
Functional Programming
Systematic Testing with QuickCheck

Andreas Abel, Steffen Jost
LFE Theoretische Informatik, Institut für Informatik,

Ludwig-Maximilians-Universität München

11 June 2012

1 Introduction to QuickCheck

QuickCheck is a Haskell library for automatic testing of logical program proper-
ties, orginally authored by Koen Claessen and John Hughes (Chalmers University
of Technology, 2000).

import Test .QuickCheck

1.1 Properties

A logical property is an expression of type Bool , it either holds (True) or not
(False).

For example: “appending the empty list changes nothing”.

propAppendNil0 xs = xs ++ [] ≡ xs

t0 = quickCheck propAppendNil0

Quickcheck answers:

+++ OK, passed 100 tests.

propAppendNil0 is not of type Bool but of type a → Bool , thus it is a predicate
over type a. Predicates p are tested by generating random values v of type a
and then checking whether p v ≡ True.

1

Booleans and predicates are instances of Testable properties.

quickCheck :: Testable prop ⇒ prop → IO ()

class Testable prop where
property :: prop → Property

instance Testable Bool
instance (Arbitrary a,Testable prop)⇒ Testable (a → prop)

Making a type an instance of Arbitrary amounts to writing a random value
generator for this type. More on this below.

1.2 Polymorphic Properties

How come QuickCheck knows how to generate values of an unknown type a
which occurs in the type of propAppendNil0 ?

propAppendNil0 :: [a]→ Bool

It turns out that unknown types a are replaced by the unit type.

verboseCheck propAppendNil0

Passed:

[]

Passed:

[()]

Passed:

[(),()]

Passed:

[]

...

The values of type () are not terribly interesting. QuickCheck defines wrapper
types A, B , C around Integer which we can use instead.

import Test .QuickCheck .Poly

propAppendNil :: [A]→ Bool
propAppendNil xs = xs ++ [] ≡ xs

t1 = verboseCheck propAppendNil

Now we get:

2

Passed:

[]

Passed:

[3]

Passed:

[1,1,2]

...

Module Poly also defines types OrdA, OrdB , and OrdC which are wrappers of
Integer implementing an Ord instance

1.3 Parametrizing QuickCheck

We can increase the number of test cases.

data Args = Args {
replay :: Maybe (StdGen, Int)
maxSuccess :: Int
maxDiscard :: Int
maxSize :: Int
}
stdArgs :: Args

quickCheckWith :: Testable prop ⇒ Args → prop → IO ()

qc1000 = quickCheckWith (stdArgs {maxSuccess = 1000})
t2 = qc1000 propAppendNil

Another Example: Testing the associativity of append.

propAppendAssoc :: [A]→ [A]→ [A]→ Bool
propAppendAssoc xs ys zs = (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)

t3 = quickCheck propAppendAssoc

2 Testing Tree Sort

Tree Sort sorts a list by building a search tree from the list and then flatten it
out to a list again by infix traversal.

data Tree a = Leaf
| Node (Tree a) a (Tree a)

3

deriving (Show ,Eq)

insert :: Ord a ⇒ a → Tree a → Tree a
insert a Leaf = Node Leaf a Leaf
insert a (Node l b r) = if a 6 b then Node (insert a l) b r
else Node l b (insert a r)

toList :: Tree a → [a]
toList Leaf = []
toList (Node l a r) = toList l ++ a : toList r

sort :: Ord a ⇒ [a]→ [a]
sort = toList ◦ foldl (flip insert) Leaf

We can test tree sort always returns a sorted list.

sorted :: Ord a ⇒ [a]→ Bool
sorted [] = True
sorted [a] = True
sorted (a : b : l) = a 6 b ∧ sorted (b : l)

propTreeSort :: [OrdA]→ Bool
propTreeSort = sorted ◦ sort

t4 = quickCheck propTreeSort

2.1 Test Case Generators

We would like to test insert by itself. If we insert something into a search tree,
the result is again a search tree. This is a conditional/implicational property,
one with a precondition.

(==>) :: Testable prop ⇒ Bool → prop → Property

propSortedInsert :: OrdA→ Tree OrdA→ Property
propSortedInsert a t = sortedTree t ==>

sortedTree (insert a t)

We need to write a test case generator for trees. That is an expression of type
Gen (Tree a), where Gen is the QuickCheck ’s generator monad.

A generator for a type a can be made available under the overloaded identifier
arbitrary , if the type is made an instance of Arbitrary .

class Arbitrary a where
arbitrary :: Gen a
...

4

QuickCheck offers an extensive library of combinators for generators, such as
oneof .

import Control .Monad

liftM :: Monad m ⇒ (a → b)→ (m a → m b)
liftM3 :: Monad m ⇒ (a → b → c → d)→ (m a → m b → m c → m d)
oneof :: [Gen a]→ Gen a

2.2 Generating Unsorted Trees

Here is a first, naive generator for (unsorted) trees:

treeGen0 :: (Arbitrary a)⇒ Gen (Tree a)
treeGen0 = oneof [return Leaf

, liftM3 Node treeGen0 arbitrary treeGen0]

intTreeGen0 :: Gen (Tree Int)
intTreeGen0 = treeGen0

t5 = sample intTreeGen0

Unfortunately, it is unusable. oneof chooses each alternative with equal prob-
ability, thus, one of each subtrees of Node can be expected to be non-empty. This
leads to very large Tree instances.

We can control the size of sampled trees using the sized combinator..

sized :: (Int → Gen a)→ Gen a

For size 0 we will now always generate the empty tree, and for size n we restrict
potential subtrees to size n − 1.

treeGen1 :: (Arbitrary a)⇒ Gen (Tree a)
treeGen1 = sized treeGen1 ′

treeGen1 ′ :: (Arbitrary a)⇒ Int → Gen (Tree a)
treeGen1 ′ 0 = return Leaf
treeGen1 ′ n = oneof [return Leaf

, liftM3 Node t arbitrary t]
where t = treeGen1 ′ (n ‘div ‘ 2)

intTreeGen1 :: Gen (Tree Int)
intTreeGen1 = treeGen1

t6 = sample intTreeGen1

Since we generate arbitrary trees, we need to filter out the unsorted ones. To
this end, we check the search tree invariant.

5

between :: Ord a ⇒ Maybe a → a → Maybe a → Bool
between Nothing a Nothing = True
between Nothing a (Just r) = a 6 r
between (Just l) a Nothing = l 6 a
between (Just l) a (Just r) = l 6 a ∧ a 6 r

betweenTree :: Ord a ⇒ Maybe a → Tree a → Maybe a → Bool
betweenTree ml Leaf mr = True
betweenTree ml (Node l a r) mr = between ml a mr

∧ betweenTree ml l (Just a)
∧ betweenTree (Just a) r mr

sortedTree :: Ord a ⇒ Tree a → Bool
sortedTree t = betweenTree Nothing t Nothing

Now we can test that insert preserves the search tree invariant. Property
combinator forAll let’s us supply our custom test case generator.

forAll :: (Show a,Testable prop)⇒ Gen a → (a → prop)→ Property

propSortedInsert :: OrdA→ Property
propSortedInsert a = forAll treeGen1 $ λt →

sortedTree t ==>
sortedTree (insert a t)

t7 = quickCheck propSortedInsert

2.3 Test Case Quality

Analyzing the quality of test cases.

classify -- Conditionally labels test case.
:: Testable prop
⇒ Bool -- True if the test case should be labelled.
→ String -- Label.
→ prop
→ Property

How often did we test on the empty tree?

trivial :: Testable a ⇒ Bool → a → Property
trivial = (‘classify ‘"trivial")

propSortedInsert1 :: OrdA→ Property
propSortedInsert1 a = forAll treeGen1 $ λt →

6

sortedTree t ==>
(t ≡ Leaf) ‘trivial ‘ sortedTree (insert a t)

t8 = quickCheck propSortedInsert1

Collecting statistics about the test data. Here: depth of tested tree.

depth :: Tree a → Int
depth Leaf = 0
depth (Node l a r) = 1 + max (depth l) (depth r)

propSortedInsert2 :: OrdA→ Property
propSortedInsert2 a = forAll treeGen1 $ λt →

sortedTree t ==>
collect (depth t) $ sortedTree (insert a t)

t9 = quickCheck propSortedInsert2

Controlling the probability distribution of generated data.

frequency :: [(Int ,Gen a)]→ Gen a

treeGen2 :: (Arbitrary a)⇒ Gen (Tree a)
treeGen2 = sized treeGen2 ′

treeGen2 ′ :: (Arbitrary a)⇒ Int → Gen (Tree a)
treeGen2 ′ 0 = return Leaf
treeGen2 ′ n = frequency [(10, return Leaf)

, (90, liftM3 Node t arbitrary t)]
where t = treeGen2 ′ (n ‘div ‘ 2)

intTreeGen2 :: Gen (Tree Int)
intTreeGen2 = treeGen2

t10 = sample intTreeGen2

propSortedInsert3 :: OrdA→ Property
propSortedInsert3 a =

forAll treeGen2 $ λt →
sortedTree t ==>

collect (depth t) $ sortedTree (insert a t)

t11 = quickCheck propSortedInsert3

2.4 Generating Sorted Trees

The probability that a random tree is a search tree is rather small. Thus,
quickcheck needs to generate a huge number of trees to obtain one that is suitable
for testing insert . This is rather wasteful.

7

Let us define a generator for sorted trees instead!

import System.Random

sortedTreeGen :: (Arbitrary a,Bounded a,Random a)⇒ Gen (Tree a)
sortedTreeGen = sized $ λn → sortedTreeGen ′ n (minBound ,maxBound)

sortedTreeGen ′ :: (Arbitrary a,Random a)⇒ Int → (a, a)→ Gen (Tree a)
sortedTreeGen ′ 0 = return Leaf
sortedTreeGen ′ n (l , r) =

frequency [(10, return Leaf)
, (90,do a ← choose (l , r)

let n ′ = n ‘div ‘ 2
tl ← sortedTreeGen ′ n ′ (l , a)
tr ← sortedTreeGen ′ n ′ (a, r)
return $ Node tl a tr)]

sortedIntTreeGen :: Gen (Tree Int)
sortedIntTreeGen = sortedTreeGen

t12 = sample sortedIntTreeGen

propSortedInsert4 :: Int → Property
propSortedInsert4 a =

forAll sortedTreeGen $ λt →
collect (depth t) $ sortedTree (insert a t)

t13 = quickCheck propSortedInsert4

2.5 Instantiating the Arbitrary Class

We make the generator for unordered Trees available as instance of Arbitrary .

class Arbitrary a where
arbitrary :: Gen a
shrink :: a → [a]

Class Arbitrary suggest to also define a test case shrinker. If quickCheck finds
a counterexample to a property, it will repeatedly shrink it as long as it stays a
counterexample. Small counterexamples make bug finding a lot easier! shrink t
should return all immediate proper subtrees of t .

instance (Arbitrary a)⇒ Arbitrary (Tree a) where
arbitrary = treeGen2
shrink (Leaf) = []

8

shrink (Node l a r) = [l , r]

propSortedInsert5 :: OrdA→ Tree OrdA→ Property
propSortedInsert5 a t = sortedTree t ==>

collect (depth t) $ sortedTree (insert a t)

t14 = quickCheck propSortedInsert5

We would also like to expose the generator for sorted trees. But there cannot
be two instances of a type class for the same type! We help ourselves by a
newtype wrapper.

newtype SortedTree a = SortedTree {tree :: (Tree a)} deriving (Show ,Eq)

instance (Arbitrary a,Random a,Bounded a)⇒ Arbitrary (SortedTree a) where
arbitrary = liftM SortedTree sortedTreeGen
shrink (SortedTree (Leaf)) = []
shrink (SortedTree (Node l a r)) = [SortedTree l , SortedTree r]

propSortedInsert6 :: Int → SortedTree Int → Property
propSortedInsert6 a (SortedTree t) =

collect (depth t) $ sortedTree (insert a t)

t15 = quickCheck propSortedInsert6

3 Generating Random Functions

Testing higher-order functions such as map requires the generation of random
functions.

prop map comp :: Blind (A→ B)→ Blind (B → C)→ [A]→ Bool
prop map comp (Blind f) (Blind g) xs = map g (map f xs) ≡ map (g ◦ f) xs

t16 = quickCheck prop map comp

Blind means that there is no Show instance, i.e., we cannot see on which functions
the test case fails.

How does QuickCheck generate random functions?

3.1 The CoArbitrary Class

A function of type a → b should not return the same b for all a. It should return
different bs for different as, at least in some or most cases.

QuickCheck achieves this by changing the seed of the random generator by
composing it with the function argument, before randomly generating a function

9

result. To this end, the function argument has to be casted into an Integral value
that can be mixed into the random seed.

The job of perturbing the random seed is done for us by library function
variant :

variant :: Integral n ⇒ n → Gen a → Gen a

If we want to generate functions over our own types a, we have to make them
instances of CoArbitrary .

class CoArbitrary a where
coarbitrary :: a → Gen c → Gen c

QuickCheck offers a standard implementation for “lazy people””

coarbitraryShow :: Show a ⇒ a → Gen b → Gen b

If we have a Show instance for our type T we get the CoArbitrary instance
simply by.

instance CoArbitrary T where
coarbitrary = coarbitraryShow

This will show values of type T , then cast them to an Integral which will then
act on the random seed.

3.2 Printable Functions

QuickCheck also offers generation of functions that can be printed as argument-
result-tables.

import Test .QuickCheck .Function

prop idempot :: Fun Integer Integer → Integer → Bool
prop idempot (Fun f) x = f (f x) ≡ f x

t20 = quickCheck prop idempot

Here we might get:

*** Failed! Falsifiable (after 4 tests and 7 shrinks):

{0->1, _->0}

0

10

Which means that the function that maps 0 to 1 and everything else to 0 is not
idempotent.

The library offers us a type Fun a b for functions from a to b that have a
concrete representation a : − > b, a default value b, and the actual function
a → b.

data Fun a b = Fun (a : − > b, b) (a → b)

The concrete representation could be just a input-output table. For details, see
library documentation.

4 Testing Stateful Code

The paper

Koen Classen and John Hughes
Testing Monadic Code with QuickCheck
Haskell Workshop 2002

demonstrates how to test stateful code.

11

	Introduction to QuickCheck
	Properties
	Polymorphic Properties
	Parametrizing QuickCheck

	Testing Tree Sort
	Test Case Generators
	Generating Unsorted Trees
	Test Case Quality
	Generating Sorted Trees
	Instantiating the Arbitrary Class

	Generating Random Functions
	The CoArbitrary Class
	Printable Functions

	Testing Stateful Code

