Type Theory (CM0859) – Exercises

Andreas Abel

March 2017

1 Natural deduction

Exercise 1 (Natural deduction derivations). Give derivations of the following propositions:

- 1. $A \Rightarrow A$.
- 2. $(A \land (A \Rightarrow B)) \Rightarrow B$.
- 3. $(A \land (B \lor C)) \Rightarrow (A \land B) \lor (A \land C).$
- 4. $(\neg A \lor B) \Rightarrow (A \Rightarrow B).$

Exercise 2 (De Morgan laws). Which of the following de Morgan laws are constructively valid?

- 1. $\neg (A \lor B) \Rightarrow (\neg A \land \neg B).$
- 2. $\neg (A \land B) \Rightarrow (\neg A \lor \neg B).$
- 3. $(\neg A \land \neg B) \Rightarrow \neg (A \lor B).$
- 4. $(\neg A \lor \neg B) \Rightarrow \neg (A \land B).$

For the ones you consider valid, give natural deduction proofs. For the ones you consider constructively invalid, offer an argument why you think so.

Exercise 3 (Local soundness and completeness).

- 1. Invent an elimination rule for conjunction which is too strong and argue that it lacks local soundness.
- 2. Give a set of elimination rules for conjunction which is too weak and argue that it lacks local completeness.
- 3. Do the same (1. and 2.) for disjunction.

Exercise 4 (Rules with explicit assumptions). Write down the natural deduction rules for judgement $\Gamma \vdash A$ true.

2 Classical logic

Exercise 5 (Equivalent formulations of classical logics). Consider the following abbreviations for "classical" formulæ:

EM(A)	$:= A \lor \neg A$	excluded middle
RAA(A)	$:= (\neg A \Rightarrow \bot) \Rightarrow A$	reductio ad absurdum
RAA'(A)	$:= (\neg A \Rightarrow A) \Rightarrow A$	reductio ad absurdum (variant)
Pierce(A,B)	$:= ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$	Pierce's formula

Assuming one of these formulas categorically, for instance, assuming that $\mathsf{EM}(A)$ holds for all formulæA, makes the logic classical.

Prove constructively, either by drawing natural deduction derivations, by giving typed λ -terms, or by writing appropriate functions in Agda:

- 1. $\neg \neg \mathsf{EM}(A)$ holds for any formula A, constructively.
- 2. All four versions of classical logic are equivalent. This can be proven by a chain of implications, for instance:
 - RAA implies EM.
 - EM implies Pierce.
 - Pierce implies RAA'.
 - RAA' implies RAA.

Exercise 6 (Direct proof). Using Pythagoras' theorem, the statement

In any non-degenerate right triangle the hypothenuse is shorter than the sum of the catheti.

can be formally expressed as "a, b, c > 0 and $a^2 + b^2 = c^2$ imply a + b > c". Here is a proof by contradiction:

Assume the contrary, $a+b \leq c$. Then $(a+b)^2 = a^2+2ab+b^2 \leq c^2$, thus, $2ab \leq 0$. This contradicts a, b > 0.

Transform this into a direct, constructive proof!

3 Lambda-calculus

Exercise 7 (Lambda terms). Find closed lambda terms of the following types:

- 1. $(S \to T) \to ((T \to U) \to (S \to U)).$
- 2. $S \to (T \to (S \times T))$.
- 3. $(S \times (T + U)) \rightarrow ((S \times t) + (S \times U)).$
- 4. $((S \rightarrow 0) + T) \rightarrow (S \rightarrow T)$.

Exercise 8 (Substitution and free variables). Consider the untyped lambdacalculus with tuples and variants.

- 1. FV(t) computes the set of free variables of t. Write out the full definition of FV!
- 2. t[s/x] substitutes term s for all free occurrences of variable x in term t. Write out the full definition of t[s/x].
- 3. Prove that $\mathsf{FV}(t[s/x]) \subseteq \mathsf{FV}(s) \cup (\mathsf{FV}(t) \setminus \{x\})$.
- 4. Give an example for $\mathsf{FV}(t[s/x]) \subsetneq \mathsf{FV}(s) \cup (\mathsf{FV}(t) \setminus \{x\})$.

Exercise 9 (Scoping). Prove: If $\Gamma \vdash t : T$ then $\mathsf{FV}(t) \subseteq \mathsf{dom}(\Gamma)$.

Exercise 10 (Inversion of typing). If $\Gamma \vdash \lambda x.t : U$, then $U = S \rightarrow T$ for some types S, T with $\Gamma, x:S \vdash t : T$.

- 1. Prove this inversion law!
- 2. Find inversion law for all other term constructors!

Exercise 11 (Capturing substitution). Consider substitution defined with $(\lambda y.t)[s/x] = \lambda y.t[s/x]$ regardless of whether x = y or $y \in \mathsf{FV}(s)$. Show by example that subject reduction is broken, i. e., find Γ , t, t', and T such that $\Gamma \vdash t : T$ and $t \longrightarrow t'$, but not $\Gamma \vdash t' : T$.

Exercise 12 (Subject reduction). Prove the subject reduction theorem for simply typed lambda-calculus: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$ then $\Gamma \vdash t' : T$.

Exercise 13 (Progress). Prove the progress theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$ then $\Gamma \vdash t' : T$.

4 Logical Framework

Exercise 14 (HOAS representation of the untyped lambda-calculus). We wish to encode untyped lambda terms

$$\mathsf{Tm} \ni t ::= x \mid \lambda x.t \mid t t'$$

via higher-order abstract syntax in the Logical Framework. Terms are represented as inhabitans of a new type Tm.

- 1. Give constants with their type that act as constructors for untyped lambda terms.
- 2. Represent the following untyped lambda terms using your constructors in LF:
 - $\lambda x.x$
 - $\lambda f.\lambda x. f x$
 - $\lambda f.(f(\lambda x. fx))$

Exercise 15 (HOAS representation of the type assignment judgement). (Continues the previous exercise.) Consider simple types:

$$\mathsf{Ty} \ni T ::= \bigstar \mid T \to T'$$

- 1. Represent Ty with its constructors in LF!
- 2. Represent the typing judgement $\Gamma \vdash t : T$ in LF and give one constant for each typing rule of the simply typed lambda calculus.

References