
Static Determination of Quantitative
Resource Usage for Higher-Order Programs

Steffen Jost Kevin Hammond
University of St Andrews, St Andrews, UK

{jost,kh}@cs.st-andrews.ac.uk

Hans-Wolfgang Loidl∗ Martin Hofmann
Ludwig-Maximilians University, Munich, Germany

{hwloidl,mhofmann}@tcs.ifi.lmu.de

Abstract
We describe a new automatic static analysis for determining
upper-bound functions on the use of quantitative resources for
strict, higher-order, polymorphic, recursive programs dealing with
possibly-aliased data. Our analysis is a variant of Tarjan’s manual
amortised cost analysis technique. We use a type-based approach,
exploiting linearity to allow inference, and place a new emphasis
on the number of references to a data object. The bounds we infer
depend on the sizes of the various inputs to a program. They thus
expose the impact of specific inputs on the overall cost behaviour.

The key novel aspect of our work is that it deals directly with
polymorphic higher-order functions without requiring source-level
transformations that could alter resource usage. We thus obtain
safe and accurate compile-time bounds. Our work is generic in
that it deals with a variety of quantitative resources. We illustrate
our approach with reference to dynamic memory allocations/deal-
locations, stack usage, and worst-case execution time, using met-
rics taken from a real implementation on a simple micro-controller
platform that is used in safety-critical automotive applications.
Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis
General Terms Languages, Reliability, Performance, Theory.
Keywords Functional Programming, Resource Analysis, Types.

1. Introduction
Automatically obtaining good quality information about resource
usage (e.g. space/time behaviour) is important to a number of ar-
eas including real-time embedded systems, parallel systems, and
safety-critical systems. While there has been significant work on
automatic analyses for first-order programs, to date there has been
correspondingly little work on analyses for higher-order programs.
Developing such analyses is important both to enable the deploy-
ment of functional programming languages, and to assist the in-
creasing number of conventional programming approaches that rely
on higher-order information (e.g. aspect orientation).

This paper introduces a new automatic static analysis for de-
termining upper-bound functions on the resource usage of strict,
higher-order, polymorphic, recursive functional programs. “Re-
source” may here refer to any quantifiable resource. In particular,

∗Current affiliation: Heriot-Watt University, Edinburgh. Part of this work
was done while being employed by the University of St Andrews.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

we discuss and analyse worst-case execution time, stack-space us-
age, and heap-memory consumption. The bounds that we obtain are
simple linear expressions that depend on the input sizes. They thus
expose the impact of the size of each input on overall execution
cost. These bounds can be inferred both easily and efficiently.

This is the first automatic amortised analysis that can deter-
mine costs for higher-order functions directly rather than relying on
program transformations such as defunctionalisation [34] to trans-
form higher-order programs into first-order ones. Such transforma-
tions are not acceptable for several reasons. Firstly, they usually
change time and space properties. This is unacceptable in any con-
text where the preservation of costs is important, such as the in-
creasingly important class of resource-aware applications. More-
over, they may also change which programs can be costed (e.g. by
making linear programs non-linear, etc.), and they can destroy the
programmers’ intuitions about cost. Unlike transformation methods
such as defunctionalisation, our approach is fully compositional.
This is important, since compositionality enhances modularity. Our
technique can produce usage-dependent upper-bound functions on
costs for closed-source libraries of (possibly higher-order) func-
tions. In order to analyse a program that uses such a library, it is
only necessary to know the previously inferred annotated type for
any function that is exported, and not its definition.

Our automatic analysis is a variant of the amortised cost analy-
sis that was first described by Tarjan [38]. Amortised cost analysis
is a manual technique, which works as follows: using ingenuity,
one devises a mapping from all possible machine states to a non-
negative rational number, henceforth referred to as the potential of
that state. This map must be constructed in such a way that the ac-
tual cost of each machine operation is amortised by the difference
in potentials before and after the execution of the operation. For ex-
ample, for heap space an operation that allocates n memory units
must always lead to states whose potential is then decreased by n.
It follows that the cost of each operation, including entire loops or
complete recursive calls, becomes zero, and the overall execution
cost is then equal to the potential of the initial state.

There are two main problems to be overcome. Firstly, devising a
useful mapping from each machine state to the number representing
its potential is a difficult task. Secondly, Okasaki notes that [32]:

“As we have seen, amortized data structures are often
tremendously effective in practice. [. . .] traditional meth-
ods of amortization break in presence of persistence”

Our type-based variant solves both of these issues: i) we can au-
tomatically determine the abstraction through efficient linear pro-
gramming; and ii) we can deal with the persistent data structures
that are commonly found in a functional setting by assigning po-
tential on a per-reference basis, rather than resorting to a lazy-
evaluation strategy as Okasaki does [32]. The price we pay is that
our method is currently limited to linear cost formulas (a restriction
which is not inherent to amortised cost analysis). However, we be-
lieve that an efficient automatic analysis that can be run repeatedly

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

vars ::= 〈 varid1 , . . . , varidn 〉 n ≥ 0
expr ::= const | varid | varid vars | conid vars

| λ varid . expr
| if varid then expr1 else expr2

| case varid of conid vars -> expr1| expr2

| case! varid of conid vars -> expr1| expr2

| let varid = expr1 in expr2

| LET varid = expr1 IN expr2

| let rec

(
varid1 = expr1;· · ·
varidn = exprn

)
in expr n ≥ 1

Figure 1. Schopenhauer Syntax
at the press of a button is a major advantage over a cumbersome
and error-prone manual analysis requiring some human ingenuity.

It is important to realise that the implementation of our method
is indeed quite simple, being based on a standard type system, aug-
mented by a small set of linear constraints that are collected as each
type rule is applied. We do not need to count references: it is suffi-
cient to examine the points in the rules where new aliases are intro-
duced. Furthermore, the automatically-inferred potential mappings
always allow the initial potential to be determined simultaneously
for large classes of inputs. These mappings can thus be transformed
into simple closed cost formulas.

Contributions: We present a type system for a compile-time anal-
ysis that infers input-dependent upper bounds on program execu-
tion costs for various resource metrics on strict, higher-order, poly-
morphic programs. We prove that the type system is sound with
respect to a given operational semantics. We also present the asso-
ciated fully-automatic type inference, which has been implemented
using a standard external linear programming solver. Our main
novel contributions are to extend previous work [19, 25]:
a) by analysing the resource usage of higher-order functions,

which may be both polymorphic and mutually recursive, in
a cost-preserving way;

b) by dealing with polymorphism, also in a cost-preserving way;

c) by considering the resource parametricity of (polymorphic)
higher-order functions, so allowing a function to have a differ-
ent cost behaviour for its different uses, without re-analysing
the function.

Other notable advances over our earlier work [19] are:
a) the handling of arbitrary (recursive) algebraic datatypes, possi-

bly containing functions;

b) the use of a storeless semantics instead of the (awkward) “be-
nign sharing” condition from [19];

c) a unified, generic approach that presents a single soundness
proof for several resource metrics and for several different op-
erational models, including dynamic memory, stack allocations
and worst-case execution time (specifically for the Renesas
M32C/85U embedded system microcontroller).

These are discussed in more depth in a companion paper [25].

2. The Schopenhauer Notation
We illustrate our approach using the simple Schopenhauer lan-
guage, which acts as a compiler intermediate language. The syn-
tax of Schopenhauer (Figure 1) is mostly conventional, except that:
i) we distinguish between identifiers for variables and those for
data constructors; ii) all expressions are in let-normal form, i.e.
most sub-expressions are variables; iii) we have two let-constructs
that have identical meaning, but differing costs (see the following
paragraph); iv) pattern matches are not nested and allow only two

branches; v) pattern matching comes in two variants – read-only
and destructive. None of these peculiarities are actually required,
but they have been chosen to simplify the presentation of our work.
For example, our implementation readily deals with nested pattern
matches with an arbitrary number of branches. Note that the re-
cursive let-rec form allows not only the construction of recursive
functions, but also that of aliased circular data.

The use of let-normal form means that the threading of re-
sources is limited to let-expressions. This simplification avoids
the need to replicate large parts of the soundness proof for let-
expressions in the proofs for the other cases shown in Section 5.
However, a transformation to let-normal form could, obviously, al-
ter execution costs. We avoid this by adding a second LET-construct
that is used only for transformed expressions. By assigning a differ-
ent cost to this construct (generally zero), we can make the transfor-
mation to let-normal form entirely cost-neutral. The LET-construct
also allows us to construct an accurate cost metric for stack space
usage despite the fact that we have chosen to use a big-step seman-
tics. We explain the rationale for this choice in Section 6.1.1.

Since non-monotone cost metrics are interesting to deal with,
Schopenhauer includes a primitive for deallocation, which we com-
bine with pattern matching (case!). We do not deal with the safety
of deallocations, since this is an orthogonal and complex problem
that deserves its own treatment (see, for example, Walker and Mor-
risett’s alias types [41], or the bunched implication logic of Ish-
tiaq and O’Hearn [23]). We encapsulate this problem by adopting
essentially a storeless semantics [35, 24]. While we do deal with
explicit memory addresses, these should be considered as symbolic
handles, as used, for example, in early versions of the JVM. A deal-
located memory address is then simply overwritten with the special
tag Bad. This prevents its reuse and so guarantees that evaluation
halts when dereferencing any stale pointer. As a consequence, we
can prove that the required resource bounds are maintained.

3. Schopenhauer Operational Semantics
We now state how Schopenhauer programs are executed, and de-
fine the cost for a specific execution sequence, thereby fixing a
(resource-aware) operational semantics. The Schopenhauer type
rules in Section 4 govern how potential is associated with the run-
time values of a particular type. The operational semantics is inde-
pendent of the type rules. Evaluation may, however, get stuck for
untypable programs.

An environment V is a partial map from variables x to loca-
tions `. Our semantics is therefore based on a boxed heap model.
By varying the cost parameters explained below, we can, how-
ever, also capture evaluation costs for an unboxed heap model.
A heap H is a partial map from locations to labelled values w.
H[` 7→ w] denotes a heap that maps ` to value w and oth-
erwise acts as H. All values are labelled for simplicity, e.g.
(bool, tt), (int, 7), (constrc, `1, . . . , `n), (λx.e , V?). Here Ind(b̀)
is a special value modelling an indirection. To follow such in-
directions we define next(H, `) = b̀ if H(`) = Ind(b̀) and
next(H, `) = ` otherwise. These indirections are needed to model
recursive definitions, which we explain with an example at the
end of this section. As discussed above, deallocated locations are
overwritten with the tag Bad to prevent stale pointers.

Our operational semantics is fairly standard, except that it is
instrumented by a resource counter, which defines the cost of each
operation. The cost counter is used to measure execution costs. If
this counter becomes negative, then program execution becomes
stuck. We are interested in finding the smallest number for each
input that safely allows execution. The purpose of the analysis in
Section 4 is to provide an upper bound on this number for large
classes of inputs, without evaluating the program in any way.

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

n ∈ Z ` /∈ dom(H)

V,H
m′ + KmkInt

m′ n ; `,H
ˆ
` 7→ (int, n)

˜ (OP CONST INT)

w = (bool, tt/ff) ` /∈ dom(H)

V,H
m′ + KmkBool

m′ true/false ; `,H[` 7→ w]

(OP CONST BOOL)

next(H,V(x)) = `

V,H
m′ + KpushVar + Knext

m′ x ; `,H

(OP VAR)

V? = V�FV(e)\x w = (λx.e , V?) ` /∈ dom(H)

V,H
m′ + KmkFun(|V?|)

m′ λx.e ; `,H [` 7→ w]

(OP ABS)

next(H,V(y)) = b̀ H(b̀) = (λx.e , V?)

V? [x 7→ V(x0)] ,H
m− Kapp

m′+ Kapp′ e ; `,H′

V,H
m + Knext

m′ y x0 ; `,H′
(OP APP)

next(H,V(x)) = b̀ H(b̀) = (bool, tt)

V,H
m− KifT

m′+ KifT′ et ; `′,H′

V,H
m + Knext

m′ if x then et else ef ; `′,H′

(OP CONDITIONAL TRUE)

next(H,V(x)) = b̀ H(b̀) = (bool, ff)

V,H
m− KifF

m′+ KifF′ ef ; `′,H′

V,H
m + Knext

m′ if x then et else ef ; `′,H′

(OP CONDITIONAL FALSE)

k ≥ 0 c ∈ Constrs ` /∈ dom(Hk)

w =
`
constrc,V(x1), . . . ,V(xk)

´
V,H

m′ + Kalloc(c)

m′ c 〈x1, . . . , xk〉; `,H[` 7→ w]

(OP CONSTRUCTOR)

next(H,V(x)) = b̀ H(b̀) 6= `constrc, `1, . . . , `k
´

V,H
m− KcaseF(c)

m′+ KcaseF′(c) e2 ; `,H′

V,H
m + Knext

m′ case x of c 〈y1, . . . , yk〉 -> e1|e2 ; `,H′

(OP CASE FAIL)

next(H,V(x)) = b̀ H(b̀) =
`
constrc, `1, . . . , `k

´
V[y1 7→ `1, . . . , yk 7→ `k],H

m− KcaseT(c)

m′+ KcaseT′(c) e1 ; `,H′

V,H
m + Knext

m′ case x of c 〈y1, . . . , yk〉 -> e1|e2 ; `,H′

(OP CASE SUCCEED)

next(H,V(x)) = b̀ H(b̀) =
`
constrc, `1, . . . , `k

´
V? = V[y1 7→ `1, . . . , yk 7→ `k]

V?,H[k 7→ Bad]
m− KcaseT(c) + Kcealloc(c)

m′+ KcaseT′(c) e1 ; `,H′

V,H
m + Knext

m′ case! x of c 〈y1, . . . , yk〉 -> e1|e2 ; `,H′

(OP CASE! SUCCEED)

V,H
m1 − Klet1

m2 e1 ; `1,H1 V1 = V[x 7→ `1]

V1,H1
m2 − Klet2

m′ + Klet3 e2 ; `2,H2

V,H
m1

m′ let x = e1 in e2 ; `2,H2

(OP LET)

m = m1 + Krec1 + nKnext V? = V[x1 7→ `1, . . . , xn 7→ `n]

H0 = H[`1 7→ Bad, . . . , `n 7→ Bad]

H′ = Hn[`1 7→ Ind(b̀1), . . . , `n 7→ Ind(c̀n)]

∀i ∈ {1, . . . , n} . `i /∈ dom(H) ∧ b̀i = next(Hn, `′i)

∀i ∈ {1, . . . , n} . V?,Hi−1
mi − Krec2

mi+1 ei ; `′i,Hi

V?,H′
mn+1 − Krec3

m′ + Krec4 e ; `,H

V,H
m

m′ let rec {x1 = e1; . . . ;xn = en} in e ; `,H′

(OP REC)

Figure 2. Schopenhauer Operational Semantics

The judgement V,H
m

m′ e ; `,H′ means that under the ini-
tial environment V and heap H, the expression e evaluates to loca-
tion `, containing the result value, and post-heap H′, provided that
there are at least m ∈ N units of the selected resource available be-
fore the computation. Furthermore, m′ ∈ N units will be available
after the computation. We write V,H ` e ; `,H′ to denote that
e evaluates to ` using an unknown, but finite, amount of resources.

For example, V,H
3
1 e ; `,H′ means that three resource

units are sufficient to allow e to be evaluated, and that exactly one
resource unit is unused after the computation. This unused resource
unit might or might not have been used temporarily. Note that this
tracks both the overall net resource costs as well as the minimum
number of free resources that are necessary for the computation to
be started. These two numbers may be different if there is some
temporary resource usage, as with stack space usage.

Lemma 3.1. For all k ≥ 0, if V,H
m

m′ e ; `,H′ holds, then

both m′ ≥ 0 and V,H
m + k

m′ + k e ; `,H′ hold.

The operational semantics rules for Schopenhauer are shown in
Figure 2. Two rules are omitted because they are almost identical
to other rules: OP CASE! FAIL is similar to OP CASE FAIL; and
OP LET (which covers LET x = e1 IN e2), is identical to OP LET
if the cost metric parameters Klet1, Klet2 and Klet3 are replaced
by KLET1, KLET2 and KLET3, respectively.

The rules exploit a number of constant cost parameters. This al-
lows us to deal with several different cost metrics without changing

the operational model. Since our analysis uses the same constants
regardless of the metric, our soundness proof is completely inde-
pendent of the cost metric and so does not require to be performed
anew for each new cost metric. These parameters must be chosen
carefully so that the costs of the operational semantics match re-
ality. For example, the constant KmkInt denotes the cost of con-
structing an integer constant. So, if we are interested in heap al-
location and an integer occupies two heap units, as in our boxed
heap model, then we set this constant to two. In an unboxed heap
model, however, it is set to zero, since the integer is created directly
in the stack. Likewise for stack usage, KmkInt is either the size of
a pointer (in the boxed model) or the actual size of an integer (in
the unboxed model); and for worst-case execution time (WCET)
we set it to the greatest number of clock cycles needed to create an
integer constant. For example, the commercial aiT WCET analyser
(http://www.absint.com) determines this to be 83 cycles on the
Renesas M32/85U microcontroller.

Recursive let-bindings use indirections. An indirection never
points to another indirection, since indirections are only introduced
in rule OP REC to locations which have been followed. This prop-
erty is formalised in Definition 5.1, which serves as the invari-
ant for our soundness theorem. This also allows a constant cost
bound (Knext) when dereferencing an indirection.

Let us see, for example, how let rec {x = cons〈x〉} in x is
evaluated in the empty heap and store (where cons ∈ Constrs is
assumed). We omit resource annotations. We put H0 = [`1 7→Bad]

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

http://www.absint.com

and V? = [x 7→`1] and have

V
?,H0 cons〈x〉; `′1, [`1 7→Bad, `′1 7→(cons, `1)]

Now we have next(H1, `
′
1) = `′1. Defining the new heap H′ =

[`1 7→Ind(`′1), `′1 7→(cons, `1)] we get

∅, ∅ let rec {x = cons〈x〉} in x ; `1,H
′

yielding the expected cyclic data structure with indirection.

4. Schopenhauer Type Rules
We use α, β, γ to denote type variables. Let CV be an infinite set of
resource variables ranging over Q+, usually denoted by q, p, r, s,
being disjoint from the identifier sets for variables and construc-
tors Var,Constrs. Sets of type and resource variables are referred
to using the vector notation, e.g. ~α, ~q. All other decorations stand
for different entities. We use ψ, φ, ξ to range over sets of linear
inequalities over non-negative rational constants and resource vari-
ables, plus special terms involving type variables that are mapped
to linear inequalities when the type variables are substituted with
closed type terms. A valuation v is a two-fold mapping, that maps
resource variables to Q+ and type variables to closed types. We
write v ⇒ φ if v satisfies all constraints in φ, and ψ ⇒ φ to denote
that ψ entails φ, i.e. that all valuations that satisfy ψ also satisfy all
constraints in φ.

The annotated types of Schopenhauer are then given by the
following grammar:

T ::= int | bool | α
| µα.{ c1:(q1,

−→
T1) | . . . | ck:(qk,

−→
Tk) }

| ∀~r∈ψ.
−→
T −→

p

p′ T ′

| ∀~α:ψ.T

where ci ∈ Constrs are constructor labels and
−→
T stands for

〈 T1 . . . Tn 〉 where n ≥ 0∗. Algebraic datatypes are defined as
usual, except that each constructor also carries a resource variable
in addition to the usual type information.

The types contain two different universal-quantifiers: one for
resource variables, and one for type variables. For example, the
type of a function counting the length of a list could be:

∀α:∅.∀{x, y, u, v}∈φ.µβ.{Cons:(u, 〈α, β〉)}|Nil:(v)}−→
x

y int

with φ = {x ≥ 156 + y, u ≥ 940}. So the type tells us that this
length function can be applied to lists of any type (∀α:∅.). Further-
more, it admits several resource behaviours, since ∀{x, y, u, v}∈φ.
tells us that we can rename x, y, u, v to independent resource vari-
ables. Of course, the constraints φ must be substituted accordingly.
The admissible valuation x = 156, y = 0, u = 940, v = 0
would then indicate that evaluating the function requires at most
156 resource units (in this case clock cycles), plus at most 940 re-
source units per Cons constructor in the input. In other words, if
n is the length of the input list, the execution cost is bounded by
940n + 156. However, the connection between the actual cost of
running a program and its annotated type, such as the one above, is
only guaranteed by Theorem 1.

Continuing with the annotated type example, we also see that
the above function can be called with more resources available,
since the valuation x = 256, y = 100, u = 999 is also admis-
sible, leading to the bound 999n+ 256. Of these resources, at least
100 can be recovered after the call (the value of y). So list types
having extra potential may be accepted, but their additional poten-
tial would be lost. This is safe, since it increases the upper bound
on resource usage, but of course we will usually avoid such a loss.

∗ Note that all operators are extended pointwise when used in conjunction
with the vector notation and are only defined if both vectors have the same
length, i.e.

−→
A =

−→
B stands for ∀i . Ai = Bi.

The free resource variables of the type and constraint sets are
denoted by FV�(·). We also define a mapping |·| from annotated
types to standard unannotated types, which simply erases all an-
notations. For ∀α∈ψ.

−→
T −→

p

p′ T ′, we require that α ⊆ FV�(
−→
T) ∪

{p, p′} ∪ FV�(T
′) holds, but not that FV�(ψ) is a subset of α.

Any intermediate variables which would then only occur in ψ can
be eliminated by projecting the polytope described by ψ to the rel-
evant dimensions. This ensures that subtyping remains decidable.

The type rules for Schopenhauer govern how potential is associ-
ated with each particular runtime value through its type. We denote
the part of the potential associated with a runtime valuew of typeA
by Φv

H(w : A) (see Definition 5.4). Intuitively, this is defined as the
sum of the weights of all constructors that are reachable from w,
where the weight of each constructor in the sum is determined by
the typeA. A single constructor at a certain location may contribute
to this sum several times, if there is more than one reference to it. It
is natural to extend this definition to environments and contexts by
summation, i.e. Φv

H(V : Γ) is the sum of Φv
H(V(x) : Γ(x)) over all

variables x in Γ. Since the potential depends on the state, (static)
type rules do not have access to this number, but only govern the
relative changes. Note that we never actually need to compute the
potential (apart from the initial state), so the potential mainly serves
as an invariant in our soundness proof.

We now formulate the type rules for Schopenhauer. These dif-
fer from standard Hindley-Milner typing judgements only in that
they also refer to cost and resource variables. Note that we are not
concerned with type inference itself (a generally solved problem),
but only with the inference of our new type annotations. Let Γ de-
note a typing context mapping identifiers to annotated Schopen-
hauer types. The Schopenhauer typing judgement

Γ
q

q′ e : A | φ

then reads “for all valuations v that satisfy all constraints in
φ, the expression e has Schopenhauer type v(A) under context
v(Γ); furthermore, evaluating e under environment V and heap
H requires a potential of at most v(q) + Φv

H(V : Γ) and leaves a
potential of at least v(q′)+Φv

H′(` : A) available afterwards, where
` is the result value and H′ the post-heap”. In Section 5, we will
formalise this statement as Theorem 1 (our main theorem), which
requires as a precondition that the context, environment and heap
all agree.

We use a compressed notation that makes the following two
formulations equivalent for ψ = {q1 = q2 + c1, q2

′ = q′1 + c2}:
Γ

q2

q′
2
e2 : A2 | φ

Γ
q1

q′
1
e1 : A1 | φ ∪ ψ

Γ
q2

q′
1 + c2 e2 : A2 | φ

Γ
q2 + c1

q′
1

e1 : A1 | φ
The constraints ψ that were explicitly introduced in the left-hand
form have thus become implicit in the compressed notation on
the right. We believe that, with a little practice, the compressed
notation is actually easier to read. It is also closer to our implemen-
tation, which avoids the introduction of unnecessary intermediate
variables. Note that we do not simplify constraints after they are
generated, since the LP-solver is much faster if we do not do so.

Basic Expressions.
x:A

KpushVar

0 x : A | ∅
(VAR)

n ∈ Z

∅
KmkInt

0 n : int | ∅
(INT)

e ∈ {true, false}

∅
KmkBool

0 e : A | ∅
(BOOL)

Since primitive terms such as integers (INT) or variables (VAR)
always have fixed evaluation costs, a fixed initial potential and a
returned potential of zero suffices. The restriction to empty contexts
and the use of explicit weakening, rule WEAK below, just serves to
simplify our soundness proof by removing redundancies. For our

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

prototype implementation, we have merged the WEAK and RELAX
rules into all terminal rules.

Structural rules. We use explicit structural rules for weakening
and sharing (contraction), while exchange is built-in. It is necessary
to track pointers that are discarded (WEAK) or duplicated (SHARE),
since such operations may affect resource consumption. An addi-
tional structural rule (RELAX) allows potential to be discarded both
before or after a term, as well as allowing a constant amount of po-
tential to bypass a term.

In our system, unlike in a strictly linear type system, variables
can be used several times. However, the sum of all the potential
bestowed by each type of all the existing references must not ex-
ceed the potential that was originally attached to the type associated
with the entity when it was created. It is the job of the SHARE rule
to track multiple occurrences of a variable; and it is the job of the
.-function to apportion potential appropriately.

The application of these rules is straightforward. For example,
where there are multiple uses of a variable, sharing is used only at
the latest point; WEAK is applied before each terminal rule; and
RELAX is built-in throughout the rules with an additional slack
variable that is punished in the objective function, so discouraging
the LP-solver from using relaxations.

Γ
p

p′ e : A | φ

Γ
q

q′ e : A | φ ∪ {q ≥ p, q − p ≥ q′ − p′}
(RELAX)

Γ
q

q′ e : C | ψ φ⇒ ψ

Γ, x:A
q

q′ e : C | φ
(WEAK)

Γ, x:A1, y:A2

q

q′ e : C | φ

Γ, z:A
q

q′ e[z/x, z/y] : C | φ ∪ .(A |A1, A2)
(SHARE)

The ternary function .(A |B,C) returns a set of constraints that
enforce the property that each resource variable in A is equal to the
sum of its counterparts in B and C. This function is only defined
for structurally identical typesA,B,C, i.e. types that differ at most
in the names of their resource variables. For example, we have

A = µX.{Nil:(a, 〈〉)|Cons:(d, 〈int, X〉)}
B = µX.{Nil:(b, 〈〉)|Cons:(e, 〈int, X〉)}
C = µX.{Nil:(c, 〈〉)|Cons:(f, 〈int, X〉)}

.(A |B,C) = {a = b+ c, d = e+ f}
For type variables we simply record .(α |β1, β2) within the con-
straints, and replace it by the according constraints upon speciali-
sation. The crucial property of sharing is expressed in Lemma 5.7.

Function Abstraction & Application.
dom(Γ) = FV(e)\ x B = A−→

q

q′ C φ ∪ ψ ⇒ ξ

Γ, x:A
q

q′ e : C | ξ φ⇒
S

D∈ran(Γ) .(D |D,D)

~r /∈ FV�(Γ) ∪ FV�(φ)

Γ
KmkFun(|Γ|)

0 λx.e : ∀~r∈ψ.B | φ
(ABS)

Since the potential stored in the function closure becomes avail-
able for each function application, in order to allow the unlimited
repeated application of functions, we must restrict the potential
stored in a function closure to zero. This is achieved by abusing
the sharing operator .. Here, .(D |D,D) just generates the con-
straint x = x + x for each resource variable in D, forcing them
all to zero. All the potential required during the execution of the
function body must therefore be provided by its arguments, except
for a constant amount.

This, relatively minor, restriction only affects functions that re-
curse over a captured free variable, but not over one of their inputs.

We have not yet encountered an interesting program example where
this restriction would be an issue. In order to deal with such func-
tions, potential could be allowed within the closure, provided that
a static bound on the number of calls to such functions could be
determined. We plan to experiment with use-n-times functions in
future work, if this restriction turns out to be a real issue. Alterna-
tively, knowing the sizes of potential-bearing entities captured in
a closure would allow us to recharge their potential at each call.
Combining our work with a “sized-type” analysis (e.g. [40]) might
thus also avoid this limitation.

Each function body is only analysed once, associating a set of
constraints with the function. At each application, these constraints
are copied from the type. All resource variables that only occur
in the function’s type and constraints, but nowhere else, are given
fresh names for each application. Thus, although each function
is only analysed once, the LP-solver may still choose a different
solution for each individual application of the function.

σ : ~r → CV a substitution to fresh resource variables
σ(B) = A−→

q

q′ C

x:A, y:∀~r∈ψ.B
q + Kapp + Knext

q′ − Kapp′ y x : C | σ(ψ)
(APP)

Note that the LET-construct can be used to specialise the func-
tion before application. This is required anyway, if we follow the
convention suggested in Section 6.1.1 that normal sub-expressions
should always be unique variables, and that these are introduced by
a LET-construct immediately before their single use.

Algebraic Datatypes and Conditionals.

Γ
q − KifT

q′ + KifT′ et : A | φ Γ
q − KifF

q′ + KifF′ ef : A | ψ

Γ, x:bool
q + Knext

q′ if x then et else ef : A | φ ∪ ψ
(CONDITIONAL)

c ∈ Constrs C = µX.{· · · |c : (p, 〈B1, . . . , Bk〉)| · · · }
Ai = Bi

ˆ
C
‹
X
˜

(for i = 1, . . . , k)

x1:A1, . . . , xk:Ak

p + Kalloc(c)
0 c 〈x1, . . . , xk〉 : C | ∅

(CONSTR)
The CONSTR rule plays a crucial role in our annotated type system,
since this is where available potential may be associated with a new
data structure. Potential cannot be used while it is associated with
data; it can only be used once it has been released using the CASE
rule that forms the dual to the CONSTR rule. A successful match re-
leases the potential associated with the corresponding constructor.
c ∈ Constrs A = µX.{· · · |c : (p, 〈B1, . . . , Bk〉)| · · · }

∆ = y1:B1[A/X], . . . , yk:Bk[A/X]

Γ,∆
q + p + Kdealloc(c)− KcaseT(c)

q′ + KcaseT′(c) e1 : C | φ

Γ, x:A
q − KcaseF(c)

q′ + KcaseF′(c) e2 : C | ψ

Γ, x:A
q + Keof

q′ case! x of c 〈y1, . . . yk〉 -> e1|e2 : C | φ ∪ ψ
(CASE!)

The CASE rule for the read-only case pattern-match is identi-
cal to CASE!, except that it doesn’t include the cost parameter
Kdealloc(c), the (possibly negative) cost of deallocating construc-
tor constrC .

Let-bindings.

Γ
q1

q2 + Klet2 e1 : A1 | ψ ∆, x:A1

q2
q3 e2 : A2 | φ

Γ,∆
q1 + Klet1

q3 − Klet3 let x = e1 in e2 : A2 | ψ ∪ φ
(LET)

The type rule for the alternative form of let-expression LET . . . IN
(LET), is almost identical, except it substitutes the cost constants
KLET1, KLET2, KLET3 for Klet1, Klet2, Klet3, respectively.

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

Rec-bindings. ∆ = x1:A1, . . . , xn:An

∀i ∈ {1, . . . , n}. Γi,∆
qi − Krec2

qi+1 ei : Ai | ψi

Γn+1,∆
qn+1 − Krec3

q′ + Krec4 e : C | ξ
φ⇒ ξ ∪

S
i=1,...,n ψi ∪

S
B∈ran(∆) .(B |B,B)

φ⇒ {q ≥ q1 + Krec1 + n · Knext}

Γ1, . . . ,Γn+1

q

q′ let rec {x1 = e1; . . . ;xn = en} in e : C | φ
(REC)

Our recursive let rec construct allows circular data to be con-
structed. In contrast to non-circular aliased data, which may be
created carrying per-reference potential, as usual, circular data is
ill-suited for bounding recursion since its type-based potential must
be either infinite or zero. The REC rule therefore enforces zero po-
tential by abusing the sharing operator . in the same manner as
the ABS rule. As previously noted, function types are always as-
signed zero potential, and so are not affected, since the potential
that is required to execute the body of a function must come from
the arguments to the function.

Polymorphism.

~α /∈ dom(Γ) ~α /∈ ψ Γ
q

q′ e : C | ψ ∪ φ

Γ
q

q′ e : ∀~α:φ.C | ψ (GENERALISE)

Γ
q

q′ e : ∀~α:ξ.C | ψ φ⇒ ψ ∪ ξ
ˆ
~B
‹
~α
˜

Γ
q

q′ e : C
ˆ
~B
‹
~α
˜
| φ

(SPECIALISE)

We use the standard Hindley-Milner rules for polymorphism:
GENERALISE is used to generalise a type; and SPECIALISE al-
lows a polymorphic type to be specialised to any valid type, as
defined by the other type rules.

Subtyping. The type rules for subtyping depend on another in-
ductively defined relation ξ ` A<:B between two typesA andB,
defined below, which is relative to a constraint set ξ.

Γ, x:B
q

q′ e : C | φ ψ ` A<:B

Γ, x:A
q

q′ e : C | φ ∪ ψ
(SUPERTYPE)

Γ
q

q′ e : D | φ ψ ` D<:C

Γ
q

q′ e : C | φ ∪ ψ
(SUBTYPE)

For any fixed constraint set ξ, the following relation is both reflexive
and transitive, but not necessarily anti-symmetric.

ξ ` A<:A

for all i holds ξ ⇒ {pi ≥ qi} and ξ `
−→
Ai <:

−→
Bi

ξ ` µX.{· · · |ci:(pi,
−→
Ai)| · · · }<:µX.{· · · |ci:(qi,

−→
Bi)| · · · }

σ : ~s→ CV a substitution
ξ ∪ φ⇒ σ(ψ) ξ ∪ φ⇒

˘
σ(p) ≤ q, σ(p′) ≥ q′

¯
ξ ∪ φ ` D<:σ(C) ξ ∪ φ ` σ(A)<:B

ξ ` ∀~s∈ψ.C −→
p

p′ A<: ∀~r∈φ.D−→
q

q′ B

σ : ~α→ ~β a substitution ξ ∪ φ⇒ σ(ψ) ξ ` σ(A)<:B

ξ ` ∀~α:ψ.A <: ∀~β:φ.B

The inference itself follows straightforwardly from these type rules.
First, a standard typing derivation is constructed, and each type
occurrence is annotated with fresh resource variables. We insert
the structural rules as outlined above and then traverse the type

H(`) = (int, n) n ∈ Z
H �v ` :int

(WFINT)

H(`) = (bool, tt/ff)

H �v ` :bool
(WFBOOL)

H(`) = (constrc, `1, . . . , `k)
C = µX.{· · · |c : (q, 〈B1, . . . , Bk〉)| · · · }
∀i ∈ {1, . . . , k} .H �v `i :Bi

ˆ
C
‹
X
˜

H �v ` :C
(WFCON)

H �v ` :A ∃φ . v ⇒ φ ∧ φ ` A<:B

H �v ` :B
(WFSUBTYPE)

H(`) = (λx.e , V) There exists Γ, p, p′, φ such that:
H �v V :Γ v � φ Γ

p

p′ λx.e : F | φ
H �v ` :F

(WFFUN)

H(`) = Bad

H �v ` :A
(WFBAD)

H(`) = Ind(b̀)
H(b̀) 6= Ind(k)

H �v b̀:A

H �v ` :A
(WFINDIRECT)

Figure 3. Derivation rules for “well-formed” environments.

derivation precisely once to gather all the constraints. Because all
types have been annotated with fresh resource variables, subtyping
is required throughout, but this will always succeed and it will
generate the necessary inequalities. We illustrate this process in
more detail with a simple example in Section 6.1.2.

In the final step, the constraints that have been gathered are
solved by a standard LP-solver [4]. In practice, we have found
that the sparse LPs that are generated can be easily solved, partly
because they have a simple structure [19]. Furthermore, the number
of constraints that are generated is linear in the size of the analysed
program without resource parametricity; and at most quadratic with
resource parametricity. Since only a single pass over the program
code is needed to construct these constraints, this leads to a highly
efficient analysis. An online demo of our analysis is available at
http://www.embounded.org/software/cost/cost.cgi.

5. Soundness of the Analysis
We now sketch the most important steps for formulating our main
soundness theorem. We first formalise the notion of a “well-
formed” environment, written H �v V :Γ, which simply states that
for each variable, the type assigned by the typing context agrees
with the actual value found in the heap location that is assigned to
that variable by the environment.

Definition 5.1. A memory configuration consisting of heap H
and environment V is well-formed with respect to context Γ and
valuation v , written H �v V : Γ, if and only if for all variables
x ∈ Γ the co-inductively defined relation H �v V(x) :Γ(x) can be
derived by the rules in Figure 3.

We use a co-inductive definition for similar reasons as Milner
and Tofte [31]. Note that there are no practical consequences of
using a co-inductive definition here, since it is exclusively used as
an invariant in our soundness proof. Only the proofs of following
two lemmas require the principle of coinduction.

Lemma 5.2. If H �v V :Γ then for all ` also H[` 7→ Bad] �v V :Γ

It is an obvious requirement that evaluation must maintain a well-
formed memory configuration.

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

http://www.embounded.org/software/cost/cost.cgi

Lemma 5.3. If H �v V :Γ and V,H`e;`,H′ then H′ �v V :Γ.

We remark that one might wish to prove an extended statement that
the result ` of the valuation is also well-formed if the expression e
was typable. Unfortunately such a statement cannot be proven on
its own and must be interwoven into Theorem 1.

Definition 5.4 (Potential). If H �v ` :A holds, then the potential
of location ` for type A in heap H under valuation v , written
Φv

H(`:A), is recursively defined for recursive datatypes by

Φv
H(`:A) = v(q) +

X
i

Φv
H(`i:Bi[A/X])

when both A = µX.{· · · |c:(q, 〈B1, . . . , Bk〉)| · · · } and also
H(next(H, `)) = (constrc, `1, . . . , `k) holds, and zero in all other
cases. We extend this definition to contexts by

Φv
H

“
V :v(Γ)

”
=

X
x∈dom(Γ)

Φv
H

“
V(x):v

`
Γ(x)

”́
Subtyping must respect the well-formed environments and the
amount of potential associated with any value of that type.

Lemma 5.5. If H �v ` :A and φ ` A<:B holds and v is a
valuation satisfying φ, then H �v ` :B and Φv

H(`:A) ≥ Φv
H(`:B)

If a reference is duplicated, then the type of each duplicate must be
a subtype of the original type.

Lemma 5.6. If .(A |B,C) = φ holds then also φ ` A<:B.

The potential attached to any value of a certain type is always
shared linearly among types introduced by sharing. In other words,
the SHARE rule does not increase the total available potential.

Lemma 5.7. If H �v ` :A and .(A |B,C) = φ holds and v
satisfies φ then Φv

H(`:A) = Φv
H(`:B) + Φv

H(`:C). Moreover, for
A = B and A = C, it follows that Φv

H(`:A) = 0 also holds.

Lemma 5.8 (Inversion). If Γ
p

p′ λx.e : B | φ holds, then there

exists ∆, ξ, ∀~s∈ψ.A−→
q

q′ C such that all of the following hold

φ `
`
∀~a∈ψ.A−→

q

q′ C
´
<:B ∆, x:A

q

q′ e : C | ξ
∆ ⊆ Γ dom(∆) = FV(e) \ x ~s /∈ FV�(∆) ∪ FV�(φ)

φ ∪ ψ⇒ξ φ⇒
[

D∈ran ∆

.(D |D,D) φ⇒ p ≥ p′+KmkFun(|∆|)

We can now formulate the main theorem, as described intuitively
in Section 4.

Theorem 1 (Soundness). Fix a well-typed Schopenhauer program.
Let r ∈ Q+ be fixed, but arbitrary. If the following statements hold

Γ
q

q′ e:A | φ (1.A)

V,H ` e ; `,H′ (1.B)
H �v V :v(Γ) (1.C)

v : a valuation satisfying v(φ) (1.D)

then for all m ∈ N such that

m ≥ v(q) + Φv
H

“
V :v(Γ)

”
+ r (1.E)

there exists m′ ∈ N satisfying

V,H
m

m′ e ; `,H′ (1.I)

m′ ≥ v(q′) + Φv
H′

“
`:v(A)

”
+ r (1.II)

H
′ �v ` :v(A) (1.III)

The proof is by induction on the lengths of the derivations of (1.B)
and (1.A) ordered lexicographically, with the derivation of the eval-
uation taking priority over the typing derivation. This is required
since an induction on the length of the typing derivation alone
would fail for function applications, since in this case we extend
the length of the typing derivation by the typing judgment for the
body, using the invariant for well-formed environments. On the
other hand, the length of the derivation for the term evaluation never
increases, but may remain unchanged where the last step of the
typing derivation was obtained by a structural rule. In these cases,
the length of the typing derivation decreases, allowing an induction
over lexicographically-ordered lengths of both derivations.

The proof is complex but unsurprising for most rules. The arbi-
trary value r is required to carry over excess potential, which may
be required in the second sub-expression of a let-expression, but
left untouched by the first sub-expression. We sketch some impor-
tant cases:

(ABS) In the case that the last step of the derivation for (1.A)
was derived by rule ABS, we also know that the last step for
(1.B) must have been performed according to rule OP ABS.
We have H′(`) = (λx.e , V?). Fix r ∈ Q+ and choose
any m ∈ N such that m ≥ v(q) + Φv

H(V:Γ) + r. By the
definition of ABS and the observation that Γ has no potential by
Lemma 5.7, we havem ≥ KmkFun(|Γ|) + r. Furthermorem ≥
KmkFun(|V?|) + r since |Γ| = |V?| by V? = V�FV(e)\x from
OP ABS and dom(Γ) = FV(e)\ x from ABS. By OP ABS
and Lemma 3.1 we thus obtain m′ = m − KmkFun(|V?|) + r
which satisfies m′ ≥ r as required, since the potential of `
is zero by Definition 5.4. This leaves us to prove (1.III), which
follows in this case directly from WFFUN, since all existentially
quantified requirements are among our premises, except for
H′[` 7→ Bad] �v V : Γ which follows by Lemmas 5.2 and
5.3 from (1.C).

(APP) From OP APP we have H
`
V(y)

´
= (λx.e , V?) and

from (1.III) through WFFUN we obtain the existence of a
typing judgement for the function body. By the inversion
Lemma 5.8, we obtain all the required properties to derive

Γ
KmkFun(|Γ|)

0 λx.e : ∀~r∈ψ.B | φ through the application
of the ABS type rule. This allows us now to apply the induction
hypothesis, together with the premise of (1.B) for the body of
the function. The application of the induction hypothesis is jus-
tified despite the increased type derivation, since the evaluation
was shortened by one step. Again, note that the potential of Γ
is zero. This follows from Lemmas 5.5 and 5.7. Lemma 5.5 is
also important for deriving the necessary inequalities between
m andm′ and their counterparts from the induction hypothesis.
Conclusion (1.III) follows from the induction hypothesis and
the first part of Lemma 5.7.

(RELAX) Let r ∈ Q+ be fixed but arbitrary. We observe that
m ≥ v(p)+Φv

H(V:Γ)+r = v(q)+Φv
H(V:Γ)+r′if we choose

r′ = r + v(p) − v(q) for applying the induction hypothesis.
We can do this since v(p)− v(q) ≥ 0 holds by the constraints
of the RELAX rule. We thus obtain m′ with

m′ ≥ v(q′) + Φv
H(V:Γ) + r′

= v(q′) + Φv
H(V:Γ) + r + v(p)− v(q)

≥ v(q′) + Φv
H(V:Γ) + r + v(p′)− v(q′)

= v(p′) + Φv
H(V:Γ) + r

which follows by v(p)− v(q) ≥ v(p′)− v(q′) from the other
constraint added in RELAX.

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

N = 1 N = 2 N = 3 N = 4 N = 5

H
ea

p

St
ac

k

Ti
m

e

H
ea

p

St
ac

k

Ti
m

e

H
ea

p

St
ac

k

Ti
m

e

H
ea

p

St
ac

k

Ti
m

e

H
ea

p

St
ac

k

Ti
m

e

sum (see Fig 4)
Analysis 16 39 3603 24 39 5615 32 39 7627 40 39 9639 48 39 11651
Measured 16 34 3066 24 34 4606 32 34 6146 40 34 7686 48 34 9226
Ratio 1.00 1.15 1.18 1.00 1.15 1.22 1.00 1.15 1.24 1.00 1.15 1.25 1.00 1.15 1.26
flatten (see Fig 6)
Analysis 21 34 4485 38 60 8732 55 66 12979 72 82 17226 89 98 21473
Measured 21 34 4275 38 50 7970 55 50 11665 72 66 15360 89 66 19055
Ratio 1.00 1.00 1.05 1.00 1.20 1.10 1.00 1.32 1.11 1.00 1.24 1.12 1.00 1.49 1.13
repmin
Analysis 17 42 5020 35 69 10991 53 96 16962 71 123 22933 89 150 28904
Measured 17 42 4633 35 52 9395 53 61 14157 71 62 18919 89 71 23681
Ratio 1.00 1.00 1.08 1.00 1.33 1.17 1.00 1.57 1.20 1.00 1.98 1.21 1.00 2.11 1.22

Table 1. Measurement and analysis results for list- and tree-processing functions

6. Example Cost Analysis Results
In this section, we compare the bounds inferred by our analysis
against concrete measurements. Our measurement results were ob-
tained from an instrumented version of the underlying abstract ma-
chine that counts resources used during the execution.

For readability, the programs in this section use a more compact
functional notation than Schopenhauer, expression-level Hume [14],
without a restriction to let-normal form. This Haskell-style no-
tation uses multiple rules with pattern matching instead of top-
level, asymmetric case expressions. The basic type of integers is
parametrised with its bit-size precision. We use the familiar nota-
tion of [] for Nil and _:_ for Cons in the pre-defined list type:
data [a] = Nil | Cons a [a]. This notation is automatically
translated to the Schopenhauer code that is actually analysed.

The examples chosen in this section focus on the main language
features that are of interest in this paper: higher-order functions,
polymorphism and destructive pattern matching. The examples are
deliberately kept small to demonstrate the applicability of our ap-
proach to these language features, without being side-tracked by
previously-solved problems. For example, the variants of the sum-
of-squares function demonstrate how our analysis faithfully reflects
the increased performance that is achieved when turning a com-
position of higher order functions into direct recursion. The final
evaluator example is interesting because it modifies the argument
function as it is passed through the recursive calls.

6.1 List-sum
Our first example computes the sum of a list of integers (Figure 4).
In order to demonstrate the use of our analysis on higher-order
functions, we define the sum function as an instance of the standard
(left-) fold function. A bound on the heap usage for the sum
function is given by the following enriched type, where # represents
the µ-type, i.e. list, with the constructors Cons and Nil.

type num = int 16;

add :: num -> num -> num;
add x y = x + y;

fold :: (num -> num -> num) -> num -> [num] -> num;
fold f n [] = n;
fold f n (x:xs) = fold f (f n x) xs;

sum :: [num] -> num;
sum xs = fold add 0 xs;

Figure 4. Source code of list-sum

SCHOPENHAUER typing for HeapBoxed:
list[Cons<2>:int,#|Nil] -(6/0)-> int

The argument type includes annotations for each constructor, sepa-
rated by |. This shows that at most two units of heap are needed for
every Cons constructor in the input list (shown by the annotation
Cons<2>). In addition to this input-dependent part, the sum func-
tion needs at most 6 heap units, shown by the first annotation to the
function type (-(6/0)->). As shown by the second annotation (the
zero) and the absence of annotations in the result type, the anal-
ysis could not find a guarantee that any portion of the requested
heap memory is unused after execution. In total, given an input
list of length n, the heap consumption of this function is therefore
bounded by 2n+ 6.

This bound can be seen to be exact by direct inspection of the
source code in Figure 4. In the sum function, a constant of 2 is
needed to allocate the initial integer value of 0. Another constant
of 4 is needed to create a closure for the add function (a closure
includes a tag, a function pointer, plus counts of expected and sup-
plied arguments). In the fold function, a new integer value is cre-
ated in each iteration through the application of f n x. This re-
quires two heap cells per iteration. This value is therefore attached
to the Cons constructor of the input.

The bound on the stack consumption for sum, shown below, is a
constant for this tail-recursive program. The absence of annotations
to the Cons constructor indicates that the bound is independent of
the size of the input list.

SCHOPENHAUER typing for StackBoxed:
list[Cons:int,#|Nil] -(27/17)-> int

Finally, we can infer an upper bound on the time consumption of
this function using our worst-case execution costs in clock cycles
for the Renesas M32C/85U processor. As expected, time consump-
tion is linear in the length of the input list (n), namely 1714n+909.

SCHOPENHAUER typing for TimeM32:
list[Cons<1714>:int,#|Nil<225>] -(684/0)-> int

The first block in Table 1 compares the analysis bounds above with
our measured results, applying sum to the initial segments of the
input list [1,2,3,4,5] of lengths N = 1 . . . 5. Since we analyse
and measure the entire code, including the costs for generating the
test input, the absolute values given in the table are slightly higher
than the values calculated from the function types above. The ratio
of inferred to measured costs is used to assess the quality of our
bounds against actual behaviour. We can see that the predicted heap
consumption is exact in all cases. For stack usage, the measured
costs for this tail-recursive program are constant (34). The inferred

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

fold f n l = LET l1 = l IN
case l1 of [] -> LET n1 = n IN n1;

| (x:xs) -> LET xs1 = xs IN
LET x1 = x IN
LET n1 = n IN
LET z1 = f n1 x1 IN
LET f1 = f IN
fold f1 z1 xs1;

Figure 5. Intermediate code form of function fold.

bounds are also constant but not exact in this case. Finally, our time
predictions are a close match to actual execution times, yielding
an estimate that is between 18% and 26% higher than the actual
cost. In general, we expect less accurate bounds for time, because
the entries in the cost table are already worst-case bounds for the
primitive operations of the abstract machine.

6.1.1 Let-normal form
Recall from the introduction that in order to remove annoying
redundancies from the proof of Theorem 1, we require programs to
be in let-normal form. Programs can automatically be transformed
into let-normal form without altering their (cost) behaviour using
a second LET-construct that simply has zero costs assigned to it.
Another advantage of the LET-construct is that we can keep our big-
step semantics for measuring worst-case execution time and stack
space usage, for which small-step semantics are usually required.
This is achieved by adopting the policy that each sub-expression
must be a unique variable and that this variable is introduced by
the LET-construct immediately before its (single) use. For example,
the fold function from Figure 4 would be transformed into the let-
normal form of Figure 5.

Under this policy, the rule for function calls can expect that all
arguments are available on the stack. The cost for pushing variables
on the top of the stack or creating constants was already modelled
by the ordinary VAR, INT and BOOL rules. It follows that only the
cost of popping the arguments from the stack, after returning from
the call, must be included in rule APP. An additional benefit is that
the order in which the arguments are placed on the stack is also
made explicit in the code by the order of the LET bindings. Al-
though our prototype implementation always adheres to it, we have
refrained from strictly enforcing this policy in Schopenhauer be-
cause it is not intrinsic to our analysis method, and it is conceivable
that other cost models might not require such a strict convention.

6.1.2 Manual amortised cost analysis demonstration
We now illustrate how the type rules are applied and perform a
manual analysis for a simplified version of one branch of the fold
function in Figure 5.

case l of (x:xs) -> LET z1 = f n x IN fold f z1 xs;

The first step is to enrich the type for the fold function with fresh
variables, representing the as yet unknown annotations.`

int−→
a

b int−→
v

w int
´−→c

d int−→
e

f list(int, p)−→
x

y int

where list(int, p) is a convenient shorthand for the simplified list
type µα.{Cons:(p, 〈int, α〉)|Nil:(0)}. For the sake of simplic-
ity, we immediately set the variables a, b, c, d, e and f to the zero
value, since they are non-essential in this example.

We then follow the standard type derivation tree for the code,
gathering constraints as we go. We must also reconstruct the im-
plicit inequalities hidden by our compressed type rule notation.
However, this is very simple, if we adopt the view that the value on
top of the turnstile represents the “currently available resources”
before executing the term and the one below the “guaranteed re-

maining resources” after. In that sense, we start with x resources
available, since we are in the body of the fully applied function.

The outermost term constructor is a case distinction, so CASE
applies. On top of the turnstile in the conclusion we have q1+Keof.
Hence we gather the implicit inequality x ≥ q1 + Keof. We
follow the branch of the type derivation for the successful match
of the Cons-constructor, which according to the CASE rule now
has q1 + p− KcaseT resources available.

Next, the LET rule applies. Matching the available resources
yields the second inequality q1 + p− KcaseT ≥ q2 + KLET1, and
according to the first premise we have q2 resources available for the
call f n x.

According to the APP type rule, a call to function f requires us
to pay Kapp + Knext. Hence we have the inequality q2 ≥ v +
Kapp + Knext. In addition, we must apply subtyping to match the
annotations of the argument types and the functions. However, no
constraints are generated here, since both are unannotated numeric
types. Furthermore, any constraints that are directly attached to
function f are also added now. The inference renames all bound
variables in these constraints, probably including v and w, but
again, for simplicity, we ignore this here. The renaming allows
different possible resource usages for each function application, as
described in Section 6.6.1.

Since APP is a terminal rule, we are left with w − Kapp′

resources. Note that we always apply WEAK before any terminal
rule, to allow excess resources to be carried over. Again, we ignore
this in this example.

We have now returned to the second premise of rule LET and
can obtain the constraint w − Kapp′ ≥ q3 + KLET2, leaving us
with q3 resources for the body of the LET-expression, a recursive
call. The application of WEAK is crucial in this case, so we obtain
q3 ≥ q4 and q3 − q4 ≥ q6 − q5, where q4 and q6 are fresh, and
q5 represents the remaining resources after applying APP again.
This in turn yields the constraints q4 ≥ x + Kapp + Knext and
y− Kapp′ ≥ q5. We are therefore left with q6 after the weakening.

Matching q6 against the remaining resources guaranteed by
LET then yields q6 − KLET3 ≥ q7. Finally, using CASE we obtain
q7 − KcaseT′ ≥ y in a similar way.

Let ψ denote the set containing these constraints. If we instan-
tiate the resource parameters according to the desired cost model
and specify that all variables must be non-negative, ψ could now
be solved by an LP-solver, yielding an annotated type for the func-
tion. However, if this function definition is part of a bigger program,
we do not solve the constraints at this point, but rather use them to
improve the type of the function to

∀~r∈ψ.
`
int−→

0

0 int−→
v

w int
´−→0

0 int−→
0

0 list(int, p)−→
x

y int

where ~r = {p, q1, q2, q3, q4, q5, q6, q7, v, w, x, y}, so that the
function may be used with differing resource behaviours.

Simplifying ψ by eliminating the intermediate variables (qi)
and summing the constant cost parameters to give some suitable
constant Ci can help make the constraint set more comprehensible
for human readers. These constraints in fact reduce to:

x+ p ≥ v + C1 w ≥ x+ C2

It is possible to spot the recursive nature of fold in these con-
straints, since x occurs both on the left and right hand side, i.e. the
cost must be paid in full by p. This is justified, since each recursive
step introduces a new Cons-constructor, bearing a potential of p.
Both x and y can have arbitrary values, which is sound since we
ignored the terminating case branch in this example. For the full
fold function, we need to similarly examine the branch dealing
with [], This produces the constraint x ≥ y+C3, restricting x and
y, as expected.

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

data tree = Leaf num | Node tree tree;

dfsAcc ::(num -> [num] -> [num]) -> tree -> [num] -> [num];
dfsAcc g (Leaf x) acc = g x acc;
dfsAcc g (Node t1 t2) acc = let acc’ = dfsAcc g t1 acc

in dfsAcc g t2 acc’;
cons :: num -> [num] -> [num];
cons x xs = x:xs;

revApp :: [num] -> [num] -> [num];
revApp [] acc = acc;
revApp (y:ys) acc = revApp ys (y:acc);

flatten :: tree -> [num];
flatten t = revApp (dfsAcc cons t []) [];

Figure 6. Source code of tree-flattening (flatten)

6.2 Tree operations
The next two examples operate over trees. The first is a tree flat-
tening function, using a higher-order depth-first-traversal of a tree
structure that is parametrised by the operation that is applied at the
leaves of the tree. The source code is given in Figure 6.

Again, the bounds for heap, stack, and time consumption are
linear in the number of leaves (l) and nodes (n) in the input struc-
ture: the heap consumption is 8l + 8, the stack consumption is
10l+ 16n+ 14, and the time consumption is 2850l+ 938n+ 821.

SCHOPENHAUER typing for HeapBoxed:
(tree[Leaf<8>:int|Node:#,#]) -(8/0)->

list[Cons:int,#|Nil]
SCHOPENHAUER typing for StackBoxed:
(tree[Leaf<10>:int|Node<16>:#,#]) -(14/23)->

list[Cons:int,#|Nil]
SCHOPENHAUER typing for TimeM32:
(tree[Leaf<2850>:int|Node<938>:#,#]) -(821/0)->

list[Cons:int,#|Nil]

The second block in Table 1 compares analysis and measurement
results for the tree-flattening example. Again the bounds for heap
are exact. For stack, the analysis delivers a linear bound, whereas
the measured costs are logarithmic in general. Here, we could use-
fully apply a further extension of the amortised cost based analysis.
Campbell [6] has developed methods for associating potential in re-
lation to the depth of data structures. This is more suitable for stack-
space usage. It also allows temporary “borrowing” of potential. The
time bounds give very good predictions, with an over-estimate of
at most 13% for the range of inputs shown here.

The second operation on trees is the repmin function which
replaces all leaves in a tree with the element with the minimal value.
This function is implemented in two phases, both using higher-
order functions: the first phase computes the minimal element using
a tree-fold operation; the second phase fills in this minimal element
using a tree-map function.

The third block in Figure 1 compares analysis and measurement
results for the repmin example. Again the bounds for heap are
exact. For stack, we observe a linear bound but with a more pro-
nounced difference between the measured and analysed costs. This
is due to the two tree traversals. The time bounds, however, show
a good match against the measured costs, with an over-estimate of
at most 22%.

6.3 Sum-of-squares
In this section, we study 3 variants of the classic sum-of-squares
example (Figure 7). This function takes an integer n as input and
calculates the sum of all squares ranging from 1 to n. The first vari-
ant is a first-order program using direct recursion, which does not

N = 10

C
al

ls

H
ea

p

St
ac

k

Ti
m

e

sum-of-squares (variant 1: direct recursion)
Analysis 22 114 30 18091
Measured 22 108 30 16874
Ratio 1.00 1.06 1.00 1.07
sum-of-squares (variant 2: with map and fold)
Analysis 56 200 114 53612
Measured 56 200 112 42252
Ratio 1.00 1.00 1.02 1.27
sum-of-squares (variant 3: also unfold)
Analysis 71 272 181 77437
Measured 71 272 174 59560
Ratio 1.00 1.00 1.04 1.30

Table 2. Results for three variants of the sum-of-squares function

-- common code
sq n = n*n; add m n = m+n;
-- map, (left-) fold over lists are standard
-- enumFromTo m n generates [m..n] (tail-recursive)

-- variant 1: direct recursion
sum_sqs’ n m s = if (m>n)

then s
else sum_sqs’ (n-1) m (s+(sq n));

sum_sqs n = sum_sqs’ n 1 0;

-- variant 2: uses h-o fcts fold and map
sum xs = fold add 0 xs;
sum_sqs n = sum (map sq (enumFromTo 1 n));

-- variant 3: uses h-o fcts unfold, fold and map
data maybenum = Nothing | Just num;

unfoldr :: (num -> maybenum) -> num -> [num];
unfoldr f z = case f z of Nothing -> []

| (Just z’) -> z’:(unfoldr f z’);
countdown :: num -> maybenum;
countdown m = if (m<1) then Nothing else Just (m-1);

enum :: num -> [num]; -- this generates [n,n-1..1]
enum n = if (n<1) then [] else n:(unfoldr countdown n);

sum_sqs :: num -> num;
sum_sqs n = sum (map sq (enum n));

Figure 7. Source code of sum-of-squares (3 variants)

construct any intermediate list structures. The second variant uses
the higher-order functions map and fold to compute the squares
over all list elements and to sum the result, respectively. The third
version additionally uses the higher-order function unfold to gen-
erate the initial list of numbers from 1 to n.

Table 2 summarises analysis and measurement results for all
three variants. As expected, the higher-order versions of the code
exhibit significantly higher resource consumption, notably for the
second and third variants which generate two intermediate lists.
These additional costs are accurately predicted by our analysis. In
particular, the heap costs are exactly predicted and the stack costs
are almost exact. The time results are within 30% of the measured
costs. We consider this to be a very good worst-case estimate for
higher-order code.

As discussed before, our inference engine is largely independent
of the actual resource being inferred. We can therefore easily adapt
our analysis to other resources simply by replacing the basic cost
table that is used to model the program execution costs. We exploit

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

this capability here to infer bounds on the total number of function
calls in a program expression. This metric is of particular interest
for higher-order programs (this is discussed in more detail in [30]).
The results for this resource are given in the second column of
Table 2. The first variant exhibits the lowest number of function
calls, since all three phases of the computation are covered by one
recursive function. Thus, we have one function call to the square
function and one recursive call for each integer value. Additionally,
we have one call to the top level function:
SCHOPENHAUER typing for CallCount: (int<2>) -(2/1)-> int

The second variant separates the phases of generating a list, com-
puting the squares and summing them. The generation phase, im-
plemented using direct recursion, needs one call per iteration. The
other two phases each need two calls per iteration: one for the
higher-order function, and one for the function being applied. In
total we have 5n+ 6 calls, as encoded by the following type:
SCHOPENHAUER typing for CallCount: (int<5>) -(6/0)-> int

The third variant again has three phases. Now all three phases use
higher-order functions, with the enumeration being implemented
through a call to unfold. The number of calls therefore increases
to 7n+ 1. This is encoded by the following type:
SCHOPENHAUER typing for CallCount: (int<7>) -(1/0)-> int

6.4 Polymorphic functions
As an example of a simple polymorphic function we examine the
resource consumption of the twice and quad functions:
type afct = a -> a;
twice :: afct -> afct;
twice f x = f (f x);

quad :: afct -> afct;
quad f x = let f’ = twice f in twice f’ x;

We obtain the following polymorphic type as heap bound for quad:
SCHOPENHAUER typing for HeapBoxed:
(a -(0/0)-> a) -(0/0)-> a -(5/0)-> a

The resource consumption for quad is expressed by the annotation
on the top level function type: five heap cells are required to build a
closure for twice f, which contains one fixed argument. The zeros
for the function argument are provisional, the LP-solver has simply
chosen a possible solution. When applied to a concrete function,
the merged constraints will need to be solved once again. Applying
the successor function succ, which has a fixed cost of four heap
units, then yields the correct typing of:
SCHOPENHAUER typing for HeapBoxed: int -(21/0)-> int

Using a call count metric for the number of calls to the function
succ in the expression quad succ 1, we obtain the following
bound. This accurately indicates that succ is called precisely four
times.
SCHOPENHAUER typing for CallCount: 4, int ,0

6.5 Destructive pattern matching
A primary motivation for our analysis is to prove bounded resource
consumption on resource constrained hardware, such as embedded
systems. It is, therefore, important that our analysis can cover tech-
niques that are frequently employed to produce programs with a
small resource footprint. We address this issue here, and in our sub-
sequent examples, by i) testing our analysis on programs with de-
structive pattern matching, and ii) by using a more space-efficient,
unboxed representation of the heap. Due to the flexible design of
our inference engine, both aspects can be modelled without modi-
fying the engine itself: only the cost tables need to be changed. Our
first example to test these features is in-place list reversal:
revApp acc zs = case! zs of [] -> acc

| (x:xs) -> revApp (x:acc) xs;
reverse xs = revApp [] xs;

type pred = num -> num -> bool;

insert :: pred -> num -> [num] -> [num];
insert cmp x zs = case! zs of

[] -> x : []
| (y:ys) -> if cmp x y then x : y : ys

else y:insert cmp x ys;
sort :: pred -> [num] -> [num];
sort cmp zs = case! zs of

[] -> []
| (x:xs) -> insert cmp x (sort cmp xs);

leq :: pred;
leq x y = x<=y;

isort :: pred -> [num] -> [num];
isort xs = sort leq xs;

Figure 8. Source code of in-place insertion sort

The heap bound below shows that only constant heap space is
needed for the reverse function. A constant heap space of 2 is
needed for the initial Nil constructor passed to revApp. Due to the
destructive nature of the pattern matches in revApp, the list cells
of the input list can be re-used. Similarly, the Nil constructor of
the input-list can be re-used for the result. Thus, the second 2 in
the function type indicates that two resources are given back after
completion of the revApp function. In total, the heap usage after
execution is the same as before.

SCHOPENHAUER typing for HeapUnboxed:
list[Nil|Cons:int,#] -(2/2)-> list[Nil|Cons:int,#]

The stack and time consumption, however, are both linear:

SCHOPENHAUER typing for StackBoxed:
list[Nil<1>|Cons<3>:int,#] -(11/11)->

list[Nil|Cons<1>:int,#]
SCHOPENHAUER typing for TimeM32:
list[Nil<225>|Cons<858>:int,#] -(481/0)->

list[Nil|Cons:int,#]

A more interesting example is in-place insertion sort, parametrised
over the comparison function (Figure 8). The insert function uses
destructive pattern-matching to re-use the current cell of the input
list when constructing the result list. The destructive pattern match
in sort ensures that the call to insert has one list cell to start
with. Using an unboxed heap model, which does not allocate heap
space for the comparison operations, we can show that this function
does not require any additional heap space:

SCHOPENHAUER typing for HeapUnboxed:
(list[Cons:int,#|Nil]) -(0/0)-> list[Cons:int,#|Nil]

6.6 An evaluator for expressions
Our final example is an evaluator function for a small subset of
the Schopenhauer language itself, using only integer types and
without function calls. Even this loop-free version of the language
is interesting, since it uses a function to model the environment,
and the evaluation of a let-expression modifies this function. The
code for the evaluation function is shown in Figure 9.

The analysis of the eval function produces the following heap
bound for an unboxed heap model:

SCHOPENHAUER typing for HeapUnboxed:
(int -(0/0)-> int) -(0/0)-> exp[Const:int
|VarOp:int
|IfOp:int,#,#
|LetOp<9>:int,#,#
|UnOp:(int -(0/ANY)-> int<ANY>),#
|BinOp:(int -> int -(0/ANY)-> int<ANY>),#,#]-(0/0)->int

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

type num = int 16; type val = num;
type var = int 16; type env = var -> val;

data exp = Const val | VarOp var
| IfOp var exp exp | LetOp var exp exp
| UnOp (val->val) exp
| BinOp (val->val->val) exp exp;

_true = 1; _false = 0;

eval :: env -> exp -> val;
eval rho (Const n) = n;
eval rho (VarOp v) = rho v;
eval rho (IfOp v e1 e2) = if (rho v)==_false

then eval rho e2
else eval rho e1;

eval rho (LetOp v e1 e2) = let x = eval rho e1 ;
rho’ v’ = if v==v’

then x
else rho v’

in eval rho’ e2;
eval rho (UnOp f m) = f (eval rho e1);
eval rho (BinOp f m n) = f (eval rho e1) (eval rho e2);

Figure 9. Source code of the evaluator example

Most notably the analysis distinguishes between different con-
structors when examining an expression. For constants or variables,
no heap costs are incurred, since the result value is returned on the
stack. For an if-expression, the total costs comprise those for the
sub-expressions, represented as # in the type. No further costs are
added for the variable lookup. For a let-expression, a modified en-
vironment is defined. This amounts to the construction of a closure
with two fixed variables in the heap (9 heap cells in total). Finally,
the primitive unary and binary operators do not use any heap cells,
since the result value will be produced directly on the stack.

6.6.1 Resource parametric recursion
Interestingly, the eval function cannot be analysed under the boxed
heap cost model — analysing this function would require polymor-
phic recursion [15, 26], which we do not support. The second re-
cursive call in the case dealing with LetOp requires a different type,
since the annotated type of the first argument has changed. Function
rho’ is more expensive to execute than rho, because adding the
equality operation allocates a boolean value in the boxed heap cost
model, and this cannot be amortised against the inputs of rho’. In
future, we intend to investigate whether the considerable increase
in complexity brought about by polymorphic recursion might be
warranted by the possible gain in expressivity.

7. Related Work
Our discussion of related work focuses on analyses for strict,
higher-order programs. A discussion of analyses for first-order pro-
grams is given in another paper [25].

7.1 Amortised Analysis
The focus of most previous work on automatic amortised cost
analyses has been on determining the costs of first-order rather
than higher-order programs. For example, Hofmann’s linearly-
typed functional programming language LFPL [17] uses linear
types to determine resource usage in terms of the number of con-
structors used by a program. First-order LFPL definitions can be
computed in bounded space, even in the presence of general recur-
sion. Adding higher-order functions to LFPL raises the expressive
power in terms of complexity theory from linear space (LFPL) to
exponential time [18]. Hofmann and Jost subsequently described
an automatic inference mechanism for heap-space consumption
in a functional, first-order language [19], using an amortised cost

model. This work uses a deallocation mechanism similar to that we
have used here, but is built on a difference metric similar to that
of Crary and Weirich [9]. The latter, however, only checks bounds,
and does not infer them, as we do.

Taha et al.’s GeHB [37] staged notation automatically generates
first-order, heap-bounded LFPL programs from higher-order speci-
fications, but likewise requires the use of non cost-preserving trans-
formations. We are not aware of any other work targeting automatic
amortised analysis for higher-order definitions. However, Camp-
bell [6] has studied how the Hofmann/Jost approach can be applied
to stack analysis for first-order programs, using “give-back” anno-
tations to return potential. This improves the quality of the analysis
results that can be obtained for stack-like metrics. While, in order
to keep the presentation clear, we have not done so here, there is no
technical reason why “give-back” potential cannot also be applied
to the higher-order analysis that we have described. Recent work
has aimed to overcome the linearity restriction when analysing
first-order programs. For example, Shkaravska et al. aim to extend
the amortised cost approach to non-linear bounds using resource
functions in the constraints, rather than simple variables [36].

7.2 Sized Types
Sized types [22] express bounds on data structure sizes. They are
attached to types in the same way as the weights we have used
here. The difference is that sized types express bounds on the size
of the underlying data structure, whereas our weights are factors of
a linear resource bound. Hughes, Pareto and Sabry [22] originally
described a type checking algorithm for a simple higher-order,
non-strict functional language to determine progress in a reactive
system. This work was subsequently developed to describe space
usage in Embedded ML [21], a strict functional language using
regions to control memory usage. Abel [1] extended higher-order
sized types to allow higher-kinded types with embedded function
spaces. He used this system to formalise termination checking but
did not tackle resource consumption in general. A combination
of sized types and regions is also being developed by Peña and
Segura [33], building on information provided by ancillary analyses
on termination and safe destruction. The focus of this work is on
determining safety properties rather than resource usage, however.
Chin and Khoo [7] introduced a type inference algorithm that is
capable of computing size information from high-level program
source. Chin et al. [8] presented a heap and a stack analysis for
a low-level (assembler) language with explicit (de-)allocation. By
inferring path-sensitive information and using symbolic evaluation
they are able to infer exact stack bounds for all but one example
program.

Vasconcelos and Hammond have independently developed au-
tomatic inferences that are capable of deriving cost equations for
abstract time- and heap-consumption from unannotated program
source expressions based on the inference of sized types for re-
cursive, polymorphic, and higher-order programs [40]. Vasconce-
los’ PhD thesis [39] extended these previous approaches by using
abstract interpretation techniques to automatically infer linear ap-
proximations of the sizes of recursive data types and the stack and
heap costs of recursive functions. By including user-defined sizes,
it is possible to infer sizes for algorithms on non-linear data struc-
tures, such as binary trees.

Finally, Danielsson [10] has recently introduced a library of
functions that he claims makes the analysis of a number of purely
functional data structures and algorithms almost fully formal. He
does this by using a dependent type system to encode information
about execution time, and then by combining individual costs into
an overall cost using an annotated monad.

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

7.3 Abstract Interpretations
While having the attraction of being very general, one major dis-
advantage of abstract interpretations is that analysis results usually
depend on the existence of concrete data values. Where they can
be applied, impressive results can, however, be obtained even for
large commercial applications. For example, AbsInt’s aiT tool [11],
and Cousot et al.’s ASTREE system [5] have both been deployed
in the design of the software of Airbus Industrie’s Airbus A380.
Typically, such tools are limited to non-recursive programs†, and
may require significant programmer effort to use effectively. We are
aware of very little work that considers user-defined higher-order
programs, though Le Métayer’s work [28] can handle predefined
higher-order functions with known costs, and Benzinger’s work
on worst-case complexity analysis for NuPrl [3] similarly supports
higher-order functions if the complexity information is provided
explicitly. Huelsbergen, Larus and Aiken [20] have defined an ab-
stract interpretation of a higher-order, strict language for determin-
ing computation costs that dependent on the size of data structures.
This static analysis is combined with run-time size information to
deliver dynamic granularity estimates.

Gulwani, Mehra and Chilimbi’s SPEED system [13] uses a
symbolic evaluation approach to calculate non-linear complexity
bounds for C/C++ procedures using an abstract interpretation-
based invariant generation tool. Precise loop bounds are calculated
for 50% of the production loops that have been studied. Unlike our
work, they target only first-order programs. Also unlike our work,
they consider only time bounds. They do, however, consider non-
linear bounds and disjunctive combination of cost information.

The COSTA system [2] performs a fully automatic resource
analysis for an object-oriented bytecode language. It produces a
closed-form upper bound function over the size of the input. Unlike
our system, however, data-dependencies cannot be expressed.

Finally, Gómez and Liu [12] have constructed an abstract inter-
pretation for determining time bounds on higher-order programs.
This executes an abstract version of the program that calculates
cost parameters, but which otherwise mirrors the normal program
execution strategy. Unlike our type-based analysis, the cost of this
analysis therefore depends directly on the complexity (or actual
values) of the input data and the number of iterations that are per-
formed, does not give a general cost metric for all possible inputs,
and will fail to terminate when applied to non-terminating pro-
grams.

8. Conclusions and Further Work
By developing a new type-based, resource-generic analysis, we
have been able to automatically infer linear bounds on real-time,
heap usage, stack usage and number of function calls for strict,
higher-order functional programs. The use of amortised costs al-
lows us to determine upper bound cost functions on the overall
resource cost of running a program, which take the sizes of pro-
gram arguments as their inputs. We have extended previous work
on amortised-cost-based inference [19, 25] by considering higher-
order and polymorphic programs, and by constructing a generic
treatment of resource usage through resource tables that can be spe-
cialised to different cost metrics and execution models. In this way
we achieve a clean separation of the mechanics of inference from
the concrete cost metrics that we use. We have demonstrated the
flexibility of the resource table approach by building an analysis to
determine the number of function calls in a higher-order program.
Another key advantage of this separation is that our basic sound-
ness proof applies regardless of the cost metric that we use.

† There is, however, significant recent work on determining loop bounds for
iterative programs as part of a worst-case execution time analysis, e.g. [29].

Our results for a range of higher-order programs demonstrate
the high quality of the bounds that we can infer. For heap space, we
can generally achieve an exact prediction. For worst-case execution
time, the bounds we achieve are within 30% of the measured
costs. For stack, we generally achieve good results, but occasionally
obtain bounds that are linear where the measured costs are constant.
This is not inherent to our analysis. For example, Campbell has
studied how to improve stack bounds for amortised analysis [6].

Crucial to the usability of our inference is its high degree of effi-
ciency, its full automation and the absence of mandatory program-
mer annotations. Being built on a high-performance linear program
solver our inference is very efficient: for the examples that we have
used in this paper, the sizes of the constraint sets vary between 64
and 350 constraints, with the analysis runtime never exceeding 1
second, including constraint solving. However, the restriction to a
linear constraint system does impose limits on the range of pro-
grams whose costs can be analysed. Precisely classifying the pro-
grams that can be analysed is an interesting theoretical question for
all forms of cost analysis. While it would be possible to construct
a restrictive classification on source-level programs, this would ei-
ther exclude many programs that are, in fact, analysable, or include
many programs that were not analysable. This does not, therefore,
seem to be a constructive activity. The most precise classification is
that our analysis will succeed exactly where the cost equations have
a linear bound. While the inclusion of tail-call optimisations and
other cost-simplifying optimisations can actually extend the range
of programs that can be costed, the restriction to linearity remains
both a theoretical and practical limitation.

8.1 Further Work
Incorporating Sized Types. As we have seen, sized-type systems
provide information about data structure sizes. Although they can
be used to provide cost information when combined with a suitable
constraint inference algorithm [40], they are complementary to the
amortised cost approach described here, in that our weights for
data structures are multiples of input data structure sizes. Sized
type systems should allow these sizes to be inferred statically for a
number of common data structures.

Non-Linear Constraints. An extension of the amortised cost
based approach to polynomial bounds for a first-order language
is ongoing work [16]. We have also begun to investigate whether
combining our approach with a sized-type analysis might also al-
low the inference of super-linear bounds, while still using efficient
LP-solver technology (multiple times).

Non-Strictness. Our work is restricted to strict programming lan-
guages. An extension of our work to non-strict programming lan-
guages, such as Haskell, requires the solution of two technical prob-
lems: firstly, we must identify when computations are needed; and,
secondly, we must have a formal operational semantics of non-strict
evaluation that will allow us to identify resource usage in the way
we have done here. We are in the process of producing a cost model
and analysis based on Launchbury’s semantics for graph reduc-
tion [27], which incorporates notions of evaluation- and sharing-
contexts to determine where potentials may be used.

Acknowledgements
We would like to thank our colleagues Pedro Vasconcelos and
Hugo Simões (both Universidade do Porto, Portugal) for their fruit-
ful discussion of the rules and proofs, and the anonymous reviewers
for their helpful suggestions. This work has been supported by EU
Framework VI grants IST-510255 (EmBounded), IST-15905 (Mo-
bius), and RII3-CT-2005-026133 (SCIEnce); and by EPSRC grant
EP/F030657/1 (Islay).

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

References
[1] A. Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order

Types. PhD thesis, Ludwig-Maximilians-Universität München, 2006.
[2] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space

Analysis for Languages with Garbage Collection. In Proc. ISMM
2009: Intl. Symp. on Memory Management, pages 129–138, Dublin,
Ireland, June 2009. ACM.

[3] R. Benzinger. Automated Complexity Analysis of Nuprl Extracted
Programs. Journal of Functional Programming, 11(1):3–31, 2001.

[4] M. Berkelaar, K. Eikland, and P. Notebaert. lp solve: Open Source
(Mixed-Integer) Linear Programming System. Published under
GNU LGPL (Lesser General Public Licence). http://lpsolve.
sourceforge.net/5.5.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A Static Analyzer for Large Safety-
Critical Software. In Proc. PLDI’03: Conf. on Programming Lan-
guage Design and Implementation, pages 196–207, San Diego, USA,
June 2003. ACM.

[6] B. Campbell. Amortised Memory Analysis Using the Depth of Data
Structures. In Proc. ESOP 2009: European Symposium on Program-
ming, LNCS 5502, pages 190–204, York, UK, 2009. Springer.

[7] W.-N. Chin and S.-C. Khoo. Calculating Sized Types. Higher-Order
and Symbolic Computing, 14(2,3):261–300, 2001.

[8] W.-N. Chin, H. Nguyen, C. Popeea, and S. Qin. Analysing Memory
Resource Bounds for Low-Level Programs. In Proc. ISMM’08: Intl.
Symp. on Memory Management, pages 151–160, Tucson, USA, June
2008. ACM.

[9] K. Crary and S. Weirich. Resource Bound Certification. In Proc.
POPL’00: Symp. on Princ. of Prog. Langs, pages 184–198, Boston,
USA, 2000. ACM.

[10] N. Danielsson. Lightweight Semiformal Time Complexity Analysis
for Purely Functional Data Structures. In Proc. POPL’08: Symp. on
Princ. of Prog. Langs, pages 133–144, San Francisco, USA, 2008.

[11] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm. Reliable and Precise WCET
Determination for a Real-Life Processor. In Proc EMSOFT’01: Intl
Workshop on Embedded Software, LNCS 2211, pages 469–485, Tahoe
City, USA, Oct. 2001. Springer.

[12] G. Gomez and Y. Liu. Automatic Time-Bound Analysis for a Higher-
Order Language. In Proc. LCTES’98: Conf. on Languages, Compilers
and Tools for Embedded Systems, LNCS 1474, pages 31–40, Montreal,
Canada, June 1998. Springer.

[13] S. Gulwani, K. Mehra, and T. Chilimbi. SPEED: Precise and Efficient
Static Estimation of Program Computational Complexity. In Proc.
POPL’09: Symp. on Princ. of Prog. Langs, pages 127–139, Savannah,
USA, Jan. 2009. ACM.

[14] K. Hammond and G. Michaelson. Hume: a Domain-Specific Lan-
guage for Real-Time Embedded Systems. In Proc. GPCE 2003: Intl.
Conf. on Generative Prog. and Component Eng., LNCS 2830, pages
37–56, Erfurt, Germany, Sept. 2003. Springer.

[15] F. Henglein. Type Inference with Polymorphic Recursion. ACM
TOPLAS: Trans. Prog. Langs. Systs, 15(2):253–289, April 1993.

[16] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with
Polynomial Potential. In preparation.

[17] M. Hofmann. A Type System for Bounded Space and Functional In-
Place Update. Nordic Journal of Computing, 7(4):258–289, 2000.

[18] M. Hofmann. The Strength of non Size-Increasing Computation. In
Proc. POPL’02: Symp. on Princ. of Prog. Langs, pages 260–269,
Portland, USA, Jan. 2002. ACM.

[19] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for
First-Order Functional Programs. In Proc. POPL ’03: Symp. on Princ.
of Prog. Langs, pages 185–197, New Orleans, USA, Jan. 2003. ACM.

[20] L. Huelsbergen, J. Larus, and A. Aiken. Using the Run-Time Sizes of
Data Structures to Guide Parallel Thread Creation. In Proc. LFP’94:
Symp. on Lisp and Functional Programming, pages 79–90, Orlando,
USA, June 1994. ACM.

[21] R. Hughes and L. Pareto. Recursion and Dynamic Data Structures
in Bounded Space: Towards Embedded ML Programming. In Proc.
ICFP ’99: Intl. Conf. on Functional Programming, pages 70–81, Paris,
France, Sept. 1999. ACM.

[22] R. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of
Reactive Systems Using Sized Types. In Proc. POPL’96: Symp. on
Princ. of Prog. Langs, pages 410–423, St. Petersburg Beach, USA,
Jan. 1996. ACM.

[23] S. Ishtiaq and P. O’Hearn. BI as an Assertion Language for Mutable
Data Structures. In Proc. POPL’01: Symp. on Princ. of Prog. Langs.,
pages 14–26. ACM, Jan. 2001.

[24] H. Jonkers. Abstract Storage Structures. In Algorithmic Languages,
pages 321–343. IFIP, North Holland, 1981.

[25] S. Jost, H.-W. Loidl, K. Hammond, N. Scaife, and M. Hofmann.
“Carbon Credits” for Resource-Bounded Computations using Amor-
tised Analysis. In Proc. FM ’09: Intl. Symp. on Formal Methods,
LNCS 5850, Eindhoven, the Netherlands, Nov. 2009. Springer.

[26] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type Reconstruction in
the Presence of Polymorphic Recursion. ACM TOPLAS: Trans. Prog.
Langs. Systs, 15(2):290–311, April 1993.

[27] J. Launchbury. A Natural Semantics for Lazy Evaluation. In
Proc. POPL’93: Symp. on Princ. of Prog. Langs., pages 144–154,
Charleston, USA, Jan. 1993. ACM.

[28] D. Le Métayer. ACE: An Automatic Complexity Evaluator. ACM
TOPLAS: Trans. on Prog. Langs. and Systs, 10(2), April 1988.

[29] B. Lisper. Fully Automatic, Parametric Worst-Case Execution Time
Analysis. In Proc. WCET ’03: Intl. Workshop on Worst-Case Execu-
tion Time Analysis, pages 99–102, 2003.

[30] H.-W. Loidl and S. Jost. Improvements to a Resource Analysis for
Hume. In Proc. FOPARA ’09: Intl. Workshop on Foundational and
Practical Aspects of Resource Analysis, LNCS 6324, Eindhoven, the
Netherlands, Nov. 2009. Springer.

[31] R. Milner and M. Tofte. Co-induction in relational semantics. Theo-
retical Computer Science, 87(1):209 – 220, 1991.

[32] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998. ISBN 0521663504.

[33] R. Pena, C. Segura, and M. Montenegro. A Sharing Analysis for Safe.
In Proc TFP’06: Symp. on Trends in Functional Programming, pages
109–128, Nottingham, UK, Apr. 2006. Intellect.

[34] J. C. Reynolds. Definitional Interpreters for Higher-Order Program-
ming Languages. In Proc of the 25th ACM National Conference, pages
717–740. ACM, 1972.

[35] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A Semantics
for Procedure Local Heaps and its Abstractions. In Proc. POPL’05:
Symp. on Princ. of Prog. Langs, pages 296–309. ACM, Jan. 2005.

[36] O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial Size
Analysis of First-Order Functions. In Proc. TLCA 2007: Intl. Conf. on
Typed Lambda Calculi and Applications, LNCS 4583, pages 351–365,
Paris, France, June 2007. Springer.

[37] W. Taha, S. Ellner, and H. Xi. Generating Heap-Bounded Programs in
a Functional Setting. In Proc. EMSOFT ’03: Intl. Conf. on Embedded
Software, LNCS 2855, pages 340–355. Springer, 2003.

[38] R. E. Tarjan. Amortized Computational Complexity. SIAM Journal
on Algebraic and Discrete Methods, 6(2):306–318, April 1985.

[39] P. Vasconcelos. Cost Inference and Analysis for Recursive Functional
Programs. PhD thesis, University of St Andrews, Feb. 2008.

[40] P. Vasconcelos and K. Hammond. Inferring Cost Equations for Re-
cursive, Polymorphic and Higher-Order Functional Programs. In
Proc. IFL 2003: Intl. Workshop on Impl. of Functional Languages,
LNCS 3145, pages 86–101, Edinburgh, UK, Sept. 2003. Springer.

[41] D. Walker and G. Morrisett. Alias Types for Recursive Data Struc-
tures. In Proc. TIL’00: Types in Compilation, LNCS 2071, pages 177–
206. Springer, 2000.

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

http://lpsolve.sourceforge.net/5.5
http://lpsolve.sourceforge.net/5.5

A. Errata
This version of the paper has been revised in August 2010 to correct
two minor mistakes, which had been discovered by the authors
themselves.

The definition of well-formed memory configurations is switched
from a truncated inductive definition to a co-inductive definition.
The statements of the theorem and all lemmas remain unchanged.
The change effect the rules given in Figure 3 for Definition 5.1,
which now accept infinite derivations. This definition serves as an
invariant. It ensures that heap and environment are not degener-
ated, in the sense that they can be derived from an evaluation that
started with both heap and environment being empty. Note that
using a co-inductive definition for excluding degenerated memory
configurations is not at all new: Milner and Tofte [31] also used
a co-inductive definition for their invariant on consistent memory
configurations in 1991. The reason being that the statement which
expresses that a closure is well-formed will depend on itself for
recursive function closures.

Observe that this self-dependency only leads to an endless rep-
etition of a finite number of statements. In the original version of
this paper, the rules in Figure 3 changed all visited memory loca-
tions to Bad. This value is defined to be consistent with any type,
thereby eliminating any repetitions, allowing us to use an inductive
definition. However, we discovered that this did not exclude certain
degenerated configurations, for which Theorem 1 does not hold.
The degenerated configurations contain closures, whose evaluation
has just begun, but whose environment contains pointers to itself
that are associated with a different type.

Our proof for Theorem 1 had conveniently ignored that the
derivations for well-formed memory configurations could contain
premises where the heap was altered with the value for some loca-
tion being changed to Bad. This was not true for the original def-
inition of well-formed configurations, but it is true for the revised
version given in Figure 3, which now mentions the same heap H
everywhere. So the proof of Theorem 1 remains unchanged. Like-
wise, the statements of all lemmas remain unchanged. Only the
herein omitted proofs of Lemma 5.2 and Lemma 5.3 need to be
adjusted to account for the now co-inductive definition for well-
formed configurations.

Another minor change effects the example programs. The defi-
nition of fold has been changed to be a proper left-fold operation.
The analysis results are not effected by this change. Since mea-
sured costs differ only in a few cycles, the data in Table 1 is left
unchanged.

c©ACM, 2010. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. Revised August 2010.

	1 Introduction
	2 The Schopenhauer Notation
	3 Schopenhauer Operational Semantics
	4 Schopenhauer Type Rules
	5 Soundness of the Analysis
	6 Example Cost Analysis Results
	6.1 List-sum
	6.1.1 Let-normal form
	6.1.2 Manual amortised cost analysis demonstration

	6.2 Tree operations
	6.3 Sum-of-squares
	6.4 Polymorphic functions
	6.5 Destructive pattern matching
	6.6 An evaluator for expressions
	6.6.1 Resource parametric recursion

	7 Related Work
	7.1 Amortised Analysis
	7.2 Sized Types
	7.3 Abstract Interpretations

	8 Conclusions and Further Work
	8.1 Further Work

	A Errata

