Ti,nkse:A, ng Do, x: A, no Fs ea:C,n’ (LFo LeT)
:LET
I'1,To,n ks let z=e; in ex:C,n’ o
I'nk (A, n/ I'nk A n/
nry é; n nrx éer n (LFo:IF)

T, z:B,n b5 if = then e; else ef:A,n’

n>n'
[ziiAr,x0: Ao, nbs 21 @ 22: A1 @ Ag,n

- (LF¢:PAIR)

I, 21:A41,22:42,n Fx e:C,n’
I,2:A1 @ As,n s match = with 1 ® 22 = e:C,n’
(LFy :PAIR-ELIM)

n>k +n
Tz:A,n by inl(z):(A, k) +

Bl (LF¢:INL)

n>k.+n
T,z:B,n by inr(z):(A, k) +

Bl (LFy:INR)

Iy:A,n+ ki Fs e:C,n’ T,y:B,n+ k. Fs e2:C,n’
T, z:(A, ki) + (B, kr),n Fx match = with linl(y) = e1:C,n’

linr(y) = e2
(LFy:Sum-ELIM)

/
n>mn

,nts nil:L(Ak),n

(LF¢:NIL)

n>SIZE(A® L(A,k)) +k+n'
T,z A,z L(A k) ,n s cons(zn, ¢):L(A, k), n’
(LFy:CoNs)

I,nkse:C,n
T, zn:A,we:L(A k) ,n+SIZE(A® L(Ak)) + k Fs e2:Cyn/

[, z:L(A, k) ,n Fx match z with Inil = e1 :C,n/

lcons(zp, xt) = e2
(LFy:LisT-ELM)

I',nkse:C,n'
T,zp:A,zeL(A k), n+ ks ea:C)n’
T, z:L(A, k) ,n Fs match’ z with Inil = e; :C,n/

lcons(zp, xt) = ez
(LF¢:LisT-ELIM’)

I, 2:A1,y:Aa,n s e:C,n/
T, 2:A1 ® As,n ks elz/z, z/y):C,n’

(LFy:SHARE)

where A1 ® A; is defined as follows when |A1]| = |As]:

lol=1 BeB=B
(A, k1) @ (C, kz):(A@C,k1+k2)
(A1 ®C1) B (A2®C) = (A1 @ A2) ® (C1 8 C?)
(A1+C1) P (A2+C) =41 A+ C1 @ Ca
LA e L) =LA)

Accordingly an LF, program P is a pair, consisting of a
signature X and a collection of terms ey for each f € dom(X)
such that
Vf € dom(X).
E(f):(Ah"wApJf)—>(C7k/) =
y1:A1, e ,yp:Ap, kFs ef:C, kl

We observe that the following type rule is admissible:

I,nts e:A no n' <no+k
I'n+kFseAn

(LFo:WASTE)

In other words a typing judgment remains valid if we in-
crease the minimum freelist size required and/or decrease
the lower bound on the remaining freelist size after the com-
putation. Furthermore both values may be increased pro-
portionally, i.e. additional resources can be handed over.

If P is an LF, program, then |P| denotes the underlying
LF program:

LFo LF
LEMMA 2. I',n by e:Con' = |T| by e|C]|

ProoF. Trivial, as each LF typing rule is a weakened form
of its corresponding LF¢ typing rule. [J

4.1 Examples

We revisit the Examples presented in 2] Since the term
languages of LF and LF, are identical, we just give the
proper LFy signatures here. Again, A denotes a fixed pure
LFy-type; let a € Q1 be fixed (but arbitrary) as well.

Ezample[]]

reverse : (L(4,a),0) — (L(A4,a),0)
rev_aux : (L(4,a),L(4,a),0) — (L(4,a),0)

Extended version, for WWW only — July 2, 2009

While reverse reverses its input at no additional resource
costs, reverse’ copies its argument so that it can be reused.
For ap = a + SIZE (A® L(A)) = a + SIZE (A) + 1 we obtain
the typing

reverse' : (L(4,a0),0) — (L(4,a),0)
rev_aux’ : (L(A,a0),L(A,a),0) — (L(4,a),0)

In the explicit case A = B and a = 0 (hence ap = 2), we
see that reverse can be computed without any additional
resources, while reverse’ consumes 2n previously unused
cells if run on an input list of length n (which itself already
occupies 2n cells, as each node occupies 2 cells according to
SIZE (B ® L(B,0)) = 2 as defined in section [2)).

Ezample|2 Let again ap = a + SIZE (A4) + 1.

sort : (L(A4,a),0) — (L(4,a),0)
ins: (A,L(4,a),a0) — (L(4,a),0)
leq: (A® A,0) — (BR(A® A),0)

Ezample[3
clone : (L(B,2),0) — (L(B,0) ® L(B,0),0)
Ezample[]]

tos: (L(B®B,0),3) — (L(B®B,0),0)
sec: (L(B®B,0),3) — (L(B® B, 2),0)
tpo: (L(B®B,2),0) — (L(B®B,0),0)

The intuition behind the fractional annotations will be ex-
plained in Section [7]

S. TRANSLATION TO LFPL

In [8] we have introduced a linear functional language that
can be translated into C without dynamic memory alloca-
tion, i.e., without using the system calls malloc() and free().

This was achieved by introducing an abstract type ¢
standing for memory locations big enough to hold any struc-
ture node occurring in a particular program. Elements of
this abstract type may be passed around as data, in par-
ticular they can arise as input, output, and components of
structures. Constructors of recursive types take an extra
argument of type 0, e.g., cons: (O, A,L(A)) — L(A). In the
translation to C the space pointed to by this extra argument
is used to store the newly create structure node. Conversely,
in a pattern match we gain access to an element of type ¢
when matching against a recursive constructor such as cons.
We will explain how LFg“ can be used to infer LFPL-typings
for LF'™_programs.

Since LFPL handles resources as elements of type ¢ we
restrict to integral annotations. For this purpose let LFi’lln
denote the fragment of LFg“Where all annotations are re-
stricted to nonnegative integers.

Furthermore, we temporarily redefine SIZE (A) to be 1
for all types A. This corresponds to the assumption made
in LFPL that all structure nodes are stored in heap portions
of equal size.

,lin

Types in LFIE can then be translated to LFPL-types by
mapping each annotation n to an n-fold product of type
O, for instance, the type (A4,L(A4,1),2) — (L(A,1),0) is
mapped to (A, L(A®), 0®0) — (L(AR J)).

The translation of terms follows the structure of a deriva-
tion in LFli’lm; we omit the (essentially obvious) details.

This is useful since the resulting C-programs can be ex-
ecuted without overhead such as freelists, defragmentation,
or garbage collection which makes them suitable in resource-
restricted environments.

6. LF, AND SPACE-AWARE SEMANTICS

In this section we will prove a correspondence between full
LF, and the space-aware operational semantics from Sec-
tion B

We must formalize that a given stack and heap fit a certain
typing context:

o F NULL:1 (UnrT)
ok cB (Boov)
FuA Fw:A
7T A g W (PAIR)
ok (v,w):A1 ® A
ok uvA (InL)
_ NL
oFinl(v):A+ B
okuvB INR)
_ N
ockinr(v):A+ B (INR
o F NULL:L(A) (LisT-NiL)

oc\lFo(£):ARL(A)
ok L(A)

(L1ST-NODE)

We extend to contexts by

Vz; € dom(T). o k- S(z;):T'(z:)
ok ST

(CONTEXT)

Note that if ¢ ¢ dom(I") then o F+ S:I' is equivalent to
ot (S,z:A):T, i.e. unused junk in the stack does not matter.
Furthermore we extend to LF¢by

O’"SZAQ - O’l‘S:‘Aol
where Ay is an LF¢ type and similarly for contexts.

LEMMA 3. Let o, T be heaps. If o b v:A and VL € R(o,v).
o(f) =7(0) then T - v:A

Note that the intended equality is strong as usual through-
out this work, i.e. if o(¢) is undefined then 7(¢) must be
undefined as well.

Proor. The Proof follows by rule-induction on the
derivation of o - v:A:
Unit Obviously 7 F NULL:1, since the statement holds re-
gardless of the heap configuration.

The proof for the rules Bool and List-Nil follow sim-
ilarly.

Extended version, for WWW only — July 2, 2009

Pair By the induction hypothesis we have 7 F v:A; and
7 b w:As, therefore 7 F (v,w):41 ® Az by PAIR as
required.

Inl Follows immediately from the induction hypothesis ap-
plied to o - v:A. Since R(o,inl(v)) = R(o,v) by Defi-
nition, R(o,inl(v)) = R(r,inl(v)) follows by the induc-
tion hypothesis as well.

The proof for the rule Inr follows similarly.

List-Node Let 6 := o \ £ and 7 := 7 \ £. By definition
6 o(f):A®L(A). Thus application of the induction
hypothesis yields 7 F o(£):A ® L(A) and therefore 7 I
7(€):A ® L(A) and, finally, 7 - ¢:L(A) by LisT-NODE
again.

0

LEMMA 4. If T Fs e:A and o F S:T'[FV(e) and S,o +
e~ v, o' then o’ F v:A.

PRrROOF. By rule-induction on the operational semantics:

~P:Var From I' F z:A and ¢ + S:I'[{z} follows o F
S(x):A. By definition S,0 F 2 ~* S(z),o, hence
the claim is true.

~P:Fun By the premise of ~»P:FUN we know
[y1—=S(z1), ..., yn—S(zn)],0 F e; ~" v o' and
also y1:41,...,Yn:An F ef:A by the property of valid

LF programs. From o F S:I'| FV(es) we deduce o
[y1—S(x1), ..., yn—S(Tn)]:{y1:41,. ..
hence the induction hypothesis directly yields the
result.

~P%:Let From the premise of ~>PS:LET,
ol R(o,SFV(e2)) = ool R(o,S[FV(e2)), we de-
duce by Lemma that oo F S:T2] FV(e2).

By the induction hypothesis we obtain oo F vi:A,
thence o9 F S[z — v1]:(T2,2:A)[FV(e2). The de-
sired result is then obtained from the application of
the induction hypothesis on the evaluation of es.

~+P%:Cons By the definition of rule LF:CoNs we have
I' = (IV,zp:A,z:L(A)) hence by our assumptions
o S(zn):A and o F S(z¢):L(A). By the premises of
~+P5:Cons then follows o[l — (S(z1), S(zt))] F £:L(A)
as required.

~P*:Match-Cons From o + S:I' FV(e), the premises of
~+P5:MaTCH-CONS, and Lemma |3| we deduce o \ £ -
Slzn — vnllze — ve]:(T, zn:A, z4:L(A)) hence the re-
sult follows directly from the induction hypothesis.

O

We define Y : heap x Val x LF-type — Q% by
Y(o,v,1) = Y(0,¢,B) =
((UlaUQ) A®B) T(07U17A)+T(U7’U273)
T(o,inl(v), (A, k) + (B,1) = k + T(q,v, A)
EO’ inr(v), (A k);}—) =1+7(o,v,B)

o,NULL, L(A4, k))
Y(o,6,L(A, k) = k+ Y(0,0(0), A® L(A, k)

’

(B
”
+

and furthermore

Y(o,S,T) := Z

zedom I'

Y (0, S(x),I'(z))

7yn:An}rFV(ef)7

~P:Fun Let e = £(y1,...,up).

The amount of additional heap space needed to evalu-
ate a function f : (Ai,...,Ap, k) — (B,k’) depends on
the size of the input to £f. If o F S:{z1:A1,...,2p:Ap},
the amount of additional heap space required to compute
fis k4 Y(o,S,{z1:A41,...,25:Ax}). The remaining un-
used heap space is k' + Y (o', v, B), provided that S,o +
flzi, ... ,z8) ~ v, 0.

In particular, if £ : (L(B,a),b) — (L(B,c),d) then evalu-
ating f(w) takes at most alw| + b extra space to evaluate,
where |w| is the length of w. If we evaluate f(w) given a
freelist of size alw| + b + k (where k > 0) then after the
evaluation the freelist will have size at least ¢|f(w)|+d+ k.

LEMMA 5. If of
T(o' v, A).

PrOOF. By induction on the definition of Y. [

R(o,v) = o' R(o,v) then YT(o,v,A) =

LEMMA 6. For all 0,5, A1, As, it holds that Y (o,v, A1 ®
Az) = Y(o,v, A1)+Y (0, v, A2) provided that Y (o,v, A1®A2)
is defined.

Proor. Follows directly from the definitions. [J

THEOREM 1. Let P be a wvalid LFy program with signa-
ture 3. For all LFy terms e such that I',n s e:A,n’ and
whenever S, e~ v,0’ and o - S : (T[FV(e)) then for
allg € Q" and for allm € N such that m > n+Y (o, S,T)+q
there ezists m' € N satisfying m’ > n’ + Y (o', v, A) +q such
that m, S, 0 - e ~8 v, o', m’.

PrOOF. The proof is by induction on the lengths of the
derivations of S,0 F e~ v,0" and I',n b5 e:A,n’ ordered
lexicographically with the derivation of the evaluation tak-
ing priority over the typing derivation.

LFy:Share Assume the last step in the derivation of I', n Fx
e:A,n’ was made by the use of LFo:SHARE. Hence I =
Do, z:A1® Az, e = eo[z\z,y\2] and T, z: A1, y: A2, n b5
eo:A,n’.
By otk S:(I'[FV(e)) we have o - S(z) : A1 ® Az. We
may assume that z € FV(e) for otherwise the applica-
tion of LF¢:SHARE has no effect and could be omitted.

Let So := (S\ 2)[z—S(2), y—S(2)]. It is then obvious
that o = So : (Do, 2:A1, y:42) [FV(eo)).

bs bs

Furthermore if S, e ~+"° v,0’ then Sy, 0 F eg ~»
v, 0’ by a derivation of the same length (and structure),
since both new variables refer to the same value as the
old variable before. The same holds for the annotated
statements.

By Lemma |§| we have n + V(0,5 T) +q > n +
Y (o, So, (I'o, z:A1,y:A2)) + g hence the induction hy-
pothesis yields the desired m/.

~P:Var The rule «»gS:VAR requires m = m’, hence it

suffices to show that n + Y(c,5,T) + ¢ > n' +
Y(o,S(x),I'(x)) + ¢, which follows immediately as
n > n’ by the premise of LFy:VAR and Y (o, S,T) >
Y (o, S(z),['(z)) by definition, since z € domT" follows
again by the premise of LF¢:VAR.

For the sake of simplic-
ity we ignore the renaming of the function calls argu-
ments into the functions symbolic arguments names
and assume those names to be equal. Hence let D :=

Extended version, for WWW only — July 2, 2009

=

[y1—v1, ..., yp—vp] C S according to the premises o

~Ps:Fun.

Assume S(f) = (41,...,Ap, k) — (C, k'), hence A :
yi:A1,.. ., yp:Ap CTand n > kaswellasn—k+k’
n’ by the premises of LF¢:FUN.

IVl

Since P is a valid LFy program we have Ak Fx
es:C,k'. Obviously we also have o - D : A. For
m>n+7Y(0,5T)+q¢>k+Y(o,D,A)+ (n—k+q)
we apply the induction hypothesis to the premise of
~»"*:FUN and obtain m, D,o I e ~5° v,0’,m’ with
m >k +Y0,v,C)+(n—k+q) =n-k+k)+
Y(o',v,C)+q>n'+T(o',v,C) + q as required.

~PS:Let Let qo = 7Y(0,5,I2) + ¢ and m > n +
Y(o,S,(T1,T2)) +¢=n+Y(c,57T1) + go hence ap-
plying the induction hypothesis to S, o F €1 ~»° v, 09
yields mo > no + Y (00, v0, A) + qo-

Let S’ := S|FV(e2) = domT2. By o|R(0,5) =
o' R(0,5’) according to the premises of ~+":LET,
we obtain Y(o,S,T2) = Y(00,5,T'2) by Lemma
Thus mo > no + Y(oo0,v0,A4) + Y(00,5,T2) + ¢ =
no + Y (oo, S[z—vo],I'2, 2:A) + ¢. Thence the induc-
tion hypothesis applied to S[z—wo], o0 F e2 ~* v, 0’
yields m’ > n' 4+ Y(o’,v,C) + q as required.

The induction hypothesis was applicable in both cases
by the premises of LF:LET and in the latter case addi-
tionally by oo F S[z—wo]:{['2,2:A} which follows via
Lemma [4] from o¢ b [z+—v0]:A and via Lemma [3] from
ok 57 Is.

~+P%:Cons According to '\»ES:CONS we have m = m' +
SIZE (v), where v = (S(zn),S(z1)), hence we must
show that n + Y(0,5,T) + ¢ — SIZE(v) > n' +
Y (o[l—wv], ¢, L(A, k)) + ¢q holds.

By the premise of LF,:CoNs we deduce n— SIZE (v) >
n' +k+SIZE (A ® L(A,k)) — SIZE (v) = n’ + k where
the equality follows since {xn:A, z+:L(A,k)} C ' and
ot ST.

Again by {xp:A,z¢:L(A,k)} C T and the premises
of ~P":CoNns we observe Y(o,S,I) > T(o,v,A®
L(A,k)) = Y(c[t—v], ¢, L(A,k)) — k which completes
the claim (as k cancels out).

~":Match-Cons Let S’ := S[znrsuvp][re—v;] and T :=
P\zU{xp:A, z;:L(A k)}. Fromo - S :T[FV(e) then
follows o \ £+ S’ : T'|FV(e2) as £ & R(o,S'| FV(e2))
according to a premise of ~»P5:MATCH-CONS.

The application of the induction hypothesis to
mo,S',0 \ £ F ez ~g w,0/,m then yields the
desired m’, provided that n + Y(o,S,T) + ¢ >
n+ SIZE(AQL(Ak)) + k+ Y(c \ £S5, 1) +q—
SIZE(c(£)) = n+k+ Y(c \ £S5, T') + q since m =
mo — SIZE ((£)) and SIZE (A ® L(A, k)) = SIZE (0(¢))
by the premise of «»gS:MATCH-CONS.

By the premises of ~+"*:MATCH-CONS we have S(z) =
¢ and o(f) = (vn,ve) = (S'(wn),S (x¢)). Hence
Y(o,5,T) = Y(o,l,z) + Y(o, S\ z, '\ z) = k +
Y(o, (S"(xn), S (1)), A®L(A, k) + Y (o, S\z,I'\z) =
k+Y(o\ 2, (5 (zn), S (x1)), AQL(A k) + T (o \ £, 5\
z,T'\z) = k+Y(c\ ¢S, T') where the penultimate
equation follows again by ¢ € R(c, 5’| FV(e2)).

O

COROLLARY 1. If P is a valid LFy program containing a
function symbol

f:(L(B,n1),...,L(B,nk),m) — (L(B,n"),m)

then the function call f(l1,...,lx) evaluates properly to a list
I', provided that there are at least m+ Ele n;|li| free mem-
ory cells available, where |l;| denotes the number of nodes of
list ;. After the evaluation there are at least m’ +n'|l'| free
cells available.

7. INFERENCE OF ANNOTATIONS

Recall that a linear program (LP) is a pair (V,C) where V
is a set of variables and C is a set of inequalities of the form
a1x1 + ...anTn < b where the z; are variables from V and
the a; and b are rational numbers.

In addition, one may specify an objective function which
is a term of the form cixz1 + --- + chxn where the z; are
from V and the ¢; are rational numbers. In this case, one
defines an optimal solution to be a solution that minimizes
the value of the objective function.

Our aim in this section is the following. Given an LF
program P we want to discover whether there exists an LF
program P’ such that |P’| = P. To this end, we notice
that the structure of any LFy-derivation is determined by
its underlying LF-derivation.

This means that if we are given an LF-derivation of some
program P all that needs to be done in order to obtain a
corresponding LF¢-derivation is to find the numerical val-
ues arising in type annotations in such a way that all the
numerical side conditions are satisfied.

To discover these annotations, we assign to a given LF-
program P (assumed to be equipped with a typing deriva-
tion) an LP L(P) with the property that solutions to £(P)
are in 1-1 correspondence with LF, programs P’ such that
|P'| = P. The LP L(P) is the pair (V,C) where V con-
tains one specific variable for every occurrence of a numeri-
cal value in a possible LF,typing derivation.

The set C collects all the inequalities arising as side condi-
tions in such a derivation. This includes in particular equal-
ity constraints that are implicit in that types are sometimes
required to be equal, e.g. in rule LF,:VAR. Note that an
equality constraint may be encoded as a pair of inequality
constraints. Furthermore we add the constraints that all
occurring variables are nonnegative, as all LFy-type anno-
tations are nonnegative.

As an illustrative example, we consider a program P that
contains a single function symbol rev_aux : (L(A),L(A)) —
L(A) with the defining expression as given in Example
We have the LF typing derivation shown in Figure

In order to form L(P) we consider an “indeterminate”
LFo-derivation as in Figure 2] It is clear that any LF,-
derivation matching the LF-derivation of P arises as an in-
stantiation of the derivation in Figure [satisfying the con-
straints given in Figure |[3] Of course, we can readily elimi-
nate all simple equality constraints given in Figure [3]leaving

C:TLQ—SIZE(A)—l—bl
n225|ZE(A)+1+bz+n3 ny—c+d>d
c>d

ns > ¢

Extended version, for WWW only — July 2, 2009

LF:Cons
y:L(A),h: A+ cons(h,y) : L(A)

Y(rev_aux) = (L(A),L(A)) — L(A)
t:L(A),r:L(A) F rev_aux(t,r) : L(A)

—LF:VARr
y:iL(A) Fy: L(A)

y:L(A) , h:A,t:L(A) I let r=cons(h,y) in rev_aux(¢,7) : L(A)

LF:LisT-ELIM

x:L(A),y:L(A) F match z with I nil = y I cons(h,t) = let r=cons(h,y) in rev_aux(¢,r) : L(A)

Figure 1: Derivation of P in LF

y:L(A, a3),h:A, na F

LFQ :VAR

cons(h,y) : L(A, a4), me

LFy:Cons LFy:FuN
t:L(A,as5),7m:L(A, a6) ,ns -

rev_aux(t,r) : L(A4,a7),ms

y:iL(A,a1),n1 F
y:L(A4,a2),m1

LFy:LET

y:L(A, ag),h:A, t:L(A,a9) ,na b
let r=cons(h,y) in rev_aux(t,r) : L(A, ai0),m4

x:L(A,a11),y:L(A,a12) ,ns F

LFy:LisT-ELiM

match z with I nil = y Icons(h,t) = let r=cons(h,y) in rev_aux(¢,r) : L(A, a13) ,ms

where rev_aux : (L(A,b1),L(A,b2),c) — (L(A4,b3),d). As an indeterminated LFy-type, A may contain further parameters.

Figure 2: Indeterminate derivation of P in LF.

ap = az,n1 > m

az = a4,N2 ES|ZE(A)+1+CL3+m2
as = bi,a6 = b2,a7 = b3,n3 > c,n3 —c+d>ms3

ag = as, a9 = as, a4 = A6, A10 = A7,
ng = N2, M2 = N3,M3 = M4y

LF() :VAR
LFy:Cons
LFy:FuN

LFy:LET

a2 = ai,ai12 = asg,a11 = ayg,ai13 = a2, Aa13 = a0,
ns = ni,Ms =M, N5 = Ng — SIZE (A) —1- ail,Ms = My LFQ:LIST-ELIM

c=mns,d=ms,b1 = a11,b2 = a12,b3 = ai3
aiy...,a13,b1,...,b3,¢c,d;ny, ..., ns,mi,...ms >0

Valid program
Nonnegativity

There may be further trivial constraints arising from the indeterminates in A.

Figure 3: Constraints of LF,-derivation in Figure [2]

plus the nonnegativity constraints. Since we are only inter-
ested in the values of variables occurring within first-order
types, we eliminate n2,ns here in this example for a better
understanding of the set of solutions and obtain:

c>d>0 b1 >b2=03>0

An optimal solution with respect to the sum of all variables
is then given by ¢ = d = b1 = b2 = bs = 0. Hence the
typing rev_aux : (L(A,0),L(A,0),0) — (L(A,0),0) can be
derived in LF, which signifies that rev_aux can be evaluated
without any extra heap space.

These equations may also be regarded as the “most gen-
eral LFy-type” of rev_aux, e.g. by b1 > b2 = b3 we eas-
ily see that rev_aux may also operate on lists containing
an arbitrary amount of extra heap space, hence rev_aux :
(L(A,7),L(A,7),0) — (L(A,7),0) could be derived if nec-
essary by using rev_aux in a more complicated program con-
text.

The program from Example [4| portrays the usefulness of
rational solutions. For the sake of simplicity we unify some
variables which are obviously equated. We therefore assume
the following enriched indeterminate signature:

tos: (L(B®B,l1),z1) — (L(B® B,l3),x3)
sec: (L(B®B,l1),z1) — (L(B® B,l2),x2)
tpo: (L(B ® B,lz) ,1'2) — (L(B ® B,lg),x3)

After simplification and elimination of all variables not
occurring within the signature we are left with the following
inequalities:

T1 > T2

12> —(3+0h)+ (B+1)+x

x1 > =23+ 1) +2(3+12) + 22

z1 > =3B3+0)+2B+k)+tz1 —z2+ 22
T2 2 T3

T2 > —(3+12)+ (3+13)+ a3

x2 > —2(3+12) +3(3+13) + x2 —x3 + T3

plus nonnegativity constraints. A sensible solution to these
inequalities is

tos : (L(B® B,0),3) — (L(B®B,0),0)
sec: (L(B®B,0),3) — (L(B®B,2),0)
tpo: (L(B® B, 2),0) — (L(B® B,0),0)

This solution can be found by an automatic solver for linear
constraints if the objective function punishes annotations
contained deeply within nested lists more than those occur-
ring on toplevel, which is usually a sensible thing to do.
However, choosing the proper objective function might de-
pend on particular circumstances and is discussed in more
detail in [11].

Extended version, for WWW only — July 2, 2009

Suppose we want to apply tos to the list [stored at £ in the
heap o having length |I| = n. This list occupies 3n heap cells
(according to the definition of SIZE (-) in section [2 we need
3 cells per node: a pair of booleans and one pointer; also
see rule ~»¢:CONS). According to the type of tos, On + 3
extra heap cells are required for evaluation (the additionally
reserved heap space for I, which is T(c,¢,L(B® B,0)) =0
plus 3 explicitly reserved cells). This amounts to 3n+3 heap
cells in total.

Now we first apply sec to I and call the resulting heap
o' Since sec destroys every third element of the list,
|sec(l)| = [2n]. Calculating the memory resources again,
now according to the result type of sec yields: 3([%711) +
T(o',¢,L(B®B,2)) = 3([2n]) + 3 [3n] < 3n + 3. The
memory cells freed by deleting list nodes of the input list
allow an increase of additionally reserved heap space for the
output list: Each deleted node frees three cells; as there are
at least 2 remaining nodes per deleted node, the additional
reserved heap space per node is %

The inequality shows a possible memory leak of at most
three cells in the case that | has length divisible by three.
This is due to the fact that sec needs 3 additional cells to
ensure the type L(B ® B, %) in the case that [has length
n = 3i+ 2 for some ¢ € N. If the length is divisible by three,
these extra resources are not needed, thus wasted.

‘We notice that the toplevel function tos also exhibits a
“resource leak” since the three additional units required to
call never show up in the result regardless of the length of
the input. We remark that “deforestation”, i.e., elimination
of the intermediate result of the call to sec could overcome
this. Whether this is an instance of a general pattern we
cannot say at this point.

While it should be clear that fractional annotations de-
scribe the correct asymptotic behaviour one may wonder
whether there might be problems with concrete inputs since,
for example, allocating % cells is not possible.

Consider a list [of length two, thus occupying 6 cells in
view of SIZE (B®@ B® L(-)) = 3. Applying sec to ! returns
an identical version of ! and because of the annotation g
signals the availability of 3 = 2 - % cells thus returning the
three extra cells requested by sec in this case.

But now suppose that we match against this list; the rule
LFy:LisT-ELIM then indicates the availability of % + 3 cells
in the cons-branch. Of these, we can only use 4 immediately
for storing operations on the heap. However, if we match
again against the remaining part we gain access to the entire
9 = 6 + 3 cells. Recall that SIZE (A) € N.

8. INFERENCE FOR LF}"'"

In this section we consider the problem of inferring deriva-
tions in the fragment LFIE’lin from Section |5| which removes
the sharing rule and restricts resource annotations to natu-
ral numbers. Clearly, such derivations for a given program
P are in 1-1 correspondence to integral solutions of L(P).
As is well-known finding integral solutions of arbitrary
LPs, let alone optimal ones, is an NP-hard problem.
However, we show that in a certain simplified subcase we
can efficiently find integral solutions to £(P) that are opti-
mal with respect to any objective function ¢ whose coeffi-
cients are all nonnegative. As we want to minimize resource
consumption, this is a sensible assumption on the objective
function in the simplified subcase. Moreover, we show that

in the general case finding integral solutions is again feasible
whereas finding optimal solutions is NP-hard.

8.1 Inferring toplevel annotations

Suppose that we are only interested in solutions where all
variables that occur within zero-order (sub-)types are zero
as well as the variables occurring to the right hand side of
first-order types.

In particular, we are looking at signatures of the form
(A1,...,A¢n) — (B,0) where the A; and B are LFy-types
with all annotations equal to zero.

Inspection of the typing rules then shows that after simpli-
fication of equality constraints the remaining system consists
entirely of constraints of the form

To > a1%1 + axx2 + -+ agxe + b

where the z; are not necessarily distinct variables, the a; are
nonnegative integer coefficients, and b is an arbitrary inte-
ger constant. The only typing rules which might produce
inequalities not of this form are LFy:FUN, LFy:SUuM-ELIM,
LF¢:LisT-EvLiM, but we know that here the problematic neg-
ative variables (i.e. those occurring positively on the left
hand side of the > or negatively on the right hand side) are
all zero by the assumption made in the simplified case. We
call such a constraint almost positive.

THEOREM 2. Let ({z1,...,za},C) be an LP where C
consists entirely of almost positive constraints. Let
¢i,...,ca € N. The optimal integral solution of this LP
with respect to the objective function cix1 + ...cqxqa can be
found in polynomial time.

To prove this one shows that the optimal rational solution
is necessarily integral.

Proor. Let & € Q% be the optimal (not necessarily inte-
gral) solution of the given LP.

By the property that all constraints are almost positive
we claim that already & € Z? holds. For v in Q define
|v] = max{c€Z | ¢ <v}. Let x; > a1x1 + -+ + aqzq + b be
one of the constraints. Now,

|Z:] > @11+ -+ aq@a +b] > a1 |21] + -+ aa|2a] +]

The first inequality follows since & is a valid solution,
whereas the second inequality follows from the fact that the
a; are positive and the definition of truncation.

Since all the coefficients of the objective function are pos-
itive, we deduce & = |Z] since otherwise |Z| would be a
better solution than z. [

For an example we consider the LP arising from Exam-
ple In the enriched signature there are only three variables
remaining in the simplified case:

sort : (L(A,0),zs) — (L(A,0),0)
ins: (A,L(A4,0),z;) — (L(A,0),0)
leq: (A®A,z) - (B (A®A),0)

We do not give a concrete implementation of leq here and
just assume that a call to 1eq does not require any resources.
Therefore we immediately set x; := 0 throughout this exam-
ple. The actual value of SIZE (A) is unimportant.

Extended version, for WWW only — July 2, 2009

Now we derive the LP as usual, inserting 0 whenever a new
numerical value is needed within an LF, zero-order type or
in the right-hand side of a first-order type.

After simplifying we are left with four almost positive con-
straints:

x; > SIZE (A) + 1
ZX; Z 2%1‘ — (S|ZE (A) + 1)

hence s = 0 and x; = SIZE(A) + 1 would be the optimal
solution for any objective function cixs + cax; with c1,co >
0.

Many more programs fall under the simplified subcase.
This includes the quicksort example in Section [J] and all the
LFPL-examples contained in [8].

We remark that setting the annotations contained in types
and in result positions to fized values other than zero also
leads to almost positive LPs.

xs >0
1'1'20

8.2 Efficient solutions for the general case

Let us call an LP almost conical if all inequalities are of one
of the following two forms:

a1x1+ -+ axe <0 x>b

where a; € Z and b € N.

In this case, the set of rational solutions is closed under
multiplication with scalars A > 1. Therefore, we can obtain
an integer solution from a rational solution by multiplying
with the least common denominator.

We now show that for any LF™™-program P the LP L(P)
can be transformed into an almost conical one by performing
a substitution of variables. Solving the resulting system and
substituting back then yields a solution of L(P).

We observe that the only places where constants different
from zero are introduced into constraints is via SIZE () in
the rules LF:CoNs, LF:LisT-ELIM.

The nonzero constants of the form SIZE (A) always occur
together with the variable measuring the resource content of
the corresponding list type. More precisely, for each variable
k arising from an (indeterminate) type L(A, k) we introduce
the substitution k& = k 4 SIZE(A® L(A,k)). Intuitively,
k measures the total resource requirement associated with
a particular node of the data structure in question. We
claim that after performing these substitutions the resulting
system is almost conical.

All the abovementioned inhomogeneous constraints aris-
ing from rules LF(:CONs, LF: TREE-ELIM, become homoge-
neous after the substitution. The nonnegativity constraints
k > 0 become k > SIZE (A) which fits the second kind of
inequalities in an almost conical LP.

Finally, we must consider equality constraints arising from
matching LFy-types. In view of the existing LF-derivation
we know that only those LFy-types with equal underly-
ing LF-type will ever be matched against each other. But
SIZE (A) and hence the substitutions we perform depend
only on underlying LF-types. Thus, an equation of the from
k1 = ks becomes ki = ko ~after thg sub~stituti0n4 Of course,
this is equivalent to k1 — k2 <0, ko — k1 <O0.

We have thus shown the following:

THEOREM 3. Let P be a valid LF'™-program then there
exists an almost conical ILP (V,C) and a nonnegative in-
teger vector ¢ such that the solution set of L(P) is equal to
{z —c| z solves C}.

We remark that this result does not hold in the presence of
rules LFy:SHARE and LF¢:LisT-ELiv’.

COROLLARY 2. There exists a polynomial time algorithm
that given a valid LFi"-program P determines a solution of
L(P) if one exists and reports failure otherwise.

Reconsidering Example [d] with this method yields:

tos: (L(B®B,3),6) — (L(B®B,3),0)
sec: (L(B®B,3),6) — (L(B®B,6),0)
tpo: (L(B®B,6),0) — (L(B®B,3),0)

We note that this integral solution requires additional re-
sources three times the length of the input list, which are
finally left over after computation, whereas the fractional
solution shows that these are unnecessary as can also be
seen by merging the definitions of tpo and sec into specific
optimized linear functional code for tos.

Although there are other integral solutions for this ex-
ample, the presented solution is (under certain aspects) the
best integral solution. However we cannot guarantee this.
While finding a solution to an almost conical LP is feasible,
finding an optimal solution is not:

n

[¢]

THEOREM 4. For every instance ® of 3SAT with m vari-
ables we can find an almost conical LP and an objective
function so that a solution of objective value < n exists iff
P is satisfiable.

PROOF. Let & = (U11 V uis V u13) A A (unl V Un2 V
un3) with each u;; representing a literal and assume that ®
contains m distinct boolean variables vy.

Construct the corresponding ILP as follows:

1. First we introduce the variable z and the constraint
z> 1.

2. For each of the m distinct variables vy in ® we in-
troduce the integer variables z, and Zx and the con-
straints xx > 0, Zr, > 0 and x, + ZTx — 2 > 0.

3. For each clause wu;1 V w2 V w;3 we introduce
the constraint w; + ws + ws — 2z > 0 where
Tk ‘ U5 = Vk
wy _ .
T | uiy =k
The constructed LP is obviously almost positive. As the
objective function we choose > ;" | «x + Zx. Obviously the
best value of the objective function we may expect is m,
since from the constraints in [1} and [2] follows zx + 2 > 1.
From the constraints constructed by [3] we deduce that any
optimal solution (2, £) with value m gives rise to a successful
valuation p of ®:

and vice versa. [

Moreover, it was shown in [11] that such ILPs may indeed
arise from inference problems. Hence we have:

COROLLARY 3. Let P be a valid LF program. Finding an
optimal solution of I(P) with respect to a given, arbitrary
objective function is an NP-hard task.

Extended version, for WWW only — July 2, 2009

9. EXAMPLES

In this section we collect several illustrative examples.

Ezample 5. We demonstrate that the Quicksort algo-
rithm falls within the simplified subcase presented in Sec-

tion B}
gsort : (L(A,0),0) — L(A,0)
split_by: (A,L(A4,0),0) — L(A4,0) ® L(A,0)
infix <: (A® A,0) — (B,0)
gsort(l) = match [with
I'nil = nil
Icons(h,t) =
match split_by(h,t) with u® 1=
gsort(u) -+ cons(h, nil) H- gsort(l)
split_by(p,l) = match [with
I'nil = nil ® nil
Icons(h,t) =
match split_by(p,t) with u® 1=
if h < p then cons(h,u) ®
else u ® cons(h,l)

Please note that the standard functional implementation of
quicksort, using a filtering function twice with mutually ex-
clusive filter conditions instead of split_by, has no valid
LF¢-derivation. Calling the filter twice requires the dupli-
cation of the input list, while the type information is not
enough to deduce that the filter cuts down each copy so that
the sum of the lengths of each list is equal to the original
list.

The sharing of heap-allocated data structures may sim-
ulate a duplication in some situations, but this of course
restricts the use to read-only access (except for the last ac-
cess) in order to prevent malignant sharing.

The following two examples show a sensible use of sharing
and hence rely on rule LF:SHARE; their evaluation exhibits
no malignant sharing on all possible inputs so that Theo-
rem [I] applies.

Ezample 6. For calculating the length of a list it is con-
venient to assume a type representing a finite part of the
natural numbers and the presence of the usual arithmetic
functions, e.g. N := B®32,

length: (L(A4,0),0) — (N,0)
length(l) = match’ I with
Inil=0
Icons(h,t) = 1+ length(t)

Ezample 7. While the length of a list could still be com-
puted in LFg" without destroying the list (1ength might im-
mediately rebuild the input list and return it together with
the value for the length) at the cost of inconvenient pro-
gramming, the following example exhibits proper sharing of
heap-allocated data structures.

This example uses a type T(A) of binary trees whose
internal nodes are labelled with A; leaves are unlabelled
and represented by NULL. Its annotated version is T(A4, k).
We have T(o,NULL, T(A,k)) = 0 and Y(o,f, T(Ak)) =
k+7Y(o,0(0),A® T(A, k) ® T(A,k)). Thus, the amount of

resource associated with such a tree is k£ times the number
of its internal nodes.

pathlist : (T(A4,1),2) — (L(L(A4,0),0),0)
pathacc : (T(4,1),L(A4,0),2) — (L(L(A,0),0),0)
infix ++ : (L(C,q),L(C,q),0) — (L(C,q),0)

As we referred to +H a few times, we present here a generic
version. For this example it suffices to set C' = L(A4,0) and
:=0.

pathlist(t) = pathacc(t, nil)
pathacc(t, ¢) = match ¢ with
Ileaf = cons(c, nil)
I'node(a,l,r) = let z=cons(a, c) in
pathacc(l, z) + pathacc(r,z)
++(1,7) = match [with
Inil = r
Icons(h,t) = cons(h,t+Hr)

The function pathlist turns a tree into a list of lists of
type A. The sublists contain the labels of the internal nodes
along the path from each leaf to the root.

The nodes of the sublists (one for each leaf) are aliased
among each other, thereby mimic the exact structure of the
former tree within the heap, saving an exponential amount
of space. However, this structure should only be used for
read-only purposes, as destroying any of the element lists
leads to malignant sharing.

10. RELATED WORK

Approaches based on abstract interpretation and symbolic
evaluation (7}, 13} |4} |20} |5} |6] go in the direction of the naive
approach mentioned in the Introduction. The structure of
the inferred resource bound matches the structure of the
program. Where the program contains a while loop or a re-
cursion the bounding function will do so as well. This is not
meant to diminish the value of those works: To begin the
abstract interpretation removes useless computation so that
computing the bound v will in general be easier than run-
ning f itself. This can greatly simplify profiling and testing.
Furthermore, in many cases the recurrences reminiscent of
iteration constructs in the original code can be solved using
various methods from computer algebra.

What distinguishes our approach from these is that the
resulting linear bounds once established are trivial to evalu-
ate for concrete input lengths, that they are independently
verifiable and that the algorithm for their intention is prov-
ably successful and efficient in a well-delineated subset of
programs which comprises most textbook examples of func-
tional programming such as reversal, quicksort, insertion
sort, heap sort, Huffman codes, tree traversal, etc. Indeed,
Unnikrishnan et al. [20] report performance problems with
medium-sized inputs and recommend to fit an algebraic ex-
pression into a value table obtained from small inputs. This
is acceptable for profiling purposes but certainly not for re-
source certification.

In other works like [3] the user must provide a conjectured
resource bound. The formalism can be used to validate

Extended version, for WWW only — July 2, 2009

it but even for the validation user interaction is required.
Moreover, this work only accounts for execution time not
heap space.

Another piece of well-known related work are Hughes and
Pareto’s sized types [10]. This system allows one to certify
upper bounds on the number of constructor symbols in in-
ductive data types. For example List k A is the type of Lists
of type A of length at most k, and accordingly “append” has
the type List k1 A — List (ko +1) A — List (k1 +k2) A. A
comparison to the type of the append function ++ from Ex-
ample m reveals the different use of the annotations: While
the annotation of sized lists yields upper bounds on the
length, our annotation is a multiplicative constant which
does not restrict the length of lists of this type. The ap-
proaches are thus quite different technically.

Nevertheless, sized types can also be used to infer space
bounds. The transition from size to space is made via region-
based memory management |19] which however, imposes un-
natural restrictions due to the fact that a given data struc-
ture, e.g. a list, must reside entirely in one region. This
prevents the analysis of computations in which lifetimes of
data structures overlap, e.g. in the insertion sort algorithm
according to §5.7 of [10]. The authors speculate on a possi-
ble solution based on region resetting and liveness inference,
but this is not worked out in [10] nor in the later [16]. We
emphasize that proper dynamic memory allocation is not
modelled in |10]|. This is acceptable in view of the intended
application of sized types to embedded programming, but
not—in our opinion—in a general functional programming
context.

Another possible advantage of inferring space bounds di-
rectly, as we do, could lie in improved efficiency: Merely
checking sized type requires Presburger Arithmetic (com-
plete for doubly exponential time) compared to the poly-
nomial time LP that we use. In this regard it would of
course be interesting to know the exact complexity of sized
type checking; more mundanely, whether the full strength
of Presburger Arithmetic is really needed for this problem.
The feasibility of inference as opposed to checking is left
unanswered in [16, |10].

Unlike [10] and [5] we do not analyse stack size in this
paper. We think that the linear bounds on stack size are
often not adequate since typical algorithms can either be
optimised using tail recursion to use constant stack or use a
stack of logarithmic size, e.g. divide-and-conquer methods.

Furthermore, our system naturally encompasses trees,
lists of trees, etc., whereas sized types seem to work pri-
marily for linear data structures. While trees appear in the
formal presentation in [16] none of the examples uses them;
not even the type of the constructor for trees appears ex-
plicitly.

On the other hand, [16] contains a detailed and interesting
account of infinite lists (streams). An exploration of streams
in our framework must be left to further research.

11. CONCLUSIONS

We have presented an efficient and automatic analysis of
heap usage of first-order functional programs. While we
find that our analysis is surprisingly versatile and accurate
there are a number of ways in which it can be improved.
Our analysis sometimes gives too modest assumptions
about the memory available after execution of a function.
A typical example is flatten : L(L(A)) — L(A) assumed to

be the natural implementation of flattening on lists of lists.
Calling flatten(w) returns |w| heap space. However, our
system assigns for example the type L(L(A4,0),0) — L(A,0)
hence not notifying the net resource-gain.

To fix this particular case it is tempting to introduce some
kind of dependent typing allowing one to refer to the size or
length of the input in the cost term of the result position.
However, developing such a system whilst maintaining guar-
antees on efficient solvability is a delicate matter and must
be left for future research.

As it stands, the system is sometimes insufficiently poly-
morphic. Namely, it can happen that two usages of an
already defined function require two different annotations.
Even if both these annotations are compatible with the defi-
nition of £ only one of them can actually be assigned in LF.
Consider, for instance, the identity function f : L(B) —
L(B) defined by £(z) = z. In LFy we must assign a partic-
ular type, say L(B,5),3 — L(B,5),3. In this case, we are
not able to apply £ to an argument of type L(B,0).

To address this problem within the framework of the given
system we can split a program into blocks of mutually de-
pendent functions and perform the analysis separately for
each of the blocks of definition. When using a function f
outside its block of definition we can consider the entire LP
of function f£’s definition rather than a particular solution.
This approach can be seen as a definitional extension if we
consider each occurrence of £ outside its defining block as
the usage of an identical copy of f.

If we also want to enable polymorphic recursion, i.e., a
different instantiation of constraint variables in every recur-
sive call, we must replace LF, with a constrained type sys-
tem whose judgments are of the form C,I',n I e:A,n where
T, A,m,n may contain variables and C is a set of linear in-
equalities constraining these. The details are left for future
work, but appear to be within the reach of the methods
developed here.

A similar issue arises with higher-order functions. Simple
use of higher-order functions merely as a means for modular-
ization such as in combinators like map, filter, etc. can be
accommodated by introducing several definitions, one for
each usage, possibly hidden under some appropriate syn-
tactic sugar. Formally, this kind of usage of higher-order
functions is the one supported by the C language: the only
expressions of function types are variables and constants.

If we aim for more general function expressions like
partially-applied functions and lambda expressions as in
functional programming languages the problem of heap
space inference becomes much more complicated as we need
to monitor the size of closures which are much more depen-
dent on dynamic aspects. This is discussed in some detail
in [9]. We do not see at this point how our work could be
extended to cover general higher-order functions, not even
linear ones. One referee suggested to investigate Reynolds’
idea of defunctionalisation |17] which eliminates closures in
favour of sum types. Again, we leave this to future work.

12. REFERENCES
[1] Mobile resource guarantees. EU Project No.
IST-2001-33149, see
http://wuw.dcs.ed.ac.uk/home/mrg/.
[2] David Aspinall and Martin Hofmann. Another type
system for in-place update. In D. Le Métayer, editor,
European Symposium on Programming, volume 2305,

Extended version, for WWW only — July 2, 2009

http://www.dcs.ed.ac.uk/home/mrg/

pages 36-52. Springer LNCS 2305, 2002.

K. Crary and S. Weirich. Resource bound
certification. In Proc. 27th Symp. Principles of Prog.
Lang. (POPL), pages 184-198. ACM, 2000.

P. Flajolet, B. Salvy, and P. Zimmermann.
Lambda-Upsilon-Omega: An assistant algorithms
analyzer. In T. Mora, editor, Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes,
volume 357 of Lecture Notes in Computer Science,
pages 201212, 1989. Proceedings AAECC’6, Rome,
July 1988.

Gustavo Gémez and Yanhong A. Liu. Automatic
accurate cost-bound analysis for high-level languages.
In Frank Mueller and Azer Bestavros, editors,
Languages, Compilers, and Tools for Embedded
Systems, ACM SIGPLAN Workshop LCTES’98,
Montreal, Canada. Springer, 1998. LNCS 1474.
Gustavo Gémez and Yanhong A. Liu. Automatic
time-bound analysis for a higher-order language. In
Proceedings of the 2002 ACM SIGPLAN workshop on
Partial evaluation and semantics-based program
manipulation, pages 75-86. ACM Press, 2002.

Bernd Grobauer. Topics in Semantics-based Program
Manipulation. PhD thesis, BRICS Aarhus, 2001.
Martin Hofmann. A type system for bounded space
and functional in-place update. Nordic Journal of
Computing, 7(4):258-289, 2000. An extended abstract
has appeared in Programming Languages and Systems,
G. Smolka, ed., Springer LNCS, 2000.

Martin Hofmann. The strength of non size-increasing
computation. 2002. Proc. ACM Symp. on Principles of
Programming Languages (POPL), Portland, Oregon.
J. Hughes and L. Pareto. Recursion and dynamic data
structures in bounded space: towards embedded ML
programming. In Proc. International Conference on
Functional Programming (ACM). Paris, September

(16]

(17]

’99., pages 70-81, 1999.

Steffen Jost. Static prediction of dynamic space usage
of linear functional programs, 2002. Diploma thesis at
Darmstadt University of Technology, Department of
Mathematics.

Naoki Kobayashi. Quasi-linear types. In Proceedings
ACM Principles of Programming Languages, pages
29-42, 1999.

H.-W. Loidl. Granularity in Large-Scale Parallel
Functional Programming. PhD thesis, Department of
Computing Science, University of Glasgow, 1998.
George Necula. Proof-carrying code. In Proc. 24th
Symp. Principles of Prog. Lang. (POPL). ACM, 1997.
Martin Odersky. Observers for linear types. In

B. Krieg-Briickner, editor, ESOP ’92: 4th European
Symposium on Programming, Rennes, France,
Proceedings, pages 390—407. Springer-Verlag, February
1992. Lecture Notes in Computer Science 582.

Lars Pareto. Types for crash prevention. PhD thesis,
Chalmers University, Géteborg, Sweden, 2000.

John C. Reynolds. Definitional interpreters for
higher-order programming languages. In Proceedings
of the 25th ACM National Conference, pages 717740,
1972.

Natarajan Shankar. Efficiently executing PVS.
Technical report, Computer Science Laboratory, SRI
International, 1999.

M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109-176, 1997.

Leena Unnikrishnan, Scott D. Stoller, and Yanhong A.
Liu. Automatic accurate live memory analysis for
garbage-collected languages. In Proceedings of The
Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 102-111. ACM,
2001.

Extended version, for WWW only — July 2, 2009

	1 Introduction
	1.1 Overview of results

	2 Functional language
	2.1 Examples

	3 Operational semantics
	3.1 Operational semantics without freelist
	3.2 Formalisation of benign sharing

	4 with resource annotations
	4.1 Examples

	5 Translation to
	6 and space-aware semantics
	7 Inference of annotations
	8 Inference for
	8.1 Inferring toplevel annotations
	8.2 Efficient solutions for the general case

	9 Examples
	10 Related Work
	11 Conclusions
	12 REFERENCES -9pt

