Verifying Program Optimizations in Agda
Case Study: List Deforestation

Andreas Abel
16 July 2009

This is a case study on proving program optimizations correct. We prove the \textit{foldr-unfold} fusion law, an instance of deforestation. As a result we show that the summation of the first \(n \) natural numbers, implemented by producing the list \(n :: \ldots :: 1 :: 0 :: [] \) and summing up its elements, can be automatically optimized into a version which does not use an intermediate list.

\begin{verbatim}
module Fusion where
open import Data.Maybe
open import Data.Nat
open import Data.Product
open import Data.List hiding (downFrom)
open import Relation.Binary.PropositionalEquality
import Relation.Binary.EqReasoning as Eq

From Data.List we import \texttt{foldr} which is the standard iterator for lists.

\begin{verbatim}
foldr : {a b : Set} → (a → b → b) → b → List a → b
foldr c n [] = n
foldr c n (x :: xs) = c x (foldr c n xs)
\end{verbatim}

Further, \texttt{sum} sums up the elements of a list by replacing \([\]\) by \(0\) and \(_::_\) by \(+\).

\begin{verbatim}
sum : List N → N
sum = foldr (+) 0
\end{verbatim}

Finally, \texttt{unfold} is a generic list producer. It takes two parameters, \(f : B \rightarrow \text{Maybe} \ (A \times B) \), the transition function, and \(s : B \), the start state. Now \(f \) is iterated on the start state. If the result of applying \(f \) on the current state is \texttt{nothing}, an empty list is output and the list production terminates. If the application of \(f \) yields just \((x, s')\) then \(x \) is taken to be the next element of the list and \(s' \) the new state of the production.

In Agda, everything needs to terminate, so we add a (hidden) parameter \(n : N \) which is an upper bound on the number of elements to be produced. Each iteration decreases
this number. Consequently the type $B : \mathbb{N} \rightarrow \text{Set}$ is now parameterized by n, and $f : \forall \{n\} \rightarrow B (\text{suc } n) \rightarrow \text{Maybe } (A \times B n)$ can only be applied to a state $B (\text{suc } n)$ where still an element could be output.

$$\text{unfold} : \{A : \text{Set}\} (B : \mathbb{N} \rightarrow \text{Set})$$

$$\forall \{n\} \rightarrow B n \rightarrow \text{List } A$$

$$\text{unfold } B f \{n = \text{zero}\} s = []$$

$$\text{unfold } B f \{n = \text{suc } n\} s \text{ with } f s$$

$$\text{... | nothing } = []$$

$$\text{... | just } (x, s') = x :: \text{unfold } B f s'$$

A typical instance of unfold is the function downFrom from the standard library with the behavior $\text{downFrom } 3 = 2 :: 1 :: 0 :: []$. We reimplement it here, avoiding local definitions as used in the standard library.

$$\text{data Singleton} : \mathbb{N} \rightarrow \text{Set where}$$

$$\text{wrap} : (n : \mathbb{N}) \rightarrow \text{Singleton } n$$

$$\text{downFromF} : \forall \{n\} \rightarrow \text{Singleton } (\text{suc } n) \rightarrow \text{Maybe } (\mathbb{N} \times \text{Singleton } n)$$

$$\text{downFromF} \{n\} (\text{wrap } \circ (\text{suc } n)) = \text{just } (n, \text{wrap } n)$$

$$\text{downFrom} : \mathbb{N} \rightarrow \text{List } \mathbb{N}$$

$$\text{downFrom } n = \text{unfold } \text{Singleton } \text{downFromF} (\text{wrap } n)$$

$$\text{sumFrom} : \mathbb{N} \rightarrow \mathbb{N}$$

$$\text{sumFrom } \text{zero} = \text{zero}$$

$$\text{sumFrom } (\text{suc } n) = n + \text{sumFrom } n$$

Our goal is to show the theorem $\forall n \rightarrow \text{sum } (\text{downFrom } n) \equiv \text{sumFrom } n$.

The theorem follows from general considerations:

- sum is a foldr, it consumes a list.
- downFrom is a unfold, it produces a list.

The list is only produced to be consumed again. Can we optimize away the intermediate list?

Removing intermediate data structures is called deforestation, since data structures are tree-shaped in the general case.

In our case, we would like to fuse an unfold followed by a foldr into a single function foldUnfold which does not need lists. We observe that a foldr after an unfold satisfies the following equations:

$$\text{foldr } c n (\text{unfold } B f \{\text{zero}\} s) = n$$

$$\text{foldr } c n (\text{unfold } B f \{\text{suc } m\} s \mid f s = \text{nothing}) = n$$

$$\text{foldr } c n (\text{unfold } B f \{\text{suc } m\} s \mid f s = \text{just } (x, s'))$$

$$2$$
In the recursive case, the pattern \(\text{foldr}\ c\ n \circ \text{unfold}\ B\ f \) resurfaces, and it contains all the recursive calls to \(\text{foldr} \) and \(\text{unfold} \). Hence, we can introduce a new function \(\text{foldUnfold} \) as

\[
\text{foldUnfold}\ c\ n\ B\ f = \text{foldr}\ c\ n \circ \text{unfold}\ B\ f
\]

\(\text{foldUnfold} \) does not produce an intermediate list.

It is easy to show that the definition of \(\text{foldUnfold} \) is correct.

\[
\text{foldr-unfold} : \{ A : \text{Set} \} \rightarrow (c : A \rightarrow C \rightarrow C) \rightarrow (n : C) \rightarrow (B : \text{Set}) \rightarrow (f : \forall \{ n \} \rightarrow B (\text{suc}\ n) \rightarrow \text{Maybe}\ (A \times B n)) \rightarrow \\
\{ m : \text{ℕ} \} \rightarrow (s : B m) \rightarrow \\
\text{foldr}\ c\ n\ (\text{unfold}\ B\ f\ s) \equiv \text{foldUnfold}\ c\ n\ B\ f\ s
\]

\(\text{foldr-unfold} \) is a special case of \(\text{foldUnfold} \).

\[
\text{lem1} : \forall \{ n \} \rightarrow \text{foldUnfold}_{+}\ 0\ \text{Singleton} \downarrow\ \text{sumFrom}\ (\text{wrap}\ n) \equiv \text{sumFrom}\ n
\]

Our theorem follows by composition of the two lemmata.
sumFrom n

where open ≡ Reasoning

That’s it!