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Abstract

We introduce a language based upon lambda calculus with products, coproducts and
strictly positive inductive types that allows the definition of recursive terms. We present
the implementation (foetus) of a syntactical check that ensures that all such terms are
structurally recursive, i.e., recursive calls appear only with arguments structurally smaller
than the input parameters of terms considered. To ensure the correctness of the termina-
tion checker, we show that all structurally recursive terms are normalizing with respect
to a given operational semantics. To this end, we define a semantics on all types and a
structural ordering on the values in this semantics and prove that all values are accessible
with regard to this ordering. Finally, we point out how to do this proof predicatively using
set based operators.

1 Introduction

In lambda calculi with inductive types the standard means to construct a function
over an inductive type is the recursor, which corresponds to induction. This method,
however, has several drawbacks, as discussed in (Coquand, 1992). One of them is
that programs are hard to understand intuitively. E.g., the “division by 2”-function
may be coded with recursors over natural numbers RN and booleans RB as follows:

RN : σ → (N → σ → σ)→ N → σ

RB : σ → σ → B → σ

half = λnN . RN (λxB . 0) (λxNλfB→N . RB (f true) (1 + (f false))) n false

Alternatively, in the presence of products, it can be implemented involving an aux-
iliary function returning a pair. But in both cases additional constructs are un-
avoidable. Therefore, a concept parallel to complete resp. wellfounded induction has
been investigated: recursive definitions with pattern matching, as they are common
in most functional programming languages. In SML our example could be written
down straightforward as follows:

∗ This work was supported by the Graduiertenkolleg Logik in der Informatik (DFG) and the
Office of Technology in Education, Carnegie Mellon University.
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datatype Nat = O | S of Nat

fun half O = O

| half (S O) = O

| half (S (S n)) = S (half n)

These recursive definitions with pattern matching have to satisfy two conditions to
define total functions:

1. The patterns have to be exhaustive and mutually exclusive. We will not focus
on this point further since the foetus language we introduce in Sect. 2 uses only
case expressions and totality of the pattern is always given. For a discussion
see (Coquand, 1992).

2. The definition must be well-founded, which means that for all arguments the
function value has a well-founded computation tree. This can be ensured if
one can give a termination ordering for that function, i.e., a ordering with
respect to which the arguments are smaller than the input parameters in
each recursive call of that function.

How to find such termination orderings has been dealt with comprehensively in the
area of termination of rewriting (Dershowitz, 1987) and functional programs (Giesl,
1995). We restrict to structural orderings and their lexicographic extensions since
they are sufficient in many cases and our focus is on a theoretical foundation rather
than on completeness.

1.1 Structural Ordering

Usually a value v′ is considered structurally smaller than another value v if v < v′

w.r.t. to the component resp. subterm ordering. It can be defined as the transitive
closure of

w < C(. . . , w, . . .) (1)

where C is a constructor of an inductive datatype. On this basis a structural ordering
t < t′ on terms t, t′ can be defined to hold iff v < v′ where t evaluates to v and t′ to
v′. An alternative, which we pursue in this paper, is to define a structural ordering
on terms independently and show that evaluation maps it into the ordering on
values.

The axiom (1) is motivated by term structure. We will consider another axiom,
motivated by the type structure:

(f a)τ ≤ fσ→τ (2)

An informal justification for this axiom can be drawn from set theory where a
function is defined as the set of all argument-result-pairs. Thus one result f a can
be seen as a component of f which contains all possible results.

To verify in detail that the order induced by (1) and (2) is wellfounded is a major
contribution of this article. It relies crucially on the predicativity of the type system.
In our case this means that all inductive types are strictly positive. Furthermore
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we exclude impredicative polymorphism which destroys the wellfoundedness of the
structural ordering as exemplified by Coquand (1992).

Consider the following program written in Haskell with 2nd order polymorphism1:

data V = C (forall a.a -> a)

f :: V -> V

f (C x) = f (x (C x))

The argument of the constructor C is a polymorphic function of type ∀a. a → a,
like id. Since

C id > id ≥ id (C id) = C id

the structural ordering is no longer wellfounded, and the function f, applied to
C id, loops infinitely.

1.2 Structural Recursion

We define a structurally recursive function as

a recursively defined function which calls itself (directly or indirectly) only for struc-
turally smaller arguments.

Consider the addition of ordinal numbers implemented in SML as follows:

datatype Ord = O’

| S’ of Ord

| Lim of Nat -> Ord

fun addord x O’ = x

| addord x (S’ y’) = S’ (addord x y’)

| addord x (Lim f) = Lim (fn z:Nat => addord x (f z))

addord is structurally recursive, since in each recursive call the second argument
y is decreasing. In the first call y’ < S’ y’ =: y following axiom (1), and in the
second call f z ≤ f < Lim f =: y using both axioms.

We shall present syntactic conditions which are sufficient to ensure that a func-
tion is structurally recursive and which can be checked mechanically. We have
implemented a termination checker for our language foetus that accepts structural
recursive definitions. Recently this termination checker has been reimplemented by
C. Coquand (1999) as part of Adga.

1.3 Lexicographic Termination Orderings

The foetus termination checker accepts also functions that are structural recursive
w.r.t. a lexicographic extension of the structural ordering, e.g., the Ackermann
function:

1 E.g. this is implemented in Hugs, see (Jones & Reid, 1999), section 7.2.
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fun ack O y = S y

| ack (S x’) O = ack x’ (S O)

| ack (S x’) (S y’) = ack x’ (ack (S x’) y’)

Here we have to check three recursive calls: In ack x’ (S O) and ack x’ . . . the
first argument is decreasing and in the third (nested) call ack (S x’) y’ the first
argument stays the same and the second is decreased w.r.t. the lexicographic or-
dering on N× N.

1.4 Mutual Recursion and Call Graphs

To handle mutual recursion as well requires some additional considerations. We
shall sketch our method by the means of the following example:

fun flat [] = []

| flat (l::ls) = aux l ls

and aux [] ls = flat ls

| aux (x::xs) ls = x :: aux xs ls

The function flat takes a list of lists and returns a list making use of the auxiliary
function aux which processes one list. We can extract three calls and the respective
behavior of the arguments and organize them in the following call graph (solid
arrows):

flat(<) 77

(
<
<

)
!!
aux

(
< ?
?≤

)
gg

(? ≤)

aa

Each arrow is labeled with the call matrix of the respective call where the rows rep-
resent the input parameters of the calling function and the columns the arguments
of the called function. A “<” in cell (i, j) of a call matrix expresses that the j ar-
gument of the call is strictly smaller than the ith parameter of the calling function,
a “≤” denotes weak decrease and a “?” stands for increase or absence of informa-
tion. For example, in the call flat→aux both arguments l and ls are structurally
smaller than the input parameter (l::ls) of flat. By continued combination of
adjacent calls we obtain the completion of that graph which contains the direct of
indirect calls of a function to itself. In our case this yields for flat (dotted arrow):

flat→ flat : (<)

For a given function to be structural recursive, we now can apply the default de-
mand: Each recursive call must decrease the argument structurally (which is given
in the case of flat). We will treat call graphs formally in Sect. 3.
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1.5 Semantic Analysis

The termination checker recognizes2 structurally recursive functions. We want to
know whether we can rely on the checker output, i.e., we want to know whether
all structurally recursive functions terminate on all inputs. This is the case if the
structural ordering is well-founded, which is a fundamental assumption in (Co-
quand, 1992). In Sect. 4 we give an interpretation of the types of our systems as
monotone operators on value sets. We further introduce a structural ordering on
all values in the interpretation of closed types and prove that this ordering is well-
founded. Then we can show that all accepted terms normalize w.r.t. our operational
semantics.

1.6 A Predicative Meta-Theory

In Sect. 4 we give a semantic interpretation of all types using an impredicative
metatheory: We show that types which depend only strictly positively on type
variables give rise to monotone operators on values. To define the interpretation
of recursively defined types µX.σ(X) we use the theorem by Knaster and Tarski
(1955) that every monotone operator on a complete lattice has a least fixpoint.
This construction can be extended to types which depend only positively on type
variables (i.e., occurring in the left hand side of the scope of an even number of arrow
types) because they give rise to monotone operators semantically (Abel, 1999).

To construct the least fixpoint of a monotone operator we use the complete-
ness of the subset lattice, i.e., we construct the fixpoint as the intersection of all
prefixpoints. This construction is impredicative—we define a new subset by quanti-
fying over all subsets of an infinite set. In contrast, in a predicative3 construction we
only refer to concepts which have been defined previously. Thus we can construct
fixpoints of strictly positive operators because they correspond to well-founded
(but possibly infinitely branching) derivation trees. The induction principle can be
justified because we refer to smaller (i.e., previously constructed trees) when con-
structing new trees. Examples of predicative theories are Martin-Löf’s Type The-
ory (Martin-Löf, 1984; Nordström et al., 1990) or Aczel’s Constructive Set Theory
(Aczel, 1997).

In Sect. 5 we show that it is possible to interpret our predicative type system
in a predicative meta-theory. We use the concept of set based operators introduced
by Peter Aczel (1997) in the context of intuitionistic set theory. Here we need only
the special case of deterministically set based operators. Intuitively, a set based
operator can be understood as a monotone operator Φ which comes with a binary
urelement relation U . In the case of simple data structures like lists and trees over

2 Note that the property structurally recursive is actually undecidable, hence we cannot hope for
a complete decision procedure.

3 Predicativity is not used in the sense of proof theory which calls theories which are stronger
than Γ0 impredicative. We consider all “bottom-up” theories as predicative, thus for instance
also IDi<ω .
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a type τ this relation coincides with the “element”-relation. The urelement relation
U enjoys the following properties:

1. If starting from a value set V we construct a value set Φ(V ) with an element
w ∈ Φ(V ), then all urelements v U w of w are elements of the base set V .

2. An element w ∈ Φ(True) (where True is the universal value set) can be
reconstructed from its urelements, i.e., w ∈ Φ({v : v U w}).

We show that every strictly positive type can be interpreted by a set based opera-
tor and that fixpoints of set based operators can be constructed by strictly positive
inductive definitions on the meta level. This idea has already been used in a pred-
icative strong normalisation proof (Abel & Altenkirch, 2000).

1.7 Notational conventions

We are using vectors to simplify our notation. If we have a family of expressions
E1, E2, . . . , En we write ~E for the whole sequence. We denote the length n of the
sequence by | ~E|. Given a fixed E′ we write ~EE′ for E1E

′, E2E
′, . . ., EnE′ and E′ ~E

for E′E1, E′E2, . . . E′En. Furthermore we use the notations

X, Y , Z for type variables
ρ, σ, τ for types
x, y, z, l for term variables
r, s, t, a for terms
u, v, w for values
f , g for function identifiers or values
c for closures
e for environments

We use set notation to define predicates, i.e., we write x ∈ P for P (x) and we
define new predicates by the notation for set comprehension. However, sets are not
first order citizens in our meta theory, i.e., we do not quantify over sets and we do
not use power sets. We write relations in infix notation, i.e., we write x R y for
(x, y) ∈ R. We write projections as partial applications, i.e., R(y) = {x : x R y}.

2 The foetus Language

We introduce a term language based on the simply typed lambda calculus enriched
with finite sum and products and inductive types, in the style of a functional pro-
gramming language. Thus we allow the definition of recursive terms. We define
normal forms explicitly as values and introduce environments avoiding to have to
define substitution. The meaning of terms is defined by a big step operational se-
mantics.

2.1 Types

The foetus type system is constructed from the base type variables X,Y, Z, . . . and
the type constructors Σ (finite sum), Π (finite product), → (function space) and µ
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(inductive type). We restrict ourselves to strictly positive recursive types for two
reasons: Firstly, it is not clear how to formalize structural recursion for non-strictly
positive types. And secondly, it is not clear whether non-strictly positive types
can be understood predicatively. Within our system the set of natural numbers
may be expressed as N ≡ µX.1 + X and the set of lists over natural numbers as
LN ≡ µX.1 + N×X.

Type Variables. Assume a countably infinite set of type variables TyVar whose
elements we denote by X, Y, Z, . . . A type variable X appears strictly positive
within a type τ iff it appears never on the left side of some →. We enforce that
all variables in a type satisfy this condition by restricting the domains of function
types to closed types (see rule (Arr) below).

Definition 2.1 (Types)
We inductively define the family of types Ty( ~X) indexed over a finite list of distinct
type variables ~X ∈ TyVar appearing only strictly positive as follows:

(Var)
X1, . . . , Xn ∈ TyVar 1 ≤ i ≤ n

Xi ∈ Ty( ~X)

(Sum)
σ1, . . . , σn ∈ Ty( ~X)

Σ~σ ∈ Ty( ~X)
(Prod)

σ1, . . . , σn ∈ Ty( ~X)

Π~σ ∈ Ty( ~X)

(Arr)
σ ∈ Ty() τ ∈ Ty( ~X)

σ → τ ∈ Ty( ~X)
(Mu)

σ ∈ Ty( ~X,X)

µX.σ ∈ Ty( ~X)

We can restrict the free type variables to strictly positive ones because unlike Gi-
rard’s System F (Girard, 1972), we have no polymorphic types and therefore need
type variables only to construct inductive types.

Notation. In the following we write σ( ~X) to express σ ∈ Ty( ~X). Then σ and σ( ~X)
are synonyms. We also abbreviate the set of closed types Ty() by Ty. For binary
sums Σ(σ, τ) we write σ + τ , for ternary ρ + σ + τ , etc. (same for products). The
empty sum Σ() is denoted by 0 and the empty product Π() by 1.

Renaming Convention for Types. µ binds a type variable X in a type σ( ~X,X), and
we may replace all appearances of X in µX.σ( ~X,X) by any new variable Y /∈ ~X

without altering the actually denoted type. Thus we do not distinguish between
µX.σ( ~X,X) and µY.σ( ~X, Y ).

Our style of variable introduction and binding (see rules (Var) and (Mu) below)
is very close to an implementation of variables by deBruijn-indices (see (de Bruijn,
1972)), but we have kept variable names for better readability.

Substitution. Provided a type σ( ~X) with a list of free variables ~X and an equally
long list of types ~ρ ∈ Ty(~Y ) we define the capture avoiding substitution σ[ ~X := ~ρ] ∈
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Ty(~Y ) in the usual way. We write σ(~ρ) for σ( ~X)[ ~X := ~ρ] and define substitution of
a single variable Y as σ( ~X, Y, ~Z)[Y := ρ] = σ[ ~X := ~X, Y := ρ, ~Z := ~Z], which we
further abbreviate to σ( ~X, ρ, ~Z).

2.2 Terms

Now, we define the terms inhabiting the types defined above. The definitions are
very similar to a typed lambda calculus enriched by sums and products, except
for the recursive terms we allow. We have decided to type terms using contexts to
simplify the definition of closures afterwards.

Term Variables and Contexts. Assume a countably infinite set of term variables
TmVar using g, x, y, z to denote elements of this set. Given the closed types σ1, . . . σn
we can form a context Γ = xσ1

1 , . . . , xσnn ∈ Cxt as a list of pairwise distinct term
variables together with their types. We write xσ to express the assumption that the
variable is of type σ.

Definition 2.2 (Terms)
We define the set of (well-typed) terms Tmσ[Γ] of a closed type σ in context Γ
inductively as follows:

(var)
Γ, xσ,Γ′ ∈ Cxt

x ∈ Tmσ[Γ, xσ,Γ′]

(in)
t ∈ Tmσj [Γ]

in~σj (t) ∈ TmΣ~σ[Γ]

(case)
t ∈ TmΣ~σ[Γ] ti ∈ Tmρ[Γ, xσii ] for 1 ≤ i ≤ n

case(t, xσ1
1 .t1, . . . , x

σn
n .tn) ∈ Tmρ[Γ]

(tup)
ti ∈ Tmσi [Γ] for 1 ≤ i ≤ n

(t1, . . . , tn) ∈ TmΠ~σ[Γ]
(pi)

t ∈ TmΠ~σ[Γ]

πj(t) ∈ Tmσj [Γ]

(lam)
t ∈ Tmτ [Γ, xσ]

λxσ.t ∈ Tmσ→τ [Γ]
(rec)

t ∈ Tmσ→τ [Γ, gσ→τ ]

rec gσ→τ . t ∈ Tmσ→τ [Γ]

(app)
t ∈ Tmσ→τ [Γ] s ∈ Tmσ[Γ]

t s ∈ Tmτ [Γ]

(fold)
t ∈ Tmσ(µX.σ)[Γ]

foldX.σ(t) ∈ TmµX.σ[Γ]
(unfold)

t ∈ TmµX.σ[Γ]

unfoldX.σ(t) ∈ Tmσ(µX.σ)[Γ]

There are two main kinds of term forming rules: Rules for introducing types (the
constructors (in), (tup), (lam) and (fold)) and rules for eliminating types (the de-
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structors (case), (pi), (app) and (unfold)). The remaining rules (var) and (rec) are
structural.

Renaming Convention for Terms. In these rules case binds the variables xi in the
terms ti, λ binds x in t and rec binds g in t. As for types we do not distinguish
between terms that are equal except that the names of their bound variables differ.

Notation. Similar to the type notation σ( ~X) we write tσ to express that t is of type
σ, t[Γ] that t is a term over context Γ and tσ[Γ] to express both, i.e., t ∈ Tmσ[Γ].
We define the set of closed terms Tmσ of type σ as the set of terms over an
empty context Tmσ[]. We omit type annotation on inj , fold, unfold and abstractions
wherever we do not introduce ambiguity.

Currying. For our termination analysis it is convenient to view a function with
several arguments in its uncurried form as a function with one argument of prod-
uct type. To support the formulation of functions of arity ≥ 2, we introduce the
construct

t ∈ Tmτ [Γ, xσ1
1 , . . . , xσnn ]

λ(xσ1
1 , . . . , xσnn ). t ∈ TmΠ~σ→τ [Γ]

From the semantic point of view it is just syntactic sugar for λyΠ~σ. t′ where t′ is
the result of replacing xi with πi(y) for 1 ≤ i ≤ n. For instance,

λ(xσ, yτ ). (y, x) is interpreted as λpσ×τ . (π2(p), π1(p)).

2.2.1 Example: The flat Function

To clarify the different constructs of our language we give an encoding of the list
flattening function in foetus. This function takes a list of lists of natural numbers
and transforms it into a list of natural numbers. All required datatypes can be
defined in foetus using fixpoint types:

Nat ≡ µX. 1 +X

ListN ≡ µX. 1 + Nat×X
ListL ≡ µX. 1 + ListN×X

Identifiers in bold font denote defined types or terms which are not part of the
language but mere abbreviations. For convenience, we define abbreviations for the
two constructors of lists:

nil ≡ fold(in1())
cons(−) ≡ fold(in2(−))
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For a natural number x ∈ TmNat and a list y ∈ TmListN we can construct the
extension cons(x, y) of list y by element x as follows:

x ∈ TmNat y ∈ TmListN

tup
(x, y) ∈ TmNat×ListN

in
in2(x, y) ∈ Tm1+Nat×ListN

fold
foldX. 1+Nat×X(in2(x, y)) ∈ TmµX. 1+Nat×X

Using the defined abbreviations the final line states cons(x, y) ∈ TmListN. We
recall the definition of the flattening function:

fun flat [] = []

| flat (l::ls) = aux l ls

and aux [] ls = flat ls

| aux (x::xs) ls = x :: aux xs ls

The main function flat is recursive, taking a list of lists and returning a list of
natural numbers. We will denote it with the identifier f of type ListL → ListN.
The pattern matching over its one argument, which we will refer to as ll, translates
into a case construct:

flat ≡ rec fListL→ListN. λllListL.

case(unfold(ll),
1.nil,
pListN×ListL.aux (π1(p), π2(p)))

Since ll is of fixpoint type we first have to unfold it to obtain something of sum type
before we can distinguish cases. The first alternative is that unfold(ll) = in1( 1),
which means that it is an injection of something of unit type 1. Since we are not
interested in the specific inhabitant of the unit type involved here, we use the
anonymous variable “ ”. In this case ll encodes the empty list, and we return the
empty list nil. In the second case unfold(ll) = in2(pListN×ListL) we have to deal
with the injection of a pair p consisting of a list of natural numbers and a list of
lists. This case is handled by the auxiliary function, denoted by the placeholder
aux.

The simultaneous recursion of SML can be translated into a nested or interleav-
ing recursion in foetus. We simply define aux via the recursion operator rec and
substitute it for every occurrence of the placeholder aux in flat. In this way we
realize calls from flat to aux. All calls from aux to flat can simply refer to the
identifier f , since aux is within the scope of f . Omitting some type annotations
the full program reads as follows:

flat ≡ rec f. λll. case(unfold(ll),
.nil,
p. (rec g. λ(lListN, lsListL). case(unfold(l),

. f ls,

qNat×ListN. cons(π1(q), g(π2(q), ls))))
(π1(p), π2(p)))
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For the definition of aux—which we assigned function identifier g—we used the
syntactic sugar. To obtain the unsugared version we replace

(lListN, lsListL) with yListN×ListL,

l with π1(y) and
ls with π2(y).

Readers familiar with SML will know that fun is not a core construct of the pro-
gramming language and can be replaced by the more primitive val rec (Harper,
2000). Replacing simultaneous recursion with interleaving recursion, we obtain a
version of the original program which is very similar to its foetus encoding:

val rec flat = fn ll =>

let val rec aux = fn (l, ls) =>

case l of

[] => flat ls

| (x::xs) => x :: aux (xs, ls)

in

case ll of

[] => []

| (l::ls) => aux (l, ls)

end

Note that rec has to be used in conjunction with a let in SML, whereas it can
appear in any position in foetus programs.

2.3 Values and Closures

We only assign a meaning to closed terms t ∈ Tmσ: they evaluate to (syntactic)
values of type σ. (We are going to define semantic values as well, see Sect. 4.)
During the process of evaluation defined by our operational semantics we will have
to handle open terms, together with environments which assign values to the free
variables. This entails that we do not have to define substitution on terms. A Term
and its corresponding environment form a closure which can be seen as completion
of an open term.

Values. We define Valσ inductively as follows. Again we write vσ to express v ∈
Valσ. The set of environments Val(Γ) is defined simultaneously (see the definition
below).

(vlam)
t ∈ Tmτ [Γ, xσ] e ∈ Val(Γ)

〈λxσ.t; e〉 ∈ Valσ→τ

(vrec)
t ∈ Tmσ→τ [Γ, gσ→τ ] e ∈ Val(Γ)

〈rec gσ→τ . t; e〉 ∈ Valσ→τ

(vin)
v ∈ Valσj

in~σj (v) ∈ ValΣ~σ
(vtup)

vi ∈ Valσi for 1 ≤ i ≤ n

(v1, . . . , vn) ∈ ValΠ~σ
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(vfold)
v ∈ Valσ(µX.σ)

foldX.σ(v) ∈ ValµX.σ

These rules correspond to the introduction rules for terms. Since values represent
evaluated terms, we need only constructors, no destructors.

Environments and Closures. We define the set of environments of the context Γ =
xσ1

1 , . . . , xσnn as

Val(Γ) := {x1 =v1, . . . , xn=vn : vi ∈ Valσi}
We write eΓ for an environment e ∈ Val(Γ) and “·” for the empty environment.
The set of closures of type τ we define as

Clτ := {〈t; e〉 : Γ ∈ Cxt, t ∈ Tmτ [Γ], e ∈ Val(Γ)}
∪ {f@u : f ∈ Valσ→τ , u ∈ Valσ}

Here @ is a syntactic function symbol Valσ→τ × Valσ → Clτ . Closures of the form
f@u (value applied to value) are convenient to define the operational semantics
without casting values back to terms, which in an implementation would be ineffi-
cient as well.

Renaming Convention for Closures. Since in a closure all variables of a term are
bound, we consider two closures that differ only in variable names as equal.

2.4 Operational Semantics

In the following we present a big step operational semantics “⇓” that defines how
closures are evaluated to values. Our strategy is call-by-value (see rule (opapp)) and
we do not evaluate under λ and rec (see rules (oplam) and (oprec)). Furthermore
it is deterministic, i.e., for every closure there is at most one computation tree.

Definition 2.3 (Operational Semantics)
We inductively define a family of relations

⇓σ⊆ Clσ ×Valσ

indexed over Ty. As the type σ can be inferred from the type of the closure or the
value, we generally leave it out. For reasons of readability we leave out type and
context annotations wherever possible.

(opvar) 〈x; e, x = v, e′〉 ⇓ v

(opin)
〈t; e〉 ⇓ v

〈inj(t); e〉 ⇓ inj(v)
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(opcase)
〈tΣ~σ[Γ]; e〉 ⇓ inj wσj 〈tτj [Γ, xσjj ]; e, xj = w〉 ⇓ vτ

〈case(t, ~x.t); e〉 ⇓ v

(optup)
〈ti; e〉 ⇓ vi for 1 ≤ i ≤ n

〈(~t); e〉 ⇓ (~v)
(oppi)

〈t; e〉 ⇓ (~v)

〈πj(t); e〉 ⇓ vj

(oplam) 〈λx.t; e〉 ⇓ 〈λx.t; e〉 (oprec) 〈rec g. t; e〉 ⇓ 〈rec g. t; e〉

(opapp)
〈t; e〉 ⇓ f 〈s; e〉 ⇓ u f@u ⇓ v

〈t s; e〉 ⇓ v

(opappvl)
〈t; e, x = u〉 ⇓ v

〈λx.t; e〉@u ⇓ v

(opappvr)
〈t; e, g = 〈rec g. t; e〉〉 ⇓ f f@u ⇓ v

〈rec g. t; e〉@u ⇓ v

(opfold)
〈t; e〉 ⇓ v

〈fold(t); e〉 ⇓ fold(v)
(opunfold)

〈t; e〉 ⇓ fold(v)

〈unfold(t); e〉 ⇓ v

Proposition 2.4
⇓ is deterministic, i.e., c ⇓ v and c ⇓ v′ implies v = v′.

Proof
For all closures except 〈case(t, ~x.t); . . .〉 there is only one computation rule. But
also for closures with case analysis there will be only one computation tree, since
〈t; . . .〉 may only evaluate to inj(w) for a fixed j thus only one instance of (opcase)
is applicable.

3 The foetus Termination Checker

The syntactic check, whether a recursive term is structurally recursive, consists of
three phases:

1. Function call extraction.
The recursive term is analyzed and all recursive calls are gathered. During the
analysis dependencies of new variables are gained, i.e., information whether
a new variable is structurally smaller than an already known one.

2. Call graph generation and completion.
All calls which have been gathered are organized in a call graph which is
completed afterwards.

3. Search for a termination ordering.
From the completed graph all recursive calls of the function in considera-
tion are extracted. Then it is searched for a lexicographic ordering on the
arguments that ensures termination.
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The termination checker makes use of two major data structures, dependencies and
calls, and a minor data structure, the function stack.

Dependencies ∆: A set of dependencies ∆ is a collection of straitened variables
x ≤ s. We use these dependencies to derive that arguments decrease structurally
in a recursive call. They are generated whenever we learn information about
terms when stepping over a case construct. The semantics of the term

case(s, x1.t1, . . . , xn.tn)

yields the constraints inj(xj) = s for 1 ≤ j ≤ n. Thus within the scope of xj , i.e,
within tj , we may safely assume that xj ≤ s.

Calls C: A call g(t1, . . . , tn) of function g with arguments ~t within a function f

with formal parameters (x1, . . . , xm) is denoted by

f → g : (aij) where aij ∈ {<,≤, ?} for 1 ≤ i ≤ n, 1 ≤ j ≤ m

We will refer to (aij) as call matrix, since its elements indicate how the arguments
~t behave in a function call: aij = < if ti can be shown to always be strictly
structurally smaller than xj , aij = ≤ if ti is ensure to be less or equal than xj ,
and aij = ? if neither of the previous alternatives holds. We denote sets of calls
by C.

Function stack Φ: As we traverse a term we build up a function stack Φ which
contains the name of functions together with their formal arguments. When we
analyze

rec f. λ(x1, . . . , xn). s

we will push f(x1, . . . , xn) onto the stack. The topmost element denotes the
function whose body we are currently inspecting.

The procedure which analyzes a term, finds all function calls and computes the call
matrices will be presented in form of two judgments:

∆,Φ ` t A C function call extraction
∆ ` t R x (R ∈ {<,≤, ?}) structural ordering on terms

In the remainder of this section we will define these two judgments (Sect. 3.1 and
3.2), state some properties about call matrices (Sect. 3.3), give an algorithm that
finds indirect calls via graph completion (Sect. 3.4) and show how to find a lexico-
graphic ordering that ensures termination (Sect. 3.5).

3.1 Function Call Extraction

Given a foetus program t the termination checker first extracts the set of function
calls C within t. The extraction process can be formalized as follows:

Definition 3.1 (Function Call Extraction)
Let ∆ be a set of dependencies, Φ a function stack, t a term and C a set of calls.
Then C is extracted from t iff

∆; Φ ` t A C
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Read “under the dependencies ∆ and within the functions Φ the term t contains
the calls C”. The judgment is established by the following rules:

Recursive functions and calls:

(Arec)
∆; Φ, g(x1, . . . , xn) ` s A C

∆; Φ ` rec g. λ(x1, . . . xn). s A C

(Aappvar)
∆; Φ, f(~x) ` (~t) A C ∆ ` ti aij xj for all 1 ≤ i ≤ n, 1 ≤ j ≤ m

∆; Φ, f(x1, . . . , xm) ` g (t1, . . . , tn) A C, f → g : (aij)

(Aapprec)
∆; Φ ` (~t) A C ∆; Φ, g(~y) ` s A C′ ∆ ` ti aij xj for all i, j

∆; Φ ≡ (Φ′, f(~x)) ` (rec g. λ(~y). s) (~t) A C, C′, f → g : (aij)

Dependencies:

(Acase)
∆; Φ ` s A C ∆, xi ≤ s; Φ ` ti A Ci for all i

∆; Φ ` case(s, ~x.t) A C, ~C

Congruences:

(Avar) ∆; Φ ` x A · (Ain)
∆; Φ ` t A C

∆; Φ ` inj(t) A C

(Atup)
∆; Φ ` ti A Ci for all i

∆; Φ ` (~t) A ~C
(Api)

∆; Φ ` t A C

∆; Φ ` πj(t) A C

(Alam)
∆; Φ ` t A C

∆; Φ ` λx. t A C
(Aapp)

∆; Φ ` t A C ∆; Φ ` s A C′

∆; Φ ` t s A C, C′

(Afold)
∆; Φ ` t A C

∆; Φ ` fold(t) A C
(Aunfold)

∆; Φ ` t A C

∆; Φ ` unfold(t) A C

Note that only the rules (Aappvar) and (Aapprec) add new calls to the set C.
To calculate the call matrix (aij) they rely on the judgment inferring structural
ordering on terms, which we will describe in the next section.

Read upwards the given rules provide an algorithm for extracting function calls
out of a well-typed term t. As stated, it is non-deterministic since several rules
for application exist. In the following we stipulate that (Aappvar) and (Aapprec)
always override (Aapp). This makes the algorithm deterministic and complete, i.e.,
it will return all function calls to be found in t.

Let us clarify the algorithm by an example. Recall the flattening function and its
implementation in foetus (now stripped of all type annotations):
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flat ≡ rec f. λll. case(unfold(ll),
.nil,
p. (rec g. λ(l, ls). case(unfold(l),

. f ls,

q. cons(π1(q), g (π2(q), ls))))
(π1(p), π2(p)))

The following table gives snapshots of the extraction algorithm in action. We
display the dependencies ∆ and the function stack Φ at the points where calls are
detected.

∆ Φ t call

∆0 ≡ p ≤ unfold(ll) f(ll) (rec g. λ(l, ls) . . .) (π1(p), (π2(p)) f → g

∆0, q ≤ unfold(l) f(ll), g(l, ls) f ls g → f

∆0, q ≤ unfold(l) f(ll), g(l, ls) g (π2(q), ls) g → g

In all three cases the call matrices can be computed from ∆, Φ and the arguments
of the call. How, we will present in the next section.

3.2 Structural Ordering on Terms

The second integral part of the termination checker is a calculus that allows us
to determine whether from a set of dependencies ∆ we can derive a relation p of
the form t < x or t ≤ x. Since its use is restricted to calculate whether a function
argument t is structurally smaller than a function parameter x, the right hand side
will always be a variable.

Definition 3.2 (Structural Ordering on Terms)
Let ∆ be a set of dependencies, t a term and x a variable. The judgment

∆ ` t R x R ∈ {<,≤}

states that “under the dependencies ∆ the term s is (strictly) structurally smaller
than the variable x”. It is defined by the rules given after the following motivation.

As stated in the introduction, we motivate structural ordering mainly by the fact
that a constructor of an inductive datatype increases the order. For example,

l < cons(x, l) ≡ fold(in2(x, l)) (3)

Since every constructor of an inductive datatype involves a fold in the outermost
position, it is sufficient for the other term constructors like pairing and injection to
increase the order weakly. Thus we can form the chain

l ≤ (x, l) ≤ in2(x, l) < fold(in2(x, l))

This term constructor oriented definition is motivated by the observable values of
the programming language. We will come back to it in Sect. 4.2. However, for the
program analysis we perform, we have to consider the term destructors. Consider
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the recursive function

rec f. λx . . . f t . . .

The argument t can be shown to be structurally smaller than the parameter x if it
is derived from x involving only destructors.4 From the perspective of destructors
the inequality (3) looks as follows (l 6= nil):

tail(l) ≡ case(l, .nil, p.π2(p)) < l (4)

This motivates the following rules (R ∈ {<,≤}):

(≤refl) ∆ ` x ≤ x

(Rcase)
∆, yi ≤ s ` ti R x for i=1, ..., n

∆ ` case(s, ~y.t) R x
(Rpi)

∆ ` t R x

∆ ` πj(t) R x

(Rapp)
∆ ` f R x

∆ ` f a R x
(Runf)

∆ ` t ≤ x

∆ ` unfold(t) R x

During the process of function call extraction, whenever we step into a branch t

of a case construct case(s, . . . , y.t, . . .) we introduce a the new variable y which is
constrained by the dependency y ≤ s. In checking ∆ ` t R x, whenever we have
reduced t to a variable y by the destructor rules above, we can use the dependency
of y by transitivity (R ∈ {<,≤}).

(Rtrans)
∆, y ≤ t,∆′ ` t R x

∆, y ≤ t,∆′ ` y R x

The arising calculus is deterministic. The number of rule applications necessary
to decide ∆ ` t R x is limited by the size of ∆, i.e., the sum of the sizes of all terms
in ∆.

Continuing our example from the last section we show that in the call f → g

the second argument to g is smaller than the parameter of f , i.e., p ≤ unfold(ll) `
π2(p) < ll). Furthermore we show for the call g → g that q ≤ unfold(l) ` π2(q) < l

which means that the first argument is decreased.

≤refl
. . . ` ll ≤ ll

<unf
. . . ` unfold(ll) < ll

<trans
p ≤ unfold(ll) ` p < ll

<pi
p ≤ unfold(ll) ` π2(p) < ll

≤refl
. . . ` l ≤ l

<unf
. . . ` unfold(l) < l

<trans
q ≤ unfold(l) ` q < l

<pi
q ≤ unfold(l) ` π2(q) < l

4 For the sake of simplicity we ignore the fact that constructors might be contained in t if they
are eliminated by a larger number of destructors. See Remark 3.3.
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Remark 3.3 (Limitations)
Since we limit the rules to destructors, the termination checker does not accept
recursive calls with constructors in the arguments. A consequence of that is that
we do not recognize termination of functions like the following, which computes the
sum of a list:

fun sum [] = 0

| sum (S n :: l) = S (sum (n :: l))

| sum (0 :: l) = sum l

However, this program can be mechanically transformed into one that terminates
by a lexicographic ordering.

Remark 3.4 (Deciding R)
Given ∆, t and x the calculus can also decide whether ∆ ` t < x or only ∆ ` t ≤ x.
For that purpose we construct a derivation for ∆ ` t R x where R is undetermined.
The first time we invoke the rule for unfold we fix R = <.

Definition 3.5
We write ∆ ` t ? x iff not ∆ ` t R x for R ∈ {<,≤}.

3.3 Call Matrices

The behavior of the arguments in a call f(x1, . . . , xm)→ g(t1, . . . , tn) with depen-
dencies ∆ can be expressed by a matrix A = (aij) ∈ Rn×m, where R = {<,≤, ?}.
We define

aij =


< if ∆ ` ti < xj
≤ if ∆ ` ti ≤ xj , but not ∆ ` ti < xj
? if not ∆ ` ti ≤ xj

The columns of that matrix stand for the input variables of the calling function
and the rows for the arguments of the call. Together with the two operations + and
· defined as in the table below the set R forms a commutative semi-ring with zero
? and unit ≤.

+ < ≤ ?

< < < <

≤ < ≤ ≤
? < ≤ ?

· < ≤ ?

< < < ?
≤ < ≤ ?
? ? ? ?

The operation + can be understood as “combining parallel information about a
relation”. For instance, if we have a ? y and a < y we have a (? + <) y and that
simplifies to a < y. The operation · however is “serial combination”, for example,
a < y and y ≤ z can be combined into a (< ·≤) z, simplified: a < z. The element ? is
neutral regarding + because it provides no new information, whereas < is dominant
because it is the strongest information. Regarding · the relation ≤ is neutral and ?
is dominant because it “destroys” all information.

Since R is a semi-ring, we can define multiplication on matrices over R which



Structural Recursion 19

allows us to compute the size change information of a combined call in the following
sense: Given two calls

f(x1, . . . , xl) → g(y1, . . . , ym) : (aij) ∈ Rm×l, and
g(y1, . . . , ym) → h(z1, . . . , zn) : (bij) ∈ Rn×m,

the argument behavior of the indirect call f → g → h is captured by the matrix
product

(cij) = (bij)(aij) =

(
m∑
k=1

bikakj

)
∈ Rn×l.

Definition 3.6 (Call Matrix )
A call matrix is a matrix over R with no more than one element different from “?”
per row.

CM(n,m) := {(aij) ∈ Rn×m : ∀i∀j∀k 6= j(aij = ? or aik = ?)}

Remark 3.7
The reason we define call matrices this way is these are the only ones foetus produces
by function call extraction. By definition of the structural ordering on terms a call
argument can only depend on one function parameter.

For the three calls in our example the call matrices are

f → g :
(
<

<

)
g → g :

(
< ?
? ≤

)
g → f :

(
? ≤

)
The next proposition ensures that all matrices foetus will have to deal with are call
matrices.

Proposition 3.8 (Call Matrix Multiplication)
Multiplication on matrices induces a multiplication on call matrices

· : CM(n,m)× CM(m, l)→ CM(n, l)

This operation is well defined.

Proof
Let A = (aij) ∈ CM(n,m), B = (bij) ∈ CM(m, l), AB = C = (cij) ∈ Rn×l and
k(i) the index of the element of the ith row of A that is different from “?” (or 1, if
no such element exists). Then we have with the rules in semi-ring R

cij =
m∑
k=1

aikbkj = ai,k(i)bk(i),j

Now consider the ith row of C:

ci = (cij)1≤j≤l = (ai,k(i)bk(i),j)1≤j≤l

Because at most one bk(i),j is different from “?”, at most one element of ci is different
from “?”. Therefore C ∈ CM(n, l).
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3.4 Call Graphs

In the following we give a formal treatment of call graphs together with a graph
completion algorithm which is a central part of the termination checker.

The nodes of call graphs are function identifiers with a given arity (the names of
the function parameters are no longer of relevance). For each i ∈ N we assume an
infinite supply F (i) = {f (i), g(i), h(i), ...} of identifiers for functions of arity i. The
edges of a call graph are taken from the set of calls:

Calls = {(f (n), g(m), A) : f (n) ∈ F (n), g(m) ∈ F (m), A ∈ CM(m,n)}.

Since calls contain (besides the call matrix A) the source (f (n)) and the target
(g(m)) function identifier with arities, we can simply identify a call graph with its
edges:

Definition 3.9 (Call Graph)
A call graph is a finite set of calls C ⊆ Calls.

By the following operation, two consecutive calls can be put together.

Definition 3.10 (Call Combination)
The partial operation combination of calls is given by

◦ : Calls× Calls→ Calls(
(g(m), h(l), B), (f (n), g(m), A)

)
7→ (f (n), h(l), BA).

That is, if g calls h with call matrix B and f calls g with call matrix A, then f

indirectly calls h with call matrix BA. The operation ◦ cannot be applied to calls
that have no “common function” like g, therefore it is partial. Call combination can
be lifted to sets of calls

◦ : P(Calls)× P(Calls)→ P(Calls)

(C, C′) 7→ {c ◦Calls c
′ : c ∈ C, c′ ∈ C′, (c, c′) ∈ Dom(◦Calls)}

Here we combine each call in C with each call in C′ to which ◦Calls is applicable
and form a set of the combined calls. Of course, ◦P(Calls) is a total and monotonic
function. For n ≥ 1,

Cn := C ◦ . . . ◦ C︸ ︷︷ ︸
n

denotes the set of calls which are combinations of exactly n calls in C.
To decide whether a call graph is good in the sense that it witnesses the termina-

tion of all involved functions, we complete it, i.e., include all indirect calls, and then
check whether all reflexive calls of a function to itself are decreasing. Completeness
can be defined by means of combination operation ◦:

Definition 3.11 (Complete Call Graphs)
A call graph C is complete if C◦C ⊆ C. The completion C∗ is the smallest supergraph
of C that is complete.

The completion of a graph C can be computed by the following saturation algorithm.
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Theorem 3.12 (Completion Algorithm)
Let C be a call graph and (Cn)n∈N the sequence of call sets defined recursively as
follows:

C1 := C
Cn+1 := Cn ∪ (Cn ◦ C)

Then there exists an n ≥ 1 such that Cn = C∗.

Proof
Since C has a finite number of nodes and the number of distinct calls between these
nodes is finite as well, the Ci cannot grow endlessly and there is an n ≥ 1 s.th.
Ci = Cn for all i ≥ n. This implies Cn ◦ C ⊆ Cn+1 ⊆ Cn which iteratively gives us
Cn ◦ Ci ⊆ Cn for all i ≥ 1. Because

Cn =
⋃

1≤i≤n

Ci,

we can infer Cn ◦ Cn ⊆ Cn. Thus, Cn is complete, and it remains to show minimality
to conclude the proof.

Let C′ be any complete supergraph of C. Then C ◦ C ⊆ C′ ◦ C′ ⊆ C′, and iterating
this result, we obtain Ci ⊆ C′ for all i ≥ 1. Hence, by the laws of set union, Cn ⊆ C′
which shows that Cn = C∗.

Below we give the completion of our example call graph. Added calls are given
by dotted arrows and labelled by call matrices with square brackets.

flat[ < ] 77

(
<
<

)
!!
aux

(
< ·
· ≤

)
gg [

? <
? <

]gg(
· ≤

)aa

[ · < ]

aa

3.5 Lexicographic Orderings

After completing the call graph, foetus checks whether each reflexive call of a func-
tion f to itself is decreasing the size of the arguments. For this, lexicographic or-
derings are considered and the necessary order of the arguments is computed. In
the following we provide a formal description.

Definition 3.13
Given C a complete call graph and f a function of arity n. We call

Cf := {∆(A) : (f, f,A) ∈ C} ⊆ Rn

the recursion behavior of function f . (∆ takes the diagonal of square matrices).

Each tuple in this set represents one possible recursive call of f and how the
orders of all parameters are altered in this call. The diagonals of the call matrices
are taken because we want to know only how a parameter relates to its old value
in the last call to f .
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In the following we identify lexicographic orderings on parameters with permuta-
tions π ∈ Sn of the arguments. We write π = [k0 . . . kn−1] ∈ Sn for the permutation
π : i 7→ ki. Often not all of the parameters are relevant for termination; these are
not listed in the lexicographic ordering and can appear in the permutation in any
sequence. We write π = [k0 . . . km−1] (m < n) for an arbitrary representative of the
subset {π | π(i) = ki, i = 0, . . . ,m− 1} ⊂ Sn.

For the following definition we introduce these abbreviations:

π′i = [k′0 . . . k
′
i−1k

′
i+1 . . . k

′
n−1] ∈ Sn−1 given π = [k0 . . . kn−1] ∈ Sn

where k′j =

{
kj if kj < ki
kj − 1 else

r′i = (k0, . . . , ki−1, ki+1, . . . , kn−1) ∈ Rn−1 given r = (k0, . . . , kn−1) ∈ Rn

B′i = {r′i | r ∈ B ∧ ri 6= <} ⊆ Rn−1 given B ⊆ Rn

The tuple r′i is the result of removing the ith component of r. B′i is the set of
which results from removing all relation tuples containing “<” in the ith position
and shortening the remaining tuples by the ith component.

Definition 3.14
Let B ⊆ Rn be a recursion behavior and π ∈ Sn a permutation. We define the
relation “π is a lexicographic ordering on B” (π LexOrd B) inductively as follows:

π LexOrd ∅

∃r ∈ B. rπ(0) = < ∀r ∈ B. rπ(0) 6= ? π′0 LexOrd B′π(0)

π LexOrd B

Note that this definition gives a direct algorithm for computing a lexicographic
ordering π for a recursion behavior B: First, find π(0) such that rπ(0) = < for one
r ∈ B but rπ(0) 6= ? for all r ∈ B. Then, continue with π′0 and B′π(0).

Definition 3.15
Let f be a function of arity n in the call graph C. We say π ∈ Sn is a termination
ordering for f iff π is a lexicographic ordering on the recursion behavior Cf of f :

π TermOrd f :⇐⇒ π LexOrd Cf

In our example flat has recursion behavior {(<)} and termination ordering [0] and
aux has recursion behavior {(<,≤), (?,≤)} and termination ordering [10].

4 An Impredicative Semantic Analysis

Having presented an algorithm to check whether given terms are structurally recur-
sive or not, we want to know whether we can rely on the output of the checker. Thus
we have to show that our definition of structural recursion is sound. This involves
mutually recursive functions with lexicographic extensions of the structural order-
ing, generalized inductive types and higher order functions. Consider the evaluation
of an application of a structurally recursive function f :

f(u0) ; f(u1) ; f(u2) ; . . .
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This means that during evaluation of f(u0) we have to evaluate f(u1), which again
requires evaluation of f(u2) etc. Since f is structurally recursive, we know that

u0 > u1 > u2 > . . .

where “>” is the structural ordering. Surely the evaluation of f(u0) terminates,
if the domain of f is wellfounded, that is, there are no infinite descending chains
u0 > u1 > u2 > . . ..

In the following we will prove that in our system all domains are wellfounded. To
this end, we first define a semantics for all types (Sect. 4.1). On this semantics we
define the structural ordering and show that it is wellfounded (Sect. 4.2). We will
extend this ordering lexicographically (Sect. 4.3). Finally we show the soundness of
structural recursion by induction over well typed terms (Sect. 4.4).

4.1 Interpretation of the Types

We give a semantics of the types in foetus that captures the “good” values, i.e.,
those values that ensure termination. In this sense f will be a good function value
if it evaluates to a good result if applied to a good argument. Since we use Knaster-
Tarski to define the semantics of µ-types, we must prove monotonicity along its
inductive definition.

Definition 4.1 (Semantics)
Given a type σ ∈ Ty( ~X) and closed types τ1, . . . , τn (where n = | ~X|) we define the
semantics of σ

[[σ]] : P (Valτ1)× . . .× P (Valτn)→ P
(

Valσ(~τ)
)

by induction over σ and simultaneously prove monotonicity of [[σ]]: I.e., Vi ⊆ Wi

for i = 1, . . . , n (where Vi,Wi ⊆ Valτi) implies

[[σ]](~V ) ⊆ [[σ]]( ~W )

(Var) [[Xi]](~V ) := Vi

Vi ⊆Wi by assumption.

(Sum) [[Σ~σ]](~V ) :=
⋃n
j=1{inj(v) : v ∈ [[σj ]](~V )}

By induction hypothesis {inj(v) : v ∈ [[σj ]](~V )} ⊆ {inj(v) : v ∈
[[σj ]]( ~W )} and thus by monotonicity of “∪”

[[Σ~σ]](~V ) ⊆ [[Σ~σ]]( ~W )

(Prod) [[Π~σ]](~V ) := {(~v) : vi ∈ [[σi]](~V ) for 1 ≤ i ≤ n}

[[Π~σ]](~V ) ⊆ [[Π~σ]]( ~W ) by ind.hyp. and monotonicity of the cartesian
product.

(Arr) [[σ → τ( ~X)]](~V ) := { f ∈ Valσ→τ(~τ) :
∀u ∈ [[σ]].∃v ∈ [[τ( ~X)]](~V ).f@u ⇓ v}
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Assume f ∈ [[σ → τ ]](~V ) and u ∈ [[σ]]. By definition there is a value
v ∈ [[τ ]](~V ) with f@u ⇓ v. By ind.hyp. v ∈ [[τ ]]( ~W ) and hence f ∈ [[σ →
τ ]]( ~W ).

(Mu) Since we know that [[σ( ~X, Y )]](~V ,−) is monotone we can use the the-
orem of Knaster and Tarski to define [[µY.σ( ~X, Y )]](~V ) as the smallest
set closed under the rule

v ∈ [[σ]](~V , [[µY.σ]](~V ))

fold v ∈ [[µY.σ]](~V )

For the monotonicity we must prove that [[µY.σ]]( ~W ) is closed under this
rule: Assume v ∈ [[σ]](~V , [[µY.σ]]( ~W )). Using the ind.hyp. monotonicity
of [[σ]] entails v ∈ [[σ]]( ~W, [[µY.σ]]( ~W )), hence fold v ∈ [[µY.σ]]( ~W ).

Proposition 4.2 (Substitution property)

[[σ( ~X, Y, ~Z)]](~V , [[τ ]], ~W ) = [[σ( ~X, τ, ~Z)]](~V , ~W )

Proof
By induction on σ. The cases (Sum), (Prod) and (Arr) are immediately shown by
the induction hypothesis, so let us have a look at the remaining two:

(Var) [[Y ]](~V , [[τ ]], ~W ) = [[τ ]] = [[Y [Y := τ ]]](~V , ~W )
(Mu) “⊆” We must show that the fixed-point on the right side is closed under

the rule defining the one on the left (we omit ~X, ~Z, ~V and ~W ):

v ∈ [[σ(Y, Z)]]([[τ ]], [[µZ.σ(τ, Z)]])

fold v ∈ [[µZ.σ(τ, Z)]]

By ind.hyp. we get from the assumption v ∈ [[σ(τ, Z)]]([[µZ.σ(τ, Z)]])
which infers the conclusion.
“⊇” analogously

Corollary 4.3 (Subset property)
Given Vi ⊆ [[τi]]. Then

[[σ( ~X)]](~V ) ⊆ [[σ(~τ)]]

Proof
By iterated application of proposition 4.2 and monotonicity of [[σ]].

4.2 Wellfoundedness of the Structural Ordering on Semantic Values

We now define a transitive structural (pre-)ordering < on semantic values. 5 The
basic idea is that a value v is structurally smaller than a value w if the representing
tree of v is a subtree of w. In our approach the order of a value is only decreased

5 Note that this is different from the relations <,≤ on terms defined in Sect 3 which formalize
the behaviour of the termination checker.
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(<) by the destructor (unfold), whereas case analysis, projection and application
keep it on the same level (≤). This is because we need the ordering only to show
that a function f ∈ Valσ→τ terminates on an input v ∈ [[σ]] if it terminates on
all w ∈ [[σ]] that are structurally smaller than v, i.e., w < v. Thus we only need
to compare values of the same type σ. Since injection (inj), pairing and building
functions by λ enlarge the type and only folding shrinks the type, we need at least
one folding step to obtain a greater value v of the same type σ out of a given value
w. Hence it is sufficient that unfolding decreases the order strictly.

Definition 4.4 (Codomain)
We define the codomain of a function f ∈ [[σ → τ( ~X)]](~V ) as

CoDom(f) :=
{
v ∈ [[τ( ~X)]](~V ) : ∃u ∈ [[σ]]. f@u ⇓ v

}
Definition 4.5 (Structural ordering)
We define a pair of mutually dependent families of relations <σ,τ ,≤σ,τ⊆ [[σ]]× [[τ ]]
inductively as follows:

(≤refl) v ≤σ,σ v (Rin)
w Rρ,σj v

R ∈ {<,≤}
w Rρ,Σ~σ inj(v)

(Rtup)
w Rρ,σj vj for some j ∈ {1 . . . n}

R ∈ {<,≤}
w Rρ,Π~σ (~v)

(Rarr)
w Rρ,τ v for some v ∈ CoDom(f)

R ∈ {<,≤}
w Rρ,σ→τ f

(<fold)
w ≤σ,τ(µX.τ) v

w <σ,µX.τ fold(v)
(≤fold)

w ≤σ,τ(µX.τ) v

w ≤σ,µX.τ fold(v)

Notation. Since the indexes σ and τ of <σ,τ and ≤σ,τ are determined in most
expressions, we omit them for better readability.

Proposition 4.6 (Properties)
The relations < and ≤ are transitive, ≤ reflexive and < is contained in ≤, i.e.,

(≤<)
w <ρ,τ v

w ≤ρ,τ v

Proof
We show that w ≤ v is closed under the rules defining w < v: In case of (<fold) we
must show w ≤ fold v from the assumption w ≤ v: immediately by (≤fold); in all
other cases we can apply the respective ≤-rule on the induction hypothesis.

Only after having shown the theorem 4.8 we can verify that our relation is an-
tisymmetric. However, we shall use the term ordering in anticipation of this fact.
The relation < captures our notion of “smaller values” and allows us to prove
wellfoundedness of the computation trees of all values.
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We want to show that every set of semantic values is wellfounded which is given
if every value is accessible. Therefore we first define the sets of accessible values
w.r.t. < and then we show that each value is in the accessible set of its type.

Definition 4.7 (Accessibility)
Given a family of relations

Rσ,τ ⊆ [[σ]]× [[τ ]]

indexed over closed types σ, τ ∈ Ty we define the family of accessible sets AccτR ⊆
[[τ ]] w.r.t. R inductively as follows.

(acc)
∀σ,w ∈ [[σ]]. w Rσ,τ v → w ∈ AccσR

v ∈ AccτR
Since there is only one introduction rule for AccτR, we can invert it and obtain

the destructor

(acc−1)
v ∈ AccτR w Rσ,τ v

w ∈ AccσR
Furthermore the definition yields a wellfounded induction principle: Let Pσ be a
family of predicates over values of type σ.

(accind)
∀v ∈ [[σ]]. (∀ρ,w ∈ [[ρ]]. w R v → P ρ(w))→ Pσ(v)

∀v ∈ AccσR. P
σ(v)

Notation. We abbreviate Accτ< by Accτ . For lists ~ρ of types we use the abbreviation
Acc~ρ := Accρ1 , . . . ,Accρn .

Now we can show that all semantic values are accessible. It would be sufficient
to know that all semantic values of closed types [[σ]] are accessible. But to prove it
for µ-types we have to show the stronger proposition that also the semantic values
of open types are accessible, where we insert sets of accessible values for the free
type variables.

Theorem 4.8 (All semantic values are accessible)
Given a type σ ∈ Ty( ~X) and a closed type ρi for each free variable Xi in σ the
following relation holds

[[σ( ~X)]](Acc~ρ) ⊆ Accσ(~ρ)

We prove this theorem by the fact that the generation of semantic values preserves
accessibility (see lemma 4.11). But to show this property we need accessibility of
less-equal values (lemma 4.10), which again follows from lemma 4.9.

Lemma 4.9 (Destructors for Acc)
If a value is accessible, then component values are accessible as well:

(accout)
inj(v) ∈ AccΣ~σ

v ∈ Accσj
(accpi)

(~v) ∈ AccΠ~σ

vi ∈ Accσi

(accres)
f ∈ Accσ→τ

CoDom(f) ⊆ Accτ
(accunf)

fold(v) ∈ AccµX.σ

v ∈ Accσ(µX.σ)
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Proof
(accout) Under the assumption (1) inj(v) ∈ AccΣ~σ we have to show v ∈ Accσj ,

what by (acc) refines to w < v → w ∈ Accρ. The assumption (2) w < v

entails w < inj(v) (by (<in)) and hence using (acc−1) on (1) we obtain
w ∈ Accρ.

(accpi) analogously using (<tup)
(accres) We have to show v ∈ CoDom(f) → v ∈ Accτ . Assume v ∈ CoDom(f)

and w < v. By (<arr) we get w < f and again (acc−1) proves w ∈ Accρ,
hence v ∈ Accτ .

(accunf) To prove accessibility of v we have to show w ∈ Accρ under the as-
sumption w < v. By (≤<) and (<fold) we get w < fold(v), and since
fold(v) is accessible by the premise, w ∈ Accρ by (acc−1).

Lemma 4.10 (Accessibility of less-equal values)
The values less than or equal to an accessible value are accessible themselves.

(acc≤)
v ∈ Accτ w ≤ v

w ∈ Accσ

Proof
We show that the relation w Rτ,σ v :⇐⇒ v ∈ Accσ → w ∈ Accτ is closed under the
rules defining w ≤ v:

(≤refl) v ∈ Accσ → v ∈ Accσ by assumption.
(≤in) From the ind.hyp. v ∈ Accσj → w ∈ Accρ we have to show

inj(v) ∈ AccΣ~σ → w ∈ Accρ

This follows from inj(v) ∈ AccΣ~σ → v ∈ Accσ (accout).

In the same way we treat the remaining rules (≤pi), (≤arr) and (≤fold), using the
propositions (accpi), (accres) and (accunf).

Lemma 4.11 (Constructors for Acc)
A value is accessible if its components are accessible.

(accin)
v ∈ Accσj

inj(v) ∈ AccΣ~σ
(acctup)

vi ∈ Accσi for all 1 ≤ i ≤ n

(~v) ∈ AccΠ~σ

(accarr)
f ∈ [[σ→τ ]] CoDom(f) ⊆ Accτ

f ∈ Accσ→τ
(accfold)

v ∈ Accσ(µX.σ)

fold(v) ∈ AccµX.σ

Proof
For all propositions our goal is of the form [−] ∈ Acc−, what we refine to w <

[−]→ w ∈ Accρ. This we prove by case analysis on w < [−].

(accin) w < inj(v) can only be generated by (<in) from w < v. By (acc−1) we
get w ∈ Accρ.
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(acctup) For w < (~v) there must be a j ∈ {1, . . . , n} s.th. w < vj , and since
vj ∈ Accσj , w ∈ Accρ holds.

(accarr) w < f is generated by (<arr) from w < v for a v ∈ CoDom(f). Since
by assumption v ∈ Accτ , we have w ∈ Accρ.

(accfold) For w < fold(v) the case (<fold) matches: w ≤ v. By (acc≤) we get
w ∈ Accρ.

Proof of Theorem 4.8
We show [[σ( ~X)]](Acc~ρ) ⊆ Accσ(~ρ) by induction over σ( ~X).

(Var) [[Xj ]](Acc~ρ) = Accρj = AccXj [
~X:=~ρ]

(Sum) Be v ∈ [[Σ~σ]](Acc~ρ). Then v = inj(v′) for a suitable j ∈ {1, . . . , n} and
v′ ∈ [[σj ]](Acc~ρ). By ind.hyp. we have v′ ∈ Accσj(~ρ), hence by (accin)
v ∈ AccΣ~σ(~ρ).

(Prod) Be (~v) ∈ [[Π~σ]](Acc~ρ). Since vi ∈ [[σi]](Acc~ρ) for all 1 ≤ i ≤ n, by
ind.hyp. vi ∈ Accσi(~ρ), hence by (acctup) (~v) ∈ AccΠ~σ(~ρ).

(Arr) We assume f ∈ [[σ → τ( ~X)]](Acc~ρ). Since CoDom(f) ⊆ [[τ( ~X)]](Acc~ρ)
by definition, the ind.hyp. entails CoDom(f) ⊆ Accτ(~ρ). Corollary 4.3
infers f ∈ [[σ → τ(~ρ)]] and hence by (accarr) f ∈ Accσ→τ(~ρ).

(Mu) We prove that AccµY.σ(~ρ,Y ) is closed under the rule that is defining
[[µY.σ( ~X, Y )]](Acc~ρ), i.e., we show

v ∈ [[σ( ~X, Y )]](Acc~ρ,AccµY.σ(~ρ,Y ))

fold v ∈ AccµY.σ(~ρ,Y )

Applying the ind.hyp. on the premise entails v ∈ Accσ(~ρ,µY.σ(~ρ,Y )), and
(accfold) infers the conclusion.

Corollary 4.12
The semantic values coincide with the accessible ones.

[[σ( ~X)]](Acc~ρ) = Accσ(~ρ)

Proof
“⊆” by the theorem, “⊇”: Since for closed types ρ from the lemma we immediately
get [[ρ]] = Accρ, we have by proposition 4.2 Accσ(~ρ) = [[σ(~ρ)]] = [[σ( ~X)]]([[~ρ]]) =
[[σ( ~X)]](Acc~ρ).

4.3 Wellfoundedness of the Lexicographic Extension

Since the termination checker allows descent over lexicographic orderings in recur-
sive functions, we have to define it on values and prove that it is wellfounded as
well. When denoting tuples in vector notation, we allow ourselves to omit the en-
closing parentheses, i.e., for (~v) ∈ [[Π~σ]] we write just ~v. Furthermore we use the
abbreviations for shortened vectors and permutations as defined in Sect. 3.

Definition 4.13 (Lexicographic Ordering)
Given closed types ~σ = σ1, . . . , σn and a permutation π ∈ Sn we inductively define
≺πΠ~σ ⊆ [[Π~σ]]× [[Π~σ]] as follows:
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(lex<)
vπ(0) < wπ(0)

~v ≺πΠ~σ ~w
(lex≤)

vπ(0) ≤ wπ(0) ~v′π(0) ≺
π′0
Π~σ′

π(0)
~w′π(0)

~v ≺πΠ~σ ~w

Proposition 4.14 (Wellfoundedness of the Lexicographic Ordering)
Given closed types ~σ = σ1, . . . , σn the following relation holds:

[[Π~σ]] ⊆ AccΠ~σ
≺

To show this proposition we need the following lemma:

Lemma 4.15

~v ∈ Acc≺ wj ≤ vj wi = vi for all i 6= j

~w ∈ Acc≺
Proof
By case analysis and transitivity of the structural ordering show ~u ≺ ~w → ~u ≺ ~v

for all ~u.

Proof of Prop. 4.14
By induction on n. We make extensive use of the wellfounded induction principle.

n = 0 We have to show () ∈ Acc1
≺, what refines to

∀~w ≺ (). ~w ∈ Acc≺

This is true since no case matches for ~w ≺ ().
n→n+1 Or goal is

vπ(0) ∈ [[σπ(0)]]→ ~v′π(0) ∈ [[~σ′π(0)]]→ ~v ∈ AccΠ~σ
≺π

Using theorem 4.8 we can replace [[σπ(0)]] by Accσπ(0) and apply well-
founded induction on it. This gives us the hypothesis

∀~w ∈ [[Πσ]].wπ(0) < vπ(0) → ~w ∈ Acc≺ (5)

to show ~v′π(0) ∈ [[~σ′π(0)]]→ ~v ∈ Acc≺. Using the ind.hyp. we can replace

[[~σ′π(0)]] by Acc
Π~σ′π(0)
≺ and apply well-founded induction, obtaining

∀~w ∈ [[Πσ]].wπ(0) = vπ(0) → ~w′π(0) ≺ ~v
′
π(0) → ~w ∈ Acc≺ (6)

to show ~v ∈ Acc≺. For this we have to prove ~w ≺ ~v → ~w ∈ Acc≺. Case
analysis on the generation of ~w ≺ ~v:
Case wπ(0) < vπ(0) (lex<): According to (5) ~w ∈ Acc≺.
Case wπ(0) ≤ vπ(0), ~w

′
π(0) ≺ ~v′π(0) (lex≤): Hypothesis (6) entails ~u ∈

Acc≺, where uπ(0) = vπ(0) and ui = wi for i 6= π(0). Following lemma
4.15 ~w ∈ Acc≺.

Corollary 4.16
With regard to the lexicographic ordering, the good value tuples are exactly the
accessible ones.

[[Π~σ]] = AccΠ~σ
≺
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4.4 Soundness of Structural Recursion

To show that our system is sound, we will prove normalization where we restrict re-
cursive terms to structurally recursive ones. Restricting environments to good ones,
i.e., to those containing only semantic values, we show that each term normalizes
with regard to the operational semantics defined in Sect. 2.

To this end, we will define good terms TM, good environments [[Γ]] and good
closures. After stating that structurally recursive functions terminate, we can do
the normalization proof mechanically.

Definition 4.17 (Good Environments)
The subset of environments of semantic values over context Γ = xσ1

1 , . . . , xσnn is
naturally defined as

[[Γ]] = {x1 = v1, . . . , xn = vn : vi ∈ [[σi]]} ⊆ Val(Γ)

Definition 4.18
We say a closure c ∈ Clσ terminates c ⇓ iff it evaluates to some value v ∈ [[σ]]:

c ⇓ :⇐⇒ ∃v ∈ [[σ]]. c ⇓ v

Definition 4.19 (Structural Recursiveness)
We define the set of structurally recursive terms SRσ→τ [Γ] of type σ → τ over
context Γ as the recursive terms that applied to any value v terminate in any good
environment under the condition that they terminate for all structurally smaller
values w ≺ v:

SRσ→τ [Γ] := {rec g. t ∈ Tmσ→τ [Γ] : ∀e ∈ [[Γ]], v ∈ [[σ]].

(∀w ∈ [[σ]]. w ≺ v → 〈rec g. t; e〉@w ⇓)→ 〈rec g. t; e〉@v ⇓}

Proposition 4.20 (Structurally recursive functions terminate)
Let rec g. t ∈ SRσ→τ and e ∈ [[Γ]]. Then

〈rec g. t; e〉 ∈ [[σ → τ ]].

Proof
Assuming e ∈ [[Γ]] we expand the first premise to

∀v ∈ [[σ]]. (∀w ∈ [[σ]] w ≺ v → 〈rec g. t; e〉@w ⇓)→ 〈rec g. t; e〉@v ⇓

Applying wellfounded induction with the family of predicates P ρ ⊆ [[ρ]] (ρ ∈ Ty)
defined as

P ρ(v) :=
{
〈rec g. t; e〉@v ⇓ if ρ = σ

true else

yields ∀v ∈ Accσ≺. 〈rec g. t; e〉@v ⇓, which is equivalent to our claim since all values
are accessible (Accσ≺ = [[σ]], see corollary 4.16).

With SRσ→τ we have given a semantical criterion for structural recursion. This
can be replaced by syntactical criteria for certain classes of structurally recursive
functions. In (Abel, 2000), we have provided a criterion that captures non-mutually
recursive functions which terminate by lexicographic extensions of the structural
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ordering. Of course, we were required to give a proof that all such syntactically
structurally recursive functions are also semantically structurally recursive.

Definition 4.21 (Good Terms)
We inductively define the set of good terms TMσ[Γ] ⊂ Tmσ[Γ] of type σ over
context Γ, i.e., the terms that ensure termination. These rules are almost identical
to the original term formation rules (see Def. 2.2), we only change Tm to TM and
label the rule in CAPITAL letters, e.g.

(TUP)
ti ∈ TMσ

i [Γ] for 1 ≤ i ≤ n

(t1, . . . , tn) ∈ TMΠ~σ[Γ]

Only the rule (rec) is replaced by

(REC)
t ∈ TMσ→τ [Γ, gσ→τ ] rec g. t ∈ SRσ→τ [Γ]

rec g. t ∈ TMσ→τ [Γ]

Definition 4.22 (Good closures)
Consequently the set of good closures CLτ of type τ is defined as

CLτ := {〈t; e〉 : Γ ∈ Cxt, t ∈ TMτ [Γ], e ∈ [[Γ]]}
∪ {f@u : f ∈ [[σ → τ ]], u ∈ [[σ]]}

Again CLτ ⊆ Clτ , hence we can use our operational semantics ⇓ on good closures
as well. Now we are ready to show normalization.

Theorem 4.23 (Normalization)
Let t ∈ TMσ[Γ] be a good term of type σ over context Γ and e ∈ [[Γ]] a good
environment. Then there exists a v ∈ [[σ]] such that

〈t; e〉 ⇓ v.

Proof
By induction on t ∈ TMσ[Γ]. We overload the definition of eΓ and now mean
e ∈ [[Γ]].

(VAR) Since eΓ, xσ=v, dΓ′ ∈ [[Γ, xσ,Γ′]] by (opvar) we prove

〈x[Γ, xσΓ′]; e, x = v, d〉 ⇓ v ∈ [[σ]]

(IN) By ind.hyp. 〈tσj ; e〉 ⇓ v ∈ [[σj ]], thus by (opin)

〈inj(t)Σ~σ; e〉 ⇓ inj(v) ∈ [[Σ~σ]]

(CASE) We must show

〈case(uΣ~σ[Γ], x1. t
ρ
1[Γ, xσ1

1 ], . . . , xn. tρn[Γ, xσnn ]); e〉 ⇓ v ∈ [[ρ]]

By ind.hyp. we have 〈uΣ~σ[Γ]; e〉 ⇓ w′ ∈ [[Σ~σ]]. Now w′ must be of form
inj(wσj ): By ind.hyp. we get 〈tρj [Γ, x

σj
j ]; e, xj = w〉 ⇓ v ∈ [[ρ]], hence by

(opcase) we prove our claim.
(TUP) Here we show

〈(tσ1
1 , . . . , tσnn ); e〉 ⇓
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By ind.hyp. we have 〈ti; e〉 ⇓ vi ∈ [[σi]] for all 1 ≤ i ≤ n hence by
(optup) 〈(~t); e〉 ⇓ (~v) which is in [[Π~σ]] by definition.

(PI) By ind.hyp. 〈tΠ~σ; e〉 ⇓ (~v) ∈ [[Π~σ]], hence by (oppi)

〈πj(t); e〉 ⇓ vj ∈ [[σ]]

for any 1 ≤ j ≤ n.
(LAM) By (oplam) 〈λxσ.tτ ; eΓ〉 ⇓ 〈λx.t; e〉. We have to show

〈λx.t; e〉 ∈ [[σ → τ ]]

i.e. 〈λx.t; e〉@u ⇓ for all u ∈ [[σ]]. Refinement by (opappvl) reduces our
goal to 〈t; e, x = u〉 ⇓ which we get by the induction hypothesis.

(REC) Here by (oprec) we have to show

〈rec g. t; e〉 ∈ [[σ → τ ]]

which is true by lemma 4.20 since rec g. t ∈ SRσ→τ by definition.
(APP) By ind.hyp. we have 〈tσ→τ ; e〉 ⇓ f ∈ [[σ → τ ]] and 〈s; e〉 ⇓ u ∈ [[σ]]

therefore f@u ⇓ and futhermore by (opapp)

〈t s; e〉 ⇓

(FOLD) By ind.hyp. 〈t; e〉 ⇓ v ∈ [[σ(µX.σ)]], hence by (opfold)

〈fold(t); e〉 ⇓ fold(v)

which is in [[µX.σ]] by definition.
(UNF) By ind.hyp. 〈t; e〉 ⇓ fold(v) ∈ [[µX.σ]], hence

〈unfold(t); e〉 ⇓ v

by (opunfold), which is in [[σ(µX.σ)]].

Note that we have also shown normalization for mutual recursive terms (as for
instance our example flat): They are handled by case (REC). Since in all terms
accepted by termination checker all recursive subterms are in SR, they are “good”
by Proposition 4.20.

5 A Predicative Analysis using Set Based Operators

In definition 4.1 we used the theorem of Knaster-Tarski to construct the interpre-
tation of µ-Types. In this section we shall show that impredicative reasoning is not
necessary and can be replaced by strictly positive inductive definitions.

5.1 On Inductive Definitions

A set µ ⊆ U is considered to be inductively defined if it is the fixpoint of some
monotone operator Φ : P(U) → P(U). According to the Knaster-Tarski theorem
every such operator has a such a least fixpoint, defined by

µ =
⋂
{P ⊆ U | Φ(P ) ⊆ P}
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This fixpoint satisfies the following two rules

(intro)
v ∈ Φ(µ)

v ∈ µ
(elim)

v ∈ µ Φ(V ) ⊆ V

v ∈ V
The first rule expresses that µ is a prefixpoint (Φ(µ) ⊆ µ). The second implies that
µ ⊆ Φ(µ), and hence that µ is a fixpoint; but the second rule also implies that µ is
least, i.e. a subset of every other fixpoint.

The definition above is said to be impredicative, since it is defining a set, µ, by
reference to the totality of subsets of U , of which µ itself is a member. There is a
second, predicative, way of defining the least fixpoint, from the bottom up. Define
µ0 = ∅, µα+1 = Φ(µα) and µlim γ =

⋃
{µα | α ∈ γ}. Then

µ =
⋃
{µα | α ∈ Ω}

where Ω is the least uncountable ordinal.
We are calling predicative those theories of inductive definitions that are based

on this latter conception of the construction of µ, which is still sufficient to justify
the two rules above. In such a theory, one needs a syntactic means of ensuring that
the operator Φ is monotone. Classically, it is enough to ensure that Φ is positive,
but constructively, it is more desirable to have a strictly positive operator. In fact,
from a constructive point of view, it is desirable to have Φ take the following very
simple form:

Φ(V ) = {v ∈ P : ∀w. w R v → w ∈ V },
where P is a set and R some binary relation. In this case, we say that the fixpoint
µ of Φ is accessibility inductively defined; it is interpreted as the accessible (or well-
founded) part of R in P . Accessibility inductive definitions are deterministic, that
is, for each v ∈ µ there is a unique well-founded deduction tree which shows how v

enters the inductively defined set µ. We quote a discussion on inductive definitions
from (Buchholz et al., 1981), p. 8:

Accessibility inductive definitions enjoy a privileged position in our informal conception
of the subject. We have a direct picture of how the members of such i.d. sets are generated,
which leads us immediately to recognize the ID axioms [i.e. the fixpoint introduction and
elimination rule] for them as correct. This is the picture “from below”. Furthermore, we can
carry out definition by recursion on accessibility i.d. sets. However the axioms for non-
accessibility inductive definitions either need to be justified by impredicative principles
“from above” (for the least set satisfying given closure conditions) or require a prior
classical theory of ordinals.

In this section, we show that we can replace the positive fixpoint definition of
the previous section by an accessibility definition, giving the construction a clear
predicative character.

An example is the operator defining accessible sets given in Sect. 4.2 (simplified
for clarity):

ΦAccρ(V ) := {v ∈ [[ρ]] : ∀w < v. w ∈ V }
The fixpoint of ΦAccρ is the set Accρ of accessible values of type ρ. The variable V
appears never on the right hand side of an arrow and thus the operator is strictly
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positive. In contrast, the operator Φ[[µX.σ]] given above is not strictly positive since
the variable V appears as an argument of [[σ]]. If [[σ]](V ) was just a notational
definition, we could expand it and check whether V appears strictly positive, but
unfortunately the interpretation [[−]] is defined by recursion on the structure of the
type σ and thus we cannot know what [[σ]] “does” with its argument.

A solution to the problem is to replace Φ[[µX.σ]] by a semantically equivalent
operator which is strictly positive. Indeed, that can be done using Peter Aczel’s
set based operators, as we show in the next section. An alternative would be to
reformulate the definition of types s.th. the interpretation can be given by a strictly
positive inductive definition directly. This approach has been carried out by Holger
Benl (1998) using vector notation and simultaneously inductive types instead of
interleaving inductive types. However, his proof could only be implemented in a
predicative theorem proving system that considers vector notation as primitive.

5.2 Interpreting Strictly Positive Types

The interpretation [[σ]] of a strictly positive inductive type σ is monotone, but
this does not seem to capture the fundamental property of strictly positive types.
Indeed, we could show in (Abel, 1999) that a wider class of types enjoy this prop-
erty: the positive types. In the following we will show that strictly positive types
are interpreted as operators that are set based, which makes their definition by a
predicative inductive definition possible. We consider set-basedness to be the char-
acterizing property of strictly positive types.

We extend Def. 4.1 of the semantics by the requirement that each operator has
to come with an urelement relation U . The construction follows closely the one
presented in (Abel & Altenkirch, 2000). Here the verification is simpler because we
do not need closure rules to achieve saturatedness.

Definition 5.1 (Semantics)
For σ ∈ Ty( ~X) and closed types τ1, . . . , τn we define

[[σ]] : P (Valτ1)× . . .× P (Valτn)→ P
(

Valσ(~τ)
)

as in definition 4.1 but we additionally require that there are relations

Uσi ⊆ Valτi ×Valσ(~τ) for 1 ≤ i ≤ n

such that for all 1 ≤ i ≤ n, v ∈ Valσ(~τ) and u ∈ Valτi :

v ∈ [[σ]](~V ) u Uσi v
(sb1)

u ∈ Vi

v ∈ [[σ]](Val~τ )
(sb2)

v ∈ [[σ]](~U(v))

where ~U(v) = {~w | ∀1≤i≤nwiUσi v}.
The definition of [[σ]] in the cases (Var), (Sum), (Prod), (Arr) is the same as

before. The interpretation of µ-types is replaced by

v ∈ [[σ]](~V ,ValµX.σ) ∀u. u Uσn+1 v → u ∈ [[µX.σ]](~V )

fold(v) ∈ [[µX.σ]](~V )
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Below we will define the relations Uσi and show that they satisfy the required
properties.

The rule (sb1), which can be read as v ∈ [[σ]](~V ) → Uσi (v) ⊆ Vi, states that the
relations Ui “sort” the urelements of v back into the sets Vi they came from. More
precisely, if u Ui v holds then u is a urelement of v that came from value set Vi.
Rule (sb2) expresses that a value v can be reconstructed from its urelements.

Let us demonstrate the urelement-relation in the case of lists, where it actually
implements an element relation. Lists of element type X can be defined as

List(X) ≡ µY. 1 +X × Y

Given a closed type τ and a set of values V ⊆ Valτ lists can be introduced by the
following two rules:

[] ∈ [[List]](V )
u ∈ V v ∈ [[List]](V )

u :: v ∈ [[List]](V )

For readability we use the notational definitions [] ≡ fold(in1()) and u :: v ≡
fold(in2(u, v)). The urelement relation can be defined by these rules:

u UList u :: v
u UList v

u UList w :: v

Property (sb1) for UList states that for all lists v all elements u U v must have
come from V . Property (sb2), which states that a list can be constructed from its
elements, is non-trivial.

Proposition 5.2 (set basedness for lists)
(sb1) If v ∈ [[List]](V ) and u U v then u ∈ V .
(sb2) If v ∈ [[List(τ)]] then v ∈ [[List]](U(v)).

Proof
(sb1) By induction on u U v.
(sb2) By induction on v ∈ [[List(τ)]]: The base case is trivial. For v = u :: v′ we
have by induction hypothesis that v′ ∈ [[List]](U(v′)). By the definition of U for
lists it holds that U(v′) ⊆ U(u :: v′). Thus we can make use of the monotonicity of
[[List]] and derive v′ ∈ [[List]](U(u :: v′)) from which our goal follows.

These proofs serve as models for the proofs in the general inductive case.
The following theorem illustrates the benefit of set basedness: The interpretation

of strictly positive types can be made strictly positive itself.

Theorem 5.3 (Fundamental property of strictly positive types)
Assuming that (sb1) and (sb2) hold for U , Every [[σ]](~V ) is equivalent to a predicate
which is strictly positive in ~V - that is for v ∈ Valσ(~τ):

v ∈ [[σ]](~V ) ⇐⇒ v ∈ [[σ]](Val~τ ) ∧ ∀i. Uσi (v) ⊆ Vi

Proof
⇒ Assuming v ∈ [[σ]](~V ), we obtain v ∈ [[σ]](Val~τ ) by monotonicity and Uσi (v) ⊆ Vi

for all i by (sb1).
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⇐ Using (sb2), v ∈ [[σ]](Val~τ ) entails

v ∈ [[σ]](~Uσ(v))

Since by assumption ~Uσ(v) ⊆ ~V (component wise), we can derive v ∈ [[σ]](~V ) by
monotonicity.

We see at a glance that the new, strictly positive operator for the interpretation
of inductive types given in Def. 5.1 constructs the same semantics as the old in
Def. 4.1, which can be written as

v ∈ [[σ]](~V , [[µX.σ]](~V ))

fold(v) ∈ [[µX.σ]](~V )

The premises of the old rule match the left hand side of the equivalence in Theo-
rem 5.3, and the premises of the new rule the right hand side.

We now complete Def. 5.1 and give the definition of the urelement relation Uσ
by induction over the type σ. In each case it is defined inductively by a set of
strictly positive rules and we have to prove the laws of set basedness. In each case
(sb1) is proven by induction over the derivation of u U v and (sb2) is shown by
induction over v ∈ [[σ]](Val~τ ), using monotonicity of the operators and the set
basedness properties for the already defined types. We only give a detailed proof
for the non-trivial case of µ-types.

(Var)

v ∈ Vi
v UXii v

(Sum) For all 1 ≤ j ≤ |~σ|
u Uσji v

u UΣ~σ
i inj(v)(Prod)

u Uσji vj for all 1 ≤ j ≤ |~σ|

u UΠ~σ
i (~v)

(Arr)

v ∈ CoDom(f) u Uτi v

u Uσ→τi f

(Mu) UµX.σ is defined inductively by the following two rules:

(non-rec)
1 ≤ i ≤ n u Uσi v

u UµX.σi fold(v)
(rec)

v′ Uσn+1 v u UµX.σi v′

u UµX.σi fold(v)

(sb1) We show that

u Ri v :⇐⇒ v ∈ [[µX.σ]](~V )→ u ∈ Vi

is closed under the rules defining UµX.σi

(non-rec) If fold(v) ∈ [[µX.σ]](~V ) then v ∈ [[σ]](~V , [[µX.σ]](~V )) and hence
(sb1) for σ entails that u Uσi v implies u ∈ Vi.
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(rec) As before we have v ∈ [[σ]](~V , [[µX.σ]](~V )). Hence, using (sb1) for σ,
the first premise v′ Uσn+1 v implies v′ ∈ [[µX.σ]](~V ). Now we use the second
premise u Ri v′ to conclude u ∈ Vi.

(sb2) We show that the set

Q = {v | v ∈ [[µX.σ]](~UµX.σ(v))}

is closed under the rule defining [[µX.σ]](Val~τ ). We assume

v ∈ [[σ]](Val~τ , Q) (7)

which by using (sb2) for σ entails

v ∈ [[σ]](~Uσ(v)) (8)

To show that fold(v) ∈ Q it suffices to show

v ∈ [[σ]](~UµX.σ(fold(v)), [[µX.σ]](~UµX.σ(fold(v))))

We derive this from 8 using (mon), which leaves us two subgoals

1. We have to show that Uσi (v) ⊆ UµX.σi (fold(v)) which follows from (non-rec).

2. To show Uσn+1(v) ⊆ [[µX.σ]](~UµX.σ(fold(v))) assume

v′ Uσn+1 v (9)

Under this assumption we have that UµX.σi (v′) ⊆ UµX.σi (fold(v)) by (rec).
Using (sb1) for σ on 7 and 9 we have that v′ ∈ Q, i.e.,

v′ ∈ [[µX.σ]](~UµX.σ(v′))

and hence using (mon) v′ ∈ [[µX.σ]](~UµX.σ(fold(v))).

6 Conclusions and Further Work

We have introduced a termination checker foetus for structurally recursive terms
that recognizes also descent via a lexicographic ordering. We have given an inter-
pretation of the types, transfered the ordering onto the interpretation and thus have
shown that (even mutually) recursive terms accepted by foetus are sound.

In (Abel, 2000) our work is continued: We introduce a judgment that implements
a syntactic check whether functions are structurally recursive. This judgment is an
abstract description of the algorithm that foetus uses to decide whether functions
are structurally recursive or not. We then prove that this syntactic check is sound
w.r.t. to the semantics given here. This proof is restricted to non-mutual recursion,
the proof for mutual recursion is in preparation.

We would like to extend our work to (predicatively) polymorphic, coinductive and
dependent types. To handle corecursive functions especially the interplay between
guarded and structurally recursive has to be considered. Introducing dependent
types, more effort has to be done to check the totality of a pattern.
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6.1 Related Work

Publications on termination are numerous since research in this area has been
carried out since the very beginnings of computer science. Much work has been
done in the context of term rewriting systems and we want to cite the seminal
investigations of Christoph Walther (1988):

Walther has described reduction checking, which is sometimes referred to as
“Walther recursion” (McAllester & Arkoudas, 1996). His estimation calculus ex-
amines whether functions are terminating and also whether they are reducers or
preservers, i.e., whether the output of the function is (strictly) smaller than the in-
put. This information can be used to check termination of nested recursive functions
or just for functions which decrease their input via a previously defined function
in a recursive call. More work on the estimation calculus has been done by Bundy
and others (Gow et al., 1999).

Closely related to our work, though in the area of extensible term rewriting
systems is the work of Blanqui, Jouannaud and Okada (2001). They define struc-
turally recursive terms syntactically using side conditions by their Extended Gen-
eral Schema. Since they do not handle mutually recursive functions, their approach
seems to have the same strength as the formal system we present in Sect. 3.2.

Gimenéz (1995) presents a syntactic translation of structural (and guarded) re-
cursive definitions into (dependently typed) recursors in the context of the Coq
system (Barras et al. , 2000)—based on the Calculus of Constructions (Coquand &
Huet, 1988). We avoid having to introduce and analyze a type theory with recur-
sors but consider structural recursion as a primitive principle. The consideration of
predicativity does not play a role in Giminéz’ work because Coq is impredicative
anyway.

More recently Gimenéz (1998) has shown how to integrate guardedness and ter-
mination checking into type-checking. He uses a tagged version of the types to in-
dicate whether its inhabitants are guarded by a constructor. This technique yields
partial reduction checking for free: The type system can capture whether a function
is a preserver, but not whether it is a reducer. His type system does not contain
Σ-types and thus he cannot handle lexicographic descent. An extension to Σ-types
is non-trivial since it is not obvious how to incorporate lexicographic products into
his subtyping calculus.

Gimenéz motivated his new technique as follows: Side-conditions in typing rules
that ensure termination are undesirable since it is difficult to construct a semantics
for the types, which is needed in normalization proofs. In this article we manage
to construct a sound interpretation for the types and a rigid normalization proof
is given by one of the authors (Abel, 2000). Altogether, we consider Gimenéz’
approach as very promising; it deserves more attention by the scientific community.

Amadio and Coupet-Grimal (1998) analyze a λ-calculus with coinductive types
where the guardedness check is woven into the typing rules. They give a PER
model of the types and interpret the terms in the untyped λ-calculus (in contrast
to our observable values interpretation). Furthermore they give a proof of strong
normalization for a restricted reduction rule for corecursively constructed data.
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Codata are only unfolded in the head position of a case-construct, which corresponds
to our approach to expand recursive functions only in case of an application.

Telford and Turner (1999) are investigating Elementary Strong Functional Pro-
gramming, i.e., functional programming languages where only terminating functions
can be defined. Technically they use abstract interpretations to ensure termination.
They can handle a wider class of functions since they keep track not whether an
argument is decreasing but how much it is decreasing or increasing, thus allowing
temporary growth that is compensated by sufficient shrinkage later. We consider
their technique as a promising alternative to our logical approach. However the
focus of our work is not maximal completeness but a solid theoretical foundation.

Lee, Jones and Ben-Amram (2001) introduce a new paradigm into reasoning
about termination: “a program terminates on all inputs if every infinite call se-
quence (...) would cause an infinite descent in some data values”. Thus they char-
acterize terminating functions as those accepted by certain Büchi automata. An
interesting result is that termination checking is PSPACE-complete. For the prac-
tical implementation of termination checking they propose an algorithm based on
size-change graphs, which can be translated into our call graphs. Their algorithm
performs graph completion as well as ours, thus their complexity results should
apply to ours as well.

Finally, Pientka and Pfenning (2000) have implemented reduction and termina-
tion checking for the logical framework LF (Harper et al., 1993). Their algorithm
does not infer termination orderings, but checks termination using an ordering the
user specifies. The formulation of the algorithm is judgment-based like ours and
justified by a cut admissibility argument rather than a soundness proof as in our
case.
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