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Abstract

Agda is a dependently typed functional programming language developed with
the aim of making programming with dependent types practical. One highly
useful feature of Agda, implicit arguments, allows a user to omit arguments
which can be inferred by their relation to other arguments. This thesis aims
to document a set of problems with the way implicit arguments are currently
handled by Agda’s type checker, and provide a way to resolve them. Three pro-
grams are presented as defining examples of the problems, along with derivations
pinpointing the source of the problems within the checking process.

We conclude that although the problems cannot be resolved by modifying
the heuristic central to this problematic type checking process, it is sufficient to
impose a simple limitation on where implicit arguments may be declared, bound
and given. The limitation somewhat restricts how things can be expressed, but
we show that general expressiveness is not negatively affected.

A small dependently typed calculus called λΞΦ (Xiphi) is defined, and imple-
mented in Haskell. The implementation supports the feasibility of the solution
while also indicating shortcomings, which are discussed.

Keywords: Agda, dependent types, implicit arguments, type checking
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1 Introduction

This section introduces a particular set of problems which can occur when type
checking Agda programs that make use of implicit arguments. An extensive
background section provides systematic descriptions of the concepts surrounding
the topic, specifically relating to the usage and usefulness of implicit arguments,
but it may be skipped by anyone who is already familiar with the subject. The
background assumes some level of familiarity with basic concepts of functional
programming. Additionally, the exact problems which are tackled in this work
are outlined, followed by the approach taken to resolve them.

1.1 Background

Type systems serve multiple purposes. At the lowest level, successful type check-
ing ensures some measure of run-time safety; well-typed programs are typically
unable to execute illegal instructions. Types also enable programmers to ab-
stract away from the details of implementation when constructing modular sys-
tems. In addition, type declarations often double as code-based documentation,
making a program easier to read even in the absence of human-readable expla-
nations [8].

The process of type checking is typically an integral part of the compila-
tion scheme of a programming language, usually preceded by lexing and parsing
phases, and succeeded by code generation or interpretation. In a functional pro-
gramming setting, a basic task of a type checking algorithm is to decide whether
or not a function definition adheres to its declaration, i.e., that its implementa-
tion matches the specification encoded in its type signature. To be of practical
use, it is advisable that type checkers provide adequate error messages to guide
the user in writing and debugging programs. It is also important that the type
checking process terminates in a reasonable amount of time, ideally linear in
relation to the program size, but never approaching anything exponential.

Rich type systems with elaborate type checking algorithms have evolved
to accommodate the need for higher precision when encoding program speci-
fications as types. Simple type systems may allow for little more than type
annotations representing the memory layout of some data types, in which case
the type checker is just an automated system for catching rudimentary bugs.
More advanced type systems on the other hand may have a significant impact on
how programs are written; features such as parametric polymorphism and auto-
matic type inference allow types to be more expressive while relieving users from
explicitly writing those type annotations that may be automatically derived. A
good example of how these features are used in practice is the general-purpose
functional programming language Haskell, which can infer the most general type
of any expression1 and lets the programmer write highly generic code with little
effort. Integrating even more powerful type theoretical ideas into practically
useful programming languages is an active area of research, of which this thesis
seeks to be a part.

1When considering Haskell98 without extensions. Some modern extensions to the language
may make the inference of some expressions undecidable.
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1.1.1 Dependent types

While classical type systems allow for some precision when describing the do-
mains and codomains of functions, they provide few means to encode details
about structural transformations in a coherent and general way. Systems using
dependent types allow for the definition of types which can be indexed by (de-
pend on) terms in the language, providing a method for encoding properties of
structures and functions directly through their type [1].

By using types to encode properties about term structures, the type signa-
tures of functions can be used to encode properties about the transformations
of those structures. This turns type checking of function definitions into cor-
rectness proofs for these definitions (for the properties defined in the signature).
Although the user may have to aid the type checker when it comes to properties
which cannot be automatically derived, this method of property declarations
can allow for compiler-guided implementation by showing the user what types
are required for pieces of code yet to be defined [6]. However, the inherent lack
of general inference for dependent types, and the additional arguments for the
indexing types, may require more effort on the part of the programmer.

-- Data type representing the natural numbers
data N : Set where

zero : N
suc : N → N

-- Data type representing polymorphic vectors indexed by their length
data Vec (A : Set) : N → Set where

vnil : Vec A zero
vcons : {n : N} → A → Vec A n → Vec A (suc n)

Figure 1 An Agda data type encoding the length of vectors at the type level

1.1.2 Agda: a dependently typed programming language

A prominent example of a language with full support for dependent types is
Agda, which is a functional programming language developed with the aim
of making programming with dependent types practical [7]. Agda is also a
proof assistant with an interactive Emacs mode which facilitates the writing
and checking of mathematical theorems and proofs expressed in the language.

These capabilities are in a sense just two sides of the same coin; Agda uti-
lizes a close link between logic and computation known as the Curry-Howard
correspondence, sometimes referred to as the propositions-as-types and proofs-
as-programs interpretation. By this correspondence, the dependent types of
Agda are naturally interpreted as quantification in intuitionistic logic. This
allows for constructive mathematical propositions and proofs to be efficiently
encoded in ordinary Agda types and programs, with type checking effectively
corresponding to theorem proving.

A common example of dependent types employed in a more general-purpose
manner is the types of vectors indexed by their lengths, presented in Figure 1.
It shows how dependent types blur the boundary between term and type level
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by allowing the vector type to depend on a value representing a natural num-
ber. This definition allows for turning indexing errors into type errors, meaning
dependent types make it possible to statically guarantee the absence of out-of-
bounds indexing. It should be noted that advanced type system features such
as Haskell type classes have been used to simulate some aspects of dependent
typing, results naturally lacking the brevity and clarity of languages supporting
full dependent typing by design [5].

A couple of basic things relating to Agda’s syntax and common practices
are worth noting. In general the syntax resembles that of Haskell, a crucial
difference being that the symbol : denotes a type declaration (instead of ::).
Local variables meant to represent terms are typically denoted by lower-case
letters, while their declared type makes use of the corresponding capital letter;
the binding (a : A) means that the argument has type A, and that the types
of the succeeding arguments may depend on the value of this argument, by
referring to its bind a. Set is short for Set0 and refers to the type of simple
types, the lowest level in an infinite hierarchy of type universes (Set0 is contained
in Set1 which is contained in Set2 etc.).

1.1.3 Implicit syntax

A major part of the practical usefulness of Agda lies within the ability to declare
function parameters as implicit, which allows a user to omit the corresponding
arguments when calling the function, instead letting the type checker try to
infer the corresponding values (which may be terms or types). Such arguments
may alternatively be provided explicitly by the user.

The archetypal use of implicit syntax in the realm of dependently typed
languages is to omit type arguments in function applications. In the following
paragraphs we will explore different ways of writing the polymorphic identity
function, showcasing how implicit arguments may relieve the Agda user of un-
necessary effort.

-- Explicit Agda id (could use instead of binding type to variable A)
id : (A : Set) → A → A
id A a = a

Figure 2 Agda identity function with an explicit type argument

Figure 2 shows a purely explicit version of the identity function written
in Agda. A Haskell programmer might object to the seemingly unnecessary
verbosity of this version of id; the type argument A is not even used in the
RHS of the definition, but this function still demands that we provide the type
argument. In Haskell, the symbol (wild-card pattern) is used in cases when
there is no need to bind an argument to a name, and the same syntax is available
in Agda as well. However, ideally we would not want to mention the type
argument at all, in neither arguments binds or function calls.

In Haskell all we need to tell the type checker is that the domain and
codomain have the same type, as shown in Figure 3. This is made possible
through a mechanism that generalizes type signatures by binding all type vari-
ables in universal quantifications scoped on the whole type. Haskell can safely
do this since it by default assumes these type variables to be of kind *, whereas

3



-- Succinct Haskell id where polymorphism is fully implicit
id :: a → a
id x = x

Figure 3 Haskell identity function

in Agda we work with a stratified type universe and cannot make such an as-
sumption. So how can we achieve a similar effect in Agda?

This is where implicit arguments come in. Agda allows for implicit argu-
ments to be defined wherever regular arguments are allowed, by using curly
brackets instead of parentheses. Making the type argument implicit we end up
with the code shown in Figure 4. We are now allowed to omit the type from
the pattern match as well as applications of the id function.

-- Implicit Agda id with type binding omitted
id : {A : Set} → A → A
id a = a

Figure 4 Agda identity function with an implicit type argument

1.1.4 Type checking implicit arguments using metavariables

Implicit syntax complicates the type checking process in two ways. First, the
type checker now needs to determine where things are missing. Second, it needs
to deduce what terms to put in the holes. Neither of these tasks is trivial; we
introduce the basic mechanisms involved in this process by some examples.

-- Synonym for zero providing the type argument to id explicitly
zeroExpl : N
zeroExpl = id {N} zero

Simple type checking derivation of zeroExpl

1. Apply id to {N}, instantiating A with N in the resulting type:
id {N} : N → N

2. Checking if argument type matches. Trivial since we know that:
zero : N

3. Applying the function to zero thus gives correct type:
id {N} zero : N

Figure 5 Type checking when giving an implicit argument explicitly

Consider the problem of type checking the functions zeroExpl from Figure
5, with id defined with an implicit type argument as seen in Figure 4. As shown
by zeroExpl, Agda allows implicit arguments to be given explicitly with the
use of curly brackets. The type checking of a function applied to explicitly given
arguments is straightforward; apply arguments one by one, making sure that

4



the types of the arguments match what the function expects. The resulting type
checking problem thus consists of little more than instantiating A from the type
signature of id with N and concluding that zero is indeed of type N.

When considering zeroImpl from Figure 6, we realise the type argument
must be derived from information supplied somewhere else, in this case from
the explicit argument zero. By inserting a kind of placeholder called a metavari-
able2 in the empty space between id and zero, Agda is able to keep track of
the missing piece, gathering information about how it is used. The names of
metas are commonly preceded by an underscore, whereby the one considered in
this problem is called N.

-- Synonym for zero omitting the type argument to id
zeroImpl : N
zeroImpl = id zero

Simple type checking derivation of zeroImpl

1. Insert a metavariable in place of the missing type argument.
zeroImpl = id { N} zero

2. Apply id to { N}, instantiating A with N in the resulting type:
id { N} : N → N

3. Checking if argument type matches requires that:
zero : N

4. A match would lead to the final type:
id { N} zero : N

5. Solve metavariable N through unification:
(zero : N ∧ zero : N) =⇒ N = N

6. Instantiating the meta N with N gives us the correct type:
id {N} zero : N

Figure 6 Type checking when omitting an implicit argument

The process proceeds as with zeroExpl, applying id one argument at a
time, until the only thing remaining is to decide a suitable value to substitute
the metavariable N for. This is done through a process called unification, which
consists of solving a set of constraints collected from all the ways a metavariable
has been used in the program under consideration. The solution to a unifica-
tion problem is a substitution relating each metavariable to a term that can
only depend on variables that were in scope when the metavariable was first
introduced. Since the argument zero has the type N, the constraint N = N is
gathered. This constraint is easily solved by assigning N to N, and thus the
whole definition successfully type checks.

2The terms metavariable and meta will be used interchangeably, to keep descriptions suc-
cinct in certain places.
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1.1.5 Tog type checking: separating elaboration and unification

Tog is an Agda-like language developed with the aim of creating a prototype
language closely resembling Agda3, but without the complexity brought on by
the nature of Agda’s development which has made it harder to understand and
reason about. It constitutes a fully functional subset of Agda and was developed
to provide insight into how the Agda type checker could be made simpler and
more efficient.

Tog is of interest here since it implements a very compartmentalized idea of
type checking where elaboration (the process of transforming expressions into
terms while generating constraints) is a wholly separate stage from unification,
unlike Agda where these processes are intertwined. This allows for very simple
implementation of, and reasoning about, type checking and inference rules used
in the elaboration stage.

1.2 Problem description

This work sets out to increase the predictability of type checking, but what is
sought is not predictability in the strictest sense of the word; the procedures
described have a deterministic set of rules. The notion of being predictable used
here is that of being intuitively logical, transparent and consistent. Conversely,
by unpredictable we mean behaviour which is unintuitive and inconsistent.

A number of issues affect the predictability of type checking in Agda; general
type inference in polymorphic lambda calculus (System F) is undecidable [9, 2],
as is general higher-order unification [3], two processes which are central to the
core of Agda’s type system and type checker respectively. Coupled with the
problem of termination checking, these things make it difficult to be certain of
the semantic correctness of a program, based on the result of checking alone.
The type checking process is thus incomplete in the sense that programs which
can be reasoned to be type correct will not pass type checking.

1.2.1 Avoidable unpredictability: hidden-lambda insertion

While general type inference and higher-order unification are inherently unde-
cidable problems, the focus of this thesis is on a more manageable issue which
nevertheless contributes negatively to the predictability of type checking in Agda
(and also constitutes a source of incompleteness). This issue lies with the way
implicit arguments are handled when type checking particular constructs, the
end result being that some intuitively type correct definitions will fail to type
check, and others that could be seen as incorrect will pass. The reason for
this problematic behaviour is explained in some detail, starting with a simple
overview of the relevant part of the type checking process and moving on to
some concrete examples of programs which serve to illustrate different aspects
of the problem.

The description of type checking implicit argument given in 1.1.4 is deliber-
ately simplistic in that it only presents one part of the process when handling
implicit arguments, namely the insertion of metavariables in the place of im-
plicit arguments in an application. This manipulation essentially modifies the

3The code can be accessed at: https://github.com/bitonic/tog
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expression in a way which allows the application to be structurally correct with
regard to the expected argument (viewing the implicit argument as explicit).

Another type of term manipulation is required when coming from the other
end of the equation, i.e. when implicit arguments need to be bound. This occurs
in two places: function definitions and lambda abstractions. For a function
definition, its declared type will guide whether or not binds for hidden (implicit)
arguments need to be inserted. For every implicit argument without an explicit
hidden binding4, a bind will be inserted for that argument, up until the first
unbound explicit argument (so called eager insertion). In the case of lambda
abstractions, these will always have to be checked against a function type. When
the domain of that function type is a hidden argument (a hidden function type),
and the binder of the lambda abstraction is not hidden, a new binder for the
hidden argument is inserted in order to allow the whole expression to match the
actual type. We refer to this process as hidden-lambda insertion.

-- Standard boolean data type
data Bool : Set where

true : Bool
false : Bool

-- Ty is a function type with type Set1
Ty : Set1

Ty = {T : Bool → Set}
→ ({b : Bool} → T b → T true) → T false

-- We use the axiom that some function f has the type Ty
postulate

f : Ty

-- Simple synonym which type checks
works : Ty
works = f

-- Supposedly equivalent synonym which fails to type check
fails : Ty
fails g = f g

-- Manually inserted implicits makes the synonym type check again
hacks : Ty
hacks g = f (λ {b} → g {b})

Figure 7 Inconsistent behaviour when type checking implicit arguments

While Agda’s heuristic way of handling implicit bindings necessitates some
way of inserting hidden lambdas (just as it requires insertion of hidden argu-
ments), it is also a source of unpredictability. Sometimes this process leads to
undesirable results, as can be seen the example of Figure 7, which is modified
from a real-world example given in a bug report [4]. One would intuitively ex-

4A hidden binding can be created by using the notation {v} to indicate that the variable
v will be bound to an implicit argument corresponding to its order in the binds, or {n = v}
to indicate that v will be bound to the implicit argument named n.
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pect the synonym to type check (fails = f under an η-like reduction), but it
requires an explicit insertion of a hidden binder and application.

There are also cases where the hidden-lambda insertion fails to produce the
correct shape for an expression, when it is not immediately possible to determine
whether the type of a scrutinized term should be regarded as having at least
one implicit argument or none at all.

The decision problem of hidden-lambda insertion in Agda is made more
difficult to analyze by the liberal placement rules for implicit arguments. It
is a deliberate design decision to allow the placement of implicit arguments in
the place of any explicit, which is justified as being necessary for reasons of
expressiveness [7].

1.2.2 Three defining problems: Ty, Vec, Lam

We give three examples of programs in Agda, referred to as Ty, Vec and
Lam, which present counter-intuitive behaviour of type checking. The first two
cover scoping-related consequences of Agda’s eager insertion of hidden lambdas,
whereas Lam deals with premature inference of function types.

The first example, Ty (Figure 7), shows a case where a function synonym
cannot be checked without manually inserting a hidden lambda and an implicit
argument, despite the fact that the type of g can be shown quite easily to be
compatible with f through direct comparison of their types. The expected and
desired behaviour would naturally be to have the type checking handle this au-
tomatically, but the current strategy instead transforms g using hidden-lambda
insertion in a way that leads to an unsolvable unification problem; the differently
scoped structures created using this process lack a most general unifier.

-- The only difference between cons and vcons
-- is the order of arguments A and {n : N}.
cons : {A : Set} → A →

{n : N} → Vec A n → Vec A (suc n)
cons a = vcons a

Figure 8 Vector constructor synonym with flipped arguments

The second example, Vec (Figure 8), on the other hand shows a case where
a function synonym definition type checks despite the declared types being dif-
ferent, this too is a result of the eager insertion. While the Ty example demon-
strates a case where an η-like expansion results in failed type checking, Vec
shows how it may enable something which would otherwise not type check.

The third example, Lam (Figure 9), shows a case where type checking will
fail as a result of handling non-linear type information. Looking at the type
of w, it is easy to see that b should eventually be inferred to true, and the
application of the type function T reduced to a type with an implicit argument.
Furthermore, the lambda provided as argument to this function should be type
correct assuming the insertion of a hidden lambda. However, due to the type
checking procedure inferring the type of the lambda before knowing the result
of T b, by the time the check can be made the types will have different shapes
and fail to type check.
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-- A simple definition of propositional equality
data _≡_ {A : Set} : A → A → Set where

refl : {a : A} → a ≡ a

-- Type function returning a function type
-- with or without an implicit argument.
T : Bool → Set1
T true = {A : Set} → A → A
T false = Set → Set

-- The postulated functions we check against
postulate

w : (b : Bool) → b ≡ true → T b → Bool
f : (b : Bool) → T b → b ≡ true → Bool

-- A definition in which the lambda is checked
-- against T b after the equality constructor is checked
works : Bool
works = w _ refl (λx → x)

-- A definition in which the lambda is checked
-- before the equality constructor is checked
fails : Bool
fails = f _ (λx → x) refl

Figure 9 Order-dependent assumption of type shapes

The details of the derivations leading up to the problems described here can
be found in A.1.2, A.1.3 and A.1.4 for Ty, Vec and Lam respectively.

1.3 Purpose

The purpose of this thesis is to devise a way of type checking implicit arguments
which removes the unpredictability of hidden-lambda insertion and, having for-
mulated such a method, reason about its use in a practical setting.

1.4 Method

In order to exemplify some of the problems related to type checking implicit
arguments, three detailed type checking derivations are produced (three defining
examples). An analysis of these derivations leads to the conclusion that the
problematic behaviour cannot be avoided by simply changing isolated details of
the type checking process.

For this reason, we define a dependently typed language, called λΞΦ (Xiphi),
which places a restriction on the occurrence of implicit arguments, and show
that this restriction leads to the desired behaviour for the defining examples
while retaining sufficient expressiveness. In order to show this, we then define a
calculus for type checking expressions in this new language. Finally, we encode
and type check the three defining example programs in λΞΦ to see if they now
behave as expected. To this end an implementation of the calculus in has been
produced as part of the project.
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1.5 Limitations

We do not consider certain practical details of language processing such as lexing
and parsing, nor the process of providing error messages or similar feedback from
the type checking process. Beyond that, there are four areas we consider out-of-
scope for this project: unification, formal proofs, performance and the inclusion
of stratified type universes.

An important mechanism used as part of the type checking, in the type
systems we are working with, is the process of unification (a cursory description
is given in Section 1.1.4). Unification is a large field which has undergone much
study over the past decades, and while its use is central to the practical side of
this project, the exact details of finding unifiers will not be considered. Instead
we will mostly treat unification as a black box, considering the capabilities of
existing algorithms as far as possible.

We do not provide any formal proofs of e.g. soundness or completeness
of type checking in Xiphi. Instead, to indicate the correctness of our calculus
when applied to the three defining problems, we provide detailed derivations in
Appendix A.2.

Performance, although very important in practice for most aspects of lan-
guage processing, has not been a point of focus when developing the solutions
described in this thesis. The elaboration process described will be linear, which
is most likely at the cost of an expensive unification process to complete type
checking. Although the elaboration process may fail at the presence of cer-
tain identifiable structural errors in the input expressions, the general principle
of failing as early as possible has not been given precedence over other design
aspects. Some comments on this matter are made in the discussion, but no
detailed analysis is provided.

In order to keep the solution (specifically the type checking rules) relatively
simple, we do not handle stratified type universes in any way. While this does
result in the system being logically inconsistent, this consistency is not crucial
for the intended outcome of this project.
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2 Design of the example calculus λΞΦ (Xiphi)

This section presents and motivates a way by which the problems described in
the introduction may be approached5, by defining a small dependent lambda
calculus which will be the focus of the solution. It is explained how this calculus
mitigates the problem of hidden-lambda insertion by enforcing a restriction on
the occurrence of implicit arguments. The process of scope checking and type
checking expressions in this language is then outlined; the details of the different
phases are treated separately in Section 3 and 4.

2.1 Eliminating hidden-lambda insertion by uniformity

In order to overcome the unpredictable behaviour previously presented, we want
to remove the possibility for the type checker to make any mistakes about
whether a function type should or should not have implicit arguments. Agda’s
type checker has to make a decision based on immediately available data and
cannot determine whether to insert hidden lambdas by the expression alone.

To remove the uncertainty of the decision, we can simply assume that implicit
arguments will always be present, both declared and given, at particular points.
By this a uniformity is achieved which allows the type checker to always state
things with certainty based on the available structure. What is done is in fact
to remove the decision altogether.

The idea is to always assume the presence of implicit structures in pair-
ings: a telescope of implicit arguments before the domain of every function
type, a sequence of implicit binders before every explicit binder in every lambda
abstraction, and a sequence of given implicit arguments before every explicit
argument in a function application. In summary, the explicit components of
expressions will act as delimiters which indicate the occurrence of their implicit
counterparts.

2.1.1 Encoding groups of implicits as expandable records

By using the fact that explicit constructs are delimiters we can safely package
the preceding sequences of consecutive implicits into their own isolated language
constructs. We choose to undertake this separation of the implicit structures
in order to make the differences of their behaviour more obvious. The practical
outcome of this choice is that we can define the behaviour of the implicit con-
structs separately from explicit ones, with the trade-off being that additional
structures have to be defined internally to represent them.

Sequences of declared implicit arguments share many characteristics with
dependent record types (which will also be referred to as sigs), and for this
reason we choose to encode them as such. The only thing preventing us from
stating that this representation is isomorphic to telescopes of implicits in Agda,
is that record types have unique field names whereas the binders in an implicit
telescope may shadow previous binders just as with ordinary explicit binders.
To circumvent this we simply require all implicit binders to be unique within
their group, allowing us to claim isomorphism between record types and se-
quences of implicit binds. We justify this restriction on the groups of implicits

5The approach used here was suggested by Andreas Abel, one of the main developers of
Agda
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in our language by the fact that things expressed using shadowing can always be
expressed without it, and that having the same name within a group of implicits
can be seen as confusing.6

The practical result of this encoding is that when the user declares a sequence
of implicit arguments, these will be translated into a new explicit bind on a sig,
with fields and types corresponding to the binds and types of the declaration
(when there are no implicits, it will be the empty record type). Dependencies
on the telescope will be translated into projections (for the corresponding fields)
from that explicit bind.

In order for the isomorphism to hold we need record values (or simply records,
also referred to as structs) to represent the values of the implicit arguments.
However, since these values are generally not provided by the user in full (or
even partially in most cases) it would be misleading to use the term record for the
immediate result of the translation. Instead we call this structure an expandable
record (which may be more conveniently read as e-struct), to indicate that it
may not have all values available. Eventually, during a successful type checking,
we expect these expandable records to be replaced with fully expanded records
(containing values for all implicit arguments in the corresponding sig).

Additionally, we will use the related concept of an expandable sig (or e-sig)
to define an expandable sequence of implicit binds preceding an explicit bind in
a lambda abstraction.

2.2 Language processing: scope checking, type checking

We consider the entire process of verifying the correctness of an expression
as consisting of two separate processes, which we call scope checking and type
checking. The scope checking phase ensures that expressions are well scoped,
but also performs the previously described encoding of implicit structures, the
result of which is then the input of the type checking phase.

The type checking phase is itself a two-stage process. First, scope-checked
and transformed expressions are processed further by a structurally recursive
process, a stage which we, in the tradition of Agda, call elaboration. Elabo-
ration of an expression results in two things: a term which approximates the
original expression and may contain metavariables, and a set of constraints for
the metavariables in that term. To complete the type checking process, the
constraints have to be resolved and all metavariables have to be properly in-
stantiated. This is the task undertaken during the unification stage.

2.2.1 Grammars: surface, core, internal

Scope checking and elaboration both perform transformations between different
representations of expressions. Hence we have three separate grammars for the
expressions constituting the input and output of these procedures: surface, core
and internal.

The surface grammar (Figure 10) gives an indication of the user syntax, and
is the input of scope checking. During scope checking, expressions in surface
are transformed into corresponding expressions described by the core grammar
(Figure 11), which makes use of the dependent record structures. Expressions

6For instance, it allows for expressions such as f {a ..= x} {a ..= y} e, where the a’s refer
to different binders within the same group (the group associated with the domain of f).
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in core are in turn the input of the elaboration stage, which outputs a term in
the internal grammar (Figure 17), which is in turn the input of the unification
stage.

Although the result of successful unification will technically be contained in
a subset of internal, due to the absence of metavariables, we do not define a
separate grammar for this subset. One can imagine this subset as the unstated
grammar for finalized terms.

2.3 Grammar of the surface language

The main things achieved by the surface grammar is allowing function types
(4), abstractions (5) and applications (6) to contain any number of implicit
arguments per explicit argument, as indicated by the vector notation. The
language may not be practically useful, but it is designed to be sufficiently
expressive to encode the defining examples described in Section 1.2.2.

Constants (2) differ from variables (3) in that they are globally scoped,
whereas variables are meant to only appear in some local context. The under-
score (7) is used, as in Agda, when the user wants the value of an expression
to be automatically inferred by the type checker. The category ΦS is used to
represent the two allowed ways of supplying an implicit argument explicitly;
either by position (8) or by name (9). The identifiers k, a and b belong to a
category capable of storing alphanumeric strings, the specific details of which
are left unspecified.

Expressions

s,A,B,C ::= Set Type of types (1)

| k Constant (2)

| a Variable (3)

| −−−−⇀{a : A} (b : B) → C Function type (4)

| λ
−⇀{a} b → s Lambda abstraction (5)

| s1
−−−⇀{ΦS} s2 Application (6)

| Unknown expression (7)

Field assignments

ΦS ::= s Field assignment by position (8)

| a ..= s Field assignment by name (9)

Identifiers

k, a, b ::= Ident Field and variable identifiers (10)

Figure 10 Grammar of the surface language. The constructs surrounded by
braces denote implicit declarations, bindings and arguments. The overset arrow
indicates that vectors of these constructs are allowed, including empty ones.
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3 Scope checking in λΞΦ

This section starts off by describing the core grammar, which is the target of
scope checking, and proceeds to provide the concrete rules for the scope check-
ing procedure. Beyond ensuring well-scopedness of expressions, scope checking
transforms the implicit structures of the surface language to record equivalents.
Although we do not formally show semantic equivalence between input expres-
sions and the result, the descriptions of the grammar and the procedure should
be sufficiently detailed to indicate the correctness of the translation.

3.1 Grammar of the core language

The core grammar presented in Figure 11 is designed to handle all function
types, lambdas and applications in a uniform way, whether they contain some
implicit arguments or not. Expressions in core act as an intermediate represen-
tation used during elaboration, and are eventually transformed into terms in
the internal language.

Expressions

e,D,E, F ::= Set Type of types (11)

| k Constant (12)

| x Variable (13)

| (x : D) → E Function type (14)

| λ(x : D) → e Lambda (15)

| e1 e2 Application (16)

| sig{−−−⇀f : D} Record type (17)

| sige{
−⇀
f } Expandable sig (18)

| structe{
−⇀
ΦC} Expandable struct (19)

| e.f Projection (20)

| Unknown expression (21)

Field assignment

ΦC ::= e Field assignment by position (22)

| f ..= e Field assignment by name (23)

Identifiers

f ::= FieldId Field names (24)

x, r ::= VarId Variable names (25)

k ::= ConstId Constant names (26)

Figure 11 Grammar of the core language. Successful scope checking transforms
a surface expression into a well-scoped expression in the core language.
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3.1.1 Differences from the surface language

The core grammar does not inherently provide the same restriction on the oc-
currence of implicit arguments as the surface grammar does. Function types
now only present explicit binds, and applications lack the vector of provided
implicit arguments, as these structures have now been provided with their own
constructs: sig (17), e-sig (18) and e-struct (19). The addition of record types
require projections (20) to create field references matching references to the
original implicit bindings. Lambdas now have typed bindings, but as we will
see, the only possible types in the binding are either an e-sig or an underscore.

One noticeable difference between the grammar of surface (Figure 10) and
core is that the latter contains more constructs than the former, which may
seem counter-intuitive. Although it is a reasonable argument against using the
record structures at all, the benefits of being able to treat function types and
applications in a more compact fashion is made apparent by the elaboration
rules in Section 4.4.

It should also be noted that the restrictions from the surface grammar will
carry over to expressions in core, when considering the handling of such expres-
sions. Only a subset of core will be expressible through conversion from legal
expressions in surface, meaning that expressions such as e.g (x : Set) → sig{}
will never appear in core.

One important restriction not enforced explicitly by the grammar or the
scope checking rules is that lambdas in application positions must be fully re-
duced prior to type checking. It is a reasonable restriction to not allow mean-
ingless constructs in the grammar we are considering, hence any appearance of
(λa → e) b will not be allowed, and is assumed to have been reduced to e[b/a]
by some additional unspecified preprocessing.

3.2 Scope checking rules

The scope checking rules are defined in terms of a substitution context, an
input structure and an output structure. Non-recursive requirements on the
input structures, as well as certain non-recursive substructure transformations,
are defined in side conditions for these rules.

In order to reduce the number of symbols, we overload the general structure
of the rules, which will work between three pairs of different structure types.
Rules are defined for transformations between entire expressions (from surface
to core), as well as between telescopes of declared implicit arguments and vectors
of given implicit arguments. The notation used can be found in Figure 12.

Θ ⊢ s! e General expression (27)

Θ ⊢ −−−−⇀{a : A}! −−−⇀
f : D Implicit argument telescope (28)

Θ ⊢ {ΦS}! ΦC Implicit argument vector (29)

Figure 12 Shape of the overloaded scope checking judgment
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3.2.1 Substitution context

The context, Θ (Figure 13), is essentially a list of substitutions; variables in
the surface expressions are replaced by corresponding expressions in the core
language. Regular variable names will be used solely for references to explicit
bindings, field names for references to implicit arguments within the same tele-
scope, and projections for the same kind of references from outside the telescope.

Θ ::= · Empty context (30)

| Θ, x/a Variable name (alpha convertible) (31)

| Θ, f/a Field name (not alpha convertible) (32)

| Θ, r.f/a Projection (33)

Figure 13 Grammar specifying the three different kinds of core constructs that
variables from the surface language will be replaced with.

3.2.2 Variables

When encountering a variable (Figure 14), Θ will be traversed to look for the
most recently added substitution for that variable. If no substitution is found,
the expression is not properly scoped and scope checking will fail. Otherwise,
the variable is replaced by the expression of the substitution.

Matching variable

(Θ, e/a) ⊢ a! e (34)

Non-matching variable

Θ ⊢ a! a′

(Θ, e/b) ⊢ a! a′
[a ̸= b] (35)

Figure 14 Scope checking rules for variables. A variable is only well-scoped
when there is a matching substitution in Θ.

3.2.3 Type of types, constants and unknown expressions

Set , constants and underscores are not modified by the scope checking procedure
and are always well-scoped, as shown in Figure 15. While obvious for Set and
underscores, it could be considered an oversimplification to simply state that
all constants are well-scoped. The practical consequences is that the existence
of a constant implies that it is in scope where used, which is sufficient for the
structures defined in our calculus. Constants carry the notion of being globally
accessible.

Type of types

Θ ⊢ Set ! Set (36)

Constants

Θ ⊢ k ! k (37)

Unknown expression

Θ ⊢ ! (38)

Figure 15 Set , constants and underscores are always well-scoped
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3.2.4 Function types, lambdas and applications

The rules for function types (39), abstractions (42) and applications (43) are
defined in Figure 16. Function types are scope checked by first processing the
telescope of implicits, the bindings contained therein being required to be locally
unique. The result is placed in a dependent record type with a fresh binding,
and added as the domain of the new core function type. The new codomain is
produced by first scope checking the explicit bind under the context extended
with projection substitutions for references to the implicit binds7, and then
doing the same for the codomain with the explicit bind also added to the context.

The types of the binds in implicit telescopes are scope checked in turn from
first to last, with a substitution of the new field (of the bind) for the correspond-
ing bind being added to context for each, before scope checking the remaining
telescope. From this a scope checked vector of binds is produced.

As for lambda abstractions, a fresh binder is created for the vector of implicit
binds (which, as for function types, have to be locally unique). The body of
the lambda is then transformed under the context extended with projection
substitutions for the implicit references and a fresh variable substituted for
references to the explicit binding.

Since there are no direct dependencies between the constituent parts, the
head, implicit arguments, and explicit argument, are scope checked individually,
and the corresponding core application is rebuilt. The vector notation for the
given implicit arguments indicate that they are all processed as once, with the
resulting positional or named expressions being placed in an expandable struct.

An implicit argument may either be given by name or by position, but in
either case, the given expression will be scope checked. If given by argument,
the scope checked expression will be coupled with an assignment to a field
corresponding to the original binding.

7The function fieldify is used to create fields corresponding to variable bindings.
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Function types with telescopes of implicits

⎡

⎣
fresh r, x
−⇀a distinct
−⇀
f = fieldify(−⇀a )

⎤

⎦
Θ ⊢ −−−−⇀{a : A}! −−−⇀

f : D

(Θ,
−−⇀
r.f/a) ⊢ B ! E

(Θ,
−−⇀
r.f/a, x/b) ⊢ C ! F

Θ ⊢ −−−−⇀{a : A} (b : B) → C ! (r : sig{−−−⇀f : D}) → ((x : E) → F )
(39)

Base case for implicit telescopes

Θ ⊢ ϵ! ϵ (40)

Cons for implicit telescopes

Θ ⊢ A! D

(Θ, f/a) ⊢ −−−−⇀{a : A}! −−−⇀
f : D

Θ ⊢ {a : A},−−−−⇀{a : A}! f : D,
−−−⇀
f : D

[f = fieldify(a)] (41)

Lambda abstractions

⎡

⎣
fresh r, x
−⇀a distinct
−⇀
f = fieldify(−⇀a )

⎤

⎦
(Θ,

−−⇀
r.f/a, x/b) ⊢ s! e

Θ ⊢ λ
−⇀{a} b → s! λ(r : sige{

−⇀
f }) → (λ(x : ) → e)

(42)

Function applications

Θ ⊢ s1,
−−−⇀{ΦS}, s2 ! e1,

−⇀
ΦC , e2

Θ ⊢ s1
−−−⇀{ΦS} s2 ! (e1 structe{

−⇀
ΦC}) e2

(43)

Implicit argument given by position or name

Θ ⊢ s! e

Θ ⊢ {ΦS}! ΦC

[
(ΦS ,ΦC) ∈ {(s, e), (a ..= s, f ..= e)}
where f = fieldify(a)

]
(44)

Figure 16 Scope checking rules for function types, abstractions and applica-
tions, which all make use of implicit substructure conversion.
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4 Type checking in λΞΦ

This section gives a thorough description of the type checking process, starting
with an overview of the two comprising stages: elaboration and unification. The
internal language, which is the target of elaboration and the domain of unifica-
tion, is then described, followed by details of the contexts used and constraints
generated in the course of type checking.

The property of well-typedness, a relation between terms and types in inter-
nal, is defined. Declarative rules which define the semantics of the entire type
checking process are given, and related to subsequent definitions of algorithmic
rules for it.

4.1 An overview of the type checking process

The type checking process is split up in two separate stages: elaboration and
unification. In the same vein as Tog, we attempt to define these stages in isola-
tion, although they are technically interleaved due to the precense of suspended
type checking problems in the shape of checking constraints. This makes it eas-
ier to reason about properties of the individual stages, which is especially useful
in this work, where the unification stage is not fully defined.

4.1.1 Elaboration

Elaboration is the process of transforming an expression in core to a well-typed
term in internal, while producing a set of constraints for any metavariables in
that term. It is performed under three different typing environments, which
will be referred to as contexts: a metavariable- and constraint store (Ξ), a local
variable context (Γ) and a fixed context for global constants (Σ). See Figure 18
for the notation used, and Section 4.2.2 for a detailed explanation.

At the top level, elaboration is initiated by checking an expression in core
against a type in internal. This is done either by special checking rules which
demand some specific goal type, or by inferring the type of the expression and
deciding if the types are equal. If the equality relation can be determined imme-
diately by alpha conversion and reflexivity, the expression is deemed well-typed
and returned immediately. Sometimes however, equality cannot be determined
straight away, whereby an equality constraint is generated.

Although there are type-level computations and reductions which are de-
ferred to the unification stage, the elaboration does perform particular reduc-
tions to avoid the generation of unnecessary (trivially solvable) constraints.

4.1.2 Unification

The unification stage is concerned with solving the constraints gathered during
elaboration. Traditionally, unification involves finding a most general unifier
for unknowns in order to make two terms equal, the unknowns in this case
being metavariables with fixed contexts. In this setting, we extend the notion
of unification to include the handling of general checking constraints.

These checking constraints are to be seen as a paused type checking problems
which may continue only when the shape of the type checked against has been
revealed, most often through the instantiation of one or more metavariables.
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As soon as the goal type is fully instantiated, the checking problem may be
reconsidered using the ordinary checking rules available in elaboration.

The solving of equality constraints on the other hand requires some more at-
tention to detail which is not central to the solution presented in this thesis. We
provide declarative descriptions of equality and reductions which would guide
this last step of unification in Appendix B.4, and in the following paragraphs
we outline the idea of solving equality constraints, however we do not provide
a full unification algorithm.

The basic idea is that the unifier should be able to compare two fully reduced
terms structurally, component by component, and in the end either declare
the terms equal or not. What makes this process interesting is the possible
occurrence of metavariables, which the unifier needs to solve by instantiating
them with adequate terms.

Valid instantations are found when a meta alone constitutes any side of an
equality constraint. If the meta carries the empty substitution, it can be solved
directly by instantiating it with the term on the other side of the equality
constraint, by which Ξ must be updated accordingly. However if the meta
carries a substitution, it may not be solvable straight away; it may be the case
that it can only be solved by computing an inversion of the carried substitution,
or by the resolution of some other constraint in Ξ.

Exactly how term equality is defined and decided, as well as how metas
are instantiated and Ξ updated, is not very relevant to the problem at hand.
Therefore we will assume some unspecified unification procedure capable of
determining term equality to do the work for us, acting as an oracle. We assume
the oracle can provide an answer for all unification problems thrown at it. While
a considerable simplification, higher-order unifiers such as the one used by Agda
should be able to replace this oracle in a real setting.

4.2 Internal language and type checking contexts

Understanding the grammar of the internal language is necessary to be able to
read the declarations for well-typedness and understand the semantic descrip-
tions of the type checking process. As the contexts are closely connected to the
language, their descriptions are given here as well, along with a note on how
substitutions and reductions are handled.

4.2.1 Grammar of the internal language

The grammar for terms in Figure 17 describes both output and input of the
elaboration, the output being the transformed core expression and the input
the type it was checked against.

While largely similar to surface and core, there are a number of important
differences. Expandable sig types in the bindings of lambdas (49) have been
replaced by full record types. The expandable struct of core has been replaced
with a fully expanded struct (52), as all implicit arguments will be present for
applications which expect them. Wildcards have been replaced by metavariables
(54), which can carry stored substitutions (55) used to defer type computations.
The substitutions are vectors of pairs providing a term t for every variable x.
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Terms

t, u, v, T, U, V ::= Set Type of types (45)

| k Constant (46)

| x Variable (47)

| (x : U) → V Function type (48)

| λ(x : U) → v Lambda abstraction (49)

| t u Application (50)

| sig{−−−⇀f : U} Record type (51)

| struct{−−−⇀f ..= u} Record (52)

| t.f Projection (53)

| X[−⇀σ ] Metavariable (54)

Substitutions

σ ::= t/x Substitution (55)

Identifiers

f, g ::= FieldId Field names (56)

x, y, z, r ::= VarId Variable names (57)

k ::= ConstId Constant names (58)

X,Y ::= MetavarId Metavariable names (59)

Figure 17 Grammar of the internal language. Successful type checking trans-
forms a well-scoped core expression into a well-typed term in the internal lan-
guage.

4.2.2 Contexts - variables, constants, metas and constraints

We use three contexts for the type checking phase, as seen in Figure 18.
The global context, Σ (60), contains a set of typed constants. In a com-

plete system, defining larger program structures, it would contain the types
of accessible external definitions, such as data types (type constructors), data
constructors and functions, and are as such referred to as signatures.

Variable contexts, Γ, ∆ (62), are used to store local variables along with
their types. It is structurally identical to the global context, except for the
binding being to variables rather than constants.

The type of a variable in Γ is allowed to depend on earlier variables, which
means it is important that bindings are added in the right order. New variables
are added to the rightmost side of Γ, to show the same order of dependence as
in dependent function types.
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Global context

Σ ::= · Empty global context (60)

| Σ, k : T Signature (61)

Variable context

Γ,∆ ::= · Empty variable context (62)

| Γ, x : T Binding (63)

Metavariable context

Ξ ::= · Empty metavariable context (64)

| Ξ, (X : T )[Γ] Metavariable introduction (65)

| Ξ, (u : U = T †X)[Γ] Equality constraint (66)

| Ξ, (e⇔ T †X)[Γ] Checking constraint (67)

Figure 18 Grammar of global-, variable- and metavariable contexts

The metavariable context, Ξ (64), is used to store both metavariables and
unification constraints. Over the course of type checking, when a new metavari-
able is needed a fresh ditto is added to Ξ with the current variable context. The
context is used as input and output for all rules in the elaboration process to
make it clear that it is being updated continuously. Since this behaviour is the
same for all rules, one could alternatively omit it entirely except for when it
needs to be updated or referenced.

Meta introductions (65) consist of a meta X of type T , with context Γ. All
constraints also carry with them fixed variable contexts for a few reasons, mainly
to maintain the well-typedness of the constituent terms and other constructs.

The equality constraint (66) describes a blocking wherein the meta X may
only be instantiated by the term u when it has been determined that their types,
T and U , are equal. This blocking is represented by the † symbol. Equality
constraints are used when an expression is inferable, but the comparison between
the inferred type and expected type cannot be decided directly.

The checking constraint (67) is similar to the equality constraint. The dif-
ference is that a checking constraint may block on any type checking problem
which, due to the nature of the expression to be checked, needs a specific goal
type to be able to continue.

4.2.3 A note on substitutions, reductions and termination

By computing substitutions on terms directly (and reducing the results), we
are able to greatly reduce the number of metas and constraints generated in
the elaboration process. The notation t[σ] (or t[u/x]) used later on in e.g. well-
typedness rules for applications, structs and projections, thus stands for the
result of applying a substitution σ on the term t, with the result always con-
forming to the internal grammar. The details of this process is presented in
Appendix B.3, but the main idea is that all free occurrences of the variable x in
t are replaced with the term u, which by having globally unique identifiers for
local variables amounts to all occurrences of x in t.
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Computing a substitution may give rise to terms which are further reducible,
either by introducing a lambda as the head of an application, or a struct as the
target of a projection. Computing a projection is done simply by looking up and
returning the value of the matching field in the record. This look-up will always
succeed since the projection is only well-typed if the name of the projected
field exists in the record type. Thus, in contrast to beta reduction of lambdas,
any reducible projection produced as the result of a computed substitution is
reduced straight away.

The rules for computing projections are presented in Appendix B.4, along
with the standard rules for reducing and converting function, the usage of which
is fully deferred to the unification stage. Although elaboration could also in-
clude reduction of lambdas, the practice of deferring it to unification means we
are certain the elaboration procedure will always terminate, without having to
further discuss the topic of termination checking. Thus the only possible source
of undecidability is unification, the exact specification of which we will not con-
sider in detail, but which should not have to be more powerful than the one
currently employed by Agda.

4.3 Term-type relations and semantics of type checking

Two declarative relations are presented, a term-type relation for terms in the
internal language, and an input-output relation for the type checking process as
a whole. Together they provide an understanding of the output of type checking,
along with the properties of that output.

Ξ;Γ ⊢ t : T

Figure 19 Shape of the well-typedness judgment

4.3.1 Well-typedness of terms in the internal language

The well-typedness relation between terms and types in the internal language
states that a particular term t should have a particular type T , under well-
formed variable and meta contexts (see Figure 19). All term constructs have
their own rules which are defined in terms of the same kind of contexts that are
used in the elaboration rules.

For the contexts, a related predicate called well-formedness is defined, through
well-typedness of their content. In short it entails that anything found in a
variable context must be well-typed in terms of preceding items, and for the
metavariable context, any term present in the constructs must be well-formed
in terms of its local context. Exact rules can be found in Appendix B.1.

The rules for well-typedness are presented in three figures: basic constructs
are handled in Figure 20, functions in Figure 21, and records in Figure 22. The
rules for the constructs are grouped by a natural notion of relatedness, group-
ing basic constructs such as variables and constants, record-related constructs,
function-related constructs etc. All well-typedness rules assume that contexts
are well-formed and expressions well-scoped, and they entail the following three
properties: T is a type (i.e. has type Set), t has type T , and the contexts remain
well-formed.

23



Type of types

Ξ;Γ ⊢ Set : Set (68)

Constants

Ξ;Γ ⊢ k : T [(k : T ) ∈ Σ] (69)

Variables

Ξ;Γ ⊢ x : T [(x : T ) ∈ Γ] (70)

Metavariables

Ξ;Γ ⊢ X[−⇀σ ] : T [−⇀σ ] [(X : T )[∆] ∈ Ξ] (71)

Figure 20 Well-typedness for basic constructs

1. Type of types (68): The type of Set is Set .

2. Constants (69): A constant k has the type specified by its binding in Σ
given by the look-up relation Σ(k), which of course presupposes that there
exists a type binding for k in Σ.

3. Variables (70): Variables are treated the same way as constants, apart
from the context being Γ instead of Σ.

4. Metavariables (71): The typing rule for metavariables assumes that −⇀σ
is a vector of well-formed substitutions. It states that for a meta X[−⇀σ ] to
have the type T [−⇀σ ] in Γ, the relation X : T must hold under the context
∆ of the substitution, which is the context within which the meta was
originally introduced. Essentially what is stated is that well-typedness is
preserved, under a new context, by valid substitutions.
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5. Function types (72): Function types are of type Set , and are well-typed
if their domain and codomain are well-typed, the latter under the context
extended with a binding for the former.

6. Lambda abstractions (73): Lambda abstractions quite naturally have
function types, the domain corresponding to the type annotation and the
codomain to the type of the body, both of which must be well typed.

7. Applications (74): An application of t to u is well-typed if t has a
function type and u is well-typed for its domain. Since the types are
dependent, the resulting type of t u is the codomain with a substitution
for the binding of the domain, by the argument u.

8. Record types (75) (76): Well-typedness for record types is defined re-
cursively in terms of deconstruction and reconstruction of sigs, covered in
two cases. The base case consists of the empty record type which, like
all types, have type Set . The recursive case states that a record type is
well-typed if the type U of the first field f is well-typed, and the record
type consisting of the remaining fields is well-typed under the context ex-
tended by the first field bound to its type. An unstated side condition
here is that the field names f must be unique within the record type.

9. Records (77) (78): Records undergo similar deconstruction and recon-
struction to record types. At this point it is important to remember that
the records are fully expanded - containing values for all fields. The base
case states that the empty record, unsurprisingly, has the empty record
type. For the recursive case, in order for a record to be well-typed with
a record type, the first field must correspond by name (by extension, all
fields) and its term must be well typed with the type of the first field. The
record constructed from the remaining fields must also have the type of
the remaining record type, substituted with the value of the first field.

10. Projections (79): A projection is well-typed if the term that is the source
of the projection (t) has a record type (i.e. is a record), and the projected
field f is part of that type. The type of the field, U (look-up stated in the
side condition), must carry the substitutions for all fields preceding the
projected one, by the the values in those fields.
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Function type

Ξ;Γ ⊢ U : Set
Ξ;Γ, x : U ⊢ V : Set

Ξ;Γ ⊢ (x : U) → V : Set
(72)

Lambda abstraction

Ξ;Γ ⊢ U : Set
Ξ;Γ, x : U ⊢ v : V

Ξ;Γ ⊢ λ(x : U) → v : (x : U) → V
(73)

Application

Ξ;Γ ⊢ t : (x : U) → V
Ξ;Γ ⊢ u : U

Ξ;Γ ⊢ t u : V [u/x]
(74)

Figure 21 Well-typedness of function types, lambdas and applications

Empty record type

Ξ;Γ ⊢ sig{} : Set (75)

Record type cons

Ξ;Γ ⊢ U : Set

Ξ;Γ, f : U ⊢ sig{−−−⇀f : U} : Set

Ξ;Γ ⊢ sig{f : U,
−−−⇀
f : U} : Set

(76)

Empty record

Ξ;Γ ⊢ struct{} : sig{} (77)

Record cons

Ξ;Γ ⊢ u : U

Ξ;Γ ⊢ struct{−−−⇀f ..= u} : sig{−−−⇀f : U}[u/f]
Ξ;Γ ⊢ struct{f ..= u,

−−−⇀
f ..= u} : sig{f : U,

−−−⇀
f : U}

(78)

Projection

Ξ;Γ ⊢ t : sig{−−−⇀f : U}
Ξ;Γ ⊢ t.f : U [

−−⇀
t.f/f]

[f : U ∈ −−−⇀
f : U ] (79)

Figure 22 Well-typedness of record types, records and projections
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4.3.2 Declarative type checking rules

The declarative type checking rules define the behaviour of type checking by
providing a description of the relation between the expressions, types and terms.
Comparing this description to the algorithmic rules presented in 4.4 can best
be done by considering the rules for inference and expression checking as being
mappable to this relation, modulo a full unification procedure (this relation
is defined for the complete type checking procedure. It should be noted that
the algorithmic rules are defined in terms of input and output, whereas these
relations are purely declarative, meaning that the thinking has to be adjusted
when considering the different behaviour of inference and expression checking.

Ξ;Γ ⊢ e : T # t

Figure 23 Judgment shape for the declarative type checking rules

The judgment used for the type checking semantics (Figure 23) should be
read as: the expression e will be transformed to a term t with type T , under the
contexts Ξ and Γ. Some of the rules make use of additional judgments which
are defined near their point of use in the rules, with additional explanations
provided. The rules for how expressions should be transformed into terms during
type checking are presented in Figures 24 (basic constructs), 25 (functions), 26
(records) and 27 (struct expansion).

Type of types

Ξ;Γ ⊢ Set : Set # Set (80)

Constants

Ξ;Γ ⊢ k : T # k [(k : T ) ∈ Σ] (81)

Variables

Ξ;Γ ⊢ x : T # x [(x : T ) ∈ Γ] (82)

Unknown expression

Ξ;Γ ⊢ t : T

Ξ;Γ ⊢ : T # t
(83)

Figure 24 Transformation of basic constructs

1. Set (80), Constants (81) and Variables (82): When type checked, these
constructs are essentially unchanged, only being transformed to their in-
ternal counterparts. Their types are either fixed (in the case of Set) or
determined by context-look-ups.

2. Unknown expression (83): Unknown expressions are transformed into
well-typed terms (initially metavariables).
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Function type

Ξ;Γ ⊢ D : Set # U
Ξ;Γ, x : U ⊢ E : Set # V

Ξ;Γ ⊢ (x : D) → E : Set# (x : U) → V
(84)

Lambda abstraction

Ξ;Γ, x : U ⊢ e : V # v

Ξ;Γ ⊢ λ(x : D) → e : (x : U) → V
# λ(x : U) → v

⎡

⎣
(D,U) ∈ {( , U),

(sige{
−⇀
f }, sig{−−−⇀g : U})}

where
−⇀
f ⊆ −⇀g

⎤

⎦ (85)

Application

Ξ;Γ ⊢ e1 : (x : U) → V # t
Ξ;Γ ⊢ e2 : U # u

Ξ;Γ ⊢ e1 e2 : V [u/x]# t u
(86)

Figure 25 Transformation of functions

3. Function types (84): The term to which a function type expression will
be transformed consist of the transformed domain and the transformed
codomain (under the variable context extended by the domain binding).

4. Lambda abstractions (85): For function abstractions (lambdas) the
rule is similar to the rule for function types, but the body does not have
to be a type. The expandable sig is to be transformed into any full record
type that contains the given fields as a subsequence.

The side condition states that the types of the bindings can only be either
underscores or expandable sigs. It also contains the additional condition
that the declared implicit bindings must be a subsequence of the fields of
the record type checked against.

5. Applications (86): For applications, the function- and argument expres-
sions will be transformed into a term t u in internal with type V . T must
be a function type with U being its domain, the resulting term v sim-
ply being the application of the transformed expressions and its type the
codomain of T with a substitution for its domain.
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Record type base

Ξ;Γ ⊢ sig{} : Set # sig{} (87)

Record type cons

Ξ;Γ ⊢ D : Set # U

Ξ;Γ, f : U ⊢ sig{−−−⇀f : D} : Set # sig{−−−⇀f : U}
Ξ;Γ ⊢ sig{f : D,

−−−⇀
f : D} : Set # sig{f : U,

−−−⇀
f : U}

(88)

Expandable struct

Ξ;Γ ⊢ −⇀
ΦC ◃−−−⇀

f : U # −−−⇀
f ..= u

Ξ;Γ ⊢ structe{
−⇀
ΦC} : sig{−−−⇀f : U}# struct{−−−⇀f ..= u}

(89)

Projection

Ξ;Γ ⊢ e : sig{−−−⇀f : U}# t

Ξ;Γ ⊢ e.f : U [
−−⇀
t.f/f]# t.f

[f : U ∈ −−−⇀
f : U ] (90)

Figure 26 Transformation of records

6. Record types (87), (88): Empty record types are simply transformed to
their internal counterpart. Non-empty record types will be transformed
field-wise with progressively extended contexts.

7. Expandable records (89): Transformation of expandable records is a bit
more involved than for the previous constructs. The type and transformed
internal construct is determined by a special expansion judgment, which
in turn depends upon a transformation of the vector of field assignments.
This rule is defined in detail in Figure 27.

8. Projections (90): A projection e.f is transformed by transforming e to
a term t, which will have a record type containing a field f . As indicated
by the side condition in the rule for projection-transformation, the type
of the resulting projection t.f will be the type for f in the type of t , with
substitutions for all values (in the record), preceeding the projected field.
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Struct expansion base

Ξ;Γ ⊢ ϵ◃ ϵ# ϵ (91)

Struct expansion cons

Ξ;Γ ⊢ −⇀
ΦC(f : U)# (u,

−⇀
Φ′

C)

Ξ;Γ ⊢ −⇀
Φ′

C ◃
−−−−−−⇀
f : U [u/f]# −−−⇀

f ..= u

Ξ;Γ ⊢ −⇀
ΦC ◃ f : U,

−−−⇀
f : U # f ..= u,

−−−⇀
f ..= u

(92)

Match

Ξ;Γ ⊢ e : U # u

Ξ;Γ ⊢ (ΦC ,
−⇀
ΦC)(f : U)# (u,

−⇀
ΦC)

[ΦC ∈ {e, f ..= e}] (93)

No match

Ξ;Γ ⊢ : U # u

Ξ;Γ ⊢ −⇀
ΦC(f : U)# (u,

−⇀
ΦC)

(94)

Figure 27 Declarative struct expansion

9. Struct expansion (91) - (94):

Struct expansion is defined recursively. The base case simply turns an
empty e-struct into an empty struct.

The recursive case behaves differently depending on whether the scruti-
nized field matches the field of the goal vector; either a field is specified
(in which case that field will be retained) or there is only an expression
to be typed and transformed. The premises state; the first field-type pair
(f : U) of the record will lead to a well-typed term, optionally consuming
one item from the vector of typed field assignments; the remaining vector
must be expanded to a record having the remaining record type with a
substitution for the first value.
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4.4 Algorithmic type checking rules

Here the operational side of the type checking process is defined in the form
of algorithmic rules for elaboration of expressions. First the different kinds of
elaboration judgments are explained, being grouped together in a way which
isolates certain aspects, such as modification of the metavariable context. Then
it is explained how the metavariable and constraint store Ξ is used during the
elaboration stage, followed by checking and inference rules for all constructs in
core are then presented and explained.

4.4.1 Elaboration judgment shapes: checking and inference

Here we present and explain the meaning of the main judgment shapes used
for elaboration: checking and inference. The notation for these shapes can be
seen in Figure 28. All types, terms and contexts generated by rules having these
shapes should be well-typed and well-formed, given that the input is well-formed
and well-scoped.

These algorithmic rules are similar in shape to the typing rules presented
earlier, but instead of only describing a simple relation (type and term of an
expression), they also provide notation and semantics for state updates. This
is because the terms that are considered may be modified and new information
may be added to the metavariable context (new metavariables and constraints).
Constructs stated to the right of the ’#’ denote the elaborated term correspond-
ing to the input expression, and a (usually) modified metavariable context.

The under-set plus (+) and minus (-) signs denote which components are
part of the input to the judgment and which are output.

Ξ
+
;Γ
+
⊢ e

+
⇔ T

+
# t

−
;Ξ′
−

Checking (95)

Ξ
+
;Γ
+
⊢ e

+
⇒ T

−
# t

−
;Ξ′
−

Inference (96)

Figure 28 Judgments used for elaboration

For a checking judgment (95), the input required is a variable- and metavari-
able context as well as the expression to check and the type it is checked against.
The result (the components to the right of the #) is a term t in the internal
syntax corresponding to e, and an updated metavariable context. Type infer-
ence judgments (96) differ from checking judgments only in that the type is part
of the output rather than the input.

4.4.2 Rules for generating metavariables and constraints

All extensions of the metavariable context in elaboration rules are done by
using the rules presented in Figure 29 as premises. These rules make certain
assumptions about their input, which when upheld by the caller entail well-
formedness of the returned contexts.

An equality constraint is generated when the type of the expression to be
elaborated may be inferred, but the resulting type equality between the inferred
and checked type cannot be decided right away. It is preferable to decide any
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decidable equalities as soon as possible, but we will not make any attempts
at optimizing by failing this process early, with the consequence that some
unnecessary equality constraints may be generated.

A checking constraint is generated when the shape of the goal type is un-
known (e.g. if it is a metavariable), but the expression to be elaborated cannot
be inferred because it relies on some special checking rule which makes direct use
of the goal type. In that case we want to store away the checking problem until
the goal type is known, and if it never becomes known even during unification,
type checking will fail.

Introduce metavariable

Ξ;Γ ⊢ freshMeta(T )# X;Ξ, (X : T )[Γ] [X /∈ Ξ] (97)

Generate equality constraint

Ξ;Γ ⊢ freshMeta(T )# X

Ξ;Γ ⊢ genEqC(u : U = T )# X;Ξ, (u : U = T †X)[Γ]
(98)

Generate checking constraint

Ξ;Γ ⊢ freshMeta(T )# X

Ξ;Γ ⊢ genChkC(e⇔ T )# X;Ξ, (e⇔ T †X)[Γ]
(99)

Figure 29 Operations for extending metavariable context

• Introduce fresh metavariable with known type (97): The function
takes a type T (which is required to be well-typed, i.e., having type Set)
and adds a fresh metavariable X to Ξ, returning that variable along with
the updated context. By requiring T to be well-typed, and creating X
fresh, the operation retains well-formedness of Ξ.

• Generate equality constraint (98): A type equality problem u : U = T
may be added to Ξ only if it has been made sure that u is of type U , (which
implies that it U has type Set ,) and if T is of type Set . A metavariable
X with type T is returned to be used in place of u until the type equality
U = T has been decided, after which X may be instantiated with u.

• Generate checking constraint (99): This rule is very similar to the
one for generating equality constraints, the difference being the problem
blocked on: a checking problem e⇔ T , where T must have type Set . No
demands are placed on the structure of e, since it is not yet elaborated,
but in practice it will only be either a lambda with an binding typed by
an expandable sig, or an expandable struct.
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4.4.3 Rules for checking an expression against a type

Checking expressions in the core language (referring to the elaboration oper-
ation, and not the overall process) is done by using the rules in Figure 30,
(with the expansion of structs detailed in Figure 31). If no special checking rule
matches, the rule for checking a general expression found in Figure 32 is used,
which relies on type inference and equality.

Check unknown expression

Ξ;Γ ⊢ freshMeta(T )# X;Ξ′

Ξ;Γ ⊢ ⇔ T # X;Ξ′ (100)

Check lambda

Ξ;Γ, x1 : U ⊢ e⇔ V [x1/x2]# v;Ξ′

Ξ;Γ ⊢ λ(x1 : D) → e⇔ (x2 : U) → V
# λ(x1 : U) → v;Ξ′

⎡

⎣
(D,U) ∈ {( , U),

(sige{
−⇀
f }, sig{−−−⇀g : U})}

where
−⇀
f ⊆ −⇀g

⎤

⎦ (101)

Generate lambda checking constraint

Ξ;Γ ⊢ genChkC(λ(x : D) → e⇔ T )# X;Ξ′

Ξ;Γ ⊢ λ(x : D) → e⇔ T # X;Ξ′ (102)

Check e-struct

Ξ;Γ ⊢ −⇀
ΦC ◃−−−⇀

f : U # −−−⇀
f ..= u;Ξ′

Ξ;Γ ⊢ structe{
−⇀
ΦC}⇔ sig{−−−⇀f : U}# struct{−−−⇀f ..= u};Ξ′

(103)

Generate e-struct checking constraint

Ξ;Γ ⊢ genChkC(structe{
−⇀
ΦC}⇔ T )# X;Ξ′

Ξ;Γ ⊢ structe{
−⇀
ΦC}⇔ T # X;Ξ′ (104)

Figure 30 Special checking rules

1. Unknown expressions (100): When checking an unknown expression,
a fresh metavariable of the correct type is introduced and returned.

2. Lambdas (101) (102): Lambdas are checked by first matching the types
of the bindings; an expandable sig must be a subsequence of a record type
while an underscore allows any type. The binding is added to context and
the body is checked against the codomain of the goal type. If the shape
of the goal type is not known, a checking constraint will be generated and
a metavariable returned in place of an elaborated lambda.

3. Expandable structs (103) (104): Expandable structs may only be checked
against types that are known to be record types. As with lambdas, the
goal type must be known to be a sig, otherwise a constraint is generated
and a meta returned. If the goal type is known to be a sig however, the
e-struct is expanded as described in Figure 31.
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Ξ
+
;Γ
+
⊢ −⇀
ΦC
+
◃−−−⇀
f : U

+
# −−−⇀

f ..= u
−

;Ξ′
−

Struct expansion base

Ξ;Γ ⊢ ϵ◃ ϵ# ϵ;Ξ (105)

Struct expansion cons

Ξ;Γ ⊢ −⇀
ΦC(f : U)# (u,

−⇀
Φ′

C);Ξ
′

Ξ′,Γ ⊢ −⇀
Φ′

C ◃
−−−−−−⇀
f : U [u/f]# −−−⇀

f ..= u;Ξ′′

Ξ;Γ ⊢ −⇀
ΦC ◃ f : U,

−−−⇀
f : U # f ..= u,

−−−⇀
f ..= u;Ξ′′

(106)

Match

Ξ;Γ ⊢ e⇔ U # u;Ξ′

Ξ;Γ ⊢ (ΦC ,
−⇀
ΦC)(f : U)# (u,

−⇀
ΦC);Ξ

′ [ΦC ∈ {e, f ..= e}] (107)

No match

Ξ;Γ ⊢ ⇔ U # u;Ξ′

Ξ;Γ ⊢ −⇀
ΦC(f : U)# (u,

−⇀
ΦC);Ξ

′ (108)

Figure 31 Algorithmic struct expansion

4. Struct expansion (105) - (108): The process of checking expandable
records terminates successfully only when the empty structe{} is matched
against the empty sig{}. The recursive case depends on a matching judg-
ment to decide whether to check a given value against the field type or
to introduce a metavariable in the place of an omitted value (expansion).
For the recursive call, the given value (or introduced meta) is substituted
for all references to the current field name in the remainder of the goal
type, which brings it into scope.
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Checking expressions lacking any special checking rules

Ξ;Γ ⊢ e⇒ U # u;Ξ′

Ξ′;Γ ⊢ u : U = T # t;Ξ′′

Ξ;Γ ⊢ e⇔ T # t;Ξ′′ (109)

Equality by alpha conversion and reflexivity

Ξ;Γ ⊢ u : (U = T )# u;Ξ [U
α
= T ] (110)

Generate equality constraint

Ξ;Γ ⊢ genEqC (u : U = T )# X;Ξ′

Ξ;Γ ⊢ u : (U = T )# X;Ξ′ (111)

Figure 32 Rules for checking general expressions by inference and type equality

5. Checking an inferable expression (109): The general expression check-
ing rule is defined in terms of type inference and type equality. While Agda
uses the subtyping relation to decide if the inferred type of an expression is
permissible with respect to the type checked against, equality is sufficient
for the purpose of this presentation. In order to check a general expression
against a type T , first its type U is inferred, with an elaborated term u.
The actual checking is then done through an equality test on T and U ,
which may block the usage of u with a fresh metavariable if the equality
is not immediately decidable.

6. Deciding type equality (110): The first equality rule tries to solve
the equality straight away using alpha conversion and reflexivity. It has
precedence over the second (111), since both would otherwise be applica-
ble. This rule ensures that constraints blocked on trivial type equalities,
e.g. Set = Set , will not be generated.

7. Generating an equality constraint (111): If the types cannot be deter-
mined equal by structure alone, an equality constraint is generated. The
purpose of the equality constraint is to block the usage of a term u with
type U under a supposedly equal type T until the type equality U = T
is ensured. This is achieved by introducing a metavariable X of type T
which takes the place of the term u until the constraint is resolved.

35



4.4.4 Rules for inferring the type of an expression

All inferable expressions are checked using inference and type equality. In the
following list we explain the workings of each of the inference rules. In Figure 33
we present the inference rules for constructs that do not require any elaboration;
the type will typically be the result of a look-up. Since contexts are assumed to
be well-formed, and expressions well-scoped, these context look-ups will always
succeed. In Figure 34 we present inference rules for function types, applications
and record types; constructs which are elaborated recursively.

Type of types

Ξ;Γ ⊢ Set ⇒ Set # Set ;Ξ (112)

Constants

Ξ;Γ ⊢ lookup(k,Σ)# T ;Ξ′

Ξ;Γ ⊢ k ⇒ T # k;Ξ′ (113)

Variables

Ξ;Γ ⊢ lookup(x,Γ)# T ;Ξ′

Ξ;Γ ⊢ x⇒ T # x;Ξ′ (114)

Figure 33 Type inference rules for constructs that require no elaboration

1. Type of types (112): The type of Set is inferred to be Set .

2. Constants (113): The type of a constant is inferred simply by looking
up its declared type in Σ.

3. Variables (114): Just like constants, but the look-up is done in Γ.
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Function types

Ξ;Γ ⊢ D ⇔ Set # U ;Ξ′

Ξ′;Γ, x : U ⊢ E ⇔ Set # V ;Ξ′′

Ξ;Γ ⊢ (x : D) → E ⇒ Set # (x : U) → V ;Ξ′′ (115)

Applications

Ξ;Γ ⊢ e1 ⇒ (x : U) → V # t;Ξ′

Ξ′;Γ ⊢ e2 ⇔ U # u;Ξ′′

Ξ;Γ ⊢ e1 e2 ⇒ V [u/x]# t u;Ξ′′ (116)

Record type base

Ξ;Γ ⊢ sig{}⇒ Set # sig{};Ξ (117)

Record type cons

Ξ;Γ ⊢ D ⇔ Set # U ;Ξ′

Ξ′;Γ, f : U ⊢ sig{−−−⇀f : D}⇔ Set # sig{−−−⇀f : U};Ξ′′

Ξ;Γ ⊢ sig{f : D,
−−−⇀
f : D}⇒ Set # sig{f : U,

−−−⇀
f : U};Ξ′′

(118)

Projections

Ξ;Γ ⊢ e⇒ sig{−−−⇀f : U}# t;Ξ′

Ξ′;Γ ⊢ lookup(f,
−−−⇀
f : U)# U ;Ξ′′

Ξ;Γ ⊢ e.f ⇒ U [
−−⇀
t.f/f]# t.f ;Ξ′′

(119)

Figure 34 Type inference rules for constructs requiring elaboration

4. Function types (115): As later types may depend on the values of earlier
arguments, these variables must be added to the context before checking
that later types have type Set . The argument types are thus checked in
turn from left to right, updating the metavariable context as it goes along.

5. Applications (116): For the application rule we demand that the func-
tion e1 to be applied to e2 is inferable, and that the inferred type is indeed
a function type. This means we can elaborate the argument by checking
it against the domain of the function type (e2 ⇔ U). The type of the
whole application is the codomain V , with the elaborated argument u
substituted for the variable x, bringing it into scope.

6. Record types (117) (118): As with function types, the record type is
inferred to have type Set as long as all of the field types have type Set
with the preceding fields in context.

7. Projections (119): For projections we demand that the target e is infer-
able, and that the inferred type is a record type. The type of the actual
projection is then produced by looking up the type U of the matching
field f , bringing it into scope by substituting all direct field references
into projections.
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5 Results

The Xiphi calculus is of limited practical usefulness, and the specified processing
phases are quite naive in terms of prioritizing early failure. However, the elab-
oration process appears to work well for the examples we have studied and the
deferred checking of lambdas in particular opens up for new investigations into
how this behaviour should be handled in general. Furthermore, we show that
the grouping imposed by the occurrence-restriction resolves the issues identified
in the introduction, although with some impact on expressiveness.

5.1 Expressiveness

It is easy to show that expressiveness is not negatively affected by the restrictions
imposed by the surface language. Due to the absence of implicit constructs
standing alone it is not possible to construct expressions of the shapes, but the
same semantics can be achieved by the insertion of dummies for bindings, types
and arguments, to fulfill the grouping requirements (as shown in Figure 35).

Having to resort to using dummy bindings and things like the unit type
and unit value would of course be highly annoying, but it should be possible
to minimize the impact on usability by handling cases where these insertions
can be safely automated. It is interesting to note that we would in that case
have reached something akin to explicit-argument insertion. Additional issues
related to expressiveness are mentioned in the discussion.

{x : T} → T

λ {x} → . . .

a {x}

{x : T} ( : ⊤) → T

λ {x} → . . .

a {x} ()

Figure 35 Unavailable expression forms and their alternatives

5.2 Implementation of the λΞΦ calculus

In order to get a greater understanding of Xiphi, a Haskell implementation
has been developed, the focus being direct correspondence to the type checking
rules defined in this report.8 It is readily apparent that many programs could
be easily rejected directly in scope checking, while the current system happily
lets them through to also pass elaboration, failing first by the identification of
unsolvable constraints.

Although not intended to be a practical language in any sense, the implemen-
tation has proved useful when verifying the behaviour of the problem examples
encoded in Xiphi.

8The code can be accessed at https://github.com/jplloyd/xiphi
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5.3 Behaviour of the examples in λΞΦ

To tie back to the problems used to define the shortcomings of hidden-lambda-
insertion in the introductory section, we give their behaviour under type check-
ing in the Xiphi calculus. The details of the derivations for the Ty and Lam
examples can be found in Appendix A.2.

5.3.1 Ty example behaviour

To recap, the Ty example (Figure 7) demonstrates a case where a seemingly
η-convertible definition fails to type check. We have encoded the definitions of
both fails and hacks in Xiphi and it can shown that they, post-unification,
will indeed both be convertible to the constant on which they are defined. This
behaviour is of course expected as there are no longer any insertions of hidden
arguments at the end of the defined application (and none can appear).

However, it is important to note that if we provide an explicit expansion
for the second argument manually, the program will still fail to type check due
to the very same constraint (lacking a general solution) as in Agda. We have
only offset the behaviour for one level in this example; although one could make
the argument that the expansion on the first level is more important, as it
corresponds to a binding on a top-level definition where a naming the binding
could help in understanding the expected input, the behaviour nevertheless
remains inconsistent.

5.3.2 Vec example behaviour

The Vec example (Figure 8) is one sense the converse of the Ty example, as
it demonstrates a case where a definition type checks while its corresponding
η-like reduction fails to type check. Whereas the Ty example, when encoded in
Xiphi, will type check for both reduced and expanded definitions, it can easily be
seen that the Vec example will fail to type check for either definition. One only
needs to consider that the grouping of quantifiers will be irrevocably different
for the definitions of vcons and cons; in the former the type quantification will
be grouped with the index quantification whereas for the latter they will be
grouped with the explicit arguments of the element and vector respectively.

Just as in Agda though, there is a correspondence between the number of
binders and the freedom of changing position and order of binds. Due to hidden-
lambda insertion, Agda requires one less binder to type check permutations of
implicits than in Xiphi, but the basic principle is the same. One could argue
that the behaviour in Xiphi is preferable due to the necessary existence of a
visible structure (a binder) which can be associated with the increased freedom
for placement and permutation of hidden bindings in the declared type, but it
is still somewhat arbitrary.
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5.3.3 Lam example behaviour

The program corresponding to the Lam example (Figure 9) which we have en-
coded in Xiphi differs slightly in its behaviour compared to the original example,
but contains the same fundamental problem; that of letting an inherently low-
information structure (such as a lambda with a body containing only bound
variables) determine the shape of a type.

While the original example used an implicit variable as an argument to a
type function, locking that variable with an equality type, the behaviourally
equivalent Lam example we encode in Xiphi bypass the type function and check
on a type bound as an implicit argument directly. The slight difference in
behaviour when the example is run in Agda is that the onus is placed on the
argument to the equivalence class type to provide an argument compatible to
the type inferred from the lambda (which leads to the same problem as in the
original example, although the order is reversed).

When checking the lambda, the problem is paused and checking is continued
with a placeholder after which the actual type will be locked by the value of
the eq application. Upon resuming the elaboration the esig will be expanded
against the sig of the newly determined function type. It must be noted that the
procedure assumes that the lambda contains absolutely no information which
might be used to infer its type, which may of course not always be the case.

In a case where closer inspection of the body of the lambda would indicate
that the bound variable would have to be of a particular type in order for the
body to type check, the desired behaviour might be to let the lambda steer the
type checked against rather than the other way around.

5.3.4 Summary

The encodings of the problems show the same problematic behaviour when type
checked in Agda, but fare fine when elaborated in the Xiphi calculus. Although
we omit the final step of unification, the constraints produced by the examples
are simple enough to tell that the whole type checking process works.
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6 Discussion

Some limitations and considerations about the usefulness of λΞΦ as a system is
discussed, and related to the current state of Agda. The section is concluded
by a brief discussion on the practical feasibility of the solution.

6.1 Limitations on the expressiveness of λΞΦ

While the proposed solution seemingly removes the need for hidden-lambda in-
sertion, it does impose a number of limitations beyond the grouping-requirement,
which – at least on the surface – affects the usefulness of the solution.

It should be noted that we do not allow type annotations in implicit binders
(in lambda abstractions). Since lambdas in the type checking phase will only
ever be (correctly) checked against function types, we consider the usefulness
of having annotations in such positions to not outweigh the benefits of having
simpler rules to reason about. In a real setting, it is very much possible that
one would want typed lambdas for various reasons, be it for documentation
or readability purposes, or simply to act as top-level definitions with built-in
type declarations. A solution proposed by Ulf Norell would be to have two
different kinds of lambdas, only one of which would be used as an argument.
The question then becomes one of how best to distinguishing these lambdas,
addressed further in the closing remarks.

Another rather more annoying limitation is the requirement that implicit
bindings in lambda abstractions have to match the names of the corresponding
binders in the types they are checked against. This is another case of making
the rules easier at the cost of practical usability; such a requirement would be
quite absurd in a real setting. However, this deficiency should be fairly easy
to solve by simply introducing a construct in place of the field bindings which
enables the optional “assignment” of a variable to a particular implicit bind
(the functionality is present in Agda for function bindings, but not in lambda
abstractions) and use indices with possible offsets to the closest assigned binding.

The most severe restriction from a practical standpoint is the omission of
simple partial application of implicit arguments, due to the grouping imposed by
the surface grammar. While it is technically possible to resolve this by inserting
manual dummy arguments, the impact on usability is far too great in practice
to make such a solution feasible. Some additional formalization of this has to
be undertaken in order to make the solution fully usable.
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6.2 Plausibility of integrating the solution into Agda

The proposed solution necessarily changes the semantics of some Agda programs
containing implicit arguments, and as such legacy code might be negatively
affected if the behaviour of Agda were to be changed. While changing the
behaviour of some fundamental part of a programming language is always a risky
thing to do, it would be interesting to assess the actual practical impact of this
particular change, assuming the limitations of the syntax discussed previously
can be resolved to satisfaction.

One difficulty is that apart from the standard library and presumably a
few other places, the body of Agda code is scattered and largely private, with
the exception of the work of enthusiasts accessible from public repositories.
Nevertheless, if such an inventory of the occurrences of these niche cases were
to be done, the result might indicate whether or not the benefits of the change
would outweigh the problems of backwards-compatibility.

6.3 Closing remarks

While the problems we have prevented in this paper might be seen as niche or
not too important, the primary use of Agda as a theorem prover means that
every source of unreliability and unpredictability can be critical in a situation
where a minor detail in an otherwise correct proof causes it to be rejected by
the type checker.

Handling dependent function types with implicit arguments in a uniform
way appears to resolve some of the described problems, but the trade-off with
the current solution is that we don’t allow a simple way of allowing for par-
tial application of implicit arguments, which can be assumed to be a common
use case in real programs. It seems quite likely that the benefits of handling
problems of the type exemplified by the Ty example are outweighed by this lim-
itation unless a way of handling partial application of implicits is added. When
it comes to the Vec example, the behaviour is not fundamentally changed but
rather shifted one step, and if considered a problem then that problem remains
with this solution (with an offset of +1).

The different ways of handling lambda abstractions is something which Agda
probably could benefit from however, and may be used in conjunction with some-
thing akin to the expandable signatures used in this work to provide deferred
type checking of information-less lambdas. There are of course many problems
which need to be investigated in order to realize a solution where lambdas are
handled differently; what exactly constitutes an information-less lambda, how
does one determine whether a lambda should or should not be inferred, and can
this decision procedure itself have to be deferred if more information is provided
at a later stage?

Altough many things remain unexplored, this work does at least provide
some information about one path which may be taken to approach the problem.
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A Derivations of the three defining problems
Ty, Vec and Lam

This section details the type checking procedure of the three different programs
exemplifying problematic behaviour for the current Agda type checker (see Sec-
tion 1.2 for an overview). Ty and Vec exemplify counterintuitive behaviour
of type checking function synonyms, while Lam demonstrates a problem with
locking the type of an inferred lambda too quickly. First we give the derivations
in Agda, making clear where the problems arise. Then we encode the same
programs in our own calculus, Xiphi, and perform the derivations in its defined
procedure to mark the difference.

A.1 Problem derivations in Agda

The type checking procedures presented herein share a common source of failure;
the heuristic decision procedure of hidden lambda insertion. Further explana-
tion of the current necessity of such a decision procedure, and what stages of
elaboration that may demand this decision, is found in the practical setting of
the stepped-through type checking derivations.

For an introduction to some of the notation used in the Agda derivations,
please refer to Figure 36.

e ⇒ T -- Check expression a against type T
e ⇔ T -- Infer type T from expression a
T ≤ T’ -- Check that T is a subtype of T’

Figure 36 Notation for type checking operations

A.1.1 Eager or lazy? Two strategies for hidden-lambda insertion

To explain and illustrate the deficiencies of Agda’s current type checker imple-
mentation, we introduce the concept of an eager strategy for inserting hidden
lambdas compared to a lazy one. The eager strategy involves introducing hidden
lambdas and pattern match binders as soon as the possibility arises, whereas
lazy means deferring such action until there are no other ways of continuing
elaboration and type checking.

It could be argued that these concepts correspond to a rather coarse analysis
of the different possible designs of the decision heuristic, however they do provide
a useful abstraction from the actual code of the type checker implementation.
Additionally, we argue that using the current structure of implicit arguments in
Agda makes it very hard, if not impossible, to design an efficient decision proce-
dure for hidden lambda insertion that solves all problems presented. Therefore,
we argue, it would be ill-conceived to search for a more fine-grained procedure
for analyzing whether or not to insert hidden lambdas.
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A.1.2 Ty: Excessive elaboration leading to unsolvable constraints

This first problem example was mentioned in the problem description (Section
1.2), and it constitutes a simplified version of a code segment from the bug
report of a user (bug-ref).

Here we explain the exact process behind the failure to typecheck the alias
definition from the example given in Figure 7:

fails : Ty
fails g = f g

1. Traverse LHS and expand the context First, when processing the LHS
of the definition, the pattern variables are bound in the context for the
RHS, associating them with the type information garnered from the de-
clared type. Implicit arguments are inserted eagerly, meaning that when-
ever there is a way to add a binding for a hidden argument, given the shape
of the type and the occurrences of visible arguments in the LHS, such a
binding is added. In the case of fails, the first visible variable, g, will
be bound to the first visible argument in Ty, associating it with the type
{b : Bool} →T b →T false. Before this binding is done, however, we
insert variables for the hidden arguments occurring before g, that being
{T}. This results in the function-local context:

Γ = T : Bool → Set , g : ({b : Bool} → T b → T false)

which is used to check the definition of the RHS.

2. Checking the definition As at this point, the two arguments of Ty are
bound on the LHS, we want to check the RHS against the remaining type,
namely T true.

The shape of the definition is an application, that of f to g, so we recur-
sively check that application. When inferring the type of f, by a lookup
in the context, fresh meta variables are inserted in the place of any hidden
arguments occurring before the visible one, turning the application from
f g into f { T} g.

By instantiating the implicit argument with the metavariable, the inferred
type of f { T} becomes:

({b : Bool} → _T b → _T false) → _T true

and we must thus check the argument of f { T}, that being g, against:

({b : Bool} → _T b → _T false).

At this point we make a choice on how to handle the shape of the structure
being considered.

3a. (Eager) Insert a hidden abstraction Since the type of the argument
to f has a hidden argument, we insert a hidden abstraction corresponding
to that argument and check the body (g) of the abstraction against the
remainder of the type, ( T b → T false). This abstraction extends the
context (available to the meta variables contained therein), with that bind-
ing (here named b). The shape of this type is different from the inferred
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type of g, as the head is not implicit, and in order to achieve the same
shape g has to be specialized by introducing a hidden argument ({ b}, for
fresh metavariable b) to which it can be applied. The shapes of the types
now being equal, it remains to perform a unification for b and T such
that the inferred type of the argument to f is a subtype of the declared
argument type, the question being if:

(T _b → T false) ≤ (_T b → _T false)

which by structural subtyping turns into the smaller unification problems:

_T b ≤ T _b

and

T false ≤ _T false

of which T b ≤ T b lacks a unique solution. We can for example see
that both of the unifiers

[_T ..= T, _b ..= b]
[_T ..= λ b → T false , _b ..= false]

provide valid solutions.

3b. (Lazy) Don’t insert a hidden abstraction Neither hidden-abstraction-
insertion, nor specialization of the argument g, is done prior to checking.

({b : Bool} → T b → T false)
≤
({b : Bool} → _T b → _T false)

where there is a unique solution, since the variable b is bound in both
types, with the unifier

[ _T ..= λ b → T b]

This problem suggests that it would be beneficial to adopt a lazy strategy
for hidden lambda insertion.
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A.1.3 Vec: Function synonyms that maybe should not type check

This second problem example presents code which currently type checks, but
would no longer do so should a lazy strategy be adopted in place of the eager
one. This is however good, or at least tolerable, since it isn’t obvious that it
should type check in the first place. The definition being checked is that of the
function cons, as seen in Figure 8.

1. Inspect LHS and build context We start by inspecting the LHS of the
definition cons a = vcons a. Since cons is defined with pattern match-
ing on just the first explicit argument (with type A), the implicit arguments
preceding the explicit must be inserted through the process of elaboration.
In the type definition of cons, this is just the type argument {A : Set},
which is inserted and added to the context.

cons a = vcons a # cons {A} a = vcons a

which adds A : Set, a : A to the context.

2. Choice of implicit-binding Since we now have a valid pattern matching
definition on the LHS, we may continue by checking the RHS against the
remaining type of cons {A} a, {n : N} →Vec A n →Vec A (suc n).
But we could just as well choose to include a match on {n} on the LHS,
leaving us to check vcons a ⇔Vec A n →Vec A (suc n). This eager
insertion of a hidden binder is how Agda currently proceeds.

3a. (Eager) Insertion We elaborate the pattern match to include {n : N}:
cons {A} a = vcons a # cons {A} a {n} = vcons a

which adds the information that (n : Nat) to the context (at this point
containing; A : Set, a : A)

4a. (Eager) Check RHS against remaining type of LHS We now want
to check that the implementation of cons typechecks. Therefore we need
to check the RHS against the remaining type of the LHS:

cons {A} a {n} : Vec A n → Vec A (suc n)

vcons a ⇔ Vec A n → Vec A (suc n)

5a. (Eager) Elaborate the application on RHS Since we have an appli-
cation of vcons to a, we lookup the type of vcons which is

{A : Set} → {n : Nat} → A → Vec A n → Vec A (suc n).

(Note that the implicit parameter {A : Set} is not mentioned explicitly
in the definition of the vcons constructor since it is specified as a data
type parameter, but it needs to be inserted wherever the constructor is
used.)

We note that the definition of vcons takes two implicit arguments before
the first explicit, and since it is applied to just an explicit argument a, we
have to elaborate the term vcons a to match the defined type of vcons.
This is done by adding metavariables in place of every implicit argument
that is missing.
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vcons a # vcons {_A} {_n} a

A metavariable may only be resolved by unifying it with a term that only
contains variables that are stored in the context at the point of inser-
tion of the metavariable. In this case the context consists of the type
information; (A : Set), (a : A) and (n : N), which were accumulated
from the LHS. In order to see clearly the possible dependencies of each
metavariable, the context could be included in the elaborated term as
such:

vcons a # vcons {_A [A, a, n]} {_n [A, a, n]} a

Now we can infer the type of this elaborated term to be

vcons {_A} {_n} a ⇒ Vec _A _n → Vec _A (suc _n)

6a. (Eager) Unification Now we have to decide if the inferred type of vcons
a can be used in place of the type that was expected by the original check
procedure. Obviously this is true if the types are equal, but we can be a
bit more permissive than that. By using the subtyping relation of Curry
style System F, we may be able to produce meaningful substitutions in
cases where pure equality would fail. In this case, even though equality is
sufficient, we write the unification constraint using the subtyping relation
(inferred type ≤ expected type):

Vec _A _n → Vec _A (suc _n)
≤
Vec A n → Vec A (suc n)

Since the topmost structures match (both are ordinary function types) we
proceed by matching the domains. Functions are considered contravariant
in their domain, which means the subtyping relation is inverted for the
constraint

Vec A n ≤ Vec _A _n

The contravariance is not of importance here since the only solution to
this equation is simply equality where A is substituted for A and n for n.
Using these substitutions, the types of the codomains also become equal,
which means we have successfully matched the inferred to the expected
type, and therefore our implementation of cons by cons a = vcons a
typechecks completely.

3b. (Lazy) No insertion Now what would have happened if we did not insert
{n} eagerly in the pattern match of vcons {A} a, and had instead went
on to checking the RHS right away?

4b. (Lazy) Check RHS against remaining type of LHS To recap, we elab-
orated the LHS cons a to cons {A} a and added A : Set, a : A to
context. We move on to checking RHS against the remaining type of the
LHS using this context.

cons {A} a : {n : N} → Vec A n → Vec A (suc n)

vcons a ⇔ {n : N} → Vec A n → Vec A (suc n)

A-5



5b. (Lazy) Elaborate application on RHS As in the eager case, we see
an application and fetch the definition of vcons. Since vcons takes two
implicit arguments before the first implicit one, we automatically insert
metavariables in the missing places.

vcons a # vcons {_A} {_n} a

The key difference from the eager case is that the context does not contain
n, since the LHS was not elaborated to include it. Including the context
at the point of metavariable insertion makes this apparent:

vcons a # vcons {_A [A, a]} {_n [A, a]} a

These contexts are fixed, which means that whatever unification problem
is produced by the next couple of steps, n will never be unified with n,
and thus type checking will fail. For completeness and clarity we outline
the subsequent steps anyway.

After introducing the metavariables, we infer the remaining type to be

vcons {_A} {_n} a ⇒ Vec _A _n → Vec _A (suc _n)

But this type does not match the type checked for, which is

{n : N} → Vec A n → Vec A (suc n)

Note that Agda would give up here, since our definition of a lazy strategy
does not allow for post-insertion of hidden lambdas.

This particular example showcases something that reqires an eager strategy
to type check. This shows there exists certain code, perhaps more useful than
this example, that will cease to type check given a change in strategy. Weighing
the pros and cons, one would probably suggest a shift to a lazy strategy, but
the third example makes it clear why another approach might be necessary.
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A.1.4 Lam: The effect of non-linear type information on lambdas

The presentation of the Ty andVec problems suggests that the apparent counter-
intuitive type checking behaviour possibly could be remedied by adopting a lazy
strategy of inserting hidden lambdas. Unfortunately there are cases where nei-
ther an eager or lazy strategy is adequate, as showed by the following example.

The example here differs from the previous two in that it involves the use
of equality types. Although the equality type defined here (see ≡ in Figure
9) is less general than the one used in Agda’s standard library, in that it only
quantifies over Set0, they are functionally equivalent for this example. It exem-
plifies another situation where committing to one of two function shapes results
in being unable to typecheck an otherwise correct definition. We consider the
checking of the functions works and fails, as they are defined in Figure 9.

These two functions make use of the postulated functions w and f respec-
tively, the types of which in turn depend on the definition of the type function
T. T takes a boolean argument and returns one of two types. Here the significant
part is that the shape of the type returned differs based on this argument; it
contains an implicit argument in the case of true.

What is important to notice is that the function types of both w and f
contain something using the ≡ symbol. These are instances of an equivalence
type - a type indexed over two terms with the implication that those terms are
the same. For the definition used here, the only constructor of these equivalence
types is the nullary refl. The instances both state that b = true (for each of
their scoped b), but what is important is the order in which these types appear
in the definitions in relation to the computed type of T; prior to the T b in w,
and after in f.

Although the scoped boolean argument (b : Bool) could (and since its
value can be easily derived, should) be made implicit, we leave it as explicit
to not confuse that implicit argument with the implicit which is the source of
the problem. For all intents and purposes, it could be viewed as an implicit
argument, for which we would of course omit the underscores in the function
definitions (the derivations would be largely the same).

Checking “works”

1. Since there are no bindings on the LHS, the definition of works is checked
against its declared type Bool.

2. The type of w is inferred (looked up in the global context), and the argu-
ments are checked against it.

3. The first argument, the underscore, is handled by inserting a new metavari-
able b of type Bool in it’s place, and checking the remaining arguments
against the instantiated type:
b ≡ true →T b →Bool

4. Checking refl against b ≡ true, we first infer the type of refl, which by
definition is a≡ a for a new metavariable a. Testing that a≡ a ≤ b ≡
true yields unification constraints a = b and a = true, and unification
will lead to the substitution of true for b in the remaining type.
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5. Proceeding to check the lambda abstraction against T true, by computa-
tion the type checked against will be: {A : Set} →A →A. Since the type
has an implicit argument, the lambda (which does not) is placed inside a
hidden abstraction (hidden lambda insertion), which is then checked:
(λ{A : Set} λ x →x) ⇔ ({A : Set} →A →A)

6. Extend the context with the binding for the implicit argument,(A : Set),
and check the body against the remaining type: (λ x →x) ⇔ (A →A)
We begin by inferring the type of the lambda abstraction. A new metavari-
able X for the type of the binding is added to the context, and we infer the
type of the body, which is the bound variable x. The type of the lambda
abstraction is thus inferred to X → X, and we need to check that:
X → X ≤ A →A
Unification solves this relation by substituting A for X for the constraints
generated by the subtyping.

7. Having checked the expressions of the arguments against the types de-
clared in w, the type of the resulting expression is of type Bool, which
matches the declared type of our definition, and the definition is success-
fully type checked.

Checking “fails”

Just like when checking the definition of works, we start by checking and simi-
larly introduce a metavariable for b.

1. When checking the lambda abstraction, there is not enough information
to determine the shape of the type T b to check against, so we proceed
by checking:
λ x →x ⇔ T b This leads to inferring of the type of the abstraction,
which is done by introducing a metavariable X for the binding, and in-
ferring the body under a context extended by that binding. Since the
definition only consists of the binding, the inferred type becomes X → X
and for the definition to check we require that: X → X ≤ T b. However,
since there is not enough information to check that relation, the problem
is put on hold and the remainder of the expression is checked.

2. When refl is checked, we get the exact same result as in the working
definition, and since there is now new information about a metavariable
we go back to the unsolved problem. The problem can now be instantiated:
X → X ≤ T true , which by computation becomes:
X → X ≤ {A : Set} →A →A

At this point however, it is easy to note that no substitution of X will
yield the correct type, since we made an assumption about the shape of
the type of the lambda when inferring the type of the abstraction.

Solving the Lam problem by modifying the handling of metavariables by
allowing some sort of backtracking would unfortunately result in major com-
putational overhead, since every instance of the metavariable would have to be
located and have its context updated. We therefore conclude a reworking of the
implicit argument handling is required to resolve this problem in a satisfying
manner.
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A.2 Problem derivations in Xiphi

By encoding the problematic Agda programs in Xiphi, we can show the type
checking derivations and compare them to those of Agda. Only the Ty and Lam
examples are derived, since the Vec example can trivially be shown to fail.

A.2.1 Notation and outline of the derivations

Type checking and inference in λΞΦ relies on an elaboration process that gener-
ates constraints which are later solved by unification. Since no unifier is defined,
the values of the metavariables have been determined manually.

The derivations performed here follow the same structure. First an equiv-
alent encoding of the problem is written in Agda, in a way which makes it
syntactically compatible with our calculus. The Agda program is then trans-
lated to its equivalent representation in our lanugage, which is then used for
the type checking derivation. To make the descriptions easier to follow, the
elaboration and checking of postulates used in the main problem is left out, and
the final type checked constructs are used immediately. The same goes for the
type checked against in the main problems.

In these examples, an underscore to the left of a binding (e.g. ( : Set)) will
indicate that we don’t care about the name of the binding, as it will not be used
by the declarations that follows. It should not be confused with the underscore
in the grammar, which will only ever occur in the place of an expression.

Due to their lenghty nature, the derivations are presented using a linear
notation which indicate the existence of subtrees by using matching indices for
between start and end points. Certain simple checks and inferences are placed
on single lines and indicate the rules invoked as part of the transformation
within parentheses. Sometimes multiple rules are invoked as part of a compact
checking or inference, usually indicating equality by reflexivity or constraint-
adding operations.

Inference uses double bracket ceiling and floor symbols, whereas checking
uses the regular versions. Additionally, the paired arrows and # used in the
rules are present to further clarify what is inferred and what is checked. Contexts
and context updates are not shown explicitly, as that would make it nearly
impossible to follow the process, nor are constraint generations shown with the
exception of the invoked rules. Each derivation is complemtented with the final
output in terms of the elaborated term and the set of constraints generated
as part of the process. For brevity, the final metastore is also omitted, as it
is sufficient to know that the obvious instantiations indicated by the equality
constraints are in the stored context, which can also be verified by following the
derivation to the point of the generated meta.
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A.2.2 Ty-derivation

This derivation uses the alternative Agda definition of the Lam example in
Figure 37.

In this example, the Bool datatype only served as a means of distinction,
and its ordinary semantics are not important, which is why we use Set instead
in the encoding to avoid additional postulates. The common components, the
postulate and type checked against, are first shown in the original surface en-
coding, as well as their scope checked and type checked counterparts in core
and internal. The elaborations for both works and fails are then provided,
showing that the former type checks directly, and the latter results in a trivially
solvable equality constraint.

Ty = {T : ( : Set) → Set} →
( : {A : Set} → ( : T A) → Set) → Set

postulate
f : Ty

works : Ty
works = f

fails : Ty
fails = λ g → f g

hacks : Ty
hacks = λ g → f (λ {b} t → g {b} t)

Figure 37 Behaviourally equivalent λΞΦ -compatible Agda-implementation of
the Ty-example

Postulates - Surface
f : {T : {}( : Set) → Set}( : {A : Set}( : T {} A) → Set) → Set

Type - Surface
{T : {}( : Set) → Set}( : {A : Set}( : T {} A) → Set) → Set

Postulates - Core
f : (r1 : sig{T : (r0 : sig{}) → (x0 : Set) → Set})

→ (x1 : (r2 : sig{A : Set}) → (x2 : r1.T structe{} r2.A) → Set) → Set

Type - Core
(r4 : sig{T : (r3 : sig{}) → (x3 : Set) → Set})
→ (x4 : (r5 : sig{A : Set}) → (x5 : r4.T structe{} r5.A) → Set) → Set

Postulates - Internal
f : (r1 : sig{T : (r0 : sig{}) → (x0 : Set) → Set})

→ (x1 : (r2 : sig{A : Set}) → (x2 : r1.T struct{} r2.A) → Set) → Set

Type - Internal
(r4 : sig{T : (r3 : sig{}) → (x3 : Set) → Set})
→ (x4 : (r5 : sig{A : Set}) → (x5 : r4.T struct{} r5.A) → Set) → Set
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Derivation: Works

Expression - Surface/Core/Internal
f

Elaboration
0⌈f⇔(r4:sig{T :(r3:sig{})→(x3:Set)→Set})→(x4:(r5:sig{A:Set})→(x5:r4.T struct{} r5.A)→Set)→
Set⌉0 (109)

!f " (113)⇒(r1:sig{T :(r0:sig{})→(x0:Set)→Set})→(x1:(r2:sig{A:Set})→(x2:r1.T struct{} r2.A)→
Set)→Set#f

0⌊ (110)#f

Derivation: Fails

Expression - Surface
λ{}g → f {} g

Expression - Core
λ(r6 : sige{}) → λ(x6 : ) → f structe{} x6

Elaboration
0⌈λ(r6:sige{})→λ(x6: )→f structe{} x6⇔(r4:sig{T :(r3:sig{})→(x3:Set)→Set})→(x4:(r5:sig{A:Set})→
(x5:r4.T struct{} r5.A)→Set)→Set⌉0 (101)
1⌈λ(x6: )→f structe{} x6⇔(x4:(r5:sig{A:Set})→(x5:r6.T struct{} r5.A)→Set)→Set⌉1 (101)
2⌈f structe{} x6⇔Set⌉2 (109)
3#f structe{} x6$3 (116)
4#f structe{}$4 (116)

!f " (113)⇒(r1:sig{T :(r0:sig{})→(x0:Set)→Set})→
(x1:(r2:sig{A:Set})→(x2:r1.T struct{} r2.A)→Set)→Set#f

[structe{}⇔sig{T :(r0:sig{})→(x0:Set)→Set}] (103)#struct{T..=X0}

4%⇒(x1:(r2:sig{A:Set})→(x2:X0 struct{} r2.A)→Set)→Set#f struct{T..=X0}
6⌈x6⇔(r2:sig{A:Set})→(x2:X0 struct{} r2.A)→Set⌉6 (109)

!x6" (114)⇒(r5:sig{A:Set})→(x5:r6.T struct{} r5.A)→Set#x6

6⌊ (98)#X1

3%⇒Set#f struct{T..=X0} X1

2⌊ (110)#f struct{T..=X0} X1

1⌊#λ(x6:(r5:sig{A:Set})→(x5:r6.T struct{} r5.A)→Set)→f struct{T..=X0} X1

0⌊#λ(r6:sig{T :(r3:sig{})→(x3:Set)→Set})→
λ(x6:(r5:sig{A:Set})→(x5:r6.T struct{} r5.A)→Set)→f struct{T..=X0} X1

Expression - Internal
λ(r6:sig{T :(r3:sig{})→(x3:Set)→Set})→λ(x6:(r5:sig{A:Set})→(x5:r6.T struct{} r5.A)→Set)→
f struct{T..=X0} X1

Constraints
(x6:(r5:sig{A:Set})→(x5:r6.T struct{} r5.A)→Set

=

(r2:sig{A:Set})→(x2:X0 struct{} r2.A)→Set†X1)

[x6:(r5:sig{A:Set})→(x5:r6.T struct{} r5.A)→Set, r6:sig{T :(r3:sig{})→(x3:Set)→Set}]
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A.2.3 Lam-derivation

The equivalent Agda definition of the Lam example (Figure 38) is used in this
derivation.

Since the basic principle behind deferring lambda checking is that the type
may be determined after the natural checking of the lambda, the example is
simplified to a bare minimum, letting the type itself be the implicit argument
and using an equivalence-class data structure to encode the way by which the
argument is locked. Both works (linear) and fails (nonlin) now produce sym-
metrical constraints, which upon resolution resumes the checking of the lamb-
das, which can now be guided by the type, resulting in the eventual correct
instantiation of the sig.

postulate
Eq : ( : Set1) → Set1
eq : {T : Set1} → Eq T
w : {T : Set1} → ( : Eq T) → ( : T) → Set
f : {T : Set1} → ( : T) → ( : Eq T) → Set

linear : Set
linear = w (eq ({A : Set} → (a : A) → a)) (λ x → x)

nonlin : Set
nonlin = f (λ x → x ) (eq ({A : Set} → (a : A) → a))

Figure 38 Behaviourally equivalent definition of the Lam example

Postulates - Surface
Eq : {}( : Set) → Set
eq : {}(T : Set) → Eq {} T
w : {T : Set}( : Eq {} T ) → {}( : T ) → Set
f : {T : Set}( : T ) → {}( : Eq {} T ) → Set

Postulates - Core
Eq : (r0 : sig{}) → (x0 : Set) → Set
eq : (r1 : sig{}) → (x1 : Set) → Eq structe{} x1

w : (r2 : sig{T : Set}) → (x2 : Eq structe{} r2.T )
→ (r3 : sig{}) → (x3 : r2.T ) → Set

f : (r4 : sig{T : Set}) → (x4 : r4.T ) → (r5 : sig{})
→ (x5 : Eq structe{} r4.T ) → Set

Postulates - Internal
Eq : (r0 : sig{}) → (x0 : Set) → Set
eq : (r1 : sig{}) → (x1 : Set) → Eq struct{} x1

w : (r2 : sig{T : Set}) → (x2 : Eq struct{} r2.T )
→ (r3 : sig{}) → (x3 : r2.T ) → Set

f : (r4 : sig{T : Set}) → (x4 : r4.T )
→ (r5 : sig{}) → (x5 : Eq struct{} r4.T ) → Set

Type - Surface/Core/Internal
Set
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Derivation: Linear

Expression - Surface
w {} (eq {} ({A : Set}( : A) → A)) {} (λ{}x → x )

Expression - Core
w structe{} (eq structe{} ((r6 : sig{A : Set}) → (x6 : r6.A) → r6.A))

structe{} (λ(r7 : sige{}) → λ(x7 : ) → x7)

Elaboration
0⌈w structe{} (eq structe{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A)) structe{} (λ(r7:sige{})→λ(x7: )→x7)⇔Set⌉0 (109)
1!w structe{} (eq structe{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A)) structe{} (λ(r7:sige{})→λ(x7: )→x7)"1 (116)
2!w structe{} (eq structe{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A)) structe{}"2 (116)
3!w structe{} (eq structe{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A))"3 (116)
4!w structe{}"4 (116)

#w$ (113)⇒(r2:sig{T :Set})→(x2:Eq struct{} r2.T)→(r3:sig{})→(x3:r2.T)→Set#w

[structe{}⇔sig{T :Set}] (103)#struct{T..=X0}

4%⇒(x2:Eq struct{} X0)→(r3:sig{})→(x3:X0)→Set#w struct{T..=X0}
6⌈eq structe{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A)⇔Eq struct{} X0⌉6 (109)
7!eq structe{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A)"7 (116)
8!eq structe{}"8 (116)

#eq$ (113)⇒(r1:sig{})→(x1:Set)→Eq struct{} x1#eq

[structe{}⇔sig{}] (103)#struct{}

8%⇒(x1:Set)→Eq struct{} x1#eq struct{}
10⌈(r6:sig{A:Set})→(x6:r6.A)→r6.A⇔Set⌉10 (109)
11!(r6:sig{A:Set})→(x6:r6.A)→r6.A"11 (115)
12⌈sig{A:Set}⇔Set⌉12 (109)
13!sig{A:Set}"13 (118)

[Set⇔Set] (109) (112) (110)#Set
15⌈sig{}⇔Set⌉15 (109)

#sig{}$ (117)⇒Set#sig{}

15⌊ (110)#sig{}

13%⇒Set#sig{A:Set}

12⌊ (110)#sig{A:Set}
16⌈(x6:r6.A)→r6.A⇔Set⌉16 (109)
17!(x6:r6.A)→r6.A"17 (115)
18⌈r6.A⇔Set⌉18 (109)
19!r6.A"19 (119)

#r6$ (114)⇒sig{A:Set}#r6

19%⇒Set#r6.A

18⌊ (110)#r6.A
20⌈r6.A⇔Set⌉20 (109)
21!r6.A"21 (119)

#r6$ (114)⇒sig{A:Set}#r6

21%⇒Set#r6.A

20⌊ (110)#r6.A

17%⇒Set#(x6:r6.A)→r6.A

16⌊ (110)#(x6:r6.A)→r6.A

11%⇒Set#(r6:sig{A:Set})→(x6:r6.A)→r6.A

10⌊ (110)#(r6:sig{A:Set})→(x6:r6.A)→r6.A

7%⇒Eq struct{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A)#eq struct{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A)

6⌊ (98)#X1

3%⇒(r3:sig{})→(x3:X0)→Set#w struct{T..=X0} X1

[structe{}⇔sig{}] (103)#struct{}

2%⇒(x3:X0)→Set#w struct{T..=X0} X1 struct{}
#λ(r7:sige{})→λ(x7: )→x7$ (102) (97)⇒Set#X2

1%⇒Set#w struct{T..=X0} X1 struct{} X2

0⌊ (110)#w struct{T..=X0} X1 struct{} X2

Expression - Internal
w struct{T ..=X0} X1 struct{} X2

Constraints
(λ(r7:sige{})→λ(x7: )→x7⇔X0†X2)[]

(eq struct{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A):Eq struct{} ((r6:sig{A:Set})→(x6:r6.A)→r6.A)=Eq struct{} X0†X1)[]
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Derivation: Nonlinear

Expression - Surface
f {} (λ{}x → x ) {} (eq {} ({A : Set}( : A) → A))

Expression - Core
f structe{} (λ(r6 : sige{}) → λ(x6 : ) → x6)
structe{} (eq structe{} ((r7 : sig{A : Set}) → (x7 : r7.A) → r7.A))

Elaboration
0⌈f structe{} (λ(r6:sige{})→λ(x6: )→x6) structe{} (eq structe{} ((r7:sig{A:Set})→(x7:r7.A)→r7.A))⇔Set⌉0 (109)
1!f structe{} (λ(r6:sige{})→λ(x6: )→x6) structe{} (eq structe{} ((r7:sig{A:Set})→(x7:r7.A)→r7.A))"1 (116)
2!f structe{} (λ(r6:sige{})→λ(x6: )→x6) structe{}"2 (116)
3!f structe{} (λ(r6:sige{})→λ(x6: )→x6)"3 (116)
4!f structe{}"4 (116)

#f $ (113)⇒(r4:sig{T :Set})→(x4:r4.T)→(r5:sig{})→(x5:Eq struct{} r4.T)→Set#f

[structe{}⇔sig{T :Set}] (103)#struct{T..=X0}

4%⇒(x4:X0)→(r5:sig{})→(x5:Eq struct{} X0)→Set#f struct{T..=X0}
#λ(r6:sige{})→λ(x6: )→x6$ (102) (97)⇒Set#X1

3%⇒(r5:sig{})→(x5:Eq struct{} X0)→Set#f struct{T..=X0} X1

[structe{}⇔sig{}] (103)#struct{}

2%⇒(x5:Eq struct{} X0)→Set#f struct{T..=X0} X1 struct{}
7⌈eq structe{} ((r7:sig{A:Set})→(x7:r7.A)→r7.A)⇔Eq struct{} X0⌉7 (109)
8!eq structe{} ((r7:sig{A:Set})→(x7:r7.A)→r7.A)"8 (116)
9!eq structe{}"9 (116)

#eq$ (113)⇒(r1:sig{})→(x1:Set)→Eq struct{} x1#eq

[structe{}⇔sig{}] (103)#struct{}

9%⇒(x1:Set)→Eq struct{} x1#eq struct{}
11⌈(r7:sig{A:Set})→(x7:r7.A)→r7.A⇔Set⌉11 (109)
12!(r7:sig{A:Set})→(x7:r7.A)→r7.A"12 (115)
13⌈sig{A:Set}⇔Set⌉13 (109)
14!sig{A:Set}"14 (118)

[Set⇔Set] (109) (112) (110)#Set
16⌈sig{}⇔Set⌉16 (109)

#sig{}$ (117)⇒Set#sig{}

16⌊ (110)#sig{}

14%⇒Set#sig{A:Set}

13⌊ (110)#sig{A:Set}
17⌈(x7:r7.A)→r7.A⇔Set⌉17 (109)
18!(x7:r7.A)→r7.A"18 (115)
19⌈r7.A⇔Set⌉19 (109)
20!r7.A"20 (119)

#r7$ (114)⇒sig{A:Set}#r7

20%⇒Set#r7.A

19⌊ (110)#r7.A
21⌈r7.A⇔Set⌉21 (109)
22!r7.A"22 (119)

#r7$ (114)⇒sig{A:Set}#r7

22%⇒Set#r7.A

21⌊ (110)#r7.A

18%⇒Set#(x7:r7.A)→r7.A

17⌊ (110)#(x7:r7.A)→r7.A

12%⇒Set#(r7:sig{A:Set})→(x7:r7.A)→r7.A

11⌊ (110)#(r7:sig{A:Set})→(x7:r7.A)→r7.A

8%⇒Eq struct{} ((r7:sig{A:Set})→(x7:r7.A)→r7.A)#eq struct{} ((r7:sig{A:Set})→(x7:r7.A)→r7.A)

7⌊ (98)#X2

1%⇒Set#f struct{T..=X0} X1 struct{} X2

0⌊ (110)#f struct{T..=X0} X1 struct{} X2

Expression - Internal
f struct{T ..=X0} X1 struct{} X2

Constraints
(eq struct{} ((r7:sig{A:Set})→(x7:r7.A)→r7.A):Eq struct{} ((r7:sig{A:Set})→(x7:r7.A)→r7.A)=Eq struct{} X0†X2)[]

(λ(r6:sige{})→λ(x6: )→x6⇔X0†X1)[]
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B Miscellaneous operations and properties

This section presents the details of some operations and properties which did
not fit into the main report. First, well-formedness for contexts is treated, then
well-formedness and computation of substitutions, and then equality of types
and terms. This gives a more detailed view of what is assumed of the mentioned
structures as we transform them using our rules for type checking.

B.1 Well-formedness of contexts

The rules for well-formedness of contexts basically define what constructs are
to be stored within them. In the typing rules for the internal language, we
implicitly assume that all contexts used in the premises are well-formed, and
make sure that well-formedness is retained for all rules. The formal rules for
well-formedness of the different contexts used in type checking are presented in
Figures 39 (Σ), 40 (Γ), and 41 (Ξ).

Well-formedness for Σ in means that it only contains valid typings, and the
only way to enforce this is to see that all types are proper, i.e., that they have
type Set . The rules are defined recursively, with the base case (120) stating that
an empty Σ is always well-formed, and with the recursive step (121) stating that
the last added binding has a proper type (see Figure 19).

Well-formedness for Γ have rules which are very similar to the rules for Σ.
The only difference is that Γ depends on the well-formedness of Ξ, since the
types from the variable bindings in Γ are allowed to contain metavariables from
Ξ. The base case (122) thus must state the well-formedness of Ξ, and the
recursive case (123) must assume and propagate Ξ.

Well-formedness for Ξ may contain elements of three different shapes. The
base case (124) is straightforward with an empty context always being well-
formed. The first recursive case (125) introduces a metavariable X with type
T along with a well-formed context Γ wherein T is a proper type. The second
(126) adds an equality constraint, where u has type U , the meta X has type T ,
but it may not yet have been decided whether U = T or not. The third (127)
adds a checking constraint, where the expression e must be well-scoped, and the
meta X has to be of type T , although the type of e might not match T .

Well-formedness of Σ

⊢ Σ

Empty context

⊢ · (120)

Cons with typing

⊢ Σ Σ ⊢ T : Set

⊢ Σ, k : T
(121)

Figure 39 Well-formedness of the global context.
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Well-formedness of Γ

Ξ ⊢ Γ

Empty variable context

⊢ Ξ

Ξ ⊢ ·
(122)

Variable context cons

Ξ ⊢ Γ Γ ⊢ T : Set

Ξ ⊢ Γ, x : T
(123)

Figure 40 Well-formedness of variable contexts

Well-formedness of Ξ

⊢ Ξ

Empty context

⊢ · (124)

Metavariable introduction

Ξ;Γ ⊢ T : Set

⊢ Ξ, (X : T )[Γ]
(125)

Equality constraint

Ξ;Γ ⊢ u : U
Ξ;Γ ⊢ X : T

⊢ Ξ, (u : U = T †X)[Γ]
(126)

Checking constraint

Ξ;Γ ⊢ X : T

⊢ Ξ, (e⇔ T †X)[Γ]
(127)

Figure 41 Well-formedness of metavariable contexts
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B.2 Well-formedness of substitutions

The rule that defines well-formedness for substitutions is shown in Figure 42.
It is defined on a vector of substitutions to be compatible with the vector of
substitutions carried around by metavariables.

Ξ;Γ ⊢ −−−⇀
u : U

Ξ;Γ,
−−−⇀
x : U ⊢ t : T

Ξ;Γ ⊢ t[
−⇀
u/x] : T [

−⇀
u/x]

(128)

Figure 42 Rule for well-formed substitutions

The rule uses shorthand vector notation for well-typedness of all terms in the
range of the substitution, as well as for putting all variables from the substitution
domain into context. Well-formedness for a vector of substitutions entails the
provision of a term for every free variable in t which is not contained in Γ,
meaning that the computation of all substitutions contained in the vector brings
t into the scope of Γ.

B.3 Computing substitutions on terms

The rules for computing substitutions are collected into the recursively defined
σ-function presented in Figure 43.

((x : U) → V )[σ] = (x : U [σ]) → V [σ]

(λ(x : U) → v)[σ] = λ(x : U [σ]) → v[σ]

(t u)[σ] = t[σ] u[σ]

sig{−−−⇀f : U}[σ] = sig{−−−−−⇀f : U [σ]}

struct{−−−⇀f ..= u}[σ] = struct{−−−−−⇀f ..= u[σ]}

(t.f)[σ] = t[σ].f

X[−⇀σ ][σ] = X[−⇀σ ,σ]

x[u/x] = u

y[u/x] = y

t[σ] = t

Figure 43 Definition of the σ function which computes substitutions.

If the term on which the substitution is to be computed is of some recursive
structure, the substitution is propagated down using distributive rules. When
reaching a matching variable the actual substitution will be performed, whereas
any other non-recursive term will simply discard the substitution.

Since substitutions cannot be computed for metavariables, they are simply
stored to be computed later when a valid instantiation has been found during
unification. There is no need to avoid variable capturing since the scope checker
has transformed all local bindings and variables into globally unique counter-
parts. This also has the consequence that when substitutions are computed on
instantiated metas, they can simply be processed one by one, as long as every
stored substitution is computed.
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B.4 Equality of types and terms

This section presents declarative rules for structural equality of terms, mainly
focused on comparing the shapes of terms but also including eta- and alpha-
conversion. The rules are only concerned with comparing terms that have been
shown to have the same type. Well-formedness is assumed for contexts.

An actual algorithm for deciding term equality as specified by these rules
could be achieved roughly as follows: first reduce both terms to weak head
normal form , then compare the heads; if the heads are not equal, the process
fails, otherwise repeat the process for all subterms. The compared terms are
considered equal when this process terminates without failing.

Reduction to weak head normal form may be done by applying any matching
reduction to a term, repeating this on the result until no more reductions can
be made (hopefully given some guarantee that this procedure will terminate).
An algorithm would also have to take into account the possibility of terms being
equal as specified by the rules α and η conversion. In the case of α-equality a
practical solution would employ De-Bruijn indices or similar.

Equality abides by the well known laws of reflexivity, transitivity and sym-
metry. It is also possible to show equality by reducing and converting terms
using the various rules supplied and described in the next subsection. For more
details, see Figure 44.

General shape for term equality

Ξ;Γ ⊢ t1 = t2

Eq law: Reflexivity

Ξ;Γ ⊢ t = t
(129)

Eq law: Transitivity

Ξ;Γ ⊢ t1 = t2 Ξ;Γ ⊢ t2 = t3

Ξ;Γ ⊢ t1 = t3
(130)

Eq law: Symmetry

Ξ;Γ ⊢ t1 = t2

Ξ;Γ ⊢ t2 = t1
(131)

Eq from reduction or conversion

Ξ;Γ ⊢ t
∗
= t′

Ξ;Γ ⊢ t = t′
[∗ ∈ {α,β, η}] (132)

Figure 44 Term equality

B.5 Term reductions and conversions

Type checking dependent types requires the computation of functions. The
simple scheme we have used in this thesis defers all computation of functions to
the unification phase. These are the computational rules available to the unifier
to reduce terms to weak head normal form for equality comparisons.

In this presentation, conversions differ from reductions in that they are nat-
urally reversable processes, thus in some sense non-directional, whereas reduc-
tions are computed with the purpose of producing a normalized value from some
compound structure.
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B.5.1 Alpha conversion

Alpha conversion (Figure 45) enables function types and abstractions to be
considered equal even though the names of their local variables differ. Equality
modulo alpha conversion may be achieved efficiently through the use of de Bruijn
indices, but in our case renaming using substitution will do.

Function type

Ξ;Γ ⊢ U1 = U2 Ξ;Γ, x1 : U1 ⊢ V 1 = (V 2[x1/x2])

Ξ;Γ ⊢ (x1 : U1) → V 1
α
= (x2 : U2) → V 2

(133)

Lambda abstraction

Ξ;Γ ⊢ U1 = U2 Ξ;Γ, x1 : U1 ⊢ v1 = (v2[x1/x2])

Ξ;Γ ⊢ (x1 : U1) → v1
α
= (x2 : U2) → v2

(134)

Figure 45 Alpha conversion of function types and lambda abstractions

B.5.2 Beta reduction

Beta reduction (Figure 46) is used to compute applications of lambdas to ar-
guments by making use of substitutions, and also computing projections by
looking up the value of a named field in a given struct.

Applying a function to an argument

Ξ;Γ ⊢ (λ(x : U) → v) u
β⇒ v[u/x] (135)

Projecting a field value from a record

Ξ;Γ ⊢ struct{−−−⇀f ..= u}.f β⇒ u [f ..= u ∈ −−−⇀
f ..= u] (136)

Figure 46 Rules for β-reduction of functions and records

B.5.3 Eta conversion

Eta conversion (Figure 47) for functions and records describe something seman-
tically equal, but where one instance may use redundant variables, for example
for the sake of clarity, whereas the other is written in a more point-free manner.
We define eta conversion as a non-directional conversion and not a reduction,
although one could consider a natural normal form to be the most reduced one.

Extra abstraction with application

Ξ;Γ ⊢ t : (x : U) → V

Ξ;Γ ⊢ t
η
= λ(x : U) → t x

(137)

Struct of projections

Ξ;Γ ⊢ r : sig{−−−⇀f : U}
Ξ;Γ ⊢ r

η
= struct{−−−−⇀f ..= r.f}

(138)

Figure 47 Rules for η-conversion of functions and records
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