
An Introduction to Dependent Types and
Agda

Andreas Abel

3 July 2009

1 Types

Types in programming languages serve several purposes:

1. Find runtime-errors at compile-time.

2. Enable compiler optimizations.

3. Allow the programmer to express some of his intention about the code.

4. Provide a machine-checked documenation.

Strongly typed languages include JAVA and Haskell. Dependent types allow the program-
mer to add even more redundant information about his code which leads to detection
logical errors or full program verification.

1.1 What is a dependent type?

Dependent types mean that types can refer to values, not just to other types. From the
mathematics, uses of dependent types are familiar. For instance, in linear algebra we
define the type of vectors Rn of length n by

Rn = R× · · · × R︸ ︷︷ ︸
n times

and the inner product of two vectors of length n receives type Rn × Rn → R. This type
is dependent on the value n. Its purpose is to make clear that the inner product is not
defined on two arbitrary vectors of reals, but only of those of the same length. Most
strongly typed programming languages do not support dependent types. Haskell has a
rich type system that can simulate dependent types to some extent [McB02].
Dependently typed languages include Agda, Coq, Omega, ATS (replacing DML).

Cayenne is no longer supported.

1



2 Core Features of Agda

In the following, we give a short introduction into dependent types using the language
Agda. Agda is similar to Haskell in many aspects, in particular, indentation matters!

module DepTypes where

2.1 Dependent Function Type

As opposed to ordinary function types A → B, dependent function types (x : A) → B
allow to give a name, x, to the domain A of the function space. The name x can be
subsequently used in the codomain B to refer to the particular value x of type A that has
been passed to the function. Using a dependent function type, we can specify the inner
product function as follows:

inner : (n : Nat) → Vect Nat n → Vect Nat n → Nat

Herein Vect Nat n denotes the type of vectors of natural numbers of length n, which we
will define later. An application inner 5 v w is only well-typed if v and w both have length
5.

2.2 Inductive Types

As in Haskell, we can declare new data types by giving their constructors. Only the new
data syntax of Haskell is supported by Agda:

data Nat : Set where
zero : Nat
suc : Nat → Nat

This means that we introduce a new type, a Set in Agda terminology, with a nullary
constructor zero and a unary, recursive constructor suc. Thus, natural numbers are
possibly empty sequences of suc terminated by a zero, which is a unary presentation of
natural numbers, as opposed to a binary representation.
Polymorphic data types, parametric data types in proper terminology, can be defined

by providing a sequence of variable declarations just after the name of the data type. For
example, polymorphic lists have one parameter A : Set, which is the list element type.
All the parameter names are in scope in the constructor declarations.

data [ ] (A : Set) : Set where
[ ] : [A]
_::_ : A → [A] → [A]

Agda supports pre-, post-, in-, and mixfix identifiers. Here, we have declared the type
[A] of lists over A as mixfix identifier, the constructor [ ] for empty lists is an ordinary
identifier but made up of special symbols, the constructor _::_ is infix, to be used in the
form x :: xs.

2



2.3 Inductive Families

Vectors are lists over a certain element type A of a certain length n. While the parameter
A remains fixed for the whole list, the index n varies for each sublist. Indexed inductive
types are called inductive families and declared like

data Vect (A : Set) : Nat → Set where
vnil : Vect A zero
vcons : (n : Nat) → A → Vect A n → Vect A (suc n)

Note that Vect itself is of type Set → Nat → Set and Vect A is of type Nat → Set.

2.4 Recursive Definitions and Pattern Matching

In order to define the inner product of two vectors of natural numbers, we define addition
and multiplication for natural numbers first.

infix 2 _+_
infix 3 _*_

_+_ : Nat → Nat → Nat
n + zero = n
n + suc m = suc (n + m)

_*_ : Nat → Nat → Nat
n * zero = zero
n * suc m = n * m + n

Both are defined by recursion and case distinction over the second argument.
Our first attempt to define the inner product is:

inner : (n : Nat) → Vect Nat n → Vect Nat n → Nat
inner zero vnil vnil = zero
inner (suc n) (vcons n x xs) (vcons n y ys) = x * y + inner n xs ys
-- FAILS

However this fails. The second clause for inner violates the linearity condition. The
variable n is mentioned thrice in the patterns on the left hand side. Each variable can
however only be bound once. What we meant to express is that whatever the values of
the three occurrences of n are, because of the type of inner we know they are equal. This
can be expressed properly using Agda’s dot patterns.

inner : (n : Nat) → Vect Nat n → Vect Nat n → Nat
inner zero vnil vnil = zero
inner (suc .n) (vcons .n x xs) (vcons n y ys) = x * y + inner n xs ys

There is now only one binding occurrence of n, the other two occurrences have been
dotted. A dot can be followed by any expression, it does not have to be a variable as in
our case. What .n it means is: whatever stands here, do not match against it, for I know
it is equal to n.

3



2.5 Omitted and Hidden Arguments

A special expression is the hole which stands for any expression we do not care about.
Agda’s unification procedure tries to find the correct expressions which fit into the holes
for us. For instance we can leave the administration of the vector length to Agda, since
it is inferable from the constructors vnil and vcons.

inner : (n : Nat) → Vect Nat n → Vect Nat n → Nat
inner ._ vnil vnil = zero
inner ._ (vcons ._ x xs) (vcons y ys) = x * y + inner xs ys

We can even hide things we do not care about completely. The hidden dependent function
space {x : A} → B contains functions whose argument is declared as hidden, i.e., it is
not written by default, but one can supply it enclosed in braces. It is convenient to hide
the length annotations in vectors so that they look like lists.

data Vect (A : Set) : Nat → Set where
vnil : Vect A zero
vcons : {n : Nat} → A → Vect A n → Vect A (suc n)

inner : {n : Nat} → Vect Nat n → Vect Nat n → Nat
inner vnil vnil = zero
inner (vcons x xs) (vcons y ys) = x * y + inner xs ys

Internally, the last definition of inner is read as:

inner : {n : Nat} → Vect Nat n → Vect Nat n → Nat
inner { } vnil vnil = zero
inner { } (vcons { ._} x xs) (vcons { ._} y ys) = x * y + inner { } xs ys

Can we really not fool the type checker? Let us test it.

one = suc zero
two = suc one

v1 = vcons one vnil
v2 = vcons zero v1

Now the following program is rejected by the type checker:

foo = inner v1 v2 -- FAILS

3 Some Library Functions for Vectors

In the following, we gain some more experiences with Agda by playing around with
vectors. Let us try concatenation of vectors first.

4



append : {A : Set} {n m : Nat} →
Vect A n → Vect A m → Vect A (n + m) -- FAILS

append vnil ys = ys
append (vcons x xs) ys = vcons x (append xs ys)

This code is rejected by Agda with the error message .m != zero + .m of type Nat pointing
at the right hand side of the first clause. What is going on here? Since vnil : Vect A n
the type checker infers n = zero, thus it expects the right hand side ys to be of type
Vect A (zero + m). It has type Vect A m, and zero plus something is something, so where
is the problem? The problem is that we know knowledge about addition that Agda does
not have. By definition, Agda knows that m + zero = m, but it does not know that
addition is commutative.1 Flipping the sum solves our problem:

append : {A : Set} {n m : Nat} →
Vect A n → Vect A m → Vect A (m + n)

append vnil ys = ys
append (vcons x xs) ys = vcons x (append xs ys)

We got away this time, but in other cases we might have to teach Agda that addition is
commutative!
A nice application of vectors is that looking up the element at a certain index can be

made safe statically. I.e., we can define a lookup function _!!_ that only accept indices
that are below the length of the vector. The trick is done using finite sets:

data Fin : Nat → Set where
fzero : {n : Nat} → Fin (suc n)
fsuc : {n : Nat} → Fin n → Fin (suc n)

The finite set Fin n contains exactly n elements. In particular, Fin 0 is empty, and
Fin (suc n) contains the elements fzero, fsuc fzero, . . . , fsucn−1 fzero.
Using Fin, we construct the following total lookup function

_!!_ : {A : Set} {n : Nat} → Vect A n → Fin n → A
vnil !! ()
vcons x xs !! fzero = x
vcons x xs !! fsuc m = xs !! m

The first clause uses the absurd pattern (). If the vector is vnil, then n = 0 and Fin n is
empty, so there is no match for the index. Of course, no right hand side has to be given
in this case.
Again, we cannot fool the type checker:

foo = vnil !! fzero -- FAILS

1Agda is dumb as a chicken!

5



4 Sorted Lists and Logic in Agda

Let us introduce booleans and comparison of naturals:

data Bool : Set where
true : Bool
false : Bool

if_then_else_ : {A : Set} → Bool → A → A → A
if true then b1 else b2 = b1
if false then b1 else b2 = b2

_6_ : Nat → Nat → Bool
zero 6 n = true
(suc m) 6 zero = false
(suc m) 6 (suc n) = m 6 n

An idea to implement a type of descendingly sorted lists of natural numbers is to index
the list type by a lower bound for the next element which can be prepended.

data SList : Nat → Set where
snil : SList zero
scons : {n : Nat} (m : Nat) → (n 6 m) → SList n → SList m
-- FAILS

The empty list is indexed by zero so any natural number can be prepended without
violating sorting. The list scons {n} m l is only sorted if n 6 m. The placeholder needs
to be filled with some evidence for this fact, or in mathematical terms we need to provide
a proof that can be checked by Agda!
However, the way we wrote it above does not make sense. The term n 6 m is a

Boolean, i.e., either true or false, thus, it is a value and not a set and we cannot form a
function space from a value to a set.

4.1 The Curry Howard Correspondence

We need to find a representation of truth values as sets, such that we can integrate
evidence for valid conditions, such as n 6 m into data structures. The solution is based
on an observation by Haskell Curry (1934 and 1958) and William A. Howard (1969) that
a proposition can be viewed as the set of its proofs, and proofs correspond to programs,
at least in intuitionistic logic, which is a logic without the principle of the excluded
middle. The correspondence is called Curry-Howard-Correspondence or -Isomorphism,
sometimes also Curry-Howard-de Bruijn Correspondence.

Proposition = Set

An empty set corresponds to a unprovable, i.e., false proposition, an inhabited (i.e.,
non-empty) set to a true proposition.

6



data Absurd : Proposition where
data Truth : Proposition where

tt : Truth

Consequently, absurdity can be modelled as a data type with no constructors, and truth
as a data type with a constructor that has no arguments. Pure truth needs no further
evidence (but also conveys no information).

data _∧_ (A B : Proposition) : Proposition where
, : A → B → A ∧ B

To prove the conjunction A ∧ B, we need a proof a : A of A and a proof b : B of B,
which we put together to form the pair a, b.

fst : {A B : Proposition} → A ∧ B → A
fst (a, b) = a

snd : {A B : Proposition} → A ∧ B → B
snd (a, b) = b

If we have a proof of A ∧ B, we can obtain proofs of A and B by projection. Viewed as
set, the conjunction is just the Cartesian product.

_×_ = _∧_

A disjunction A ∨ B is proven by either providing a proof of A or a proof of B. In Agda
this is modelled by a data type with two constructors inl and inr, the first to turn a proof
of A into a proof of A ∨ B and the second to turn a proof of B into a proof of A ∨ B.

data _∨_ (A B : Proposition) : Proposition where
inl : A → A ∨ B
inr : B → A ∨ B

A proof of a disjunction A ∨ B can be used by performing case analysis, i.e., distinguishing
whether a proof of A was given or a proof of B.

case : {A B C : Proposition} → A ∨ B → (A → C) → (B → C) → C
case (inl a) f g = f a
case (inr b) f g = g b

So if we have a method f : A → C to turn a proof of A into a proof of C, and we have
a method g : B → C to obtain a proof of C from a proof of B, then given a proof of
A ∨ B we obtain a proof of C by case analysis.
Implication is just the functions space. Thus, a proof f : A → B of the implication

“A implies B”, is a function which computes a proof of B from a proof of A. For example,
we can prove the following two (trivial) propositions:

7



lemma : {A : Proposition} → A → A ∧ Truth
lemma a = (a, tt)

comm∧ : {A B : Proposition} → A ∧ B → B ∧ A
comm∧ (a, b) = (b, a)

The first lemma states that A implies A ∧ Truth, its proof is a program taking a : A and
producing the pair a, tt. The second shows that conjunction is commutative, the proof
just swaps the two components of the pair.

4.2 Booleans and Propositions

We can translate booleans into propositions by mapping true to Truth and false to Absurd.

True : Bool → Proposition
True true = Truth
True false = Absurd

The opposite translation is not possible, since there are more propositions than just the
trivial ones (truth and absurdity).

4.3 Proof by Induction

Now we can show that comparison 6 is reflexive.

refl6 : (n : Nat) → True (n 6 n)
refl6 zero = tt
refl6 (suc n) = refl6 n

The proof of True (n 6 n) proceeds by induction on n : Nat. In case zero, the term
zero 6 zero simplifies to true by definition of 6. Thus, it remains to show True true
which in turn simplifies to Truth and this has the trivial proof tt. In case suc n we
have to show True (suc n 6 suc n) which simplifies to True (n 6 n) by definition. We
conclude by the induction hypothesis, which is obtained via the induction hypothesis
refl6 n : True (n 6 n).
By the Curry-Howard correspondence, a proof by induction is a recursive function over

the natural numbers, with one important condition: It needs to be terminating on all
inputs. Termination of refl6 is checked by Agda using the structural ordering on the
natural numbers. The term n is structurally smaller than suc n since n is an argument
to the constructor suc. The structural ordering is wellfounded for any data type, thus,
termination checking using the structural ordering is sound.
Using non-terminating programs, we can prove false propositions:

{-# NO_TERMINATION_CHECK #-}

bla : (n : Nat) → True (one 6 zero)
bla n = bla (suc n)

8



{-# NO_TERMINATION_CHECK #-}

foo : Absurd
foo = foo

The Agda termination checker marks all programs that fail the termination check in
red color, indicating that it cannot guarantee logical consistency in the presence of non-
termination. However, it does not report an error, since the program might terminate
even if Agda cannot guarantee it. (Remember the halting problem: termination is un-
decidable in general.)
Another source of logical inconsistency are incomplete pattern matches, for instance:

A : Bool → Proposition
A true = Truth
A false = True (one 6 zero)

prf : (b : Bool) → A b
prf true = tt
-- FAILS

bar : True (one 6 zero)
bar = prf false

The proof prf is incomplete the case b = false has been omitted, which happens to
be unprovable. Now bar is a proof of an inconsistency, which if executed, would result
in a runtime error. However, Agda already rejects prf since the pattern matching is
incomplete. By declaring the options

{-# OPTIONS –no-termination-check –no-coverage-check #-}

termination and case coverage check can be turned off, which might be convenient during
drafting a program/verification project.

4.4 Statically Sorted Lists

We can now come back to the data type of descending lists.

data SList : Nat → Set where
snil : SList zero
scons : {n : Nat} (m : Nat) → True (n 6 m) → SList n → SList m

slist1 = scons one tt (scons zero tt snil)

Whenever we prepend a new element to the list with scons, we need to provide a proof
that the new element m is greater or equal to the head element n of the List (or zero
if the list is empty). For concrete numbers, these proofs are always trivial, since 6 is
decidable.
This completes the crash course in Agda. More information can be found in Ulf Norell’s

tutorial or the LERNET summer school notes by Ana Bove and Peter Dybjer.

9



References

[McB02] Conor McBride. Faking it: Simulating dependent types in haskell. J. Func.
Program., 12(4&5):375–392, 2002.

10


