A Higher-Order Polymorphic Lambda-Calculus With Sized Types

This is where the subtitle would have gone.

Andreas Abel

First APPSEM II Workshop
Nottingham, UK
March 28, 2003

— Work in progress —

Work supported by: PhD Prg. Logic in Computer Science, Munich (DFG)

Setting the stage...

- Curry-Howard-Isomorphism:
 proofs by induction = programs with recursion
- Only terminating programs constitute valid proofs.
- Design issue: How to integrate terminating recursion into proof/programming language?
One approach: special forms of recursion

- Tame recursion by restricting to special patterns.
- Iteration/catamorphisms
e.g. Haskell’s `List.fold`
- Primitive recursion/paramorphisms
- Problems:
 - Non-trivial operational semantics makes it harder to understand programs.
 - I do not want to write all of my list-processing functions using `fold`.

Another approach: recursion with termination checking

- Use `general recursion`: `letrec`.
- Has “intuitive” meaning through simple operational semantics.
- In general not normalizing, need termination checking.
- Here we used the `sized types` approach [Hughes et al. 1996]
 [Barthe et al. 2003?].
- View data as trees.
- `Size` = height = # constructors in longest path of tree.
- Height of input data must decrease in each recursive call.
- Termination is ensured by type-checker.
Sized types in a nutshell

- Sizes are upper bounds.
- List^a denotes lists of length < a.
- List^∞ denotes list of arbitrary (but finite) length.
- Sizes induce subtyping: List^a \leq List^b if a \leq b.
- In general, sizes are ordinal numbers, needed e.g. for infinitely branching trees.
- Size expressions:

\[
\begin{align*}
a & ::= \quad \text{variable} \\
& \mid a + 1 \quad \text{successor} \\
& \mid \infty \quad \text{ultimate limit, denoting } \Omega \text{ (first uncountable)}
\end{align*}
\]

Example: list splitting

\[
\begin{align*}
split : \quad & \forall A : \ast, \text{List } A \rightarrow \text{List } A \times \text{List } A \\
split [] & = ([], []) \\
split (x :: k) & = \text{case } k \text{ of} \\
& \quad [] \rightarrow ([x :: k], []) \\
& \quad (y :: l) \rightarrow \text{let } (xs, ys) = \text{split } l \text{ in} \\
& \quad \quad ([x :: xs], (y :: ys))
\end{align*}
\]

- Sized types allow us to express that split denotes a non-size increasing function.
Example: list splitting

\[\text{split} : \forall i:\text{ord} \forall A : *, \text{List}^i A \to \text{List}^i A \times \text{List}^i A \]
\[\text{split} \ [\] = ([\] , [\]) \]
\[\text{split} \ (x :: k)^{i+1} = \text{case } k^{i \leq i+1} \text{ of} \]
\[\quad [\] \to ((x :: k) ^{i+1} , [\] ^{i+1}) \]
\[\quad (y :: l)^{i+1} \to \text{let } (xs^i , ys^i) = \text{split} l^i \text{ in} \]
\[\quad ((x :: xs)^{i+1} , (y :: ys)^{i+1}) \]

- To compute \(\text{split} \) at stage \(i + 1 \), \(\text{split} \) is only used at stage \(i \).
- Hence, \(\text{split} \) is terminating.

Example: list splitting

\[\text{split} : \forall i:\text{ord} \forall A : *, \text{List}^i A \to \text{List}^i A \times \text{List}^i A \]
\[\text{split} \ [\]^{i+1} = ([\]^{i+1} , [\]^{i+1}) \]
\[\text{split} \ (x :: k)^{i+1} = \text{case } k^{i \leq i+1} \text{ of} \]
\[\quad [\]^{i+1} \to ((x :: k)^{i+1} , [\]^{i+1}) \]
\[\quad (y :: l)^{i+1} \to \text{let } (xs^i , ys^i) = \text{split} l^i \text{ in} \]
\[\quad ((x :: xs)^{i+1} , (y :: ys)^{i+1}) \]

- We additionally can infer that \(\text{split} \) is non-size increasing.
- Using \(\text{split} \), we can define merge sort...
Example: merge sort

merge: \text{List \ Int} \rightarrow \text{List \ Int} \rightarrow \text{List \ Int}

msort: \text{List \ Int} \rightarrow \text{List \ Int}

msort [] = []

msort (x :: k) = case k of
 [] \rightarrow x :: []
 | (y :: l) \rightarrow \text{let} (xs, ys) = \text{split} l \text{ in}
 \begin{align*}
 \text{merge} & (\text{msort} (x :: xs)) \\
 \text{(msort} & (y :: ys))
 \end{align*}

Slide 10

Example: merge sort

merge: \forall i. \text{List}^i \text{ Int} \rightarrow \forall j. \text{List}^j \text{ Int} \rightarrow \text{List}^\infty \text{ Int}

msort: \forall i. \text{List}^i \text{ Int} \rightarrow \text{List}^\infty \text{ Int}

msort [i + 1] = []

msort (x :: k) = case k^j+1=i of
 [] \rightarrow x :: []
 | (y :: l) \rightarrow \text{let} (xs^j, ys^j) = \text{split} l^j \text{ in}
 \begin{align*}
 \text{merge} & (\text{msort} (x :: xs))^{j+1=i} \\
 \text{(msort} & (y :: ys))^{j+1=i}
 \end{align*}
F^ω: smoothing the presentation

- Kinds.
 \[\kappa ::= \ast \quad \text{types} \]
 \[| \text{ord} \quad \text{ordinal sizes} \]
 \[| \kappa \rightarrow^+ \kappa' \quad \text{covariant type constructors} \]
 \[| \kappa \rightarrow^- \kappa' \quad \text{contravariant type constructors} \]
 \[| \kappa \rightarrow^0 \kappa' \quad \text{invariant type constructors} \]

 \text{“Subconstructors”} \quad F \leq G : \kappa. \text{E.g.,}

 \[X \leq Y : \kappa \vdash FX \leq GY : \kappa' \]
 \[\frac{}{F \leq G : \kappa \rightarrow^+ \kappa'} \]

- Well-kindness definable by $F : \kappa \iff F \leq F : \kappa$

Inductive types

- Inductive constructors.
 \[\mu : \text{ord} \rightarrow^+ (\kappa \rightarrow^+ \kappa) \rightarrow^+ \kappa \]

- Example: List = $\lambda i \lambda A. \mu_i (\lambda X. 1 + A \times X)$.

- Axiom: Fixpoint is reached at stage ∞.

 \[\mu a \leq \mu \infty : (\kappa \rightarrow^+ \kappa) \rightarrow^+ \kappa \]

- Recursion over inductive types:

 \[F : \ast \rightarrow^+ \ast \]
 \[G : \text{ord} \rightarrow^+ \ast \]
 \[i : \text{ord} \vdash s : (\mu i F \rightarrow G i) \rightarrow (\mu (i + 1) F \rightarrow G (i + 1)) \]
 \[\frac{}{\text{fix}^\mu s : \forall i : \text{ord}. \mu i F \rightarrow G i} \]
Higher-rank inductive types

- Inductive functors: μ_κ for $\kappa = * \to *$.
- E.g., Term A, de Bruijn terms with free variables in A:
 \[
 \text{Term} = \mu_{\kappa \to \omega} \lambda T \lambda A. A + T(1 + A) + TA \times TA
 \]

Conclusions

Sized types:
- Conceptually lean way of ensuring termination.
- Well-typedness ensures termination.
- No external static analysis required.

System F^ω:
- Size expressions can be integrated into constructors.
- Sized types scale to higher-order polymorphism.

Goal: extend to dependent types.