
On the Algebraic Foundation

of Proof Assistants
for Intuitionistic Type Theory

Andreas Abel1, Thierry Coquand2, and Peter Dybjer2

1 Institut für Informatik, Ludwig-Maximilians-Universität
Oettingenstr. 67, D-80538 München

2 Department of Computer Science, Chalmers University of Technology
Rännvägen 6, S-41296 Göteborg

Abstract. An algebraic presentation of Martin-Löf’s intuitionistic type
theory is given which is based on the notion of a category with families
with extra structure. We then present a type-checking algorithm for the
normal forms of this theory, and sketch how it gives rise to an initial cat-
egory with families with extra structure. In this way we obtain a purely
algebraic formulation of the correctness of the type-checking algorithm
which provides the core of proof assistants for intuitionistic type theory.

1 Introduction

The type-checking algorithm [6] is the core of proof assistants for intensional
dependent type theories such as Coq [3], Agda [13], and Epigram [5]. Such a
proof assistant is essentially a tool for checking whether a given term a has a
given type A relative to a context Γ :

Γ � a : A

The user writes a type A representing a proposition to be proved, and the proof
assistant aids her in constructing a proof a which witnesses the truth of A.

We shall here assume that Γ, A, and a are all in normal form with respect
to the reduction rules, although this restriction may not be strictly imposed in
proof assistants.

In this note we shall present a new algebraic approach to the correctness of the
type-checking algorithms. Such correctness is not only important for the trust
in the proof assistants, it is also philosophically significant. The decidability of
typing is one of the main reasons for preferring intensional [10,12] to extensional
type theory [9]. According to a certain point of view in constructivism it should
be mechanically decidable whether a certain construction a is a witness to the
truth of a given proposition A.

We will here consider a core dependent type theory: Martin-Löf’s intuitionistic
type theory where the only type formers are dependent function types and a
universe of small types. This is essentially Martin-Löf’s logical framework [10,12],

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 3–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 A. Abel, T. Coquand, and P. Dybjer

except that we here consider β-conversion only and do not have the η-rule.
Moreover, we use the same normal terms for codes for small types and for the
small types themselves. In this sense our universe of small type is formulated
à la Russell, in spite of the fact that our algebraic framework inevitably uses
universes à la Tarski.

We expect our approach to extend smoothly if we add more type formers such
as Σ, +, N, Nn to our theory. We also expect that our approach can be extended
to deal with η-conversion [1,2].

Martin-Löf type theory is usually expressed as a system of axioms and infer-
ence rules with four forms of judgements

Γ � a : A

Γ � A type

Γ � a = a′ : A

Γ � A = A′

Implicitly, there is also a judgement expressing the correctness of contexts:

Γ �

In this inference rule presentation it is not assumed that contexts, types, and
terms are normal. However, we expect that whenever Γ, A, and a are normal
(with respect to the reduction rules of the theory) then the type-checking al-
gorithm will accept Γ � a : A whenever it is a provable from the axioms and
inference rules of Martin-Löf type theory.

The situation is analogous for the judgements Γ � A type, and Γ �, although
the proof assistant may not give the user access to them.

As regards the equality judgements, we have that if Γ, A, a, and a′ are normal,
then Γ � a = a′ : A is derivable by the axioms and inference rules iff a and a′

are identical (up to α-congruence), and similarly for Γ � A = A′.
However, in spite of many years of research into type-checking dependent

types a completely satisfactory state of affairs has not yet been reached. On the
one hand it has shown difficult to use traditional methods to obtain a clear proof
of some essentially lemmas, such as the fact that the dependent function space
former Π is one-to-one. On the other hand there are many different syntactic
formulations of dependent type theory, and it is not clear which is the canonical
one. There are different treatments of variables. Should we use explicit or implicit
substitutions? Is the inference rule for substitution primitive? Should we use
Curry or Church-style lambda terms? Etc.

In this note we present an algebraic formulation of Martin-Löf’s intensional
intuitionistic type theory which is based on the notion of a category with families
(cwfs) [7]. In this way we hope to achieve a more satisfactory basis for developing
the metatheory of type theory.

There are several reasons for prefering an algebraic formulation to the usual
formulations based on the lambda calculus:

On the Algebraic Foundation of Proof Assistants 5

– It can be argued that it is more “canonical”. There is less freedom of choice
of syntactic detail.

– The presentation becomes cleaner since we do not first need to prove a
number of meta-theorems of syntax.

– You get a clearer notion of model which is easier to work with.

We shall here present a type-checking algorithm inspired by the notion of
categories with families. We have here also benefited from our recent work on
normalization by evaluation (nbe) [1,2]. In these papers decidability of equality is
proved for some fairly standard lambda-calculus based formulations of Martin-
Löf type theory. We propose to extend this work and also formulate nbe for
categories with families (with extra structure).

The rest of the note is organized as follows. We first recall the notion of
a category with families. Then we extend this notion with extra structure for
interpreting dependent function types and universes. Finally, we outline how to
construct the cwf of type-checked normal forms.

2 Categories with Families

Categories with families (cwfs) [7,8] is a categorical notion of model of the
most basic rules of dependent type theory; those which deal with context
formation, variables, and substitution. Categories with families are equivalent
to Cartmell’s categories with attributes, but the reformulation makes it possible
to obtain a straightforward correspondence to the inference rules of dependent
type theory, especially when formulated as a calculus of explicit substitutions,
see Martin-Löf [11].

A category with families consists of a category C and a family-valued functor
T : Cop → Fam, where C has a terminal object. Moreover, there is an operation
of context comprehension closely related to Lawvere’s notion of comprehension
for hyperdoctrines.

Here Fam is the category of families of sets, where an object is a family of
sets (B(x))x∈A and a morphism with source (B(x))x∈A and target (B′(x′))x′∈A′

is a pair consisting of a function f : A → A′ and a family of functions g(x) :
B(x) → B′(f(x)) indexed by x ∈ A.

C is the category of contexts and substitutions. If Γ ∈ |C| is a context, then
T (Γ) is the family of terms of a type A in Γ which is indexed by the well-
formed types A in Γ . The arrow part of the functor T represents substitution in
types and terms. The terminal object of C represents the empty context and the
terminal arrow represents the empty substitution. The context comprehension
operation provides representations for context extension, substitution extension,
assumption, and a weakening substitution. The reader is referred to Dybjer [7]
and Hofmann [8] for details.

The category Cwf is obtained by defining the notion of cwf-morphism as
follows. Let (C, T) denote a cwf with base category C and functor T . A morphism
of cwfs with source (C, T) and target (C′, T ′) is a pair (F, σ), where F : C → C′

6 A. Abel, T. Coquand, and P. Dybjer

is a functor and σ : T → T ′F is a natural transformation, such that terminal
object and context comprehension are preserved on the nose.

The notion of a category with families can be formalized as a generalized alge-
braic theory in the sense of Cartmell [4]. Generalized algebraic theories generalize
many-sorted algebraic theories, by using dependent types. They consist of sort
symbols, operator symbols, and equations between well-formed sort expressions.
Here we present the generalized algebraic theory of categories with families using
inference rule notation, to highlight the fact that it provides a variable-free sub-
stitution calculus for dependent types. To improve readability we use “polymor-
phic” notation. For example, we write δ ◦ γ instead of the proper δ ◦Θ,Δ,Γ γ, etc.

Rules for the category C
Ctxt sort

Δ, Γ : Ctxt
Δ → Γ sort

Θ, Δ, Γ : Ctxt γ : Δ → Γ δ : Θ → Δ

γ ◦ δ : Θ → Γ

Γ : Ctxt
idΓ : Γ → Γ

(γ ◦ δ) ◦ θ = γ ◦ (δ ◦ θ)
idΓ ◦ γ = γ

γ ◦ idΓ = γ

Rules for the functor T
Γ : Ctxt

Ty(Γ) sort

Γ : Ctxt A : Ty(Γ)
Γ � A sort

Δ, Γ : Ctxt A : Ty(Γ) γ : Δ → Γ

A[γ] : Ty(Δ)

Δ, Γ : Ctxt A : Ty(Γ) a : Γ � A γ : Δ → Γ

a[γ] : Δ � A[γ]

A[γ ◦ δ] = A[γ][δ]

A[idΓ] = A

a[γ ◦ δ] = a[γ][δ]

a[idΓ] = a

On the Algebraic Foundation of Proof Assistants 7

Rules for the terminal object

[] : Ctxt

Γ : Ctxt
〈〉Γ : Γ → []

〈〉Γ ◦ γ = 〈〉Γ
id[] = 〈〉[]

Rules for context comprehension

Γ : Ctxt A : Ty(Γ)
Γ ; A : Ctxt

Δ, Γ : Ctxt A : Ty(Γ) γ : Δ → Γ a : Δ � A[γ]

〈γ, a〉 : Δ → Γ ; A

Γ : Ctxt A : Ty(Γ)
pΓ,A : Γ ; A → Γ

Γ : Ctxt A : Ty(Γ)
qΓ,A : Γ ; A � A[pΓ,A]

pΓ,A ◦ 〈γ, a〉 = γ

qΓ,A[〈γ, a〉] = a

〈δ, a〉 ◦ γ = 〈δ ◦ γ, a[γ]〉
idΓ ;A = 〈pΓ,A, qΓ,A〉

3 Adding Dependent Function Types and a Universe of
Small Types

Categories with families only provide the most basic structure for interpreting
dependent type theories, and provide no structure for interpreting any type
formers at all. In these notes we consider a type theory with dependent function
types and one universe. To interpret these we need some extra structure. We
present this structure by adding new operators corresponding to the formation,
introduction, and elimination rules for the new type constructor, and to add new
equations corresponding to the equality rules. This is done by translating the
usual inference rules of type theory into the variable free language of categories
with families.

8 A. Abel, T. Coquand, and P. Dybjer

Rules for dependent function types

Γ : Ctxt A : Ty(Γ) B : Ty(Γ ; A)
Π(A, B) : Ty(Γ)

Γ : Ctxt A : Ty(Γ) B : Ty(Γ ; A) b : Γ ; A � B

λ(b) : Γ � Π(A, B)

Γ : Ctxt A : Ty(Γ) B : Ty(Γ ; A) c : Γ � Π(A, B) a : Γ � A

ap(c, a) : Γ � B[〈idΓ , a〉]

Π(A, B)[γ] = Π(A[γ], B[〈γ ◦ pΓ,A, qΓ,A〉])
λ(b)[γ] = λ(b[〈γ ◦ pΓ,A, qΓ,A〉])

ap(c, a)[γ] = ap(c[γ], a[γ])
ap(λ(b), a) = b[〈idΓ , a〉]

The three first of the five equations represent the laws for substitution under Π ,
λ, and ap. The fourth represents β-conversion.

Rules for a universe of small types

Γ : Ctxt
U : Ty(Γ)

Γ : Ctxt a : Γ � U
T(a) : Ty(Γ)

Γ : Ctxt a : Γ � U b : Γ ; T(a) � U
Π̂(a, b) : U

U[γ] = U
T(a)[γ] = T(a[γ])

Π̂(a, b)[γ] = Π̂(a[γ], b[〈γ ◦ pΓ,A, qΓ,A〉])
T(Π̂(a, b)) = Π(T(a), T(b))

This is a universe of small types which is closed under dependent function types.
This formulation is inevitably à la Tarski rather than à la Russell.

A cwf with extra structure for dependent function types and a universe will
be called a ΠU-cwf . We can extend the notion of cwf-morphism to a notion of
morphism of ΠU-cwfs by requiring that all extra structure is preserved on the
nose. Let CwfΠU be the category of ΠU-cwfs and ΠU-cwf -morphisms. Since
ΠU-cwfs can be described as a generalized algebraic theory, it follows from a
general result by Cartmell that CwfΠU has an initial object, given syntactically
by derivations in a certain formal system for generalized algebraic theories. This
initial object is the “syntax-free” representation of a version of Martin-Löf type
theory.

On the Algebraic Foundation of Proof Assistants 9

4 A ΠU-cwf of Normal Forms

We shall now suggest how to build the ΠU-cwf N of type-checked normal forms.
We write some Haskell code and explain how to define N in terms of it. We would
like to emphasize that the content of this section is preliminary. We have not yet
proved our type-checking algorithm correct.

First, we introduce raw syntax for normal terms t (including normal types).
They are generated together with the auxiliary subclass of neutral terms s:

t ::= s | λ(a) | Π(a, a) | U
s ::= i | ap(s, t)

where i is a natural number (a de Bruijn index). Raw normal contexts and raw
normal substitutions are represented as lists of normal terms.

Note that these raw normal terms are not type-decorated! This is unlike the
notation for cwfs, where contexts and type-arguments are part of the official
notation but were sometimes surpressed to improve readability.

The category N will be built up by type-checked normal forms. We could
write the type-checking algorithm in Haskell by introducing the data types of
normal and neutral expressions defined as follows:

data No = Ne Ne | Lam No | Pi No No | U
data Ne = Var Int | App Ne No

However, for simplicity we will define the type-checking algorithm on the type
of all (raw) expressions

data Exp = Var Int | App Exp Exp | Lam Exp | Pi Exp Exp | U

although it is intended to be applied only to those expressions in Exp which are
normal.

To this end we define four functions; isCo, isSu, isTy, and isTm which will
check the correctness of contexts, substitutions, types, and terms, respectively.
Here a type is represented by a raw expression, and substitutions and contexts
by lists of raw expressions:

type Ty = Exp
type Subst = [Exp]
type Cxt = [Ty]

Checking contexts

isCo :: Cxt -> Bool
isCo [] = True
isCo (a:cxt) = isCo cxt && isTy cxt a

checks whether a list of expressions represents a correct context. Such lists of
expressions will be the objects in the category of contexts of N .

10 A. Abel, T. Coquand, and P. Dybjer

Checking substitutions

isSu :: Cxt -> Cxt -> Subst -> Bool
isSu cxt [] [] = True
isSu cxt (b:bs) (t:ts) = isSu cxt bs ts &&

isTm cxt (subst b cxt) t

checks whether a list of expressions (the third argument) is a correct substitution
with respect to a source and a target context (the first and second argument).
Such substitutions wil be the arrows in the category of contexts of N .

Checking types

isTy :: Cxt -> Ty -> Bool
isTy cxt (Pi a b) = isTy cxt a && isTy (a:cxt) b
isTy cxt U = True
isTy cxt a = isTm cxt U a

checks whether an expression is a correct type with respect to a context. Such
types will be the “types” of N .

Checking terms

isTm :: Cxt -> Ty -> Exp -> Bool
isTm cxt (Pi a b) (Lam t) = isTm (a:cxt) b t
isTm cxt a (Lam t) = False
isTm cxt U (Pi a b) = isTm cxt U a && isTm (a:cxt) U b
isTm cxt a (Pi a b) = False
isTM cxt a U = False
isTm cxt a s = case inferTy cxt s of

Just a’ -> a == a’
Nothing -> False

checks whether an expression has a type with respect to a context. Such terms
will be the “terms” of N .

Infering the type of a neutral term. The type-checking algorithm is as usual bi-
directional: to check whether an application has a given type we try to infer the
type of the function and then check whether it matches the type of the argument.

inferTy :: Cxt -> Exp -> Maybe Ty
inferTy cxt (Var i) = Just (shift (cxt !! i) (i+1))
inferTy cxt (App s t) = case inferTy cxt s of

Just (Pi a b) -> if isTm cxt a t
then Just (subst b (t : ide))
else Nothing

otherwise -> Nothing

This function expects a neutral expression as input and tries to infer its type. It
calls an auxiliary function

On the Algebraic Foundation of Proof Assistants 11

shift :: Exp -> Int -> Exp
shift t i = subst t (map Var [i ..])

so that shift e n increases all free variables in e by n.

Implementing the operations of ΠU-cwfs. To perform type inference we also call
the “hereditary” substitution function subst. This is one of the cwf-combinators.
We will now implement them in the order they appear in the above definition of
cwf. Note that many of the equations for the cwf-combinators reappear in the
programs below, a fact which will facilitate the checking that N is a cwf.

The empty context is just the empty list and context extension is imple-
mented by the Cons-operation on lists. The composition ◦ and the identity id
combinators are implemented by

comp :: Subst -> Subst -> Subst
comp [] ts’ = []
comp (t:ts) ts’ = (subst t ts’):(comp ts ts’)

ide :: Subst
ide = map Var [0 ..]

The length of the identity substitution idΓ depends on the context Γ , but here
we use a lazy infinite list for simplicity. Note that when we check that ide is a
correct substitution with respect to a context of length n we only check the n
first elements of the list ide.

Substitution −[−] in types and terms is the same function:

subst :: Exp -> Subst -> Exp
subst (Var i) ts = ts !! i
subst (App s t) ts = app (subst s ts) (subst t ts)
subst (Lam t) ts = Lam (subst t (lift ts))
subst (Pi a b) ts = Pi (subst a ts) (subst b (lift ts))
subst U ts = U

where we use the lifting function

lift :: Subst -> Subst
lift ts = q : comp ts p

which is just an abbreviation of a cwf combinator expression.
The terminal arrow is just the empty list, and substitution extension is just

the Cons operation on lists. The projections p and q are

p :: Subst
p = map Var [1 ..]

q :: Exp
q = Var 0

12 A. Abel, T. Coquand, and P. Dybjer

Like in the case of the identity the length of the substitution pΓ,A depends on
the context Γ and for simplicity we implement it by an infinite list.

The type constructor Π and the term constructor λ are implemented by the
constructors Pi and Lam. Application is

app :: Exp -> Exp -> Exp
app (Lam t) s = subst t (s:ide)
app r s = App r s

The type constructor U and the term constructor Π̂ are implemented by the
constructors U and Pi. The decoding function T is implemented by the identity
function on expressions. We have a universe à la Russell.

We can now formulate the correctness of our type-checking algorithm as
follows: N is an initial object in CwfΠU. This states in particular that N is
categorically equivalent to any other initial ΠU-cwf, such as the variable-free
substitution calculus obtained by using Cartmell’s method for constructing ini-
tial objects from generalized algebraic theories, or any traditional presentation
of Martin-Löf type theory which we can organize as an ΠU-cwf and prove initial
in CwfΠU. See Hofmann [8] for a description of the correspondence between
cwfs and lambda calculus presentations of type theory.

References

1. Abel, A., Aehlig, K., Dybjer, P.: Normalization by evaluation for Martin-Löf type
theory with one universe. Electr. Notes Theor. Comput. Sci. 173, 17–39 (2007)

2. Abel, A., Coquand, T., Dybjer, P.: Normalization by evaluation for Martin-Löf
type theory with typed equality judgements. In: LICS, pp. 3–12 (2007)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series (2004)

4. Cartmell, J.: Generalised algebraic theories and contextual categories. Annals of
Pure and Applied Logic 32, 209–243 (1986)

5. Chapman, J., Altenkirch, T., McBride, C.: Epigram reloaded: A standalone type-
checker for ETT. In: Proceedings of TFP (July, 2005)

6. Coquand, T.: An algorithm for type-checking dependent types. Sci. Comput. Pro-
gram. 26(1-3), 167–177 (1996)

7. Dybjer, P.: Internal type theory. In: Berardi, S., Coppo, M. (eds.) TYPES 1995.
LNCS, vol. 1158, pp. 120–134. Springer, Heidelberg (1996)

8. Hofmann, M.: Syntax and semantics of dependent types. In: Pitts, A., Dybjer, P.
(eds.) Semantics and Logics of Computation, Cambridge University Press, Cam-
bridge (1996)

9. Martin-Löf, P.: Constructive mathematics and computer programming. In: Logic,
Methodology and Philosophy of Science, 1979, vol. VI, pp. 153–175. North-Holland,
Amsterdam (1982)

10. Martin-Löf, P.: Amendment to intuitionistic type theory. Notes from a lecture given
in Göteborg (March, 1986)

On the Algebraic Foundation of Proof Assistants 13

11. Martin-Löf, P.: Substitution calculus. Unpublished notes from a lecture in Göteborg
(November, 1992)

12. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-
ory: An Introduction. Oxford University Press, Oxford (1990)

13. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden (September, 2007)

	Introduction
	Categories with Families
	Adding Dependent Function Types and a Universe of Small Types
	A U-cwf of Normal Forms

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

