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Abstract
We develop a theoretical foundation for compiling the program-
ming language Agda to System Fω , which is a stepping stone to-
wards a compiler from Agda to Haskell. The practical relevance
for software engineering and the problem of providing correctness
guarantees for programs is highlighted. After describing relevant λ-
calculi, we specify the semantics for compiling Agda to System Fω .
Finally, we illustrate those compilation rules by manually translat-
ing several Agda code examples to System Fω .

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory

Keywords Languages, Lambda calculus and related systems,
Types, Compilers

1. Introduction
Agda is a dependently-typed functional programming language as
well as a proof assistant. Currently, Agda programs can be inter-
preted, but the various compilation backends are not fully satisfac-
tory yet. There is a compiler backend that targets Haskell, MAl-
onzo, which uses the untyped λ-calculus as an intermediate lan-
guage. Therefore, it has to rely on type coercions for the translation
to Haskell, which is based on a type system that is closely related
to System Fω . This means that there is little opportunity for any
optimisations to be performed by the Haskell compiler GHC.

Consequently, there is room to improve the status quo by creat-
ing a new compiler backend that performs type-directed translation
and resorts to type coercion only when strictly necessary. Present-
ing a set of rules for the extraction from Agda to System Fω , which
is intended as the theoretical foundation of a new compiler backend
for Agda, is the aim and culmination of this paper. Some prelim-
inaries are necessary before we reach that point. The translation
to System Fω , however, is only a stepping stone towards translat-
ing Agda to Haskell, as the necessary sequence of translations goes
from Agda to System Fω , and from System Fω to Haskell.

The context of this paper is a Bachelor’s thesis for a degree in
Software Engineering and Management. This warrants taking great
care to highlight, in Section 2, the significance of our work for soft-
ware engineering. We are stressing the relation between the neces-
sity of tests for programs written in a particular programming lan-
guage, and the strength of the type system it uses. Our presentation
illustrates that there is an inverse correlation between the expres-
siveness of a type system and the need to write test cases, i.e. the
more expressive the type system of a given programming language,
the fewer cases have to be manually specified, due to the fact that
more expressive type systems provide correctness guarantees for
free — from the view of the working programmer at least. We dis-
cuss dynamic typing, static typing, and dependent typing, as well
as some of their respective benefits for the working programmer.

In Section 3 we embark on a brisk tour of several important λ-
calculi, which is necessary for providing the background for the
extraction rules from Agda to System Fω . We will provide an il-
lustration of the untyped λ-calculus, the simply typed λ-calculus,
the polymorphic λ-calculus and the simply typed λ-calculus with
type operators. While being far from exhaustive, our presentation
nonetheless aims to provide the reader with a sufficient descrip-
tion of the various λ-calculi, important operations and rules, and
the motivations that led to their development by highlighting the
respective problems they were designed to solve.

Section 4 is devoted to the translation of programming lan-
guages. After discussing some relevant theoretical background, we
continue with a specification of the higher-order polymorphic λ-
calculus, i.e. System Fω , and Agda, before we, at long last, de-
scribe the translation from Agda to System Fω , which forms the
main contribution of this paper. Concretely, we do the following:

• locate Agda within the λ-cube, which is a conceptual frame-
work for classifying various λ-calculi

• present a slightly simplified specification of Agda as a suitable
core for a new compiler

• extend System Fω in order to make it an appropriate target for
Agda

• specify the translation from Agda to System Fω by giving the
semantics of the compilation rules

• illustrate the translation by providing several examples that
show the extraction from Agda to System Fω

Lastly, in Section 5 we provide an outlook to potential future
work that may build upon the results presented in this paper. We
highlight the relevance of a compiler from Agda to System Fω ,
which is a step towards a compiler that targets a practical general-
purpose programming language like Haskell. In this context, we
also discuss why it may be desirable, for practical reasons, to
compile an Agda program into a Haskell program.

2. Relevance for the software engineering
discipline

2.1 The cost of fixing software defects
Practitioners in the software engineering domain may view pro-
gramming language theory in general, and type theory in particu-
lar, as one of the least applicable subfields within computer science.
On the other hand, there is a strong consensus within software en-
gineering that it is of tantamount importance to create software that
contains as few critical defects as possible. From a business point
of view this is understandable, considering that the longer software
defects remain in the code base, the more costly they are to fix.
For instance, fixing a software defect before the source code has
been committed to a code repository may be trivial, while fixing a
software defect in a production system is anything but.



Commonly purported figures are increases in cost by powers of
ten. Illustrated by reference to the sequential waterfall software de-
velopment methodology, Patton [36] claims that there is a tenfold
increase of costs at each phase of a software development project.
A software defect that would have cost $1 to fix in the specification
phase will eventually, after not having been discovered in the design
phase, implementation phase, and testing phase, cost $10,000 to fix
in the release phase. Empirical numbers are not quite as tidy, how-
ever. For instance, in a meta-study on the costs of fixing software
defects, Shull et al. [41] point out that a roughly 100-fold increase
between the phases ”code to test” and ”test to field”, to use their ter-
minology, could be verified for critical defects. On the other hand,
for non-critical defects the ratio may be as little as 2 to 1, instead
of an order of a magnitude. This is still a significant difference, but
it is not quite as dramatic.

2.2 Limitations of unit testing
Unit testing is a popular approach to ensure the absence of de-
fects, with some degree of uncertainty [40]. As the name indicates,
it is comprised of tests that aim to verify units of source code,
which are tested with a finite number of non-random inputs. Within
software engineering, the reliance on unit testing has become so
predominant that an entire school of thought, test-driven develop-
ment (TDD), has sprung up that aims to use tests as a guide for
software development [6].

However, unit testing is rather unsatisfying from a methodolog-
ical perspective, as it is akin to attempting a mathematical proof
by means of incomplete enumeration or by example. Unit tests do
not verify that the tested units of source code are correct. Instead,
they only provide some degree of assurance that the tested units of
source code are correct for the provided inputs. However, in pro-
gramming languages with mutable state, unit testing might not be
much of an assurance at all, given that identical function calls may
lead to different outputs.

A more promising approach than unit testing is property-based
testing, for instance by using QuickCheck [12]. While QuickCheck
was originally developed for testing Haskell programs, a commer-
cial version is available that allows testing of programs in Erlang
and C. The idea behind QuickCheck is to define mathematical prop-
erties that are supposed to hold for all inputs. Those properties are
subsequently tested by randomly generating test cases of increasing
complexity. Due to this approach, QuickCheck is able to uncover
bugs that would be next to impossible to track down with unit tests.

2.3 Testing and type systems
When viewed abstractly, it seems that testing is little more than
an attempt to overcome limitations of the target programming lan-
guage. One might expect that the testing efforts that are necessary
in a particular programming language are inversely proportional to
the expressiveness of its type system. Test cases for basic properties
that could very well be verified by the type checker in a program-
ming language with a more expressive type system will have to
be tested manually in a programming language with a less expres-
sive type system. Several source code examples that illustrate this
point are given further below. This leads to the observation that pro-
gramming languages with more expressive type systems are safer
because they protect their own abstractions, as Pierce [37, p. 6] so
succinctly expresses it. Conversely, unsafe programming languages
do not protect their own abstractions.

To give some examples of those weaknesses: In the program-
ming language C [23], memory locations can be accessed freely,
which has the side effect of sustaining a large part of the computer
security industry. Dynamically typed languages like Python [44]

or Ruby [27] do not perform any checks at all prior to execution.1
Even in a programming language with a type system that is as ad-
vanced as the one used by Haskell, tests may be necessary to verify
that certain expected properties do indeed hold. A popular example
is sorting. For instance, QuickCheck properties could be used to
confirm that the output of a sorting function is indeed sorted.

Perhaps surprisingly for software engineers who are unac-
quainted with the avant-garde of programming language technol-
ogy, there are advanced programming languages that make it pos-
sible for the programmer to encode specifications as types. For in-
stance, in the dependently typed programming language Agda [33]
it is possible to encode the desired property that the output of a
sorting function is indeed sorted, as part of the type signature. This
means that the type checker will attempt to verify this property, and
reject programs for which it does not hold.

2.4 Some practical examples
As was stated above, type systems help to ensure program correct-
ness. The more expressive the type system of a given programming
language, the more guarantees can be made about a program writ-
ten in it. In practical terms this means that there is an inverse corre-
lation between the effort that is necessary for testing and the expres-
siveness of the type system that is used. To illustrate this inverse
correlation, we describe a relatively simple sorting algorithm in
pseudocode below, and subsequently translate it into Python, Java,
and Haskell, which are programming languages with increasingly
more expressive type systems.

Let us take the pseudo-code definition of insertion sort, fol-
lowing the presentation in Cormen et al. [14, p. 16]. The input
is a sequence of numbers a1, a2, ..., an. The output is a permu-
tation of the input sequence of the form a′

1, a
′
2, ..., a

′
n, such that

a′
1 ≤ a′

2 ≤ ... ≤ a′
n. Note that the arrays are one-indexed in

the pseudocode example, while they are zero-indexed in the corre-
sponding Python and Java implementations.

insertion_sort(A):
for i = 2 to A.length:

key = A[i]
// insert A[i] into sorted A[1..i-1]
j = i - 1
while j >= 1 and A[j] > key:

A[j+1] = A[j]
j = j - 1

A[j+1] = key

This relatively simple algorithm is sufficient to demonstrate
several properties that would either need to be tested, or verified by
the type checker, such as the property that the input is a sequence
of numbers, that the output is a permutation of the input, and that
the output is sorted.

The translation to Python is very close to the pseudocode just
shown.

def insertion_sort(lst):
for i in range(1, len(lst)):

j = i - 1
key = lst[i]
while j >= 0 and lst[j] > key:

lst[j+1] = lst[j]
j -= 1

lst[j+1] = key
return lst

1 In 2006 Guido van Rossum, the creator of the Python programming lan-
guage, gave a talk with the title ”Design of Python” in the context of Stan-
ford’s CS242: Programming Languages, in which he refers to the absence of
type checking in the compiler as the first of the ”big ideas” of Python. One
may question whether this indeed constitutes a notable novelty. The slides
are available at: http://web.stanford.edu/class/cs242/slides/2006/python-
vanRossum.ppt (accessed March 20, 2015).



Note that we are using Python 2 syntax, which would require
minor modifications to make it valid Python 3. Lists in Python are
untyped and may therefore contain an arbitrary collection of values.
In addition to checking whether the output is indeed sorted and a
permutation of the input, one would also have to ensure that the
input list is a list of numbers. Otherwise, the results may not be as
expected, as the following example shows.
insertion_sort ([5, 4, 3, 2, 1, "foo", "bar"])
> [1, 2, 3, 4, 5, ’bar ’, ’foo ’]

One might question whether it is an example of the often-touted
predictability of Python that strings are interpreted as being larger
than any number. It is most certainly not self-evident, particularly
for a programmer who is used to working in a language in which
characters are internally represented by their ASCII value. Coming
from such a background, the following output may be unexpected,
since the uppercase letter A has the ASCII value 65.
insertion_sort ([’a’, ’A’, 100, 101])
> [100, 101, ’A’, ’a’]

As this example demonstrates, the lack of typed lists may lead
to a considerable amount of confusion that would be avoidable
by using a programming language with a more expressive type
system, such as Java. A possible implementation of the insertion
sort algorithm in Java is given the following code listing.
public static int[] insertionSort(int[] arr) {

for (int i = 1; i < arr.length; i++) {
int key = arr[i];
int j = i - 1;
while (j >= 0 && arr[j] > key) {

arr[j+1] = arr[j];
j = j - 1;

}
arr[j+1] = key;

}
return arr;

}

Unlike Python or some other dynamically typed programming
language, Java utilises a type checker, which makes it possible to
verify the input. Because lists are typed in Java, the type checker
will reject input like in the Python examples given above. Thus, the
entire class of test code that would have to be written to verify the
legality of the input is no longer necessary. Verifying the output
would still be necessary, however. There have been attempts to
implement property-based testing in Java, similar to QuickCheck,
which seem promising, even though a substantial amount of work
is left to be done.2

Let us now move on to insertion sort in Haskell.
insertionSort :: Ord a => [a] -> [a]
insertionSort = foldr insert []

insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys)

| x <= y = x : y : ys
| otherwise = y : insert x ys

Compared to Python or Java, this implementation of the inser-
tion sort algorithm looks rather different. Note that there has been
a minor change in the algorithm: the insertion starts at the begin-
ning of the sorted list, while in the previous implementations the
elements are moved downwards, starting from the back of the ar-
ray. This change is due to the fact that a linked list is used as a

2 At the time of writing, those Java implementations of QuickCheck lack
several key features of the original. The most up-to-date implementation of
property-based testing seems to be Paul Holsers’ junit-quickcheck, which is
available at: https://github.com/pholser/junit-quickcheck. It does not feature
shrinking of test cases, nor does it generate increasingly complex test cases.

data structure instead of an array. This does not negatively affect
the runtime of the algorithm, however.

The Haskell code is more concise than the previously shown
implementations. In fact, type annotations are optional, and could
be omitted altogether due to Hindley-Milner type inference [21,
31]. In an example as short as the one given here, the advantages
of Haskell may not be readily apparent. However, there is much
greater flexibility with regards to the specification of the input. The
Java code given above would have been slightly more verbose for
polymorphic lists, but in Haskell it is trivial to generalise the code
and present it in the form below. Even without type annotations,
type inference would conclude that the input has to belong to the
class Ord , i.e. the data type of the input has to belong to the type
class of totally ordered data types.

While a Haskell programmer does not have to worry about
mutable state, in this example, due to referential transparency, there
is still the need to test whether certain properties of this algorithm
hold. Unit testing is content with verifying examples, but property-
based testing focuses on mathematical properties that are supposed
to hold for all kinds of input. Finding such properties can be
significantly more challenging than concocting a few examples for
unit tests, though.

In the case of sorting, the properties can be taken from the pseu-
docode specification that was given above. To repeat, the desired
properties are that, given a list of numbers as input, the output of
the sorting function is a permutation of the input, and that the output
is sorted. Remember that our implementation admits polymorphic
lists of any ordered datatype as input. This leads to the following
two properties, which can be easily verified by QuickCheck.
prop_sorted :: Ord a => [a] -> Bool
prop_sorted (x:y:z) = x <= y && prop_sorted (y:z)
prop_sorted _ = True

prop_permutation :: Eq a => [a] -> [a] -> Bool
prop_permutation xs ys = all null [xs \\ ys , ys \\ xs]

The property prop sorted is relatively self-explanatory. A list
of length two or more has to satisfy two criteria in order to be
sorted. First, the head of the list has to be smaller than or equal
to the head of the tail of the list. Second, the tail of the list has
to be sorted as well. This recursion continues until the base case
applies, according to which a list of length zero or one is sorted by
definition.

The property prop permutation, on the other hand, may be
less obvious. Satisfying the permutation property is necessary since
the output of a sorting function could sort the list that was provided
as input, but drop some of the list values, for instance duplicate
entries. In that case, the output would still be sorted, but it would
only be a sorted subset of the input. Given a list of distinct elements,
it should be obvious that the described property holds. However,
the case of lists that contain duplicate entries warrants further
discussion, as it builds upon knowledge of the implementation
details of list subtraction in Haskell. The listing below illustrates
an interaction with the Haskell interpreter GHCi.
> [1,1] \\ [1,1]
[]
> [1] \\ [1,1]
[]
> [1,1] \\ [1]
[1]

Unsurprisingly, performing a list subtraction operation on two
identical lists results in the empty list. Similarly, using a subtrahend
that constitutes a superset of the minuend, like in the second exam-
ple, results in the empty list. However, these examples alone would
obfuscate the fact that list subtraction in Haskell takes individual
elements into account. List subtraction could have been defined so
that the third example given in the listing above returns an empty



list as well. Alas, this was not what the Haskell implementers have
done, which implies that the property prop permutation is also
valid for lists with duplicate entries.

Compared to manually specifying unit tests, having QuickCheck
generate test cases for testing properties is arguably more elegant.
Subjective aesthetic judgments put aside, testing properties by ran-
domly generating test cases is also more reliable, due to the fact
that the inputs used for testing are randomly generated. Conse-
quently, they cover cases a programmer who writes unit tests one
by one may not consider. From a methodological point of view, ran-
domised testing does not provide absolute certainty, but for most
practical purposes, successfully tested QuickCheck properties can
be considered verified.

As the last sentence implies, there is a potential shortcoming of
QuickCheck that can be alleviated by using a programming lan-
guage with an even more advanced type system than Haskell’s.
Agda is an example of a programming language with dependent
types, i.e. types that depend on values. This entails that it is pos-
sible to express a specification as part of the type signature, which
has practical significance for software engineering as it drastically
reduces the need to test software. Agda has further desirable quali-
ties as well, which we are going to describe next.

2.5 Practical benefits of Agda for software development
Agda and similar programming languages like Coq [5] or Idris [8]
make certified programming possible. The main idea is that certi-
fied programs supply their own proof of correctness. This is due to
the Curry-Howard isomorphism, which relates computer programs
and mathematical proofs [22]. Indeed, the previously mentioned
programming languages double as proof assistants, which is pos-
sible due to the expressiveness of dependent types. Programming
with dependent types is an area that is much less explored than
constructing dependently-typed proofs, however.3

The goal of this section is to present a small number of Agda
programs that illustrate how dependent types either eliminate en-
tire classes of errors, or lead to greater expressivity. The latter is
of practical importance for software engineering, provided one is
willing to accept the claim that the ratio of software defects per
lines of code is nearly constant, which implies that there are, in ab-
solute terms, fewer software defects in more concise programming
languages [29].

2.5.1 Avoiding out-of-bound errors
A prime example of the benefits of dependent types are length-
indexed vectors. As mentioned above, in a language like C the
abstraction of an array is not properly enforced by the type checker.
Accessing the array location A[m], where m is not within the
boundaries of the array A, yields whatever value is stored in that
particular memory location. In Python or Java this would lead to an
exception. Even in Haskell accessing a location that does not exist
leads to an exception.

Dependent types, however, eliminate the problem of out-of
bound accesses and the resulting exceptions. The significance of
this one problem cannot be overstated. Tony Hoare, who discovered
QuickSort, developed Hoare logic, and defined the formal language
Communicating Sequential Processes (CSP), also invented the null
reference when designing ALGOL W. In 2009 Hoare called the

3 At the time of writing, Chlipala’s book Certified Programming with De-
pendent Types [9] seems to be the only current source on that topic that is
easily accessible outside academia.

null reference his ”billion dollar mistake”.4 Agda deals with the
problem of null references problem in a rather elegant manner.

Let us define a lookup function that takes as arguments a poly-
morphic vector as well as a Peano number5 from a finite set of
natural numbers. The latter indicates the position of the element
in the vector that is supposed to be retrieved. The Vec datatype is
a length-indexed vector of length n, while Fin is a non-negative
integer i, such that 0 ≤ i < n.
_!_ : {A : Set} {n : Nat} -> Vec A n -> Fin n -> A
(x :: xs) ! fzero = x
(x :: xs) ! fsucc i = xs ! i

This function traverses a vector via recursion, until the desired
element is reached. Remarkably, it is impossible to call this func-
tion with an argument of type Fin that is greater than the length
of the vector, as this indicates an impossible case. Such programs
would be rejected during type checking, which consequently pre-
cludes out-of-bound errors.

2.5.2 Termination checking
Agda’s termination checker, which is based on Abel’s foetus termi-
nation checker [1], deserves its own section. In Agda, all functions
are total functions. In mathematics, this term stands for functions
that are defined for all possible input values. The interpretation in
functional programming is that a total function has to terminate for
all possible input values. Note that functional purity implies that,
given a particular input value, a function always returns the same
result.

Of course, due to the undecidability of the halting problem,
termination checking is not solvable in full generality. This does not
imply that termination checking is generally impossible, though.
The key element is the presence of structurally recursive functions,
i.e. recursive functions that consume their arguments, for instance
by processing a list element by element or manipulating a given
numerical argument so that it decreases with each recursive call. On
the other hand, termination fails in the presence of what Felleisen
et. al [19] refer to as generative recursive functions, i.e. recursive
functions that generate a new piece of data for subsequent recursive
calls. For the sake of completeness, the pathological case of a
recursive function that neither consumes its input, nor generates
new data should be included as well. Examples for those three
categories of recursion are given below.

Arguably the most well-known recursive function is related to
the computation of Fibonacci numbers. It is easy to see that the
Fibonacci function eventually terminates, due to consumption of
the input value, which makes it a case of a structurally recursive
function.
fib : Nat -> Nat
fib zero = zero
fib (suc zero) = suc zero
fib (suc (suc n)) = fib (suc n) + fib n

A famous example of a generative recursive function is the com-
putation of the Collatz conjecture, but this would lead to a some-
what more complicated Agda program. Thus, a simpler example
has to suffice, which passes the type checker but is rejected by the
termination checker.

4 At the software development conference QCon London 2009, Tony Hoare
gave a talk with the title ”Null References: The Billion Dollar Mis-
take”. A recording as well as the slides of the presentation are avail-
able at: http://www.infoq.com/presentations/Null-References-The-Billion-
Dollar-Mistake-Tony-Hoare (accessed March 30, 2015).
5 Peano numbers are constructed from values indicating either zero or
the successor of a number. For instance, 0 is represented as zero, 1 as
succ(zero), 2 as succ(succ(zero)), and so on. The construction of Church
numerals, which we will encounter shortly, is similar.



infiniteLoop : Nat -> Nat
infiniteLoop n = infiniteLoop (suc n)

Note that new data is generated from the input value. More
concretely, the given non-negative integer is incremented by 1 in
each iteration. It is trivial to turn this example into a pathological
case of a function that neither consumes its input nor generates
new data from the given input for further recursive calls, by simply
passing on the argument to the recursive call without modification.

infiniteLoop : Nat -> Nat
infiniteLoop n = infiniteLoop n

In earlier versions of Agda, such functions were highlighted
when using the Agda mode in the Emacs text editor, but those pro-
grams could still be executed. For the same effect in current ver-
sions of Agda, one would have to use so-called language pragmas,
i.e. special commands that are passed on to the Agda interpreter
or compiler. One such pragma, NON TERMINATING, relaxes the re-
quirement that all functions have to be total and need to pass the
termination checker. This is partly a concession to the halting prob-
lem, since there are seemingly sound programs, such as a program
that computes the Collatz conjecture, that are believed to terminate
for all legal inputs, even though a proof is still missing.

2.5.3 Specifications as types
Lastly, the type system of Agda is able to express propositions as
types, which makes it possible to encode specifications in the type
signature. One of the simplest examples with a practical application
is the concatenation of two vectors. This operation can be defined
as follows.

_++_ : forall {m n} {A : Set} ->
Vec A m -> Vec A n -> Vec A (m + n)

[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

The resulting type is a vector of the combined length of both
input vectors. Indeed, the length of the vector that constitutes the
result of this function is computed at the type level. This is far
from trivial, as this ensures that oversights by the programmer are
effectively caught. For instance, the following definition is rejected
by the Agda type checker because the resulting vector is not of the
specified length.

_++_ : forall {m n} {A : Set} ->
Vec A m -> Vec A n -> Vec A (m + n)

[] ++ ys = ys
(x :: xs) ++ ys = (xs ++ ys)

This is a simple example chosen for illustrative purposes.
Nonetheless, it shows that entire classes of errors are caught by
the Agda type checker that would require testing in a programming
language with a less expressive type system.

3. Parts of the λ-calculus
3.1 Preliminaries
The λ-calculus constitutes a model of computation. It was initially
introduced by Church in the 1930s in the context of a paper on the
decision problem [10]. In the 1950s, McCarthy used the λ-calculus
as the basis of the functional programming language Lisp [28],
which is syntactically rather close to typical presentations of the
λ-calculus. While the syntax of functional programming languages
has changed significantly, with OCaml or Haskell looking rather
different from Lisp, they nonetheless ultimately share the same
theoretical foundation.

The theory that underlies the λ-calculus is rather complex, and
therefore cannot be presented in its entirety. Consequently, this
section merely attempts to provide an overview of some variants

of the λ-calculus inasmuch as they are relevant for later sections
of this paper. The goal is to illustrate the basic concepts behind
the simplest form of λ-calculus, the untyped λ-calculus, as well
as several extensions. Please note that in the following we are
describing call-by-value variants of the various λ-calculi.

The presentation below mainly follows Pierce [37], but also
Thompson [43], who both discuss the λ-calculus in the context of
type systems. A much more thorough treatment of the (untyped)
λ-calculus is provided in a classic monograph by Barendregt [4]. A
conceptual framework of the various λ-calculi and how they relate
to each other is provided by Bardendregt’s λ-cube [3], which we
will briefly discuss much further below.

3.2 The untyped λ-calculus (λ)
3.2.1 Basic elements
The simplest form of the λ-calculus is the untyped λ-calculus.
In fact, it is so simple that a novice may even question whether
it is useful as a model of computation. Some practical examples
are therefore in order to illustrate its suitability. Those examples
also show that the untyped λ-calculus is not the most practical
foundation for a programming language.

In a nutshell, the untyped λ-calculus consists of λ-terms that
are inductively defined. Due to being defined inductively, terms
can be nested arbitrarily deeply. A λ-term can either be a variable,
an application, or an abstraction. The grammar of the untyped λ-
calculus [37, p. 72] is as follows.

t ::= terms:
x variable
λx . t abstraction
t t application

v ::= values:
λx . t abstraction value

The structural operational semantics for the evaluation of t to get
the result t′, the relation t → t′, are as follows [37, p. 72].

t1 → t′1
t1 t2 → t′1 t2

(Eapp-1 )

t → t′

v t → v t′
(Eapp-2 )

(λx . t) v → [x #→ v]t (Ebeta)

To give a very simple example: the identity function can be defined
as λx . x. Slightly more involved is the example of a function
that returns the sum of its arguments. Further below we will show
how to define numbers in the untyped λ-calculus, but for now we
take them as given. Furthermore postulating a binary function +
that adds its arguments, one possible corresponding λ-expression
is λx . (λy . + x y). In case we wanted to add the numbers 2 and
4, the evaluation is as follows.

((λx . λy . + x y) 4) 2

= (λy .+ 2 y) 4

= + 2 4

= 6



So-called Polish prefix notation is customary, and furthermore
illustrates the fact that the λ-calculus exclusively uses functions.
Thus, + is not an operator but a function that takes two arguments.
Using infix notation instead of prefix notation would have obscured
this fact. Admittedly, it can take some time to get used to Polish pre-
fix notation. The skeptic, however, may want to recall that (reverse)
Polish notation has turned out to be rather useful for the efficient
implementation of stack-based programming languages.

In the λ-calculus, all functions only take one argument. As the
previous example has illustrated, functions can easily be applied to
functions, which is practically identical to having a single function
that takes multiple arguments. It is therefore conventional to write,
for instance, λx y .+ x y instead of λx . λy . + x y.

An important distinction in the λ-calculus is between free vari-
ables and bound variables. Bound variables are within the scope of
a λ-abstraction, while free variables are not. For instance, take the
λ-expression λy . +x y. In this example, x is a free variable, while
y is a bound variable.

3.2.2 Reduction rules
λ-expressions are evaluated by the application of three reduction
rules, which are α-conversion, β-reduction, and η-conversion. α-
conversion is the process of renaming bound variables, for instance
λx . x to λy . y. Not all instances of α-conversion are that trivial,
however. The main practical difficulty is the problem of variable
capture, which has to be avoided. While it is correct, if potentially
confusing, to rewrite λx . λy . y as λx . λx . x, it would be wrong to
rewrite λy . λx . y as λx . λx . x. The problem of variable capture
can be avoided in a rather straightforward manner by restricting the
result of an α-conversion to variable names that have not been used
yet.

We have already seen an example of β-reduction above, namely
in the application of arguments to the addition function. More
formally, β-reduction is the substitution of all free variables by the
provided term. This means that (λx . e) e′ results in [x := e′]e. A
simple illustrative example is given below.

(λy . + x y) 2

= + x 2

However, any free variables in e′ may not be captured by a λ-
abstraction in e. In order to avoid variable capture, it is necessary
to rename the affected variable before applying y.

(λx . λy . x) y

= (λx . λy′ . x) y

= λy′ . y

The function we have just seen returns a constant. Without re-
naming, though, the result is variable capture, which turns this
function into the identity function. This would not be a valid re-
duction in this case.

(λx . λy . x) y

̸= λy . y

Lastly, there is η-conversion, which can be justified by referring
to the concept of extensional equality of functions, as it is under-
stood in mathematics.6 This means that two functions exhibit the

6 η-conversion is covered in this section because it is relevant for the λ-
calculus. It is irrelevant for any of the rules we later on specify. As Andreas
Abel pointed out to me, η-conversion is redundant for the implementation
of functional programming languages, but is potentially useful in non-

property of extensional equality if they produce the same output
for all possible inputs. Concretely, this means that in the λ-calculus
it is possible to rewrite λ-expressions by removing redundant λ-
abstractions since doing so would not change the evaluation. The
rewriting rule can be expressed as follows. A necessary condition
is that the variable x may not appear as a free variable anywhere in
f .

(λx . fx)

= f

Given those three reduction rules, one might ask whether it
matters in which order they are applied. An important theoretical
result in that regard is the Church-Rosser theorem [11], accord-
ing to which each λ-expression has exactly one normal form that
is reachable through β-reduction or βη-reduction. α-conversion is
excluded since it is non-terminating, because variables can be re-
named ad infinitum.

A λ-expression is said to be in normal form if it cannot be
β-reduced or βη-reduced any further. Church-Rosser have proven
that the order of the application of the reduction rules does in fact
not matter. On a side note, this theoretical finding has far-reaching
practical consequences, as it means that λ-expressions can not only
be evaluated in any order, but in parallel as well, which is relevant
for the current engineering challenge of exploiting the power of
multi-core and many-core processors.

3.2.3 Additions to the untyped λ-calculus
The untyped λ-calculus as presented above is rather sparse. It can
be enriched with boolean values, natural numbers, and a combina-
tor for recursion, which make the untyped λ-calculus more usable
for modelling computations.

Since we are only dealing with functions, we will have to use
functions to encode data types, for instance booleans. Speaking
of boolean values, the value true is conventionally represented
as λx y . x, which is a function that returns its first argument,
ignoring its second argument. Conversely, the boolean value false
is represented as λx y . y, which is a function that returns its second
argument, ignoring its first argument.

Functions also have to be used to represent natural numbers. In
the encoding chosen by Church, commonly referred to as Church
numerals, a natural number n is a higher-order function that is
applied to its argument n times. To use the possibly more readable
notation from mathematics:

0fx = x

1fx = fx

2fx = f(fx)

...

The untyped λ-calculus is expressive enough to encode com-
binators, i.e. higher-order functions that define functions without
variables. The most important one is the Y combinator [43, p.41–

lazy functional programming languages like Standard ML or Scheme. In
such programming languages, manual η-expansion, i.e. wrapping a λ-term
in a redundant λ-abstraction, prevents immediate evaluation. η-conversion
is irrelevant for our work, however, since the presence or absence of η-
conversion will not affect the actual translation.
Daniel Lee remarked that η-conversion is very important in some domains.
For instance, so-called η-long normal form provides a more useful normal
form when dealing with logics from a proof-theoretic perspective [17]. Fur-
ther, η-long normal form is required by Watkin’s hereditary substitution
[15, 45], which is a substitution model that automatically contracts sec-
ondary redices.



42], which, perhaps surprisingly, makes it possible to encode recur-
sion in the λ-calculus, as the following equations illustrate.

Y g = (λf . (λx . f (x x)) (λx . f (x x))) g

= (λx . g (x x)) (λx . g (x x))

= g ((λx . g (x x)) (λx . g (x x)))

= g (Y g)

The equation F g = g (F g) is not a mathematical absurdity,
but instead implies that those evaluations can be repeated infinitely
many times. This is illustrated by the equations below.

Y g = g (Y g)

= g (g (Y g))

= g (g (g (Y g)))

= ...

3.3 The simply typed λ-calculus (λ→)
If we add simple data types like natural numbers or booleans to
the untyped λ-calculus, it is possible to write λ-expressions that
will eventually get stuck during evaluation. Given an if -then-else
construct and evaluation rules according to which natural numbers
do not double as boolean values — for instance, in the program-
ming language C, the integer 0 is interpreted as the boolean value
false , while any non-zero integer is interpreted as the boolean value
true —, the term if 0 then x else y cannot be evaluated [37,
p. 99]. The addition of typing rules solves this problem, as they
would reject an expression like the preceding one as illegal.

The definition of the simply typed λ-calculus, syntax, structural
operational semantics, and typing rules, are given below, following
Pierce [37, p. 103].

t ::= terms:
x variable
λx : T . t abstraction
t t application

v ::= values:
λx : T . t abstraction value

T ::= types:
T → T function type

Γ ::= contexts:
∅ empty context
Γ, x : T context, term variable binding

Compared to the untyped λ-calculus, this grammar is extended
to account for a type in λ-abstractions, signified by the letter T .
Further, a context, signified by the letter Γ is added, which is nec-
essary for looking up the types of variables during type checking.
Note that the context is inductively defined.

The structural operational semantics for the relation t → t′ are
largely unchanged from the untyped λ-calculus. The only modifi-
cation is the addition of a type to the argument in the rule Ebeta .

t1 → t′1
t1 t2 → t′1 t2

(Eapp-1 )

t → t′

v t → v t′
(Eapp-2 )

(λx : T . t) v → [x #→ v]t (Ebeta)

The typing rules for Γ ⊢ t : T are an addition to the previously
presented simply typed λ-calculus.

x : T ∈ Γ
Γ ⊢ x : T

(Tvar )

Γ, x : T1 ⊢ t : T2

Γ ⊢ λx : T1 . t : T1 → T2
(Tabs)

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T1

Γ ⊢ t1 t2 : T2
(Tapp)

According to the typing rule Tvar , given a context Γ and a
variable x, the variable x is assigned to type T in the context Γ. The
rule Tabs specifies that, given a λ-abstraction, the resulting function
type maps type T1 of its argument to T2, which is the type of the
λ-term t. The λ-term t is assigned to type T2 under the assumption
that Γ, x : T1. Lastly, the typing rule Tapp describes that term t1
of a λ-application has to be of a function type whose domain is
identical to the type of the term t2. Consequently, the resulting type
is T2, since T1 is the type of the argument of a function from T1 to
T2.

3.4 The polymorphic λ-calculus (System F)
The polymorphic λ-calculus, which is also referred to as the
second-order λ-calculus, adds universal quantification over types
to the simply typed λ-calculus. It was independently discovered
in the 1970s by Girard [20] and Reynolds [39]. The polymorphic
λ-calculus is of great significance as it provides the theoretical
foundation for functional programming languages like Haskell, or
ML and its many dialects.

The benefit of type-polymorphism is easy to see. To condense
the presentation, we will use Haskell for the following illustration.
Imagine you wanted to moderately exercise your programming
skills and write a function that, given a value, produces a singleton
list with that value. Unfortunately, though, you are restricted to
explicitly typed functions. To start with, you would have to cover
booleans and integers separately.
makeSingletonBool :: Bool -> [Bool]
makeSingletonBool b = [b]

makeSingletonInteger :: Integer -> [Integer]
makeSingletonInteger i = [i]

It gets worse from there, however. Haskell many more data
types: Char ,String ,Float ,Double, Int , and so on. In addition,
it is possible to define new data types in Haskell, which means
that, without type polymorphism, a potentially infinite number of
makeSingleton functions would have to be written, to take all
those types into account. Understandably, this would be rather
tedious, to say the least.

Fortunately, Haskell is based on System F. To be more precise,
Haskell is based on System FC(X)[42], which is a superset of
System F. This implies that we can make use of type polymorphism.
Consequently, a makeSingleton function that accepts arguments
of any type as input, due to parametric polymorphism, can be
expressed in the following way.



makeSingleton :: a -> [a]
makeSingleton x = [x]

This means that whatever the type of the value that is given as
an argument to this function is, the result will be a singleton list
that contains this value. The practical consequence is that this one
function definition that makes use of type polymorphism replaces a
potentially infinite number of function definitions that would only
cover one type each.

When using the Haskell compiler GHC, the language pragma
ExplicitForAll can be used to make the quantification over type
parameters explicit:
makeSingleton :: forall a . a -> [a]
makeSingleton x = [x]

In short, System F extends the simply typed λ-calculus with
type polymorphism. While this feature makes life for the program-
mer more convenient, it leads to a significantly more complex un-
derlying representation.

The syntax, structural operational semantics, and typing rules of
System F are given below, following Pierce [37, p. 343]. Overall,
System F is a rather straightforward extension of the previously
described simply typed λ-calculus. Additions are terms for type
abstraction and type application, a type abstraction value, a type
variable X that encodes parametric polymorphism, as well as a
universal type, which we have just seen expressed in Haskell. The
context Γ is extended to take type variables into account as well.
This leads to the following specification of the syntax of System F.

t ::= terms:
x variable
λx : T . t abstraction
t t application
λX . t type abstraction
t[T ] type application

v ::= values:
λx : T . t abstraction value
λX . t type abstraction value

T ::= types:
X type variable
T → T function type
∀X . T universal type

Γ ::= contexts:
∅ empty context
Γ, x : T context, term variable binding
Γ, X context, type variable binding

Two rules for type application were added to the structural
operational semantics for the relation t → t′:

t1 → t′1
t1 t2 → t′1 t2

(Eapp-1 )

t → t′

v t → v t′
(Eapp-2 )

(λx : T . t) v → [x #→ v]t (Ebeta)

t → t′

t[T ] → t′[T ]
(Et-app)

(λX . t)[T ] → [X #→ T ]t (Et-beta)

The typing rules for the judgment Γ ⊢ t : T are:

x : T ∈ Γ
Γ ⊢ x : T

(Tvar )

Γ, x : T1 ⊢ t : T2

Γ ⊢ λx : T1 . t : T1 → T2
(Tabs)

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T1

Γ ⊢ t1 t2 : T2
(Tapp)

Γ, X ⊢ t : T
Γ ⊢ λX . t : ∀X . T

(Tt-abs)

Γ ⊢ t : ∀X . T1

Γ ⊢ t[T2] : [X #→ T2]T1
(Tt-app)

3.5 The simply typed λ-calculus with type operators (λω)
Compared to the simply typed λ-calculus, the simply typed λ-
calculus with type operators adds, unsurprisingly, type operators.
Concretely, this means that this variant of the λ-calculus enables us
to use abstraction and application at the type level. Please note that
the simply typed λ-calculus with type operators does not extend
System F, but the simply typed λ-calculus.

The following λ-expression illustrates how to apply a type to
the polymorphic identity function λX . λx : X . x. Again, this
is hardly a complex example. It is only intended to illustrate type
application. Type abstraction is indicated by λX in the example
below, which indicates that any type in the simply typed λ-calculus
can be applied to it.

(λX . λx : X . x) Bool (applying Bool)

= λx : Bool . x

Thus, the application of the type Bool to the given function
results in an identity function for arguments of type Bool . Since
X is merely a placeholder for some type, any type could be applied
to that function to yield an identity function that is restricted to that
particular type.

Because abstraction and application are available at the type
level, identical types can be expressed in multiple ways. In fact,
the same type can be expressed in potentially infinitely many ways.
The definition of the simply typed λ-calculus with type operators
therefore requires rules for type equivalence. An example of type
equivalence, following Pierce [37, p. 441] is given below. Assume
the existence of Id as a synonym of the type operator λX . X .
Consequently, the expression N → Bool can be expressed in
potentially infinitely many ways:

N → Bool

= Id N → Bool

= N → Id Bool

= Id (N → Bool)

= (Id N) → (Id Bool)

= ...



A further addition of the simply typed λ-calculus with type
operators are kinds [37, p. 441]. Kinds are the types of types, and
a means of classifying type expressions based on their arity, not
too dissimilar to regular function types. However, the difference
is that kinds describe the structure of the types of a function. We
will encounter some examples in a short while, which illustrate that
the arity of the kinds is not necessarily identical to the arity of the
function whose structure of types they describe.

Kinds are inductively defined, having either a proper type,
which is expressed by the symbol ∗, or a compound expression
whose parts are connected with the symbol ⇒. Examples of proper
types are Bool , N, N → N, and so on. To give another example, a
function that takes any two arguments belonging to the same type
for which equality is definable, and returns a Bool , i.e. the polymor-
phic equality function, has the kind ∗ ⇒ ∗, while a monomorphic
equality functions for integers has kind ∗. To round out this ex-
ample: if we felt particularly creative and defined such an equality
function to take any two arguments for which equality is definable,
but to return any kind of result, the corresponding kind would be
∗ ⇒ ∗ ⇒ ∗.

The full specification of the simply typed λ-calculus with type
operators is given below, following Pierce [37, p. 446]. The gram-
mar below extends the simply typed λ-calculus. Kinds were already
discussed. Other additions include type variables, operator abstrac-
tion as well as operator application. Furthermore, the rules for the
context Γ were expanded to add type variable bindings.

t ::= terms:
x variable
λx : T . t abstraction
t t application

v ::= values:
λx : T . t abstraction value

T ::= types:
X type variable
λX :: K . T operator abstraction
T T operator application
T → T function type

κ ::= kinds:
∗ kind of proper types
κ ⇒ κ kind of operators

Γ ::= contexts:
∅ empty context
Γ, x : T context, term variable binding
Γ, X :: κ context, type variable binding

Compared to the simply typed λ-calculus, the structural opera-
tional semantics for the relation t → t′ are unchanged:

t1 → t′1
t1 t2 → t′1 t2

(Eapp-1 )

t → t′

v t → v t′
(Eapp-2 )

(λx : T . t) v → [x #→ v]t (Et-beta)

The kinding rules for the judgment Γ ⊢ T :: κ are relatively
straightforward and conceptually fairly similar to the typing rules
we have seen so far.

X :: κ ∈ Γ
Γ ⊢ X :: κ

(κvar )

Γ, X :: κ1 ⊢ T :: κ2

Γ ⊢ λX :: κ1 . T :: κ1 ⇒ κ2
(κabs)

Γ ⊢ T1 :: κ ⇒ κ′ Γ ⊢ T2 :: κ
Γ ⊢ T1 T2 :: κ′ (κapp)

Γ ⊢ T1 :: ∗ Γ ⊢ T2 :: ∗
Γ ⊢ T1 → T2 :: ∗ (κarr )

Type equivalence was illustrated above. The following set of
type equivalence rules gives a formal specification for the rela-
tion S ≡ T . These rules are required by the rule Tt-eq , which is
mentioned as part of the typing rules further below.

T ≡ T (Qrefl)

T ≡ S
S ≡ T

(Qsymm)

S ≡ U U ≡ T
S ≡ T

(Qtrans)

S1 ≡ T1 S2 ≡ T2

S1 → S2 ≡ T1 → T2
(Qarr )

S ≡ T
λX :: κ . S ≡ λX :: κ . T

(Qabs)

S1 ≡ T1 S2 ≡ T2

S1 S2 ≡ T1 T2
(Qapp)

(λX :: κ . T1) T2 ≡ [X #→ T2] T1 (Qbeta)

Lastly, the typing rules are mostly familiar, with the main change
being the addition of the rule Tt-eq , which makes use of the type
equivalence rules that were just specified.

x : T ∈ Γ
Γ ⊢ x : T

(Tvar )

Γ ⊢ T1 :: ∗ Γ, x : T1 ⊢ t : T2

Γ ⊢ λx : T1 . t : T1 → T2
(Tabs)

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T1

Γ ⊢ t1 t2 : T2
(Tapp)

Γ ⊢ t : S S ≡ T Γ ⊢ T :: ∗
Γ ⊢ t : T

(Tt-eq)

When combined with System F, the simply typed λ-calculus with
type operators forms System Fω . Together with the specification



of the programming language Agda, System Fω is part of the next
section.

4. Translating Agda to System Fω

4.1 Theoretical background
So far we have discussed the various λ-calculi as separate entities.
As the successive presentation of more and more complex λ-calculi
may suggest, though, it is possible to translate a computation that is
expressed in one particular kind of λ-calculus into a different kind
of λ-calculus. Bardendregt’s λ-cube [3] illustrates the relations be-
tween the typed λ-calculi we have seen so far, in addition to several
others. The λ-cube is reproduced below, with the shorthands we
have been using in this paper.7

Fω
!!

"" FPω""

F

##⑧⑧⑧⑧⑧⑧⑧⑧
!!

"" FP

##⑧⑧⑧⑧⑧⑧⑧⑧

""

λω
!! λPω

λ→ !!

##⑧⑧⑧⑧⑧⑧⑧⑧
λP

##⑧⑧⑧⑧⑧⑧⑧⑧

Figure 1. Barendregt’s λ-cube

We have discussed several typed λ-calculi. To locate them in
the λ-cube: the simply typed λ-calculus is represented as λ→. We
have seen that λ→ can easily be extended into the simply typed
λ-calculus with type operators or the second-order or polymorphic
λ-calculus, also referred to as System F, abbreviated as F on the λ-
cube. System F and the simply typed λ-calculus with type operators
can be combined to create System Fω , abbreviated as Fω on the λ-
cube. We will discuss System Fω in the next subsection.

So far, we have covered the left side of the λ-cube, and quickly
traced the relations between four typed λ-calculi, which mirrors our
previous discussion. The right side of the λ-cube uses suspiciously
similar shorthands. The letter P is a shorthand for dependent types.
As the λ-cube shows, each of the four typed λ-calculi we have
discussed can be enriched by adding dependent types to them. The
type system that is used by Agda is closely related to λPω . We will
shortly discuss this relation in greater detail.

The key insights of the λ-cube are the relationships between
the various typed λ-calculi [3, p. 5]. All eight of the typed λ-
calculi that are represented in the λ-cube allow terms that depend
on terms, which enables monomorphic types. The four λ-calculi
on the top face of the λ-cube allow terms that depend on types,
which enables polymorphism. Note that these four λ-calculi permit
impredicativity, i.e. self-referencing definitions, which is prohibited
in Agda. The four λ-calculi on the right face of the λ-cube allow
types that depend on terms, i.e. dependent types. Lastly, the four
λ-calculi on the back face of the λ-cube allow types that depend
on types, which leads to type constructors. Note that FPω is the
most expressive λ-calculus on the λ-cube. We have chosen this
shorthand for consistency, even though this λ-calculus is often

7 There is a mismatch between our notation, which is taken from Pierce,
and Barendregt’s notation. Pierce abbreviates the simply typed λ-calculus
with type operators as λω , while Barendregt uses the shorthand λω . System
F, the polymorphic λ-calculus is λ2 in Barendregt’s notation. Furthermore,
Barendregt uses the shorthand λω for System Fω .

referred to as λC, as it is also known as Coquand’s Calculus of
Constructions [13], a very well-studied λ-calculus that forms the
basis of the proof assistant Coq.

The previous relations have been expressed in more formal
terms as well. Barendregt uses a notation that follows the pattern
PTS = ⟨S,A,R⟩, which, of course, warrants further explanations.
Concretely, this notation expresses that a pure type system (PTS )
consists of a triple that specifies a PTS by giving its set of sorts (S),
set of axioms (A), and set of rules (R). The sorts are types, denoted
by ∗, or kinds, denoted by !; set A is defined as ∗ : !, indicating
that the sort of types is a kind. R then describes the sort of the
dependent product type that is available in the given λ-calculus.
Slightly modifying Barendregt’s notation, the corresponding rule,
provided (s1, s2, s3) ∈ R, is:

Γ ⊢ U : s1 Γ, x : U ⊢ T : s2
Γ ⊢ (x : U) → T : s3

(Π)

Since s3 is consequently identical to s2, s3 can be omitted when
classifying the λ-calculi in the λ-cube. Thus, λ-calculi with terms
dependent on types, the top face in the λ-cube, are specified as
(!, ∗). λ-calculi with types dependent on types, the back face on
the λ-cube, as (!,!), and λ-calculi with types dependent on terms,
the right face of the λ-cube, as (∗,!). Lastly, λ-calculi where terms
depend on terms, which applies to all eight λ-calculi in the λ-cube,
are specified as (∗, ∗).

Agda does not directly relate to any of the eight λ-calculi of
the λ-cube. However, λPω corresponds to Agda without universes.
If one wanted to locate Agda on the λ-cube, its location would
be somewhere between λPω and FPω . Consequently, the task of
translating Agda to System Fω can be expressed as a relation from
λPω , with the addition of universes, to Fω . To visualise this, pick a
point on the relation arrow from λPω to FPω , and draw a relation
arrow from that point to Fω . It may not be intuitively clear why
this translation is viable. While there are some Agda programs
that have no direct equivalent in System Fω , type coercions can
be used to make them expressible in that particular λ-calculus. In
our extended specification of System Fω , which is presented further
below, this case corresponds to an unknown type, expressed as Any.

Agda is not Turing complete as it requires all programs to
terminate. This restriction does apply to System Fω as well, but not
to Haskell. As a consequence, there is a class of Haskell programs,
the class of non-terminating programs, that is legal in Haskell, but
illegal in System Fω as well as Agda. It would be impossible to
find an equivalent legal Agda program for a non-terminating legal
Haskell program, while the opposite is feasible. The latter is the
problem of full abstraction, which was first studied by Milner as
well as Plotkin [30, 38]. Concretely, the task of a compiler that
performs a source-to-source translation from Agda to System Fω

and, eventually, to Haskell is to find an equivalent Haskell program
that exhibits the same behaviour as the Agda program that was
provided as input. This implies that we are assuming an extensional
interpretation of equivalence.

4.2 The higher-order polymorphic lambda-calculus
(System Fω)

The higher-order polymorphic lambda-calculus (System Fω) com-
bines the polymorphic λ-calculus (System F) with the simply typed
λ-calculus with type operators (λω). The formal specification,
which is presented below, is largely identical to both the definitions
of System F and the simply typed λ-calculus with type operators,
with the exception of kinding annotations. Those kinding anno-
tations appear in type abstractions and quantifiers or, expressed
more abstractly, in positions where type variables are bound [37, p.
449–451].



The syntax of System Fω is as follows:

t ::= terms:
x variable
λx : T . t abstraction
t t application
λX :: κ . t type abstraction
t [T ] type application

v ::= values:
λx : T . t abstraction value
λX :: κ . t type abstraction value

T ::= types:
X type variable
T → T function type
∀X :: κ . T universal type
λX :: κ . T operator abstraction
T T operator application

Γ ::= contexts:
∅ empty context
Γ, x : T context, term variable binding
Γ, X :: κ context, type variable binding

κ ::= kinds:
∗ kind of proper types
κ ⇒ κ kind of operators

The structural operational semantics for the relation t → t′ are
as follows. Compared to the λ-calculi we have discussed before,
the changes are minor.

t1 → t′1
t1 t2 → t′1 t2

(Eapp-1 )

t → t′

v t → v t′
(Eapp-2 )

(λx : T . t) v → [x #→ v]t (Ebeta)

t → t′

t [T ] → t′[T ]
(Et-app)

(λX :: κ . t)[T ] → [X #→ T ]t (Et-beta)

The kinding rules for the judgment Γ ⊢ T :: κ are likewise
almost identical to the kinding rules we have seen in the specifica-
tion of the kinding rules of the simply typed λ-calculus with type
operators.

X :: κ ∈ Γ
Γ ⊢ X :: κ

(κvar )

Γ, X :: κ1 ⊢ T :: κ2

Γ ⊢ λX :: κ1 . T :: κ1 ⇒ κ2
(κabs)

Γ ⊢ T1 :: κ ⇒ κ′ Γ ⊢ T2 :: κ
Γ ⊢ T1 T2 :: κ′ (κapp)

Γ ⊢ T1 :: ∗ Γ ⊢ T2 :: ∗
Γ ⊢ T1 → T2 :: ∗ (κarr )

Γ, X :: κ ⊢ T :: ∗
Γ ⊢ ∀X :: κ . T :: ∗ (κall)

Similarly, the rules for determining type equivalence for the rela-
tion S ≡ T are largely repeated, with the exception of the rules
Qall and Qeta , which have been added.

T ≡ T (Qrefl)

T ≡ S
S ≡ T

(Qsymm)

S ≡ U U ≡ T
S ≡ T

(Qtrans)

S1 ≡ T1 S2 ≡ T2

S1 → S2 ≡ T1 → T2
(Qarr )

S ≡ T
∀X :: κ . S ≡ ∀X :: κ . T

(Qall)

S ≡ T
λX :: κ . S ≡ λX :: κ . T

(Qabs)

S1 ≡ T1 S2 ≡ T2

S1 S2 ≡ T1 T2
(Qapp)

(λX :: κ . T1) T2 ≡ [X #→ T2] T1 (Qbeta)

X /∈ T
λX :: κ . T X ≡ T

(Qeta)

Lastly, we present the typing rules for the judgment Γ ⊢ t : T .
The rules Tt-abs and Tt-app where modified, compared with their
definition in the System F specification.

x : T ∈ Γ
Γ ⊢ x : T

(Tvar )

Γ ⊢ T1 :: ∗ Γ, x : T1 ⊢ t : T2

Γ ⊢ λx : T1 . t : T1 → T2
(Tabs)

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T1

Γ ⊢ t1 t2 : T2
(Tapp)

Γ, X :: κ ⊢ t : T
Γ ⊢ λX :: κ . t : ∀X :: κ . T

(Tt-abs)

Γ ⊢ t : ∀X :: κ . T1 Γ ⊢ T2 :: κ
Γ ⊢ t[T2] : [X #→ T2]T1

(Tt-app)

Γ ⊢ t : S S ≡ T Γ ⊢ T :: ∗
Γ ⊢ t : T

(Tt-eq)



The specification of System Fω we have just presented is based
on Pierce [37]. Due to the specification of Agda, which follows in
the next subsection, we are going to use an extended specification
of System Fω that is more closely aligned with the existing specifi-
cation of Agda. The purpose of this extension of System Fω , which
will be presented further below, is to make it easier to describe the
eventual translation rules.

4.3 The specification of Agda
Only a very few programming languages have been formally spec-
ified. The most prominent example is Standard ML [32]. Another
example would be Scala [35], which is not a purely functional pro-
gramming language, however.8 Like so many other programming
languages, Agda is not formally specified. The following is there-
fore based on the existing implementation of Agda as well as per-
sonal communication with Andreas Abel.9

Dependently-typed programming languages do not distinguish
between kinds, types, and terms. As will soon become obvious, this
does not lead to a simpler grammar, as several definitions, which we
did not encounter in any of the previously discussed λ-calculi, are
introduced in the Agda grammar below.

t, u, v ::= terms:
x variable
λx . t abstraction
t u application
(x : U) → T dependent function type
φ constant
Sett universe of level t
Level type of level
t - u maximum of two levels
suc t successor of a level
0 Level 0

φ ::= constants:
c constructor
D data type
f defined constant

8 Having a formal specification did not protect Scala from the negative
repercussions of mutable state. Given that the current Scala compiler is
hardly free of bugs that are related to mutability, this means that either
the formal specification of Scala is insufficient, or the formal specification
of Scala is sufficient, but was not implemented properly. There is a third
possibility, which is even less flattering. The interested reader may want
to watch Paul Phillips’s related 2013 talk ”We’re doing it all wrong”,
which is available at: https://www.youtube.com/watch?v=TS1lpKBMkgg
(accessed March 30, 2015). Paul Phillips was the main contributor to the
Scala language. He has since then moved on to develop his own Scala fork
named policy, which aims to correct the fundamental issues of the current
Scala implementation: https://github.com/paulp/policy.
9 Note that we are making some simplifications in order to make the presen-
tation clearer. For instance, we have removed record types from the spec-
ification of Agda. This does not correspond to the existing Agda imple-
mentation, but record types can be simulated with the language constructs
presented below, if needed. By focusing on a subset of Agda, we are, how-
ever, able to more clearly specify translation rules. Further, by focussing on
a smaller subset of Agda, a prototypical compiler to System Fω could be
developed more quickly, and then used as a foundation for future work.

Set is a signifier that is used by the current Agda implementation.
The subscript of a set indicates the level of a kind. The purpose of
the stratification of kinds into levels is to avoid impredicativity, i.e.
self-referentiality, in Agda. Concretely, this means that an Agda
universe, a Set , cannot be contained in itself. Instead, Seti is con-
tained in Seti+1 . If this was not the case, and universes could con-
tain themselves, then Russel’s paradox would rear its ugly head.10

The typing rules of Agda are:

(x : T ) ∈ Γ
Γ ⊢ x : T

(Tvar )

Γ, x : U ⊢ t : T
Γ ⊢ λx . t : (x : U) → T

(Tabs)

Γ ⊢ t : (x : U) → T Γ ⊢ u : U
Γ ⊢ t u : [x #→ u]T

(Tapp)

(φ : T ) ∈ Σ
Γ ⊢ φ : T

(Tφ)

Γ ⊢ Level : Set0
(Tlvl)

Γ ⊢ t : Level Γ ⊢ u : Level
Γ ⊢ t - u : Level

(Tl-max )

Γ ⊢ t : Level
Γ ⊢ suc t : Level

(Tl-suc)

Γ ⊢ 0 : Level
(Tl-zero)

Γ ⊢ t : Level
Γ ⊢ Sett : Setsuc t

(Tuniv )

Γ ⊢ U : Setu Γ, x : U ⊢ T : Sett
Γ ⊢ (x : U) → T : Setu#t

(Tl-fun)

In the rules above, the symbol Σ represents the global signature
for constants in Agda. In the rule Tφ, the type T of φ has to be
looked up in Σ.

We are going to work with this specification of Agda from now
on. However, System Fω , as we have previously described it, is not
a suitable target for a translation, considering our specification of
Agda. To remedy this situation, we are therefore going to extend
System Fω with several new language constructs.

4.4 An extended specification of System Fω

Because the previous specification of System Fω is too sparse to
serve as a viable compilation target for Agda, we are going to
add several constructs to it. From now on, whenever we refer to
System Fω , we refer to this extended version of System Fω instead
of the previously described specification.

With regards to the terms in the extended specification of Sys-
tem Fω , we introduce constructors, defined constants, as well as
coercions. Types are enriched by adding data types, unit types, as
well as an unknown type Any, to represent an Agda type that cannot
be represented in System Fω . The addition of the unit type as well
as the unit kind are both expressed as (). They are both necessary

10 Russel’s paradox relates to set theory. Expressed informally, it states that
the set of all sets that do not contain themselves as members contains itself
as a member if and only if it does not contain itself as a member.
By using the language pragma type-in-type, Russel’s paradox can be
expressed in Agda. As is to be expected, this would lead to inconsistencies.



for intermediate steps in the extraction from Agda to System Fω .
Several examples much further below will provide an illustration.

t, u ::= terms:
x variable
λx : T . t abstraction
t u application
λX :: κ . t type abstraction
t [T ] type application
φ constant
coerce t coercion

φ ::= constants:
c constructor
f defined constant

v ::= values:
λx : T . t abstraction value
λX :: κ . t type abstraction value

T, U, V ::= types:
X type variable
T → U function type
∀X :: κ . T universal type
λX :: κ . T operator abstraction
T U operator application
D data type
f defined type
Any unknown type
() unit type

κ ::= kinds:
∗ kind of proper types
κ ⇒ κ kind of operators
() unit kind

Γ ::= contexts:
∅ empty context
Γ, x : T context, term variable binding
Γ, X :: κ context, type variable binding

Due to the changed grammar, the typing rules need to be modi-
fied. The typing rules for the judgment Γ ⊢ t : T are given below.
We omit typing rules for type equality for the sake of brevity. This
affects the rule Tt-eq , which contains S ≡ T as a premise.

x : T ∈ Γ
Γ ⊢ x : T

(Tvar )

Γ ⊢ T :: ∗ Γ, x : T ⊢ t : U
Γ ⊢ λx : T . t : T → U

(Tabs)

Γ ⊢ t : T → U Γ ⊢ u : T
Γ ⊢ t u : U

(Tapp)

Γ, X :: κ ⊢ t : T
Γ ⊢ λX :: κ . t : ∀X :: κ . T

(Tt-abs)

Γ ⊢ t : ∀X :: κ . T Γ ⊢ U :: κ
Γ ⊢ t[U ] : [X #→ U ]T

(Tt-app)

Γ ⊢ t : S Γ ⊢ S :: ∗
Γ ⊢ coerce t : T

(Tcoer )

(φ : T ) ∈ Σ
Γ ⊢ φ : T

(Tφ)

Γ ⊢ t : S S ≡ T Γ ⊢ T :: ∗
Γ ⊢ t : T

(Tt-eq)

The symbol Σ was explained in the previous subsection on
Agda; in our modified System Fω specification, Σ likewise rep-
resents the global signature for constants.

4.5 Extraction rules for compiling Agda to System Fω

With this rather extensive amount of preliminary material behind
us, we can now proceed with specifying the extraction from Agda
to System Fω . The aim is to produce, given a valid Agda program as
input, a valid System Fω program that exhibits the same behaviour.
In the following, a ↘ b is to be read as ”domain a extracts to range
b”.

To make the rules more easily readable, we signify Agda terms
with the letters T , U , V , as well as t, u. On the other hand,
System Fω types are signified as A, B, F , G and terms as a, b.

The extraction of kinds is defined as a function, using Haskell-
like syntax. The underscore is a placeholder, indicating irrelevant
arguments.

kind(Set ) = ∗
kind((x : U) → V ) = kind U ⇒ kind V

kind( ) = ()

A set of any level is extracted to a proper kind, and a function
type to the kind of its domain mapped to the kind of its range. Any
type that is not captured by these two definitions cannot be repre-
sented as a kind in System Fω and therefore has to be discarded.
For anyone not familiar with ML-style pattern matching, we would
like to add that the evaluation of the function kind proceeds from
top to bottom, meaning that at first an attempt is made to match the
argument with the first definition, which will succeed with any ar-
gument Setn . Should this match fail, the function kind attempts to
match by using the second definition, which will succeed for every
dependent function type. If this match fails as well, then kind will
attempt to match the argument with the third definition. Since the
underscore character matches all inputs, this operation is bound to
succeed.

The extraction from an Agda term to a System Fω term with the
judgment Γ ⊢ t : T ↘ F :: κ is as follows.

Γ ⊢ U : Sett ↘ A :: ∗
Γ, x : U ⊢ T : Sett ↘ B :: ∗

Γ ⊢ ((x : U) → T ) : Sett ↘ (A → B) :: ∗

kind U = κ ̸= () Γ, x : U ⊢ T : Sett ↘ B : ∗
Γ ⊢ ((x : U) → T ) : Sett ↘ (∀x :: κ . B) :: ∗



(x : T ) ∈ Γ kind T = κ ̸= ()
Γ ⊢ x : T ↘ x :: κ

(D : T ) ∈ Σ kind T = κ
Γ ⊢ D : T ↘ D :: κ

(f : T ) ∈ Σ kind T = κ ̸= ()
Γ ⊢ f : T ↘ f :: κ

Γ ⊢ Level : Set0 ↘ () :: ∗

Γ ⊢ Sett : Setsuc t ↘ () :: ∗

Γ ⊢ t : (x : U) → T ↘ F :: κ ⇒ κ′

Γ ⊢ u : U ↘ G : κ

Γ ⊢ t u : [x #→ u]T ↘ F G :: κ′ κ ̸= () or F = DT⃗

Γ, x : U ⊢ t : T ↘ F :: κ′ kind U = κ
Γ ⊢ λx . t : (x : U) → T ↘ (λX :: κ . F ) :: κ ⇒ κ′

However, not all Agda terms can be represented in System Fω . The
following rules specify cases where the extraction from Agda terms
to System Fω kinds does not succeed and will have to eventually
rely on either type coercion, in the case of Any, or erasure, consid-
ering that the unit kind is vacuous.

Γ ⊢ t : Level ↘ () :: ()

Γ ⊢ c : T ↘ () : ()

(x : T ) ∈ Γ kind T = ()
Γ ⊢ x : T ↘ () :: ()

(f : T ) ∈ Σ kind T = ()
Γ ⊢ f : T ↘ () :: ()

Γ ⊢ t : (x : U) → T ↘ F :: () ⇒ κ
Γ ⊢ t u : [x #→ u]T ↘ Any :: κ

F ̸= DT⃗

Γ ⊢ t : (x : U) → T ↘ () :: ()
Γ ⊢ t u : [x #→ u]T ↘ () :: ()

Γ, x : U ⊢ t : T ↘ () :: ()
Γ ⊢ λx . t : (x : U) → T ↘ () :: ()

In addition to extraction rules for kinds we also need rules for the
extraction from an Agda term to a function type in System Fω .
The corresponding judgment is Γ ⊢ t : T ↘ a : A where
Γ ⊢ T : Set ↘ A :: ∗.

Γ ⊢ U : Set0 ↘ A : ∗
Γ ⊢ t : (x : U) → V ↘ λ(x : A) . b : A → B

kind U = κ ̸= () Γ, x : U ⊢ t x : V ↘ b : B
Γ ⊢ t : (x : U) → V ↘ (λx :: κ . b) : (∀x :: κ . B)

(x : T ) ∈ Γ Γ ⊢ T : Set0 ↘ A :: ∗
Γ ⊢ x : T ↘ x : A

(x : T ) ∈ Γ Γ ⊢ T : Set0 ↘ () ::
Γ ⊢ x : T ↘ () : Any

Γ ⊢ t : (x : U) → T ↘ b : A → B

Γ ⊢ u : U ↘ a : A

Γ ⊢ t u : [x #→ u]T ↘ b a : B

Γ ⊢ t : (x : U) → T ↘ b : C

Γ ⊢ u : U ↘ a : A

Γ ⊢ t u : [x #→ u]T ↘ (coerce b) a : Any
C ̸= A → B

(c : T ) ∈ Σ Γ ⊢ T : Set0 ↘ A :: ∗
Γ ⊢ c : T ↘ c : A

Γ ⊢ Sett : Setsuc t ↘ () : Any

4.6 Compilation examples
After specifying extraction rules from Agda to System Fω , we
can now proceed with the presentation of several examples that
illustrate the intended results of a compiler that follows those rules.
Several caveats are in order, however. In order to present slightly
more interesting examples, we have to occasionally postulate the
existence of various data types as well as language constructs that
have not been covered in the previous dicussion. This hardly in
the spirit of Agda, considering that many tutorials start ab ovo
and do not even assume natural numbers or booleans as given
[7, 34]. In the following examples, the starting point is valid Agda
source code, which will then be juxtaposed with its translation into
System Fω .

As a warmup, we will start with the definition of a control struc-
ture for if-then-else statements. Agda allows mixfix operators [16],
which are illustrated in the first example. However, our starting
point will be a more conservative definition of the same control
statement that can be directly translated into System Fω . Of course
we are also assuming that we have already defined boolean data
types.11

Using mixfix-operators, an idiomatic Agda definition of the if-
then-else statement would be as follows.
if_then_else_ : {A : Set} -> Bool -> A -> A -> A
if true then x else y = x
if false then x else y = y

However, we can also use a definition that looks a lot more fa-
miliar to a programmer with a background in common functional
programming languages. Note that the following code listing as-
sumes the existence of pattern matching. The function body rep-
resents a λ-expression. While Agda allows Unicode characters in
source code, LATEX unfortunately does not. Expressed in the syn-
tax we have been using so far, the first function definition would
be written as λs1 s2 . s1. The sometimes great similarity between
Agda and resulting System Fω code may lead to some confusion,
which is why we will use an arrow in λ-expressions in Agda, but a
dot in the corresponding expressions in System Fω .
if -then -else : {A : Set} -> Bool -> A -> A -> A
if -then -else true = \ s1 s2 -> s1
if -then -else false = \ s1 s2 -> s2

The translation to System Fω is relatively straightforward. The
universe, here implied to be Set0 is extracted to the proper kind ∗
that is quantified over all instances of the type variable A. It would

11 For a programmer coming from an imperative background, it may come
as a surprise that data types that are provided as primitives in their language
of choice, like booleans or integers, can be defined in a language like
Haskell or Agda.



certainly be pleasant to have an implementation of System Fω with
pattern matching, and if we had one, the following code would be
the result.
if -then -else : forall A :: * . Bool -> A -> A -> A
if -then -else true = \ s1 s2 . s1
if -then -else false = \ s1 s2 . s2

In its purest form, though, type polymorphism is arguably best
represented by the identity function. This furthermore has the side
effect of ensuring some continuity with the earlier parts of this
paper. In Agda, the identity function can be represented as follows.
id : (A : Set) -> A -> A
id = \ A -> \ x -> x

Again, in System Fω the type universe is represented as a proper
kind.
id : forall A :: * . A -> A
id = \ A :: * . \ x : A . x

Functions that do not rely on type polymorphism are virtually
identical in Agda and System Fω . To build upon the previous work,
while simultaneously undoing decades of progress in programming
language theory, we could define an if-then-else construct that
only works for natural numbers, like the following example. The
function definition in Agda is followed by a possible representation
in System Fω .
if -then -else : Bool -> Nat -> Nat -> Nat
if -then -else true = \ s1 s2 -> s1
if -then -else false = \ s1 s2 -> s2

if -then -else : Bool -> Nat -> Nat -> Nat
if -then -else true = \ s1 s2 . s1
if -then -else false = \ s1 s2 . s2

Of course, more interesting monomorphic functions can be de-
fined as well, like the factorial function, which assumes that we
have defined natural numbers as well as a multiplication function.
The code would look the same in Agda and System Fω , apart from
possible cosmetic differences.
fact : Nat -> Nat
fact zero = succ zero
fact (succ n) = mult (succ n) (fact n)

We spent a considerable amount of time on singleton lists. The
following code example first gives a data type definition of lists,
and afterwards the definition of a function that creates a singleton
list when given any value as input. Since we are now dealing with a
more complex structure, we will take a glance at a possible internal
representation in Agda as well, right after showing the typical
source code representation.
data List (A : Set) : Set where

nil : List A
cons : A -> List A -> List A

List : (A : Set_0) -> Set_0
nil : (A : Set_0) -> List A
cons : (A : Set_0) (x : A) (xs : List A) -> List A

In System Fω , the list data type would have the following rep-
resentation, which again shows the extraction from Agda types to
System Fω kinds:
List : forall A :: * -> *
nil : forall A :: * -> List A
cons : forall A :: * . A -> List A -> List A

Much earlier in this paper we have encountered a function for
creating singleton lists. This example is repeated below, first in
Agda, and then followed by a corresponding extraction to Sys-
tem Fω . Note that, in the System Fω code, type application is indi-
cated by square brackets.

makeSingleton : (A : Set_0) (x : A) -> List A
makeSingleton = \ A \ x -> cons A x (nil A)

makeSingleton : forall A :: * . A -> List A
makeSingleton = \ A :: * .

\ x : A . cons [A] x (nil [A])

A relatively large part of the extraction rules is concerned with
Agda types that cannot be represented in System Fω . The next
example will illustrate this in more practical terms. We have already
seen that universes, written as Sett in Agda, are represented as
proper kinds in System Fω . Now we will also encounter the case
of a type that cannot be expressed in System Fω and therefore has
to be represented as Any instead.
case : (l : Level) (T : Nat -> Set_l) (n : Nat)

(z : T 0) (s : (x : Nat) (y : T x)
-> T (suc x)) -> T n

case : () -> forall ( T : ( ) -> *) . Nat -> Any ->
(Nat -> Any -> Any) -> Any

The next example combines several of the necessary translations
we have discussed so far, and adds a new data type as well. This
code, given in its internal representation in Agda, computes the sum
of two natural numbers through recursion.
rec : (l : Level) (T : Nat -> Set l) (z : T 0)

(s : (m : Nat) -> T m -> T (suc m))
-> (n : Nat) -> T n

rec l [T] z s 0 = z
rec l [T] z s (suc n) = s n (rec l [T] z s n)

Sum : Nat -> Set
Sum = rec 0 (\ _ -> Set) Nat (\ _ R -> Nat -> R)

sum : (n : Nat) (acc : Nat) -> Sum n
sum = rec 0 (\ n -> Nat -> Sum n) (\ acc -> acc)

(\ _ r acc m -> r (acc + m))

Please note that we, again, assume pattern matching facilities in
System Fω in the definition of rec.
rec : () -> forall (T : () -> *) -> Any ->

(Nat -> Any -> Any) -> Nat -> Any
rec l T z s 0 = z
rec l T z s (suc n) = s n (rec l T z s n)

Sum : () -> *
Sum = Any

sum : Nat -> Nat -> Any
sum = rec 0 () (\ acc -> coerce acc)

(\ _ r acc m -> (coerce r) (acc + coerce m))

As the last example we would like to present the lookup function
for a polymorphic length-indexed vector. This presumes that we
have a definition for vectors, natural numbers, and finite sets of
natural numbers.
lookup : {A : Set} {n : Nat} -> Vec A n -> Fin n -> A
lookup (x :: xs) fzero = x
lookup (x :: xs) fsucc i = lookup xs i

lookup : forall A :: * .
Nat -> Vec A () -> Fin () -> A

lookup [A] (succ n) (x :: xs) fzero = x
lookup [A] (succ n) (x :: xs) fsucc i =

lookup [A] n xs i

The previous example may not look overly interesting at first,
but it has potentially far-reaching implications, which we will dis-
cuss in the final section of this paper.

5. Discussion and outlook
In this paper we have proposed extraction rules that form the the-
oretical foundations for a future compiler backend for Agda that



performs type-directed translation to System Fω . This means that
we will retain as much as possible of the type annotations that are
present in Agda source code, and only resort to the catch-all type
Any when strictly necessary. System Fω is only an intermediary
step, though, as the desired goal of a new compiler backend for
Agda would be to generate Haskell source code.

The benefits of this approach are two-fold. First, the generated
Haskell code should be quite readable. In fact, the goal would
be to produce Haskell code that does not look too dissimilar to
what a human programmer would produce. By comparison, the
output of the current Agda backend that targets Haskell, MAlonzo,
uses the Haskell primitive unsafeCoerce for every type. On the
other hand, the code generated by a type-directed compiler can
be expected to be much more readable, which would lead to a
more productive feedback loop, as we would be in a position to
use the generated output to more easily assess the quality of the
compiler. The second clear benefit of our approach is that the
Haskell compiler GHC would be able to perform optimisations
more or less unhindered, as it could perform optimisation passes
that rely on type information.

As a practical consequence, the desired compiler could be used
to generate relatively efficient Haskell code. One side effect may be
that more users get interested in working with Agda, if the output of
a new future backend was better, i.e. more readable, and led to code
that executes faster, due to GHC being able to perform various op-
timisations that rely on type information. From the perspective of a
software engineer who is concerned about security and correctness
guarantees, there is another rather significant benefit as well: Agda
could be used to produce Haskell code that meets stronger correct-
ness guarantees than Haskell itself is able to provide, since any pro-
gram that gets compiled to Haskell would first have to satisfy the
Agda type checker and termination checker. Due to the lack of Tur-
ing completeness in Agda, this means that fewer programs could
be written than in plain Haskell. On the other hand, those programs
would provide stronger guarantees.

At the end of the previous section we have seen an example of a
lookup function on length-indexed vectors. Concretely, this means
that one could write such a function in Agda, rely on Agda’s type
system and termination checker to ensure the correctness of the
function definition, and then compile this code to System Fω or
Haskell, respectively. In plain Haskell it is not possible to achieve
these effects. Thus, by relying on Agda as a pre-processor, greater
guarantees for Haskell source code could be made. Note that the
often-used example of safe lookup of length-indexed vectors is
hardly the culmination of what would be possible. As was men-
tioned before, but which would by far have exceeded the scope
of this paper to discuss in detail, Agda makes it possible to en-
code arbitrary specifications in the type signature. More or less
any property one could think of, as long as the programmer can
provide a proof for it, can be devised. Further, termination check-
ing is arguably a desirable property in many domains, but probably
not when your goal is, for instance, to keep a server loop running.
Thus, an Agda compiler that emits Haskell code may be an enticing
proposition for some programmers.

Yet, we should not get too excited at this point. We have only
covered a subset of Agda. Furthermore, in our translation examples
we made various assumptions in order to facilitate a more digestible
presentation of the effect of the translation rules. Assuming the
existence of helpful language constructs is certainly much easier
than implementing said features in an actual compiler, even one that
is merely intended as a proof of concept. The next steps towards
a functional System Fω backend for Agda are indeed daunting.
A possible continuation would be to implement a compiler for
the subset of Agda that is discussed in this paper, with the goal
of targeting an implementation of System Fω that contains the

extensions we have assumed, such as pattern matching. Once this
point is reached, it would be possible to attempt a translation to
Haskell source code. Should this succeed, then a second iteration
could be attempted in order to add further features of Agda, such as
record types, which we have omitted in our discussion. Of course
this process would have to be repeated many more times. Agda is
likely to gain new features that will eventually need to be supported
by a hypothetical System Fω compiler backend. Thus, Agda is a
moving target, which entails that work on a new compiler backend
may never be complete. Fortunately, Haskell has been standardised,
with the most recent version being Haskell 2010 [26]. This means
that even though a new Haskell standard may eventually appear,
and the stream of extensions to the main compiler GHC may never
end,12 it would be possible to concentrate on a rather static target
for the foreseeable future.

Developing a compiler that translates from a programming lan-
guage with a more expressive type system into one with a less ex-
pressive one is not a new idea. The benefits of this approach, such
as reducing programmer errors, if not eliminating entire classes
of errors altogether, seem rather enticing. This may explain why
this idea has gained significant traction in recent years. Letouzey’s
work [24, 25] on extracting Coq into certified programs in OCaml,
Haskell, and Scheme is still the high-water mark in this area. How-
ever, there have been significant developments even in pedestrian
programming languages. This might partly be a counter reaction to
the infatuation with untyped programming languages, which cer-
tain corners of the software development industry have been nurtur-
ing. JavaScript is an example of a highly successful programming
language, considering its wide adoption, but it is also an example,
if not a paragon, of a highly unsafe programming language. The
programming language C has a similar reputation.

Therefore, it may not come as a surprise that efforts have been
made to make programming in inherently unsafe programming lan-
guages safer, but not by writing more unit tests and hoping that
there are no dormant critical bugs left in the source code. Instead,
a more promising approach seems to consist of having a com-
piler generate C or JavaScript code. Two relevant recent examples
for source-to-source compilers are Haste [18], a Haskell compiler
backend that emits JavaScript code, and Feldspar [2], an embed-
ded domain-specific language for digital signal processing that is
written in Haskell, which emits C code. In both cases, the program-
mer is able to make use of the type system Haskell provides, and the
greater means for abstraction, which both potentially lead to greater
efficiency. Likewise, it is imaginable that one day Haskell program-
mers may write part of their code in Agda, ensure the correctness
of critical functions, and then compile their code to Haskell, with
the goal of getting stronger guarantees of correctness. The resulting
Haskell code would be safer because Agda is able to verify certain
properties automatically. For instance, if you wanted to ensure that
your Haskell program terminates, but do not have the inclination
to write a termination checker, then Agda could be used for ter-
mination checking, with the effect that the Haskell code this Agda
program compiles into has been verified to terminate, even though
Haskell itself is unable to provide this guarantee.
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