
Habilitationsschrift

Normalization by Evaluation
Dependent Types and Impredicativity

Andreas Abel

Institut für Informatik
Ludwig-Maximilians-Universität München

Abstract

Normalization by evaluation (NbE) is a technique to compute the normal form of a
lambda-term, i. e., an expression of a pure functional programming language. While
evaluation is only concerned with computing closed expressions, normalization also
applies to function bodies, thus, needs to compute with open expressions containing
free variables. NbE reduces normalization to evaluation of expressions in a residualizing
model, i. e., a computational structure that has extra base values which are unknowns
or computations blocked by unknowns.

Normalization by evaluation, while not under this name, has been used by Martin-
Löf [1975] to prove normalization and decidability of type checking for his predicative
intuitionistic type theory with a weak notion of term equality that is not closed under
function abstraction. Independently, normalization by evaluation has been discoverd by
Berger and Schwichtenberg [1991] as a tool to implement a normalizer for simply-typed
lambda-calculus with a strong (extensional, “η”) notion of term equality. Normaliza-
tion invokes the evaluator of the host programming language, leading to a concise and
efficient normalization procedure.

In this thesis, we join the two strands of research by developing NbE for dependent
type theory with extensional term equality that does consider normalization of func-
tion bodies. Further, we extend NbE to impredicative type systems such as System F,
Fω, and the Calculus of Constructions. As NbE is a tool to connect syntax (terms) to
semantics (values), the study of NbE enables us to semantically prove meta-theoretical
properties of the considered type systems such as decidability of term equality, which
entails the decidability of type checking in the presence of dependent types. For de-
pendent types with universes and extensional (η) equality at the level of types, this is
a novel result.

The study of NbE provides us with new insights into the nature of η-expansion
which we apply to dependent type theory with singleton types. Further, we formulate
the concept of candidate space to equip semantic types with extra structure that allows
us to show the correctness of NbE. Finally, we introduce typed Kripke structures to
unify semantic arguments by logical relations.

The results underlying this thesis were obtained partly in collaboration with Klaus
Aehlig, Thierry Coquand, Peter Dybjer, and Miguel Pagano, as far as the design of the
NbE algorithm and its application to predicative type theory are concerned.

iii

Publications Included in this Thesis

1. A. Abel, K. Aehlig, and P. Dybjer. Normalization by evaluation for Martin-
Löf type theory with one universe. In M. Fiore, editor, Proceedings of the 23rd
Conference on the Mathematical Foundations of Programming Semantics (MFPS
XXIII), New Orleans, LA, USA, 11-14 April 2007, volume 173 of Electronic Notes
in Theoretical Computer Science, pages 17–39. Elsevier, 2007a

2. A. Abel, T. Coquand, and P. Dybjer. Normalization by evaluation for Martin-
Löf Type Theory with typed equality judgements. In 22nd IEEE Symposium
on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland,
Proceedings, pages 3–12. IEEE Computer Society Press, 2007b

3. A. Abel, T. Coquand, and M. Pagano. A modular type-checking algorithm for type
theory with singleton types and proof irrelevance. Logical Methods in Computer
Science, 7(2:4):1–57, May 2011

4. A. Abel. Weak βη-normalization and normalization by evaluation for System F. In
I. Cervesato, H. Veith, and A. Voronkov, editors, 15th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2008,
22-27 November 2008, Doha, Qatar, Proceedings, volume 5330 of Lecture Notes
in Artificial Intelligence, pages 497–511. Springer-Verlag, 2008

5. A. Abel. Typed applicative structures and normalization by evaluation for Sys-
tem Fω. In E. Grädel and R. Kahle, editors, Computer Science Logic, 23rd inter-
national Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra,
Portugal, September 7-11, 2009. Proceedings, volume 5771 of Lecture Notes in
Computer Science, pages 40–54. Springer-Verlag, 2009a. ISBN 978-3-642-04026-9

6. A. Abel. Towards Normalization by Evaluation for the βη-Calculus of Construc-
tions. In M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic
Programming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April
19-21, 2010. Proceedings, volume 6009 of Lecture Notes in Computer Science,
pages 224–239. Springer-Verlag, 2010a. ISBN 978-3-642-12250-7

My contribution to papers 1 and 2 amounts to roughly 70%, to paper 3 roughly 35%.

v

Contents

1 Introduction 1
1.1 How to Read this Thesis . 2
1.2 Acknowledgments . 4

2 Simple Types: From Evaluation to Normalization 5
2.1 Evaluation . 5
2.2 Normalization . 8
2.3 Normalization by Evaluation . 10
2.4 Variable Handling . 12
2.5 Liftable Terms . 13
2.6 Soundness of Normalization by Evaluation 15
2.7 Summary . 16

3 Untyped Normalization-By-Evaluation and Type Assignment 17
3.1 Untyped NbE Using Domains . 18
3.2 Untyped NbE Using Partial Applicative Structures 20
3.3 Type-Assignment System T . 22
3.4 Candidate Spaces and Normalization for Type-Assignment System T . . 25
3.5 Explicit Substitutions and β-Equality 25
3.6 Extensionality and Partial Equivalence Relations 27
3.7 Typed Candidate Spaces and Completeness of NbE 31
3.8 Restoring Curried Constants . 34
3.9 Kripke Logical Relations and Soundness of NbE 34
3.10 Summary . 37

4 Dependent Types 39
4.1 A Full Dependently-Typed Language . 40
4.2 Type Values, Reflection and Reification 43
4.3 Dependent Function Space and Universes 44
4.4 A PER Model . 45
4.5 Dependently-Typed Candidate Spaces and Completeness of NbE 47
4.6 Dependent Function Space on Groupoids 48
4.7 Kripke Logical Relations for Dependent Types and Soundness of NbE . 51
4.8 Summary . 53

5 Impredicativity 55
5.1 System F Syntax . 57
5.2 System F Type Semantics via Candidate Space 58
5.3 Abstract Evaluation and the Fundamental Lemma for System F 62

vii

Contents

5.4 Normalization by Evaluation for System F 62
5.5 System Fω, the Calculus of Constructions, and Beyond 65

6 Summary, Related Work, and Perspectives 67
6.1 Intrinsic Typing and NbE . 68
6.2 On NbE for the Extensional Treatment of Finite Choice 70
6.3 Applications of NbE . 71
6.4 Future Perspectives on NbE . 71

Index of Notations 73

Bibliography 79

viii

1 Introduction

Type systems have emerged as a paradigm to structure modern programming languages,
but long before, they have been introduced into logical theories such as Church’s simple
theory of types that serve as foundations for mathematics. A strong correspondence
between propositions and types, and between proofs and programs coined as Curry-
Howard-isomorphism intimately connects logics and programming languages and in-
spires research and design of new programming languages and logics. Martin-Löf intro-
duced the Curry-Howard counterpart of the quantifiers of predicate logic into functional
programming and is considered the pioneer of dependent type theory, a unified language
for programming and developing constructive mathematics. In dependent type theory,
propositions are identified with types, and proofs with programs, and checking a proof
for validity amounts to checking that a program has a certain type.

The distinctive feature of dependent type theory is that types can be defined by
computation on values. Expressions that compute the same value have to be considered
equal, and, in dependent type theory, two types that compute the same type value are
considered equal and thus, classify the same programs. Algorithms for type-checking
have to take type equality into account, and decidability of type-checking rests on the
decidability of equality. When Martin-Löf presented his Intuitionistic Theory of Types
(ITT) [1975] he accompanied it by a proof that typing is decidable. The decidability
relies on normalization of all well-typed expressions of ITT, which means that all well-
typed expressions reduce to a value, called the normal form of the expression, which
is uniquely determined by the expression. Martin-Löf demonstrates normalization by
a semantic argument in a constructive meta-language. Proofs in constructive meta-
languages implicitly describe algorithms, and the algorithm underlying Martin-Löf’s
argument has been later coined normalization by evaluation (NbE).

Independently, when implementing the proof system Minlog in the functional lan-
guage Scheme, Berger and Schwichtenberg [1991] discovered an algorithm for normal-
ization of simply-typed lambda-calculus that is summarized by the slogan normalization
by evaluation. A typed lambda-term is first embedded as program in the host language
Scheme and then evaluated. Then, the evaluated Scheme program is quoted, arriving at
a lambda-term in normal form. The quotation is described as inverse of the evaluation
functional. A detailed description of the NbE algorithms as composition of evaluation
and quotation is given in Chapter 2.

As NbE does not rely on the native evaluation and quotation features of Scheme, but
can be adapted to any host programming language, it soon found wide-spread interest
in the programming language research community. Its attraction comes from the el-
egant idea to reuse evaluation of the host language (originally Scheme) to implement
evaluation for the object language (originally the simply-typed lambda calculus). For
one, it was discovered that NbE corresponds to type-directed partial evaluation [Danvy,
1996]. For two, NbE presents an efficient normalization algorithm and even serves as

1

1 Introduction

a framework for normalization by compilation [Grégoire and Leroy, 2002]. Finally, due
to its semantic character, it proved a nice tool to structure the reasoning about meta-
theoretical properties of type systems such as normalization of well-typed expressions
and decidability of type equality [Martin-Löf, 1975].

This thesis continues the investigation of NbE as method to establish the decidability
of dependent type theory. Martin-Löf [1975] considered typing up to a notion of type
equality that is quite weak when relating functions. In essence, it is too intensional as
it does not equate functions whose bodies are equal w. r. t. computation, their bodies
must be literally identical. In contrast, modern implementations of dependent type
theories, such as the successful proof assistant Coq [INRIA, 2012] and the dependently
typed programming language Agda [Norell, 2007], rely on a more expressive, extensional
equality for functions called η-equality. Two functions are extensionally equal if their
applications to a fresh variable are already extensionally equal. Herein, a any value of
function type is considered a function, thus the notion of equality is typed.

Using NbE, the author and the coauthors of the papers underlying this thesis have
been able to prove the decidability of type checking in ITT with typed (η-)equality. But
the formulation and verification of NbE for dependently-typed systems is interesting in
itself, and the present work is the first description of NbE for a full-blown dependently
typed language [Abel et al., 2007a,b]. During the study of NbE for dependent types we
were also able to clarify η-expansion for singleton types [Abel et al., 2011]. The results
developed in the cited paper may serve as theoretical foundation for the language Agda
which is based on predicative universes.

The Coq system is based on the Calculus of Inductive Constructions (CIC) which
adds an impredicative universe of propositions to ITT. To study the meta-theory of
impredicative type theories we have adapted NbE to the impredicative System F [Abel,
2008], Fω [Abel, 2009a] and the dependently-typed Calculus of Constructions (CoC)
[Abel, 2010a]. These systems are subsystems of the CIC, and understanding of im-
predicativity in theses systems paves the way for the full CIC. While we have not fully
proven the decidability of CoC, we were the first to prove termination and completeness
of NbE for a system with both impredicativity and dependent types.

1.1 How to Read this Thesis

This thesis introduces the reader to NbE and semantic techniques to reason about
type systems and the correctness of NbE. It develops the necessary tools to study
NbE for dependent and impredicative type theories, summarizing the main ideas of
the publications underlying this thesis. We have tried to be gentle in the exposition,
focusing on the explanation of concepts rather than the proof details. For those, the
reader is referred to the original publications. The remainder of this thesis is structured
as follows:

Chapter 2 presents normalization by evaluation in a simple instance, a toy program-
ming language with natural numbers and higher-order functions, known as System T
(Section 2.1). On the way, we explain what we mean by definitional term equality,
normal form, soundness and completeness of normalization, reflection of syntax into
semantics, and reification of semantics into syntax (Sections 2.2 and 2.3). We give an

2

1.1 How to Read this Thesis

overview over the different solutions to the problem of generating fresh variable names
during reification (Section 2.4) and pick one of them (Section 2.5). The introductory
part closes with proof of the correctness of NbE by a Kripke logical relation connecting
syntactic terms with semantic objects (Section 2.6).

Chapter 3 introduces untyped NbE (Section 3.1), generalizes it to partial applicative
structures (Section 3.2) and then revisits System T from a type-assignment perspective.
The purpose of this chapter of the thesis is to introduce—in a gentle setting— most of
the technical tools we need for the analysis of NbE for dependent types. In particular,
we apply untyped evaluation to System T and explain how it models System T’s typing
relation (Section 3.3). We introduce the concept of candidate spaces to extend our
reasoning about evaluation reasoning about NbE (Section 3.4). Explicit substitutions
(Section 3.5) and partial equivalences are introduced to model definitional equality
(Section 3.6). Then we add type-directed reflection and reification on the value level
to untyped NbE to obtain complete normalization for η-equality (Section 3.7). Finally,
we generalize the Kripke logical relation for the soundness proof of NbE to arbitrary
models of typed lambda-calculus we call type structures (Section 3.9).

Chapter 4 summarizes Abel et al. [2007a,b, 2011] and applies type-assignment NbE
as developed in Chapter 3 to dependent types. First we enrich System T with depen-
dent types and a hierarchy of predicative universes that allows us to compute types in
dependency on values (Section 4.1), arriving at language PTT. In the adaption of NbE
to dependent types, special attention is paid to reflection and reification which are now
directed by type-values (Section 4.2). An inductive definition of valid types, which is
the foundation of reasoning about PTT, is given in Section 4.3. Refining this inductive
definition by an equivalence relation on valid types we arrive at a model of PTT that
interprets types and universes as partial equivalence relations (PERs) on values (Sec-
tion 4.4). An extension of our concept of candidate spaces allows us to reason about the
completeness of NbE (Section 4.5). A hiherto unpublished view on PERs as subsets
of groupoids appears in Section 4.6. Soundness of NbE is finally established by the
dependently-typed Kripke logical relation of Section 4.7. The chapter concludes with a
summary of the results and a short discussion on singleton types (Section 4.8).

Chapter 5 applies NbE to impredicative type systems, presenting Abel [2008] in terms
of ideas from Abel [2009a] and outlining the results of Abel [2010a]. The exposition
focuses on System F, a typed lambda-calculus with impredicative polymorphism (Sec-
tion 5.1). A general notion of model for System F is developed that can be instantiated
to prove soundness and completeness of NbE, but also subsumes traditional normal-
ization proofs (Sections 5.2 and 5.3). Nbe for System F and its correctness are then
explained in Section 5.4. Section 5.5 concludes the chapter with a discussion on the
combination of impredicativity with higher kinds and dependent types.

Chapter 6 summarizes the contributions of this thesis. We discuss alternative, in-
trinsically typed approaches to NbE (Section 6.1) and NbE algorithms for extensional
treatment of disjunction (Section 6.2). A review of applications of NbE (Section 6.3)
demonstrates that NbE has secured its standing as efficient implementation of normal-
ization in proof assistants and may enjoy a bright future (Section 6.4).

3

1 Introduction

1.2 Acknowledgments

The author received valuable feedback from Andrew Pitts, Theo Winterhalter, and
Francisco Ferreira which helped to correct the content and improve the presentation of
this thesis.

4

2 Simple Types: From Evaluation to
Normalization

2.1 Evaluation

Evaluation is the process of running a program and obtaining a result in the end, the
value. This typically involves the compilation of the program into a machine language
and the execution of the machine code on the machine. There are numerous machine
architectures and machine languages, both machines implemented in hardware and
machines implemented in software. We shall not be concerned with details of machines
and compilation, but shall treat evaluation on a more abstract level. We shall specify
the evaluation of a small programming language (our object language) in terms of a
language that already features advanced concepts like functions and application (the
host or meta language), which allows us to express evaluation succinctly. Such a host
language could be a mathematical language such as set theory or type theory, or an
already implemented programming language.

Evaluation lets us assign meaning to a program. If we type a program into an
interpreter and it prints back its value, for instance a number, then the meaning of
this program is that number. The meaning of a program could also be a function, not
a concrete value such as a number; in this case, the typical interpreter will not print
a result that adequately describes the meaning of the program—typically it may just
tell us that the result is a function and as such, unprintable. We will see how such an
interpreter could be modified to print back code that represents the function, but let
us not get ahead of us. In the following, we will describe the meaning of a program
by interpretation in mathematical language, which already has a meaningful concept of
function.

We consider a functional programming language, Gödel’s System T [Gödel, 1958],
with natural numbers, primitive recursion,1 and functions of higher order. The natural
numbers are presented in unary form, introduced by constructors zero and suc. Prim-
itive recursion rec : RecT with RecT = T → (N → T → T) → N → Tallows us to
define values of type T by recursion over a natural number. Application of function r
to argument s is written as juxtaposition r s. New functions λxt are constructed by
abstracting variable x in term t, the body of the function. Each term t comes with its
type T in a typing contexts Γ which assigns types to the variables that occur free in t;

1Recursion in System T is actually higher-order primitive recursion which has the computational
power ε0 of Peano Arithmetic (PA) [Peano, 1889], and not the primitive recursion of Primitive
Recursive Arithmetic (PRA) [Skolem, 1923] which has the computational power ωω of LOOP-
Programs [Schöning, 2003]. The Ackermann function can be easily coded by recursion into higher
type T = N → N. Yet recursion in System T has the definition form of primitive recursion, so we
stick to the name.

5

2 Simple Types: From Evaluation to Normalization

S, T ∈ Ty Types.

N ∈ Ty
type of natural numbers

S ∈ Ty T ∈ Ty

S → T ∈ Ty
function type.

Γ ∈ Cxt Typing contexts.

() ∈ Cxt
empty context

Γ ∈ Cxt x 6∈ Γ

(Γ, x :T) ∈ Cxt
extension by mapping variable x to type T .

c ∈ CstT Constants of type T , written c : T .

zero : N
zero

suc : N→ N
successor function

rec : T → (N→ T → T)→ N→ T
primitive recursion into type T .

r, s, t ∈ TmT
Γ Well-typed terms, written Γ ` t : T .

c : T

Γ ` c : T
constant

(x :T) ∈ Γ

Γ ` x : T
variable

Γ, x :S ` t : T

Γ ` λxt : S → T
function abstraction

Γ ` r : S → T Γ ` s : S

Γ ` r s : T
function application.

Figure 2.1: A small functional language: Gödel’s System T.

6

2.1 Evaluation

we write Γ ` t : T to express that t is a term of type T in context Γ. A type is either
the base type N of natural numbers or a function type with domain S and codomain T ,
which are types themselves. We only consider finite type expressions, but of arbitrary
order (nesting of function spaces).

System T can be directly interpreted in a meta language that has functions f ∈ A→
B of arbitrary order and natural numbers n ∈ N. Such a language could be classical
set-theory, but for reasons becoming apparent later, we prefer a meta language with
computable functions such as Martin-Löf Type Theory [Nordström et al., 1990]. Appli-
cation of function f to argument a in the meta-language is written f(a). Let further
Set denote a universe of small sets and N1 denote the one-element type containing only
the empty tuple (). We assume the meta language has a concept of primitive recursion
with the following behavior:

rec (A ∈ Set) (z ∈ A) (s ∈ N→ A→ A) (n ∈ N) ∈ A
rec (A) (z) (s) (0) = z
rec (A) (z) (s) (n+ 1) = s(n)(rec(A)(z)(s)(n))

We interpret types [[T]], contexts [[Γ]], and terms [[Γ ` t : T]] of System T as follows.

[[T]] ∈ Set
[[N]] = N
[[S → T]] = [[S]]→ [[T]]

[[Γ]] ∈ Set
[[()]] = N1

[[Γ, x :S]] = [[Γ]]× [[S]]

[[(x :T) ∈ Γ]] (ρ ∈ [[Γ]]) ∈ [[T]]
[[(x :T) ∈ (Γ, x :T)]](ρ, a) = a
[[(x :T) ∈ (Γ, y :S)]](ρ, a) = [[(x :T) ∈ Γ]](ρ) for y 6= x

[[c : T]] ∈ [[T]]
[[zero : N]] = 0
[[suc : N→ N]] (n) = n+ 1
[[rec : RecT]] = rec([[T]])

[[Γ ` t : T]] (ρ ∈ [[Γ]]) ∈ [[T]]
[[Γ ` c : T]] (ρ) = [[c : T]]
[[Γ ` x : T]] (ρ) = [[(x :T) ∈ Γ)]](ρ)
[[Γ ` λxt : S → T]] (ρ)(a) = [[Γ, x :S ` t : T]](ρ, a)
[[Γ ` r s : T]] (ρ) = [[Γ ` r : S → T]](ρ)([[Γ ` s : S]](ρ))

Now if we have a closed program ` t : N that computes a natural number, we can
obtain its value as [[` t : N]]() ∈ N.

Looking closely, our interpretation does not really “explain” what natural numbers
and functions are, since it just maps object-level concepts to the corresponding meta-
level concepts.2 However, it does explain what variables are: placeholders for values, or,

2In this respect, its Tarskian semantics at its best and subject to Girard’s critique [2001].

7

2 Simple Types: From Evaluation to Normalization

more precisely, projections out of value tuples ρ which are valuations of typing contexts
Γ.

In the following, for Γ ` t : T we allow ourselves to write [[t]] instead of [[Γ ` t : T]].

2.2 Normalization

Normalization is the process of transforming a program into another program, called
the normal form of the first program. Normalization should increase the “entropy”
of the program while leaving its meaning intact. The term “entropy” is here used as
an analogy to entropy in thermodynamics; for instance, mixing a hot fluid with a cold
one will preserve the total thermal energy of the two fluids but increase the entropy
of the system. Computing the normal form might collapse some internal structure of
the program into a “simpler” one which leads to the same value. For instance, the
expressions 1+1 and 2 differ but have the same value, and normalization will turn 1+1
into 2, increasing entropy by removing structure.

Formally, let nf(t) denote the normal form of typed term Γ ` t : T . Then we expect
the following soundness properties to hold:

1. Γ ` nf(t) : T (well-typedness of normal form),

2. [[nf(t)]] = [[t]] (preservation of meaning), and

3. nf(nf(t)) = nf(t) (idempotency).

These soundness properties do not express our intuition that normalization should
increase the entropy; for instance, the identity function fulfills all three properties. We
would wish for a completeness property: if two programs have the same meaning (we
also say they are semantically equal), then they have the same normal form, or in
symbols, [[t]] = [[t′]] implies nf(t) = nf(t′). This wish can be granted for closed programs
of base type ` t, t′ : N, because their meaning is just a natural number, and this
number can be returned as normal form. However, for the interesting general case
Γ ` t, t′ : T of open terms (the context Γ is non-empty) or functional terms (T is a
function type), our wish cannot be fulfilled. The interpretation of open or functional
terms are (higher-order) functions whose equality is undecidable.3

If we remove natural numbers and primitive recursion from our language, restricting
to simply-typed lambda calculus, then program equivalence becomes decidable, and
we can introduce the syntactic relation Γ ` t = t′ : T of βη-equivalence between
typed terms t, t′ that holds iff [[t]] = [[t′]] [Friedman, 1975]. Restoring natural numbers
and extending βη-equivalence with rules characterizing the computational behavior of
primitive recursion we arrive at the relation of definitional equality given in Figure 2.2.
Definitional equality for System T is not complete, but decidable, as we will show.
Since it encompasses equality of pure simply-typed lambda terms and equality of closed
natural number terms, it is a reasonable equality concept.

Definitional equality makes use of a capture-avoiding substitution operation t[s/x]
which is meaning-preserving in the sense that

[[Γ ` t[s/x] : T]](ρ) = [[Γ, x :S ` t : T]](ρ, [[Γ ` s : S]](ρ)).

3Undecidability of Gödel’s System T is related to the undecidability of arithmetic [Gödel, 1931].

8

2.2 Normalization

Computation rules (β).

Γ, x :S ` t : T Γ ` s : S

Γ ` (λxt) s = t[s/x] : T

Γ ` z : T Γ ` s : N→ T → T

Γ ` rec z s zero = z : T

Γ ` z : T Γ ` s : N→ T → T Γ ` n : N

Γ ` rec z s (sucn) = s n (rec z s n) : T

Function extensionality (η).

Γ ` t : S → T

Γ ` λx. t x = t : S → T

Compatibility rules.

c : T

Γ ` c = c : T

(x :T) ∈ Γ

Γ ` x = x : T

Γ, x :S ` t = t′ : T

Γ ` λxt = λxt′ : S → T

Γ ` r = r′ : S → T Γ ` s = s′ : S

Γ ` r s = r′ s′ : T

Equivalence rules (reflexivity, symmetry, transitivity).

Γ ` t : T

Γ ` t = t : T

Γ ` t = t′ : T

Γ ` t′ = t : T

Γ ` t1 = t2 : T Γ ` t2 = t3 : T

Γ ` t1 = t3 : T

Figure 2.2: Definitional Equality for System T.

9

2 Simple Types: From Evaluation to Normalization

As a consequence, definitional equality is sound, i. e., Γ ` t = t′ : T implies [[Γ ` t :
T]] = [[Γ ` t′ : T]]. While semantic equality cannot be decided, definitional equality
shall be decided by normalization, so we aim at the following ties between definitional
equality and normalization.

1. Γ ` nf(t) = t : T (soundness).

2. If Γ ` t = t′ : T then nf(t) = nf(t′) (completeness).

Soundness says that normalization is compatible with definitional equality, and com-
pleteness says that definitionally equal terms have identical normal forms.

We normalize a term t by repeatedly applying the computation (β) and extensionality
(η) equations from left to right to one of t’s subterms. This process is known as
reduction and it terminates in the normal form of t [Tait, 1967]. However, Berger
and Schwichtenberg [1991] discovered a method to obtain a normalization function as
instance of the evaluation function, and we will investigate it in the next section.

2.3 Normalization by Evaluation

Normalization can be viewed as evaluation of open terms. Under this view, a variable
changes its role subtly from place holder for values to unknown.4 Evaluating an expres-
sion with unknowns in general does not return a value but another, possibly simplified,
expression with unknowns. Unknowns can block evaluation in these two cases:

1. An unknown function blocks application.

2. An unknown number blocks recursion.

Normal terms can be defined mutually with neutral terms,5 which are blocked terms in
normal form, by the rules in Figure 2.3.
Normalization-by-evaluation (NbE) works as follows:

1. We extend the interpretation of types such that the base type N contains the
neutral terms of type N.

2. We define reflection functions ↑T that map neutral terms of type T to semantic
objects in [[T]].

3. We define reification functions ↓T that map semantic objects in [[T]] to normal
forms of type T . 6

4. We obtain the normal form of a term Γ ` t : T by reifying the value of t obtained
in a environment of reflected variables.

4A bound variable is a place holder for some value, but a free variable should be considered as an
unknown value.

5The notion of neutral term is due to Altenkirch et al. [1995] and should not be confused with Girard’s
notion of neutrality [1989] which is used in strong normalization proofs using reducibility candidates.
Girard’s concept is different but shares the property that substitution of a neutral for a variable
does not create a β-redex.

6Berger and Schwichtenberg called reification an “inverse of the evaluation functional”.

10

2.3 Normalization by Evaluation

v ∈ NfTΓ normal terms, written Γ ` v ⇔ T .

Γ ` zero ⇔ N

Γ ` v ⇔ N

Γ ` suc v ⇔ N

Γ ` u⇒ N

Γ ` u⇔ N

Γ, x :S ` v ⇔ T

Γ ` λxv ⇔ S → T

u ∈ NeTΓ neutral terms, written Γ ` u⇒ T .

(x :T) ∈ Γ

Γ ` x⇒ T

Γ ` u⇒ S → T Γ ` v ⇔ S

Γ ` u v ⇒ T

Γ ` vz ⇔ T Γ ` vs ⇔ N→ T → T Γ ` u⇒ N

Γ ` rec vz vs u⇒ T

Figure 2.3: Normal and neutral terms for System T.

Let us give a preliminary NbE algorithm as follows:

[[N]] = NfN

[[S → T]] = [[S]]→ [[T]]

↑T ∈ NeT → [[T]]

↑N (u) = u

↑S→T (u)(a ∈ [[S]]) = ↑T (u v) where v = ↓S(a)

↓T ∈ [[T]]→ NfT

↓N (v) = v

↓S→T (f) = λx. ↓T (f(a)) where a = ↑S(x) and x “fresh”

↑Γ ∈ [[Γ]]

↑() = ()

↑Γ,x:S = (↑Γ, ↑S(x))

nfTΓ ∈ TmT
Γ → NfTΓ

nfTΓ (t) = ↓T ([[t]](↑Γ))

Since we have changed the semantic type of natural numbers, we have to update the
definition of primitive recursion as well:

rec (T) ∈ [[N→ (N→ T → T)→ N→ T]]
rec (T) (z) (s) (zero) = z
rec (T) (z) (s) (suc v) = s(v)(rec(T)(z)(s)(v))

rec (T) (z) (s) (u) = ↑T (rec vz vs u) where vz = ↓T (z) and vs = ↓N→T→T (s)

[[rec : RecT]] = rec(T)

11

2 Simple Types: From Evaluation to Normalization

Our preliminary algorithm is just a sketch, since we have been sloppy about variables
in two aspects: We have omitted the contexts Γ in several places when mentioning Ne
and Nf, and we have required that x should be a fresh variable without explaining what
we mean by that. The purpose of the freshness condition for x in λx. ↓T (f(↑S x)) is
to avoid capturing occurrences of variable x that morally stem from the reification of
function f , not its argument ↑S x. However, since f is a semantic object, the notion
of variable occurrence in f is a priori undefined, and a definition via reification of f is
problematic since we need the freshness condition to properly reify f . We shall address
these issues in the next section.

Even with being confined to the above sketch, we can understand how normalization-
by-evaluation works: Normalizing a functional term is performed by reifying its under-
lying function applied to an unknown of its domain. An unknown of functional type
is a neutral term u that acts as a function which reifies its argument to a value v and
returns the blocked application u v. If we recurse on an unknown natural number, the
code of the recursive function is produced. In this sense, if we apply a function to an
unknown it returns its own code.

NbE is complete for checking definitional equality. This follows from its definition
↓T ([[t]](↑Γ)) because definitionally equal terms have the same interpretation. Soundness
of NbE, Γ ` t = nf(t) : T , follows by a logical relation between syntax and semantics,
which we will study after having made NbE precise.

2.4 Variable Handling

In the literature, there are several approaches to the handling of variables and the
freshness condition in NbE.

• Gensym. An implementation of NbE can obtain a fresh variable by taking one
out of a global store. This side effect has no direct mathematical meaning and
obstructs reasoning for the correctness of NbE. Filinski [2001] and Barral [2008]
have formalized this approach using monads, arriving at a monadic NbE algorithm
and a correctness proof using Kripke monadic logical relations.

• Trial reification [Garillot and Werner, 2007]. To find a variable that is fresh with
regard to a function f we apply it to a dummy unknown. After reification, we
have access to the variables actually used by f and we can pick an unused variable
x. Then we properly reify f using variable x. This is a simple solution, albeit
unfeasible because of exponential computational complexity.

• If we work in a two-level lambda-calculus [Danvy, 1996, Vestergaard, 2001a, Aehlig
and Joachimski, 2004, Abel et al., 2007b] we have α-conversion both at the “lower”
level of syntax and the “upper” level of “semantics”. Picking a fresh variable is
unproblematic since we can get the set of used variables at both levels. This
approach might be criticized for departing from actual implementations of NbE
which cannot make use of such trickery.

• Pitts [2010] specifies NbE in a meta-language of nominal sets and implements
NbE in his programming language Fresh Objective Caml. The notion of name

12

2.5 Liftable Terms

and freshness are primitive in nominal logics and the accompanying programming
language and apply to all objects, even (set-theoretical) functions, not only syn-
tax. In nominal style, the “problem” of freshness is non-existent, or, to put it the
other way round, nominal style exists to obliviate the problem of freshness.

• Term families [Berger and Schwichtenberg, 1991, Berger et al., 2003, Filinski,
1999] allow to systematically rename bound variables in order to make room for
a new bound variable. Term families rely on a de Bruijn level representation of
lambda-terms which uses integers k ∈ N for variable names and numbers lambda-
bound variables consecutively from outside in. In the term family approach,
base types are interpreted as function spaces [[N]] = N → NfN, where the integer
argument denotes the difference by which to shift all de Bruijn levels upward.

• Liftable terms [Aehlig and Joachimski, 2004, Abel et al., 2007a] are similiar to
term families only that they rely on a de Bruijn index representation. Not the
bound, but the free variables are shifted upwards to make room for a binder. This
style will be presented in detail in Section 2.5.

• Locally nameless term representations go back to Pollack [1994] and implement the
Barendregt convention that bound variables should be distinct from free variables.
In locally nameless style, bound variables are represented as de Bruijn indices and
free variables as de Bruijn levels or by name. We have used this style in [Abel
et al., 2011, Abel, 2010a] and present it in Chapter 3.

• Coquand [1994] derives NbE from Kripke semantics meaning that all semantic
objects are relative to a typing context, can access this context to pick a fresh
variable, and can be lifted to an extended context. Kripke semantics is often
combined with de Bruijn index representations [Danielsson, 2007] and can be
generalized to presheaf models [Altenkirch et al., 1995].

• Contextual reification [Abel et al., 2008, Abel, 2008, 2009a] uses de Bruijn levels in
the semantics and names in the syntax. Quotation works with a set of used names
and can pick a fresh name avoiding this set. Contextual reification is similar to
the locally nameless style and can also be viewed as a light-weight variant of the
Kripke approach. It confines the “Kripke” to the correctness proof of NbE while
the actual algorithm does not work with context extensions or morphisms.

This list might not be comprehensive, but already gives an impression of the variety of
NbE styles.

2.5 Liftable Terms

When we look at reflection and reification, we note that

1. in reification at function type ↓S→T (f), we need a context Γ of variables currently
in scope to pick a fresh variable x 6∈ Γ,

2. this fresh variable is reflected into the semantics as value a = ↑S(x),

13

2 Simple Types: From Evaluation to Normalization

3. in reflection at function type ↑S→T (u), a value a might be reified to a normal form
v = ↓S(a) in a context Γ′ different from the one where it was created (in fact Γ′

can only be an extension of Γ, but this is not clear a priori).

These issues can be addressed by using liftable neutrals in the semantics of base types,
i. e., neutrals that can be used in a different context than created. We set

NfT = (Γ ∈ Cxt)→ NfTΓ
NeT = (Γ ∈ Cxt)→ (NeTΓ] {⊥})

and we use v̂ to denote a liftable normal term and û for a liftable neutral term. A
liftable neutral û may be undefined for some context Γ, thus, we can have û(Γ) = ⊥.
Application of or to an undefined neutral yields again the undefined neutral, ⊥ v = ⊥
and rec vz vs ⊥ = ⊥. Application of liftable terms is overloaded as (û v̂)(Γ) = û(Γ) v̂(Γ)
and liftable constants are simply defined by ĉ(Γ) = c. The base type Nat of natural
numbers is inductively defined by the rules

zero ∈ Nat

n ∈ Nat

sucn ∈ Nat

û ∈ NeN

û ∈ Nat

to allow us embedding of liftable neutrals and induction on natural numbers for the
recursor. We can reify elements of Nat to normal forms recursively:

↓Nat ∈ Nat→ NfN

↓Nat (zero) = ẑero

↓Nat (sucn) = ŝuc ↓Nat(n)

↓Nat (û)(Γ) = zero if û(Γ) = ⊥
↓Nat (û)(Γ) = û(Γ) otherwise

The updated NbE algorithm now reads as follows:

[[N]] = Nat
[[S → T]] = [[S]]→ [[T]]

↑T ∈ NeT → [[T]]

↑N (û) = û

↑S→T (û)(a ∈ [[S]]) = ↑T (û v̂) where v̂ = ↓S(a)

↓T ∈ [[T]]→ NfT

↓N (n) = ↓Nat(n)

↓S→T (f)(Γ) = λx. ↓T (f(a))(Γ, x :S) where a = ↑S(x̂SΓ)

↑Γ ∈ [[Γ]]

↑() = ()

↑Γ,x:S = (↑Γ, ↑S(x̂SΓ))

nfTΓ ∈ TmT
Γ → NfTΓ

nfTΓ (t) = ↓T ([[t]](↑Γ))(Γ)

14

2.6 Soundness of Normalization by Evaluation

The description uses a liftable variable x̂SΓ in two places. It denotes the variable x
created in context Γ, x : S and usable in extended contexts Γ, x : S,Γ′. Formally, we
have to define its value for all contexts—we shall return dummy value ⊥ if it is used in
contexts which are not extensions of its creation context.

x̂SΓ ∈ NeS

x̂SΓ(Γ, x :S,Γ′) = x
x̂SΓ(Γ′) = ⊥ if Γ′ is not an extension of Γ.

What remains to be done is to update the primitive recursor to work on liftable terms
in case of a neutral natural number:

rec (T) ∈ [[N→ (N→ T → T)→ N→ T]]
rec (T) (z) (s) (zero) = z
rec (T) (z) (s) (sucn) = s(n)(rec(T)(z)(s)(n))

rec (T) (z) (s) (û) = ↑T (r̂ec v̂z v̂s û) where v̂z = ↓T (z) and v̂s = ↓N→T→T (s)

In the following, we adopt the notation ↓TΓ (a) as shorthand for ↓T (a)(Γ).

2.6 Soundness of Normalization by Evaluation

We now turn to the problem of soundness of normalization Γ ` t = nf(t) : T , which for
NbE reads

Γ ` t = ↓TΓ a : T where a = [[t]](↑Γ).

We obtain soundness from a Kripke logical relation Γ ` t : T R© a between a typed

term t and a value a ∈ [[T]]. The logical relation is constructed to imply Γ ` t = ↓TΓ a : T .
Soundness follows after we establish Γ ` t : T R© [[t]](↑Γ) via the fundamental lemma of
logical relations.

We say context Γ′ extends context Γ, written Γ′ ≤ Γ , if Γ′ = Γ,∆ for some context
∆. Our relation Γ ` t : T R© a is defined by induction on type T as follows:

Γ ` t : N R© v̂ ⇐⇒ ∀Γ′ ≤ Γ. Γ′ ` t = v̂(Γ′) : N
Γ ` r : S → T R© f ⇐⇒ ∀Γ′ ≤ Γ. Γ′ ` s : S R© a =⇒ Γ′ ` r s : T R© f(a)

The logical relation is sandwiched between reflection and reification, more precisely, by
induction on type T we can prove the implications

(∀Γ′ ≤ Γ. Γ′ ` u = û(Γ′) : T) =⇒ Γ ` u : T R© ↑T (û)

Γ ` t : T R© a =⇒ ∀Γ′ ≤ Γ. Γ′ ` t = ↓TΓ′(a) : T.

A consequence of the first implication is that variables are logical related to their re-
flections, we have Γ, x : T ` x : T R© ↑T (x̂TΓ) because Γ′ ` x = x̂TΓ (Γ′) : T for all
Γ′ ≤ (Γ, x :T).

To prove the fundamental lemma, we have to extend the logical relations to sub-
stitutions Γ ` σ : ∆ and environments. Parallel substitutions are introduced by the
rules

Γ ` () : ()

Γ ` σ : ∆ Γ ` s : S

Γ ` (σ, s/x) : ∆, x :S

15

2 Simple Types: From Evaluation to Normalization

and the application of a substitution t[σ] is an operation which enjoys the typing

Γ ` σ : ∆ ∆ ` t : T

Γ ` t[σ] : T

A Kripke logical relation Γ ` σ : ∆ R© ρ between a substitution σ and an environment

ρ ∈ [[∆]] and a semantic typing judgment Γ � t : T are constructed as follows:

Γ ` () : () R© () :⇐⇒ true
Γ ` (σ, s/x) : (∆, x :S) R© (ρ, a) :⇐⇒ Γ ` σ : ∆ R© ρ and Γ ` s : S R© a

Γ � t : T :⇐⇒ ∀∆, σ, ρ. ∆ ` σ : Γ R© ρ
=⇒ ∆ ` t[σ] : T R© [[t]](ρ)

By induction on Γ ` t : T we prove Γ � t : T — this is called the fundamental lemma
of logical relations. For the identity substitution Γ ` id : Γ we have Γ ` id : Γ R© ↑Γ,
thus, the fundamental lemma implies Γ ` t : T R© [[t]](↑Γ) and finally the soundness
Γ ` t = ↓TΓ ([[t]](↑Γ)) : T of NbE.

2.7 Summary

We have been introduced to NbE for simple types and intrinsic typing, i. e., types
are defined first and terms are never considered in their raw, untyped form. The
approach relies very much on the definition of type interpretation by induction on
the syntax of types. For this reason, it does not scale directly to dependent types
and impredicativity. While it served us well for a prime exposition, we switch to an
extrinsic, type-assignment, terms first! style that allows us to formulate NbE uniformly
for many type systems.

16

3 Untyped Normalization-By-Evaluation
and Type Assignment

Describing a language as typed terms, as we have done in Section 2.1, has the advantage
that we never have to look at terms that have no meaning, such as the term Ω =
(λx. x x) (λx. x x). As a consequence, the denotation [[t]] is a priori well-defined for any
term t.

But typed terms have also disadvantages: For one, computation is oblivious of types—
the value of a term t does not depend on its type T . In practice, machines that execute
computations are untyped, or at best, softly typed. Types give assurance that nothing
“goes wrong” [Milner, 1978], but it is sufficient that we type-check a program before
its execution or compilation, we can then throw away types. Thus, it makes sense to
adopt a type assignment perspective: terms get assigned a type rather than having a
fixed type from the beginning.1

Another problem with typed terms surfaces as we leave the world of simple types
and embark on a journey into polymorphic and dependent types. Untyped terms allow
us to separate concerns: we can first specify operations on untyped terms and then
prove typing properties of these operations. Typed terms do not give us this flexibility;
everything has to be well-typed from the beginning. Attempts to formulate NbE for
dependently typed terms have not fully succeeded so far. Initial progress has been made
by Altenkirch and Chapman [2009] who formalize a typed normalizer for a version of
System T with explicit substitutions. Chapman [2009] has extended this approach to
Martin-Löf’s dependently-typed logical framework with one (albeit empty) universe and
presented a partial formalization in Agda. Danielsson [2007] has formalized NbE for
the same type theory in a precursor of Agda. An early, influential work is Catarina
Coquand’s formalization of NbE [1994] using Kripke function spaces, however, it is also
confined to simple types.

Using a type-assignment perspective, we have succeeded to describe normalization
by evaluation for both dependent types and impredicative polymorphism. The key
tool is an underlying evaluation mechanism for untyped lambda calculus into a set
of values D which forms an applicative structure. NbE amounts to adding the type-
directed reflection and reification functions and logical relations that prove soundness
and completeness of NbE. In this chapter, we study NbE for untyped lambda-calculus
as the basic mechanism.

1The view that terms have a fixed type seems to be the heritage of the Curry-Howard-Correspondence
that maps proofs to terms and propositions to types. It does not make much sense to consider a
proof without the proposition it tries to proof; thus, propositions come before proofs in the world of
logics. In the world of computation, programs can be meaningfully considered without their types,
hence, programs come before their types.

17

3 Untyped Normalization-By-Evaluation and Type Assignment

3.1 Untyped NbE Using Domains

In the following we consider untyped lambda-calculus with variables represented as
de Bruijn indices [de Bruijn, 1972]. An index is a natural number indicating how many
λs stand between2 the variable and its binding λ. The terms t ∈ Exp, neutral terms
u ∈ Ne and normal terms v ∈ Nf are given by the following grammar:

Exp 3 r, s, t ::= vi the ith variable
| λt abstracting the 0th variable in t
| r s applying r to s.

Ne 3 u ::= vi | u v β-normal non-abstraction term
Nf 3 v ::= u | λv β-normal term.

The term λx. x (λy. y x) is represented by λ. 0 (λ. 0 1) in de Bruijn notation. De Bruijn
indices should not be confused with de Bruijn levels which number the λ-bound vari-
ables from outside in. In de Bruijn level representation, the same term is written
λ0. 0 (λ1. 1 0) which is obtained by replacing the variable x by 0 and y by 1.

Untyped lambda-calculus can be interpreted in a Scott domain D ∼= [D→ D] which is
a set D that is isomorphic to the set [D→ D] of continuous functions on D [Stoy, 1977].
We obtain untyped NbE by extending D with a suitable representation of neutrals.
The following “grammar” resembles data type declarations in functional languages and
corresponds to a system of two solvable domain equations defining D and Dne:

D 3 a, b, d ::= Abs (f ∈ [D→ D]) function value
| Up (e ∈ Dne) neutral value

Dne 3 e ::= Level(k ∈ N) de Bruijn level
| App (e ∈ Dne, d ∈ D) neutral application.

We write xk for Level(k) and e d for App(e, d). For the semantic world we have chosen
de Bruijn levels instead of indices because a level is like a new constant, whereas an
index shifts its meaning according to the context it is considered. Our choice avoids
complications in the treatment of names such as the need to build liftings into the
semantics or to employ a Kripke semantics in the first place. Our approach resembles
the locally nameless representation of λ-terms [Pollack, 1994] and we have successfully
applied it to NbE for dependent types [Abel et al., 2008, 2011, Abel, 2010a].

Application on D is a continuous function defined by cases as follows:

· ∈ [D→ [D→ D]]
Abs(f) · d = f(d)
Up(e) · d = Up(e d)

For environments ρ ∈ Env = N→ D, update (ρ, d) ∈ Env is defined as (ρ, d)(0) = d and

2“Between” refers to the view of a term as a tree, not its textual representation.

18

3.1 Untyped NbE Using Domains

(ρ, d)(i+ 1) = ρ(i). Using environments, we define the evaluation function as usual.

[[]] ∈ Exp→ [Env→ D]
[[vi]] (ρ) = ρ(i)
[[λt]] (ρ) = Abs(f) where f(d) = [[t]](ρ, d)
[[r s]](ρ) = [[r]]ρ · [[s]]ρ.

To turn evaluation into normalization, we define a family of read-back3 functions Rnf
n

that convert values d ∈ D that stem from terms with at most n free indices into a β-
normal form. It is mutually defined with a family of read-back functions Rne

n for neutral
values e ∈ Dne.

Rnf
n ∈ D→ Nf

Rnf
n (Abs(f)) = λ.Rnf

n+1(f(xn))
Rnf
n (Up(e)) = Rne

n (e)

Rne
n ∈ Dne → Ne

Rne
n (xk) = vn−(k+1)

Rne
n (e d) = Rne

n (e)Rnf
n (d)

The number n is needed to convert a de Bruijn level xk into its corresponding de Bruijn
index vi. If we consider a context of n variables, de Bruijn levels appear in ascending
order form left to right (0 is the variable that was introduced first) while de Bruijn
indices appear in descending order (0 is variable that was introduced last).

level x0 x1 . . . xk . . . xn−(i+1) . . . xn−2 xn−1

index vn−1 vn−2 . . . vn−(k+1) . . . vi . . . v1 v0

Level and index of a variable add up to n− 1, thus vn−(k+1) is the index corresponding
to the kth level. Symmetrically, xn−(i+1) is the level corresponding to the ith index,
and we define an initial environment ρn for the evaluation of an expression with free
indices below n as

ρn ∈ Env
ρn(i) = Up

(
xn−(i+1)

)
.

While a well-scoped de Bruijn index i is strictly below n, it is technically convenient4 if
ρn(i) is defined also for i ≥ n, even if it returns garbage. Thus, we consider here, and
throughout this thesis, subtraction as truncating subtraction on the natural numbers:
n − i = 0 if i ≥ n. That we never encounter an ill-scoped de Bruijn index or level
during NbE, i. e., that truncation is actually never necessary, is a consequence of the
soundness theorem (Section 3.9).

3A variant of our read-back procedure has been introduced by Grégoire and Leroy [2002]. Read-back
is often called quotation [Coquand, 1994, Coquand and Dybjer, 1997, Altenkirch et al., 1995].

4 If we considered subtraction on Z, we would either have to allow negative de Bruijn indices and
levels, or let Rne and ρn be partial functions, requiring a partial application on Ne. The definition
of the candidate space ⊥⊥,>> in Section 3.4 would be less direct.

19

3 Untyped Normalization-By-Evaluation and Type Assignment

Semantics D

Rnf

��

DneUpoo

Rne

��

Level
xoo

OO

n−

��
Syntax Exp

[[]]

11

Nf
⊇oo Ne

⊇oo Index
voo

Figure 3.1: Untyped NbE in locally nameless style.

A family of (partial) normalization functions for the untyped lambda calculus is
finally obtained by

nfn ∈ Exp→ Nf
nfn(t) = Rnf

n ([[t]](ρn)).

nfn(t) returns the normal form of term t with indices < n if such a normal form exists.
We are not going to prove this here but refer to the works of Aehlig and Joachimski
[2004] and Filinski and Rohde [2004]. We are not actually interested in untyped NbE
per se, but we use it as a tool to study normalizing type assignment systems. Figure 3.1
summarizes our formulation of untyped NbE.

3.2 Untyped NbE Using Partial Applicative Structures

Domains are a nice tool to give semantics to programming languages, but they are not
a primitive notion of set theory or type theory. In fact, the construction of a reflexive
domain D ∼= [D → D] is quite involved, requiring a framework of complete partial
orders, embedding-projection pairs, limits and so on [Schmidt, 1986]. It turns out
that evaluation into domains is just a special case of evaluation into partial applicative
structures.

For our purposes, a partial applicative structure5 is a set D with partial application
operation · ∈ D × D ⇀ D and partial evaluation operation [[]]() ∈ Exp × Env ⇀ D
where Env = N⇀ D. These operation must satisfy the following axioms:

[[vi]] (ρ)
.
= ρ(i)

[[λt]] (ρ) · d .
= [[t]](ρ, d)

[[r s]](ρ)
.
= [[r]](ρ) · [[s]](ρ)

We read these equations as: if one side is defined, so is the other, and then both are
equal (Kleene equivalence

.
=). By definition, these laws hold for evaluation into domains.

However, the more abstract framework of partial applicative structures also accommo-
dates a defunctionalized6 variant of evaluation into domains. If we look closely, we see

5Our notion of partial applicative structure is analogous to Barendregt’s syntactical applicative struc-
ture [1984] or Mitchell’s environment models [1996].

6Defunctionalized interpreters are due to Reynolds [1972] and are used by Ager et al. [2003] to sys-
tematically develop abstract normalization machines.

20

3.2 Untyped NbE Using Partial Applicative Structures

that all semantic functional values stem from the evaluation of a lambda-abstraction.
This allows us a positive formulation of D using closures (λt)ρ [Landin, 1964] that does
not rely on domain theory.

D 3 a, b, d, f ::= (λt)ρ closure (function value)
| e neutral value

Dne 3 e ::= xk | e d
Env = N→ D

Besides replacing continuous function with closures, nothing has changed, except that
we leave constructor Up ∈ Dne → D implicit. Application and evaluation are now
defined mutually.

(λt)ρ · d .
= [[t]](ρ, d)

e · d = e d

[[vi]] (ρ) = ρ(i)
[[λt]] (ρ) = (λt)ρ
[[r s]] (ρ)

.
= [[r]](ρ) · [[s]](ρ)

Still, we are using partial functions which might be a convenient tool of set theory but
are not a primitive notion in type theory. A principled method [Bove et al., 2013] to
construct a partial function in type theory is to first define the graph of the function
inductively and then construct the “partial” function by recursion over its inductive
graph.7 The graphs of application and evaluation are given by the mutual inductive

relations f · a↘ b and [[t]](ρ)↘ a .

[[t]](ρ, a)↘ b

(λt)ρ · a↘ b e · d↘ e d

[[vi]](ρ)↘ ρ(i) [[λt]](ρ)↘ (λt)ρ

[[r]](ρ)↘ f [[s]](ρ)↘ a f · a↘ b

[[r s]](ρ)↘ b

Since read-back of closures triggers the evaluation of the function body, the read-back

functions are partial and we define their graphs Rnf
n d↘ v and Rne

n e↘ u inductively

as well.

[[t]](ρ, xn)↘ b Rnf
n+1 b↘ v

Rnf
n (λt)ρ↘ λv

Rne
n e↘ u

Rnf
n e↘ u

Rne
n xk ↘ vn−(k+1)

Rne
n e↘ u Rnf

n d↘ v

Rne
n e d↘ u v

Finally, the relation describing NbE is given by relation composition:

nfn(t)↘ v :⇐⇒ [[t]](ρn)↘ d and Rnf
n d↘ v.

7In fact, this “partial function” is a total function, but its domain is not the full product of argument
types.

21

3 Untyped Normalization-By-Evaluation and Type Assignment

From here we pursue the following path: We consider type assignment systems for
untyped terms that guarantee for typable terms Γ ` t : T the normalization of evalu-
ation and read-back. This then allows justifies the totality of the a priori partial NbE
procedure.

Notes. In relational formulation, evaluation coincides with Kahn’s natural semantics
[1987], also called big-step operational semantics. An analogous path from a partial eval-
uation operation to an inductive relation has been followed by Altenkirch and Chapman
[2009], including a read-back function they call quote—albeit for typed terms and for
the sake of formalization in Agda.

3.3 Type-Assignment System T

In this section we shall reconstruct System T typing from the operational semantics
given by our evaluation relation. First, let us extend expression and value language
and evaluation by call-by-value natural numbers and primitive recursion. For now, we
relinquish curried constants in favor of term constructors for successor and recursion.

Exp 3 r, s, t ::= · · · | zero | suc(t) | rec(tz, ts, tn)
Nf 3 v ::= · · · | zero | suc(v)
Ne 3 u ::= . . . | rec(vz, vs, u)

D 3 a, b, d, f ::= · · · | zero | suc(d)
Dne 3 e ::= . . . | rec(dz, ds, e)

Figure 3.2 introduces a new 4-ary relation rec(dz, ds, dn)↘ d for the execution of

recursion and completes the operational semantics, now definitely call-by-value.
Evaluation is now partial not only because of non-termination, but also because of

illegal operations; for instance, application of a number to an argument is undefined, as
well as recursion over a closure instead of a number. In the following, we identify sets
of values on which application and recursion are well-behaved and terminating. These
set of values are semantic types.

A semantic type A is (for now) a predicate on D which we conceive as a subset A ⊆ D.
The semantic type Nat ⊆ D of natural numbers is defined inductively by the rules

zero ∈ Nat

d ∈ Nat

suc(d) ∈ Nat
.

For two semantic types A,B the semantic function space A → B is defined by

A → B = {f ∈ D | ∀a ∈ A. ∃b ∈ B. f · a↘ b}

Let us introduce some suggestive, abbreviating notation for the statement that one
of our operational relations produces a result in some semantic type. We write

f · a ∈ B iff ∃b ∈ B. f · a↘ b
rec(dz, ds, dn) ∈ B iff ∃b ∈ B. rec(dz, ds, dn)↘ b
[[t]](ρ) ∈ B iff ∃b ∈ B. [[t]](ρ)↘ b

22

3.3 Type-Assignment System T

rec(dz, ds, dn)↘ d Primitive recursion.

rec(dz, ds, zero)↘ dz

rec(dz, ds, dn)↘ a ds · dn ↘ f f · a↘ b

rec(dz, ds, suc(dn))↘ b

rec(dz, ds, e)↘ rec(dz, ds, e)

[[t]](ρ)↘ d Extension of evaluation.

[[zero]](ρ)↘ zero

[[t]](ρ)↘ d

[[suc(t)]](ρ)↘ suc(d)

[[tz]](ρ)↘ dz [[ts]](ρ)↘ ds [[tn]](ρ)↘ dn rec(dz, ds, dn)↘ d

[[rec(tz, ts, tn)]](ρ)↘ d

Rnf
n d↘ v and Rne

n e↘ u : extended read-back.

Rnf
n zero↘ zero

Rnf
n d↘ v

Rnf
n suc(d)↘ suc(v)

Rnf
n dz ↘ vz Rnf

n ds ↘ vs Rne
n e↘ u

Rne
n rec(dz, ds, e)↘ rec(vz, vs, u)

Figure 3.2: Extensions to evaluation and read-back.

23

3 Untyped Normalization-By-Evaluation and Type Assignment

and analogously for the read-back and normalization relations. In the new notation,
f ∈ A → B iff f · a ∈ B for all a ∈ A. We can prove the following “typing rules” for
values; these are actually just implications which we write suggestively in rule format.

∀a ∈ A. [[t]](ρ, a) ∈ B
(λt)ρ ∈ A → B

f ∈ A → B a ∈ A
f · a ∈ B

dz ∈ A ds ∈ Nat → A→ A dn ∈ Nat

rec(dz, ds, dn) ∈ A

The first two implications are immediate, the third requires an induction on dn ∈ Nat .

We can now recover the typing rules for System T from the semantics. To this end,
we interpret syntactic types T as semantic types A and typing contexts Γ as sets of
environments ρ. Note that in our de Bruijn index representation, a typing context Γ is
just a list of types.

[[T]] ⊆ D
[[N]] = Nat
[[S → T]] = [[S]]→ [[T]]

[[Γ]] ⊆ Env
[[()]] = Env
[[Γ, S]] = {(ρ, d) | ρ ∈ [[Γ]] and d ∈ [[S]]}

Semantically, a term t has type T in context Γ iff evaluating t in any environment
ρ ∈ [[Γ]] results in a value of semantic type [[T]].

Γ � t : T :⇐⇒ ∀ρ ∈ [[Γ]]. [[t]](ρ) ∈ [[T]]

Using the value typing rules, we can immediately verify the following semantic typing
“rules”. Let context look-up Γ(i) be defined by (Γ, S)(0) = S and (Γ, S)(i+ 1) = Γ(i).

Γ(i) = T

Γ � vi : T

Γ, S � t : T

Γ � λt : S → T

Γ � r : S → T Γ � s : S

Γ � r s : T

Γ � zero : N

Γ � t : N

Γ � suc(t) : N

Γ � tz : T Γ � ts : N→ T → T Γ � tn : N

Γ � rec(tz, ts, tn) : T

Thus, we have derived type assignment Γ ` t : T for System T which we define as
the smallest relation closed under the above six rules. Note that neutral values and
read-back have not played any role yet, but they will when we show the totality of NbE
for type-assignment System T.

24

3.4 Candidate Spaces and Normalization for Type-Assignment System T

3.4 Candidate Spaces and Normalization for Type-Assignment
System T

While we have established that the evaluation of a typable term is well-defined, we do
not immediately obtain normalization. We need a stronger property: a typable term
evaluates to a reifiable value. Note that read-back may trigger evaluation of a function
body by application to a fresh de Bruijn level, and we have not established that de
Bruijn levels inhabit semantic types.

Usually, if one wants more results from a model, one needs to ask more of semantic
types. So far our semantic types are sets of values, now we will ask that they contain all
de Bruijn levels and contain only values we can read back into normal forms. “Asking
more” of semantic types, which are sometimes called candidates [Girard et al., 1989],
can be abstractly formulated by restricting semantic types to a candidate space [Abel,
2009a]. In our context, a candidate space consists of two sets ⊥⊥ ⊆ >> ⊆ D satisfying

⊥⊥ ⊆ >>→ ⊥⊥
⊥⊥→ >> ⊆ >>.

A set A inhabits the candidate space if ⊥⊥ ⊆ A ⊆ >>. Co- and contravariance properties
of the semantic function space immediately yield that A → B inhabits the candidate
space if A and B do. Thus, for fixed ⊥⊥ and >> we can redefine the set of semantic types
to those subsets of D that inhabit the space spanned by ⊥⊥ and >>. A suitable candidate
space for untyped NbE is given by

>> = {d | ∀n∃v ∈ Nf. Rnf
n d↘ v}

⊥⊥ = {e | ∀n∃u ∈ Ne. Rne
n e↘ u}.

Now every semantic type contains only reifiable values, and all de Bruijn levels, since
Rne
n xk ↘ vn−(k+1) (we round negative indices up to 0). Natural numbers have to be

extended to include the reifiable neutrals:

zero ∈ Nat

d ∈ Nat

suc(d) ∈ Nat

e ∈ ⊥⊥
e ∈ Nat

.

It follows that ⊥⊥ ⊆ [[T]], thus ρn ∈ [[Γ]] if n is the length of Γ. Now Γ ` t : T implies
[[t]](ρn) ∈ [[T]] ⊆ >>, thus Rnf

n ([[t]](ρn)) ↘ v for some v ∈ Nf, and we have established
the normalization of typable terms. However, neither its soundness nor completeness
with regard to System T equality rules (see Fig. 2.2) have been demonstrated yet, so
let us work on that in the next section.

3.5 Explicit Substitutions and β-Equality

Normalization should be complete for β-equality: (λt) s should have the same normal
form as t[s], which denotes the usual substitution of s for de Bruijn index 0 in t. This
is already the case if they have the same semantic value, however, with substitution as
an operation we cannot show this. Consider, for instance, t = λ1 and s = λ0. Then

[[(λt)s]](ρ) = (λt)ρ · [[s]](ρ) = [[t]](ρ, [[s]]ρ) = (λ1)(ρ, (λ0)ρ)
[[t[s]]](ρ) = [[λλ0]](ρ) = (λλ0)ρ.

25

3 Untyped Normalization-By-Evaluation and Type Assignment

These two values are not equal8 as objects of D. This can be remedied by switching to
explicit substitutions [Abadi et al., 1991] which naturally underlie a category-theoretic
treatment of type theory [Dybjer, 1996, Hofmann, 1997]. With explicit substitutions,
we change the evaluation order for [[t[s]]](ρ): Instead of substituting s into t and then
evaluating the result in environment ρ, the substitution [s] is evaluated in ρ to a new
environment (ρ, [[s]](ρ)) which is then used to evaluate t. This matches the evaluation
order for [[(λt)s]](ρ).

The literature knows different formulations of explicit substitutions;9 we follow Abadi
et al. [1991]:

Exp 3 r, s, t ::= · · · | t σ application of substitution

Subst 3 σ, τ ::= � index shift by 1
| id identity substitution
| σ τ substitution composition
| (σ, s) substitution extension.

The substitution � (short arrow!) increases all free de Bruijn indices in a term by 1.
The identity substitution id does nothing, as expected, and substitution composition
σ τ has the effect of first substituting with σ and then with τ . Substitution extension
(σ, s) is the syntactic analog of environment extension (ρ, a). We write the substitution
of s for the 0th index (id, s) as just [s].

Formally, the meaning of substitutions is given by its operational semantics [[σ]](ρ)↘ ρ′ :

[[�]](ρ, a)↘ ρ [[id]](ρ)↘ ρ

[[τ]](ρ)↘ ρ′ [[σ]](ρ′)↘ ρ′′

[[σ τ]](ρ)↘ ρ′′

[[σ]](ρ)↘ ρ′ [[s]](ρ)↘ a

[[(σ, s)]](ρ)↘ (ρ′, a)

[[σ]](ρ)↘ ρ′ [[t]](ρ′)↘ a

[[t σ]](ρ)↘ a

The last rule extends the evaluation of expressions to the case of substitution applica-
tion.

Semantic substitution typing Γ � σ : ∆ is defined as

Γ � σ : ∆ :⇐⇒ ∀ρ ∈ [[Γ]]. [[σ]](ρ) ∈ [[∆]]

leading to the following new semantic typing rules.

Γ, S � � : Γ Γ � id : Γ

Γ1 � τ : Γ2 Γ2 � σ : Γ3

Γ1 � σ τ : Γ3

Γ � σ : ∆ Γ � s : S

Γ � (σ, s) : ∆, S

Γ � σ : ∆ ∆ � t : T

Γ � t σ : T

8Although these values are not identical, they are extensionally equal: Both representations of the
constant identity function λxλy.y. It is not hopeless to try and justify substitution-as-operation,
but switching to explicit substitutions seems consequent since we use parallel substitution already
in the soundness argument for NbE.

9Such as Nadathur’s suspension calculus [2002] or Martin-Löf’s substitution calculus [1992] or variants
that fuse identity and shifting substitution, e. g., Abel and Pientka [2010].

26

3.6 Extensionality and Partial Equivalence Relations

Now we are ready to show that our semantics models β-equality. To this end,

we define semantic term equality Γ � t = t′ : T and semantic substitution equality

Γ � σ = σ′ : ∆ as follows:

a = a′ ∈ A :⇐⇒ a ∈ A and a′ ∈ A and a = a′

Γ � t = t′ : T :⇐⇒ ∀ρ ∈ [[Γ]]. [[t]](ρ) = [[t′]](ρ) ∈ [[T]]

ρ = ρ′ ∈ [[∆]] :⇐⇒ ρ ∈ [[∆]] and ρ′ ∈ [[∆]] and ρ = ρ′

Γ � σ = σ′ : ∆ :⇐⇒ ∀ρ ∈ [[Γ]]. [[σ]](ρ) = [[σ′]](ρ) ∈ [[∆]].

Figure 3.3 lists valid inferences for term equality Γ � t = t′ : T , yet we have written
them as rules for a syntactic judgement Γ ` t = t′ : T . Figure 3.4 does the same for
substitution equality, which is shown to be a congruence relation: it has equivalence
rules and all compatibility rules.

Term equality is only a weak congruence; we are missing the extensionality laws given
in Figure 3.5. The reason is that our semantic equality is too intensional for functions.
At function type, we only ask for equality of closures, yet we could ask for extensional
equality of functions. We shall strengthen our semantics in this way in the next section.

3.6 Extensionality and Partial Equivalence Relations

To model extensional function equality, we need to equip our semantic types A ⊆ D
with an equivalence relation =A, such that for all f, f ′ ∈ A → B,

f =A→B f
′ ⇐⇒ ∀a, a′ ∈ A. a =A a

′ =⇒ f · a =B f
′ · a′.

A set with an equivalence relation is called a setoid.10 However, in our case we deal
with a subset (predicate) of D with an equivalence relation. It turns out that this is
just a partial equivalence relation (PER) on D, i. e., a symmetric and transitive relation
A ⊆ D × D. Membership of a ∈ A is defined as (a, a) ∈ A; and if (a, b) ∈ A then by
symmetry and transitivity both a ∈ A and b ∈ A.

PERs have a groupoid structure [Abel, 2009a]. A groupoid (in the algebraic sense)
is a set with a total inverse operation a−1 and a partial concatenation operation a ∗ b.
A set of pairs D× D makes a groupoid with (a, b)−1 = (b, a) and (a, b) ∗ (b, c) = (a, c).
The PERs on D correspond exactly to the subgroupoids of D × D, with symmetry
corresponding to inversion and transitivity to concatenation.

The view of PERs as subgroupoids lets us reuse our definition of semantic function
space for relations. First note that a partial applicative structure D induces a partial
applicative structure on D2 = D× D with

(f, f ′) · (a, a′) = (f · a, f ′ · a′)
[[t]](ρ, ρ′) = ([[t]](ρ), [[t]](ρ′)) where (ρ, ρ′)(i) = (ρ(i), ρ′(i)).

10Setoids go back to Bishop [1967] who called a collection of elements a preset and a preset with
equivalence relation a set.

27

3 Untyped Normalization-By-Evaluation and Type Assignment

Computation rules (β).
Γ, S ` t : T Γ ` s : S

Γ ` (λt) s = t[s] : T

Γ ` tz : T Γ ` ts : N→ T → T

Γ ` rec(tz, ts, zero) = tz : T

Γ ` tz : T Γ ` ts : N→ T → T Γ ` tn : N

Γ ` rec(tz, ts, suc(tn)) = ts tn rec(tz, ts, tn) : T

Substitution resolution rules.

Γ(i) = T

Γ, S ` vi � = vi+1 : T

Γ ` t : T

Γ ` t id = t : T

Γ ` σ : ∆ Γ ` s : S

Γ ` v0 (σ, s) = s

Γ ` σ : ∆ Γ ` s : S ∆(i) = T

Γ ` vi+1 (σ, s) = vi σ : T

Substitution propagation rules.

Γ ` σ : ∆ ∆ ` r : S → T ∆ ` s : S

Γ ` (r s)σ = (r σ) (s σ) : T

Γ1 ` τ : Γ2 Γ2 ` σ : Γ3 Γ3 ` t : T

Γ ` (t σ) τ = t (σ τ) : T

Γ ` σ : ∆

Γ ` zeroσ = zero : N

Γ ` σ : ∆ ∆ ` t : N

Γ ` suc(t)σ = suc(t σ) : N

Γ ` σ : ∆ ∆ ` tz : T ∆ ` ts : N→ T → T ∆ ` tn : N

Γ ` rec(tz, ts, tn)σ = rec(tz σ, ts σ, tn σ) : T

Compatibility rules.

Γ(i) = T

Γ ` vi = vi : T

Γ ` r = r′ : S → T Γ ` s = s′ : S

Γ ` r s = r′ s′ : T

Γ ` zero = zero : N

Γ ` t = t′ : N

Γ ` suc(t) = suc(t′) : N

Γ ` tz = t′z : T Γ ` ts = t′s : N→ T → T Γ ` tn = t′n : N

Γ ` rec(tz, ts, tn) = rec(t′z, t
′
s, t
′
n) : T

Γ ` σ = σ′ : ∆ ∆ ` t = t′ : T

Γ ` t σ = t′ σ′ : T

Equivalence rules.

Γ ` t : T

Γ ` t = t : T

Γ ` t = t′ : T

Γ ` t′ = t : T

Γ ` t1 = t2 : T Γ ` t2 = t3 : T

Γ ` t1 = t3 : T

Figure 3.3: Γ ` t = t′ : T Valid term equality rules.

28

3.6 Extensionality and Partial Equivalence Relations

Computation and category laws.

Γ ` σ : ∆ Γ ` s : S

Γ ` � (σ, s) = σ : ∆

Γ ` σ : ∆

Γ ` idσ = σ : ∆

Γ ` σ : ∆

Γ ` σ id = σ : ∆

Γ4 ` σ3 : Γ3 Γ3 ` σ2 : Γ2 Γ2 ` σ1 : Γ1

Γ4 ` (σ1 σ2)σ3 = σ1 (σ2 σ3) : Γ1

Extensionality.

Γ, S ` id = (�, v0) : Γ, S

Propagation.

Γ ` τ : Γ′ Γ′ ` σ : ∆ Γ′ ` s : S

Γ ` (σ, s) τ = (σ τ, s τ) : ∆, S

Compatibility.

Γ, S ` � = � : Γ Γ ` id = id : Γ

Γ ` σ = σ′ : ∆ Γ ` s = s′ : S

Γ ` (σ, s) = (σ′, s′) : ∆, S

Γ1 ` σ = σ′ : Γ2 Γ2 ` τ = τ ′ : Γ3

Γ1 ` σ τ = σ′ τ ′ : Γ3

Equivalence rules.

Γ ` σ : ∆

Γ ` σ = σ : ∆

Γ ` σ = σ′ : ∆

Γ ` σ′ = σ : ∆

Γ ` σ1 = σ2 : ∆ Γ ` σ2 = σ3 : ∆

Γ ` σ1 = σ3 : ∆

Figure 3.4: Γ ` σ = σ′ : ∆ Valid substitution equality rules.

29

3 Untyped Normalization-By-Evaluation and Type Assignment

Weak function extensionality (ξ).

Γ, S ` t = t′ : T

Γ ` λt = λt′ : S → T

Function extensionality (η).

Γ ` t : S → T

Γ ` t = λ. (t �) v0 : S → T

Substitution propagation under λ.

Γ ` σ : ∆ ∆, S ` t : T

Γ ` (λt)σ = λ. t (σ �, v0) : S → T

Figure 3.5: Extensionality laws.

We marry the concept of applicative structure and groupoid, obtaining applicative
groupoids, by taking the laws of both structures plus the following distributivity laws:

(f · a)−1 = f−1 · a−1 if f · a def.
(f · a) ∗ (f ′ · a′) = (f ∗ f ′) · (a ∗ a′) if f · a, f ′ · a′, f ∗ f ′, a ∗ a′ def.

With unchanged definition of the semantic function space as A → B = {f ∈ D2 | ∀a ∈
A. f ·a ∈ B}, we easily prove that if A and B are subgroupoids of D2, so is the function
space A → B. We shall revert to the synonymous terminology “PER” in the following.
Also, we use the suggestive notation a = a′ ∈ A for (a, a′) ∈ A.

The PER of natural numbers Nat is given inductively by the following rules.

zero = zero ∈ Nat

a = a′ ∈ Nat

suc(a) = suc(a′) ∈ Nat

∀n. Rne
n e = Rne

n e
′ ∈ Ne

e = e′ ∈ Nat

A PER of environments ρ = ρ′ ∈ [[∆]] can be defined pointwise as follows; we also

redefine term and substitution equality.

ρ = ρ′ ∈ [[∆]] :⇐⇒ ∀i. ∆(i) = T =⇒ ρ(i) = ρ′(i) ∈ [[T]]

Γ � t = t′ : T :⇐⇒ ∀ρ = ρ′ ∈ [[Γ]]. [[t]](ρ) = [[t′]](ρ′) ∈ [[T]]

Γ � σ = σ′ : ∆ :⇐⇒ ∀ρ = ρ′ ∈ [[Γ]]. [[σ]](ρ) = [[σ′]](ρ′) ∈ [[∆]]

The extensional term equality now models the extensionality laws of Figure 3.5.
However, we are still missing a piece: Semantically equal values do not reify to the

same normal form; we are not producing η-long normal forms. For example, consider
the second-order type T = (N → N) → N → N and the semantically equal terms
Γ ` λ0 = λλ. 1 0 : T . Both terms are in β-normal form and invariant under (untyped)

30

3.7 Typed Candidate Spaces and Completeness of NbE

normalization. Yet, we would like both to normalize to the long form λλ. 1 0, to be able
to completely decide term equality by normalization. To this end, we have to employ
type-directed reification again.

3.7 Typed Candidate Spaces and Completeness of NbE

In typed NbE, η-expansion is built into reification and reflection. There, function types
are modeled as space of actual functions, thus, there is no concept of neutral at function
type. A variable that is reflected into the semantics has to become a function, thus, it
is semantically η-expanded.

For untyped NbE, the situation is different. Neutral values inhabit each semantic
type, hence, we have to take extra efforts to get η-expansion, and thus, unique and
η-long normal forms. We have employed two different solutions to η-expansion. In
Abel et al. [2008], Abel [2008, 2009a] we have replaced the untyped read-back function
by a type-directed contextual reification procedure. Type and context, which amount
to the types of the read-back term and its free variables, are used to produce an η-long
form. While contextual reification does the job, it has a drawback: carrying the context
around makes the semantics more complicated and we need a Kripke model.

Coquand had the idea to integrate type-directed reflection and reification process
into the semantic world, at the level of values.11 “Reflection” ↑T ∈ D→ D accounts for
the η-expansion of free variables, and “reification” ↓T ∈ D→ D for the η-expansion of
values at function type. The idea has been originally formulated for domain-NbE [Abel
et al., 2011]:

↑T ∈ [D→ D]

↑S→T (e) = Abs(g) where g(a) = ↑T (App(e, ↓S a)))

↑N (e) = e

↓T ∈ [D→ D]

↓S→T (f) = Abs(g) where g(e) = ↓T (f(↑S e))
↓N (zero) = zero

↓N (suc(a)) = suc(↓N(a))

↓N (e) = e

↑Γ ∈ Env

↑() = ()

↑Γ,S = (↑Γ, ↑S x|Γ|)

Normalization becomes nfTΓ (t) = Rnf
|Γ|(↓

T ([[t]](↑Γ))). A slight change is necessary to

11This idea is to some extent already present in Danvy’s work. Danvy [1996] presents a two-level
lambda calculus where reflection and reification mitigate between the two levels. This corresponds
to our two levels of values: D forms the upper level, and Dne/Dnf form the lower level.

Also, Danvy et al. [2001] implement type-directed reflection and reification for a higher-order
presentation of typed normal and neutral (there: atomic) values, using the Haskell type class system.
However, they do not present variables xk in the semantics, and thus, have no read-back procedure:
They describe their higher-order abstract syntax as “write-only”.

31

3 Untyped Normalization-By-Evaluation and Type Assignment

recursion: we have to annotate rec with the type of the result of recursion, in order to
η-expand in the case of neutral.

recT ∈ [D× D× D→ D]
recT (az, as, zero) = az
recT (az, as, suc(an)) = as · an · recT (az, as, an)

recT (az, as, ↑N e) = ↑T recT (↓T az, ↓N→T→T as, e)

Defunctionalizing the resulting type-aware NbE algorithm, we realize that functional
values now have two sources: Besides evaluated λs, there are also reflected variables at
function type. These become part of our value grammar, and we also introduce a new
syntactic category Dnf as the target of reification.

D 3 a, b, f ::= (λt)ρ | ↑T e | zero | suc(a)

Dne 3 e ::= xk | e d | recT (dz, ds, e)

Dnf 3 d ::= ↓T a

Reflection and reification themselves have become just markers, indicating that the
actual η-expansion still has to be performed during application or reification.

· ∈ D× D→ D
(λt)ρ · a = [[t]](ρ, a)

↑S→T e · a = ↑T (e ↓S a)

Rnf
n ∈ Dnf → Nf

Rnf
n (↓S→T f) = λ. Rnf

n+1(↓T (f · ↑S xn))

Rnf
n (↓N zero) = zero

Rnf
n (↓N suc(a)) = suc(Rnf

n (↓N a))

Rnf
n (↓N ↑N e) = Rne

n (e)

Read-back of neutrals Rne
n ∈ Dne → Ne is unchanged, and so is evaluation. Figure 3.6

summarizes defunctionalized type-assignment NbE. It is straightforward to turn the new
functional presentation of application and reification into inductive relations f · a ↘ b
and Rnf

n d↘ v.
We shall now revisit candidate spaces for the typed NbE. The PERs ⊥⊥ ⊆ Dne ×Dne

and >> ⊆ Dnf×Dnf characterize the normal values we can read back to syntax, but they
are no longer semantic types, since they are not relations on D.

d = d′ ∈ >> :⇐⇒ ∀n. Rnf
n d = Rnf

n d
′ ∈ Ne

e = e′ ∈ ⊥⊥ :⇐⇒ ∀n. Rne
n e = Rne

n e
′ ∈ Nf

Formally, the PERs ⊥⊥,>> are no longer a candidate space, but we can recover properties
that capture the essence of a candidate space. The following implications, written as
inference rules, hold for ⊥⊥,>>:

xk = xk ∈ ⊥⊥
e = e′ ∈ ⊥⊥ d = d′ ∈ >>

e d = e′ d′ ∈ ⊥⊥

e = e′ ∈ ⊥⊥
↓N ↑N e = ↓N ↑N e′ ∈ >>

∀e = e′ ∈ ⊥⊥. ↓T (f · ↑S e) = ↓T (f ′ · ↑S e′) ∈ >>
↓S→T f = ↓S→T f ′ ∈ >>

32

3.7 Typed Candidate Spaces and Completeness of NbE

Semantics (β) D

↓T

��
Semantics (βη) Dnf

Rnf

��

Dne

Rne

��

↑T

``

Level
xoo

OO

n−

��
Syntax Exp

[[]]

AA

Nf
⊇oo Ne

⊇oo Index
voo

Figure 3.6: Type-assignment NbE in locally nameless style.

Further, we derive the following compatibility rules for natural numbers and recursion:

e = e′ ∈ ⊥⊥ dz = d′z ∈ >> ds = d′s ∈ >>
recT (dz, ds, e) = recT (d′z, d

′
s, e
′) ∈ ⊥⊥

↓N zero = ↓N zero ∈ >>
↓N a = ↓N a′ ∈ >>

↓N suc(a) = ↓N suc(a′) ∈ >>

All these inferences are derived using the definition of the read-back functions Rne and
Rnf , and allow us to reason abstractly about well-defined neutral and normal values.

A typed candidate space consists of PERs T , T for each type T such that N ⊆ N for
base type N and

S → T ⊆ S → T

S → T ⊆ S → T .

We say a syntactic type T realizes a PER A, written T A, if T ⊆ A ⊆ T . Since
S A and T B imply S → T A → B, we infer T [[T]] from a suitable denotation
N [[N]] of base types.

A concrete typed candidate space for NbE is given by

a = a′ ∈ T :⇐⇒ ↓T a = ↓T a′ ∈ >>
↑T e = ↑T e′ ∈ T :⇐⇒ e = e′ ∈ ⊥⊥.

The candidate space laws follow straightforwardly from the inference rules for ⊥⊥,>>.
To realize T [[T]], we slightly redefine Nat as the least PER above N that is closed
under zero and suc.

zero = zero ∈ Nat

a = a′ ∈ Nat

suc(a) = suc(a′) ∈ Nat

e = e′ ∈ ⊥⊥
↑N e = ↑N e′ ∈ Nat

33

3 Untyped Normalization-By-Evaluation and Type Assignment

The concrete candidate space models ↑Γ = ↑Γ ∈ [[Γ]]. A consequence of term equality
Γ ` t = t′ : T is now that [[t]](↑Γ) = [[t′]](↑Γ) ∈ [[T]], which by [[T]] ⊆ T implies
↓T [[t]](↑Γ) = ↓T [[t′]](↑Γ) ∈ Nf and, thus, nfTΓ (t) = nfTΓ (t′). We have proven that βη-equal
terms have the same normal form, meaning that NbE is complete for term equality.

3.8 Restoring Curried Constants

So far, we have treated suc and rec as term constructors suc(t) and recT (tz, ts, tn) and
not as just function symbols that can be partially applied. However, we can implement
the latter view by representing the partially applied functions suc, recT , recT tz and
recT tz ts as values in the semantics.

Cst 3 c ::= zero | suc | recT
Exp 3 r, s, t ::= vi | λt | r s | c

Nf 3 v ::= u | λv | zero | suc v
Ne 3 u ::= vi | u v | recT vz vs u

D 3 a, b, f ::= (λt)ρ | ↑T e | c | suc(a) | recT (az) | recT (az, as)

Dne 3 e ::= xk | e d | recT (dz, ds, e)

Dnf 3 d ::= ↓T a

The concepts of normality and neutrality are unaffected by this extension, only evalua-
tion of constants and application of partially applied constants have to be implemented,
in the obvious way,

[[c]] (ρ) = c

suc · a = suc(a)
recT · az = recT (az)
recT (az) · as = recT (az, as)
recT (az, as) · an = recT (az, as, an)

with recT (az, as, an) ∈ D × D × D → D the partial function that executes primitive
recursion as defined before.

3.9 Kripke Logical Relations and Soundness of NbE

In the following, we revisit the proof of soundness of normalization, i. e., Γ ` t =
nf(t) : T . Using the shorthand ↓TΓ t for Rnf

|Γ| ↓
T t, the statement of soundness expands to

Γ ` t = ↓TΓ [[t]](↑Γ) : T , and we prove it by a logical relation between well-typed terms
Γ ` t : T and values a ∈ [[T]]. This logical relation is Kripke which in our context
means that it is preserved under context extensions. Since we are using a de Bruijn
representation, we have to shift the de Bruijn indices when we extend the context, and

this is performed by a shifting or weakening substitution σ : Γ′ ≤ Γ , a substitution σ
that is composed of shifts �.

id : Γ ≤ Γ

σ : Γ′ ≤ Γ

σ � : Γ′, S ≤ Γ

34

3.9 Kripke Logical Relations and Soundness of NbE

In terminology of Kripke semantics, Γ is called a world and σ : Γ′ ≤ Γ the (proof-
relevant) future relation, stating that Γ′ is a future of the world Γ. A world-indexed
family of sets A is Kripke if it is monotone in the sense that a ∈ AΓ implies σ(a) ∈ AΓ′

where σ(a) is defined suitably to transport elements a into the future.

For example, the family TmT—where TmT
Γ = {t | Γ ` t : T} the set of terms t that

can be assigned type T in context Γ—is Kripke with transport σ(t) = t σ given by
shifting. Also, the family T defined by

TΓ = { (t, a) ∈ TmT
Γ × D | Γ′ ` t σ = ↓TΓ′ a : T for all σ : Γ′ ≤ Γ }

is Kripke with transport σ(t, a) = (t σ, a).

We shall now introduce Kripke typed applicative structures, or short, type structures
DT

Γ [Abel, 2009a] which subsume sets of typed terms, sets of values, PERs, and Kripke
logical relations and allow us to prove a general form of the fundamental lemma that
can be instantiated to show soundness of NbE as well as validity of typing in PER
models (which is part of the completeness proof).

A type structure is a type-indexed Kripke family DT of sets with a family of partial
application operations app, constant interpretations cst, and term interpretations [[]].

appS→TΓ ∈ DS→T
Γ ×DS

Γ → DT
Γ

cstΓ(c) ∈ DT
Γ for c : T.

We write f · a for appS→TΓ (f, a) and cst(c) for cstΓ(c). Let the type of D-environments
D∆

Γ be defined by recursion on ∆:

D
()
Γ = ()

D∆,S
Γ = D∆

Γ ×DS
Γ

Typing and laws for term interpretation [[]] are then given by:

[[]] () ∈ TmT
Γ ×DΓ

∆ → DT
∆

[[c]] (ρ) = cst(c)
[[vi]] (ρ) = ρ(i)
[[r s]](ρ) = [[r]]ρ · [[s]]ρ
[[λt]] (ρ) · a = [[t]](ρ, a)

A simple example for a type structure are typed terms DT = TmT . Then app is just
term application, cst is the identity, D∆

Γ are parallel substitutions Γ ` σ : ∆ with
() : Γ ≤ () the empty substitution, and evaluation [[t]](σ) = t σ is just application of
substitution. Another simple example is the type structure of untyped values DT

Γ = D,
with partial application and evaluation as introduced in the previous section.

A type substructure E of D is a system of Kripke subsets ETΓ ⊆ DT
Γ that is closed

under the operations of the type structure D. A typical type substructure we might
want to consider is WNTΓ ⊆ TmT

Γ , the weakly normalizing terms. If we show that WN
is indeed a type substructure of Tm, which implies that application is a total function
on well-typed weakly normalizing terms, then we have proven normalization for typed

35

3 Untyped Normalization-By-Evaluation and Type Assignment

lambda-calculus. However, establishing the totality of application is non-trivial, it is
the essence of the normalization proof. One usually proceeds by strengthening the
requirement of weak normalization to that of computability [Tait, 1967] aka reducibility
Girard et al. [1989]. The reducible terms REDTΓ form in turn a type substructure of WN,
with REDS→TΓ defined as the set of terms that act as functions from REDSΓ to REDTΓ .

To capture the reducibility argument, but also PERs and logical relations for the
correctness of NbE, we look at special type substructures we call induced. For a given
type structure D let D̂ be the family of predicates over D. Using subset notation, we
let A ∈ D̂T iff AΓ ⊆ DT

Γ for all worlds Γ. We want to define an extensional function

space A → B ∈ D̂S→T for A ∈ D̂S and B ∈ D̂T . The naive pointwise definition
(A → B)Γ = {f | ∀a ∈ AΓ. f · a ∈ BΓ} is not Kripke, because the function space is
contravariant in domain A. Instead, we employ the Kripke function space

(A → B)Γ = { f ∈ DS→T
Γ | ∀σ : Γ′ ≤ Γ, a ∈ AΓ′ . σ(f) · a ∈ BΓ′ }

with built-in monotonicity. An induced type substructure of D is a system ETΓ ⊆ DT
Γ of

subsets such that cst(c) ∈ ETΓ for c : T and

ES→T = ES → ET ,

i. e., at function type we have the full Kripke function space. We have freedom to choose
EN at base type, and this choice spans or induces the structure E.

The fundamental lemma for Kripke logical relations now simply states that any in-
duced E ⊆ D is actually a type substructure of D. This statement includes the well-
definedness of application, which is guaranteed by ES→T = ES → ET , and the well-
definedness of evaluation [[t]] ∈ EΓ

∆ → ET∆, which is proven by induction on the typing
derivation Γ ` t : T .

As an example application of the fundamental lemma, we consider evaluation of
closed typed terms. Our basic type structure are the closed terms TmT

() being trivially

Kripke since world-independent. Application is total, and interpretation [[]] ∈ TmT
Γ →

TmΓ
() → TmT

() closes an open term by substituting closed terms of appropriate type for
its free variables. Our goal is to show that every closed term of type N evaluates to a
natural number. To this end, we define an induced type structure REDT ⊆ TmT

(), which
is necessarily also world-independent, by setting

REDN = {t ∈ TmN
() | LtM↘ sucn(zero) for some n ∈ N}.

Here LtM evaluates closed term t into the set of values D, and it should not be confused
with the interpretation [[]] of open terms into Tm(). At function type we get REDS→T =

{r ∈ TmS→T
() | ∀s ∈ REDS . r s ∈ REDT }, which guarantees totality of application. The

fundamental lemma now states that RED is a type substructure of Tm(), which entails

that the interpretation [[t]] of term Γ ` t : T is a map from REDΓ to REDT . In particular,
the interpretation of a closed term of base type ` t : N, which is [[t]]() = t the term
itself, inhabits REDN , thus, LtM↘ sucn(zero), quod erat demonstrandum.

We shall now apply the fundamental lemma to our original problem, the soundness
of NbE. First, we introduce Kripke candidate spaces as Kripke families TΓ, TΓ with

36

3.10 Summary

NΓ ⊆ NΓ and

S → TΓ ⊆ (S → T)Γ

(S → T)Γ ⊆ S → TΓ.

In essence, these are candidate spaces w. r. t. the Kripke function space and pointwise
entailment.

Let DT
Γ = TmT

Γ × D the product of the two type structures of typed terms Tm and
untyped values D. A Kripke candidate space on D is defined by

TΓ = { (t, a) | ∀σ : Γ′ ≤ Γ. Γ′ ` t σ = Rnf
|Γ′| ↓

Ta : T }
TΓ = { (t, ↑T e) | ∀σ : Γ′ ≤ Γ. Γ′ ` t σ = Rne

|Γ′| e : T }.

We interpret types [[T]]Γ ⊆ DT
Γ as sets of term-value pairs. This interpretation is

sometimes called gluing model [Coquand and Dybjer, 1997, Altenkirch et al., 1995,
Abel, 2009a], because it glues syntax (a term) to semantics (a value).

[[T]] ∈ D̂T

[[N]] = N
[[S → T]] = [[S]]→ [[T]].

Since [[T]] is an induced type substructure ofDT , by the fundamental lemma (t σ, [[t]](ρ)) ∈
[[T]]∆ for any (σ, ρ) ∈ [[Γ]]∆. In particular, (t, [[t]](↑Γ)) ∈ [[T]]Γ ⊆ TΓ. Finally, by defini-
tion of the T we conclude Γ ` t = ↓TΓ [[t]](↑Γ) : T , the soundness of NbE.

3.10 Summary

We have now completed our development of NbE for type-assignment System T, in
preparation for its extension to dependent types and impredicativity. Let us recapitulate
the concepts we have reviewed or introduced:

1. Untyped NbE [Aehlig and Joachimski, 2004] is an algorithm for β-normalization
that captures the intuition and practice that evaluation is independent of types.
It can be implemented directly using recursive data types and reasoned about
using domain theory [Filinski and Rohde, 2004]. It is universal for all typed
lambda-calculi if they are viewed as type assignment systems for untyped lambda
calculus.

2. Defunctionalization [Reynolds, 1972] removes domains, leading to a mutual posi-
tive definition of values and environments that has a direct representation in type
theory or set theory. It also leads to a mutual definition of application and evalua-
tion as partial functions. Analyzing these partial functions as inductive functional
relations takes us from NbE to big-step operational (aka natural) semantics.

3. Modeling types as sets of values allows us to semantically reconstruct the typing
rules for System T.

4. The restriction of semantic types to a candidate space (⊥⊥,>>) proves termination
of untyped NbE for simple-type assignment.

37

3 Untyped Normalization-By-Evaluation and Type Assignment

5. Weak term equality is justified by our subset model when formulated with explicit
substitutions.

6. Extensional term equality requires us to model types as partial equivalence rela-
tions with extensional function equality.

7. NbE delivers η-long normal forms as we integrate type-directed reflection ↑T and
reification ↓T in defunctionalized form at the level of values. Going from val-
ues to long normal forms is separated into semantic η-expansion ↓T followed by
read-back into syntax. To show completeness of NbE, we make candidate spaces
typed, leading to a connection between semantic type and type expression called
realization.

8. Soundness of NbE finally follows by a Kripke logical relation which we formulate as
type substructure which inhabits a Kripke candidate space. In this second model of
the System T typing rules, semantic types are Kripke families of relations between
terms and values.

38

4 Dependent Types

Dependent types allow types to depend on values. We distinguish two kinds of depen-
dencies:

1. Dependent types as refinements. In this approach, dependent typing is a re-
finement of simple (or polymorphic) typing. Each dependent type refines an underlying
simple type. For instance, the type of vectors of length n refines the type of lists. The
type of numbers below n refines the type of natural numbers. Finally, the type of a safe
projection function that takes a number n, a vector of length n, and index i < n and
returns the ith element of the vector refines the underlying simple type of a function
that takes a number, a list, another number, and possibly returns an element.

Typical examples of refinement type systems are the dependent systems of the lambda
cube [Barendregt, 1991] which refine their non-dependent counterpart. For instance, λP,
which is roughly the Edinburgh logical framework LF [Harper et al., 1993], refines the
simply-typed lambda-calculus.1 Likewise, the pure Calculus of Constructions [Coquand
and Huet, 1988] is a refinement of System Fω [Girard, 1972]. Other refinement type
systems are Dependent ML (DML) [Xi and Pfenning, 1999] and indexed types [Zenger,
1997].

Refinement dependencies are erasable. A dependently-typed term can also be as-
signed the underlying simple (or polymorphic) type. Normalization of terms in a re-
finement dependent type system can be inherited, via erasure, from the normalization
of the corresponding non-dependent system.2 Thus, refinement dependencies do not
add computational power or proof-theoretical strength.3

Extending NbE to refinement dependent types is not a challenging task. We simply
erase the dependencies and then run NbE for simple types. The shape of the η-long form
is determined by its simple type, refinements only affect whether a term was well-typed
in the first place. Challenges await us, however, for full dependent types.

2. Full dependent types allow us to type terms that have no underlying simple or
polymorphic type. The prime example is C’s printf function whose number and types
of arguments depend on its first argument, the format string. There is no single simple
type for printf, but Augustsson [1999] presents its type in the full dependently-typed
language Cayenne.

1That LF is just a refinement of the STLC has been exploited heavily in the formal justification of
LF [Harper and Pfenning, 2005]: its metatheory is based on an algorithm directed by simple types
which checks LF terms for βη-equality. The technique of hereditary substitutions [Watkins et al.,
2003] for LF-terms, which is directed by their underlying simple type, lead to the design of Canonical
LF [Harper and Licata, 2007].

2For instance, Geuvers [1994] proves normalization for the Calculus of Constructions by erasure to
System Fω.

3The computational power or proof-theoretical strength of a system is the highest ordinal needed to
prove the termination of all functions definable in this system [Setzer, 1998].

39

4 Dependent Types

The distinctive feature of full dependent types is the definition of types by computa-
tion on a value, for instance, by case distinction or recursion. This feature is sometimes
called large elimination [Altenkirch, 1994, Werner, 1992] or strong elimination [Paulin-
Mohring, 1993]. In Chapter 2, we have used large eliminations at the level of the meta
language, as we have defined the meaning [[T]] of a type expression T by recursion on T .
In this instance, the type expression T plays the role of the value, and the denotation
[[T]] ∈ Set the type depending on this value.

With types depending on values, computation happens no longer only on the term
level, but also on the type level. The meaning of a type should not change under
computation, for instance, the type of vectors of length 1 + 1 should be the type of
vectors of length 2.4 This calls for a notion of evaluation LT M = A of type expressions T
into type values A. Type values should be sufficiently evaluated such that their shape
is apparent, i. e., it is clear whether they represent a function type or a base type.6 The
shape of a type is needed for η-expansion; thus, reflection and reification are directed
by type values rather than type expressions. This leads to a definition of NbE for
dependently typed terms Γ ` t : T by

nfTΓ (t) = Rnf
|Γ| ↓

A(LtM ↑Γ) where A = LT M ↑Γ .

The main challenge in the study of dependently-typed NbE is its semantic justification.
With the tools developed in Chapter 3, we are ready to face it.

4.1 A Full Dependently-Typed Language

We consider an extension of System T by dependent function types and predicative
universes [Martin-Löf, 1975]. For the sake of brevity, let us refer to this language as
PTT, for predicative type theory. PTT is a version of Martin-Löf Type Theory [Nord-
ström et al., 1990] cut down to essentials, natural numbers and functions, but equipped
with a predicative universe hierarchy Setk (k ∈ N) for a streamlined presentation of
computation at type level.

As displayed in Figure 4.1, we conceive the language of PTT as untyped lambda
calculus Exp in de Bruijn representation with explicit substitutions and a set of constants
Cst that lets us express numbers, primitive recursive functions, but also the type of
natural numbers N, dependent function types FunS λT , and universes Setk. Fusing term
and type language into a common expression language is convenient for full dependent
types, as it allows for a single evaluation function for both terms and types.

The form of explicit substitutions σ ∈ Subst and contexts Γ ∈ Cxt is unchanged.
The β-normal expressions Nf now include also types in normal form. The dependent
function type FunS λT is a de Bruijn encoding of FunS (λxT) which is often more

4In mathematical practice, 1+1 is identified with 2, and the statement Vec(1+1) = Vec(2) tautological,
maybe even alienating, if insisted upon. However, as we consider the semantics of type theory, which
is a possible foundation of mathematics, we a priori distinguish the expressions 1 + 1 and 2 even if
they have the same value. It took Russell and Whitehead [1910–1913] more than 300 pages5of their
Principia Mathematica to prove 1+1 = 2, certainly an immortal joke in the history of mathematics.

5On page 379 of the first edition of volume I they write: “From this proposition it will follow, when
arithmetical addition has been defined, that 1+1=2.”

6This means that type values should at least be in weak head normal form.

40

4.1 A Full Dependently-Typed Language

Cst 3 c ::= N | zero | suc | rec | Fun | Setk (k ∈ N)
Exp 3 r, s, t, R, S, T ::= c | vi | λt | r s | t σ

Subst 3 σ, τ ::= � | id | σ τ | (σ, s)

Cxt 3 Γ,∆ ::= () | Γ, S

Nf 3 v, w, V,W ::= u | FunV W | λv | N | zero | suc v | Setk
Ne 3 u, U ::= vi | u v | recV vz vs u

Figure 4.1: Expressions and normal forms of PTT.

legibly written as (x : S) → T . We write S → T for the non-dependent function
space FunS λ. T �. To grasp this definition, note that shifting T � introduces a fake
dependency on the 0th variable, which is then abstracted by the λ. Indeed, we have
(λ. T �) s = (T �) (id, s) = T (� (id, s)) = T id = T .

Figure 4.2 presents the type assignment rules for PTT. There are several interesting
things to note: First, since types contain terms, they are no longer automatically well-
formed. The judgement Γ ` T classifies a type T as well-formed if it inhabits one
of the type universes Setk. Further, contexts are also not automatically well-formed,
judgement ` Γ ensures this. The empty context is of course well-formed, and an
extended context Γ, T is well-formed if Γ is well-formed and T is well-formed in Γ.
These rules allow later assumptions in Γ to depend on earlier assumptions.

A typical use of this dependency is polymorphism, as in the judgement, written with
variable names, X : Set0, x : X ` x : X. In de Bruijn representation, this becomes
the unreadable Set0, v0 ` v0 : v1. The context is well-formed since the type Set0 of
the first assumption is well-formed, and the type v0 of the second assumption, which
refers to the first assumption, is also well-formed since Set0 ` v0 : Set0. Now the right
hand side v0 : v1 of the judgement says that the second assumption is typed by the first
assumption. On the right hand side, the type v0 of the second assumption appears now
under two assumptions and not under one, so it has to be shifted to v1.

The need to shift de Bruijn indices of types when lifting them out of the context

is accounted for in variable look-up Γ(i) = S . In the typing judgement Γ ` t : T

for terms t, dependency is reflected in three places. First, a substitution σ applied
to a term t needs also be applied to its type T , since the type also depends on the
context. Secondly, when applying a dependent function r : FunS R to an argument s,
the codomain R needs also be applied to s, since the codomain itself is a function from
domain S to types. Finally, we have a subsumption rule expressing that any term which

can be assigned type T can also be assigned type T ′ as long as Γ ` T ≤ T ′ meaning
that T is a subtype of T ′ in context Γ. Subtyping is restricted to universe subsumption

Setk ≤ Setl and type equality Γ ` T = T ′ which means that T and T ′ are βη-equal
expressions inhabiting some universe.

Consider the type assignment c : T for constants. The base type of natural numbers

41

4 Dependent Types

c : T Constant c can be assigned type T .

zero : N
suc : N→ N
rec : Reck (k ∈ N)

N : Setk (k ∈ N)
Fun : Fun Seti λ. (v0 → Setj)→ Setk (i, j ≤ k)
Seti : Setj (i < j)

` Γ Context Γ is well-formed.

` ()

` Γ Γ ` T
` Γ, T

Γ ` T Type T is well-formed in context Γ. Γ ` TType T is well-formed in context Γ

Γ ` T :⇐⇒ Γ ` T : Setk for some k ∈ N

Γ(i) = S De Bruijn index i has type S in context Γ.

(Γ, S)(0) = S �
Γ(i) = S

(Γ, S)(i+ 1) = S �

Γ ` t : T Term t has type T in context Γ.

` Γ c : T

Γ ` c : T

Γ ` σ : ∆ ∆ ` t : T

Γ ` t σ : T σ

` Γ Γ(i) = S

Γ ` vi : S

Γ, S ` t : T

Γ ` λt : FunS λT

Γ ` r : FunS R Γ ` s : S

Γ ` r s : Rs

Γ ` t : T Γ ` T ≤ T ′

Γ ` t : T ′

Γ ` T ≤ T ′ Type T is a subtype of T ′ in context Γ.

k ≤ l
Γ ` Setk ≤ Setl

Γ ` T = T ′

Γ ` T ≤ T ′

Γ ` T = T ′ Types T and T ′ are equal in context Γ.

Γ ` T = T ′ :⇐⇒ Γ ` T = T ′ : Setk for some k ∈ N

Figure 4.2: Type assignment for PTT.

42

4.2 Type Values, Reflection and Reification

N inhabits all type universes, and the code Seti for a universe inhabits all higher uni-
verses, resulting in a cumulative hierarchy7 which is also reflected by subtyping. The
typing of function type constructor Fun is easier to understand if expanded to a rule:

Γ ` S : Seti Γ, S ` T : Setj

Γ ` FunS λT : Setk
i, j ≤ k

This rule captures predicativity by requiring that the universe level of a function type is
at least the level of domain and codomain. Finally, we define the family of types Reck
for primitive recursion as the de Bruijn encoding of

(P : N→ Setk)→ P zero→ ((x :N)→ P x→ P (sucx))→ (x :N)→ P x

which is the type of generalized induction for natural numbers. In the form of a rule,
we have:

Γ ` P : N→ Setk Γ ` z : P zero Γ,N, (P v0) ` s : P (suc v1) Γ ` n : N

Γ ` recP z (λλs)n : P n
.

Since P n can be large, i. e., not just a base type or higher-order function type, but a
universe, rec allows us to define types by recursion on natural numbers. For instance,
the type Nn → N of an n-ary curried function is coded as recλSet0 N (λλ.N→ v0)n.

We have presented the typing rules as an initial orientation in PTT, but defer the
equality rules until we can justify them by a model. To spoil the excitement, let us
remark that they correspond to the ones of System T, modulo dependent typing.

4.2 Type Values, Reflection and Reification

Evaluation L M for PTT must include type expressions, thus, we add the type constants
to D (subsumed under c), and (partial) applications of the function type constructor
Fun. Also, to get closer to expression syntax, we present partial applications of suc, rec,
and Fun in curried style. Base ⊂ D classifies the type values that represent the base
types: the type of natural numbers N, universes Setk, and neutral types ↑Setk E.

D 3 a, b, f, A, F ::= (λt)ρ | ↑A e | c | suc a | recA | recA az | recA az as
| FunA | FunAF

Base 3 B ::= N | Setk | ↑Setk E

Env 3 ρ ::= () | ρ, a

Dne 3 e, E ::= xk | e d | recD dz ds e
Dnf 3 d,D ::= ↓A a

The non-dependent function type A1 → A2 can be defined as FunA1 (λv1)((), A2).
Non-dependency is witnessed by (λv1)((), A2) ·a = Lv1M(((), A2), a) = Lv0M((), A2) = A2.

A significant change w. r. t. simple types is that reflection and reification are now
directed by type values A. This has profound a impact on the application and read-back

7Cumulative universe hierarchies are part of the type-theoretic proof assistants Coq [Coquand, 1986,
INRIA, 2012] and NuPrl [Constable et al., 1986, Allen, 1987].

43

4 Dependent Types

operations. Application of a reflected neutral (↑FunAF e) at dependent function type
leads to instantiation of the function codomain. η-expansion happens here necessarily
piece-wise.

(↑FunAF e) · a = ↑F ·a(e d) where d = ↓A a
Fun · A = FunA
FunA · F = FunAF

Rnf
n ↓FunAF f = λ. Rnf

n+1 ↓F ·a(f · a) where a = ↑A xk
Rnf
n ↓Setk N = N

Rnf
n ↓Setk Seti = Seti

Rnf
n ↓Setk FunAF = Fun (Rnf

n ↓Setk A) (Rnf
n ↓A→Setk F)

Rnf
n ↓B ↑B

′
e = Rne

n e

When reading back reified neutrals ↓B ↑B′
e at base type, we allow B 6= B′. For one, this

saves us a pointless equality check during read-back, for two, since we have cumulative
universes, the neutral ↓Setj ↑Seti e is legal, at least for j ≥ i.

The default valuation ↑Γ of context Γ by de Bruijn levels reflected at their type now
makes use of type evaluation:

↑() = ()

↑Γ,S = ρ, ↑LSMρ x|Γ| where ρ = ↑Γ

The PERs of quotable neutral e = e′ ∈ ⊥⊥ and normal d = d′ ∈ >> values are
type-independent, thus unchanged.

d = d′ ∈ >> :⇐⇒ ∀n∃v ∈ Nf. Rnf
n d↘ v and Rnf

n d
′ ↘ v

e = e′ ∈ ⊥⊥ :⇐⇒ ∀n∃u ∈ Ne. Rne
n e↘ u and Rne

n e′ ↘ u

However, the “introduction rules” for >> have to be adapted to dependent types, and
we get formation rules for normal type values in >>.

e = e′ ∈ ⊥⊥
↓B1 ↑B2 e = ↓B′

1 ↑B′
2 e′ ∈ >> ↓Setk N = ↓Setk N ∈ >> ↓Setk Seti = ↓Setk Seti ∈ >>

∀e = e′ ∈ ⊥⊥. ↓F · ↑
A e(f · ↑A e) = ↓F ′ · ↑A

′
e′(f ′ · ↑A′

e′) ∈ >>
↓FunAF f = ↓FunA′ F ′

f ′ ∈ >>

The last rule suggests an application operation (↓FunAF f)(e) = ↓F ·a(f · a) where a =
↑A e for normal function values. With the appropriate notion of function space, it would
witness ⊥⊥ → >> ⊆ >>. In our development, this application operation does not have
a formal status, however, it does in formulations of reification on Scott domains [Abel
et al., 2011].

4.3 Dependent Function Space and Universes

A distinctive feature of predicative type theory is that its semantics can be defined
inductively, from below, without reference to syntactic typing.8 In the following we

8In contrast, the impredicative quantification of System F or the CoC, cannot be defined inductively.

44

4.4 A PER Model

revisit the subset model, where semantic types A ∈ P(D) are modeled as sets of values,
for dependent types.

Let A ∈ P(D) and F ∈ A → P(D), meaning that F(a) ⊆ D for each a ∈ A. The
dependent function space ΠAF ∈ P(D) is defined as

ΠAF = {f ∈ D | ∀a ∈ A. f · a ∈ F(a)}.

Let Nat ∈ P(D) be the least set that containts zero and ↑N e for e ∈ ⊥⊥ and is closed
under application of successor suc.

We will now inductively define a sequence Set0,Set1, . . . of universes which are se-
mantic types themselves and contain valid codes for types. At the same, time, we define
the extension functions Eli ∈ Set i → P(D) that map valid type codes to semantic types.
The joint definition of Set i and Eli is called an inductive-recursive definition [Dybjer,
2000].9

N ∈ Setk
Elk(N) = Nat

j < k

Setj ∈ Setk
Elk(Setj) = Set j

A ∈ Setk ∀a ∈ Elk(A). F · a ∈ Setk

FunAF ∈ Setk
Elk(FunAF) = ΠAF

where A = Elk(A)
F(a ∈ A) = Elk(F · a)

This is indeed a cumulative universe hierarchy: For i ≤ j and A ∈ Set i we can prove
A ∈ Set j and Elj(A) = Eli(A). Thus, a reasonable limit Setω =

⋃
i∈N Set i exists with

extension function Elω(A) = Eli(A) for A ∈ Set i, and we can use extension Elω(A)
uniformly at all universe levels.

The subset model can be used to justify weak β-equality for PTT, however, the
absence of extensionality (ξ) does not even allow us to infer FunS λT = FunS′ λT ′

from S = S′ and T = T ′. Therefore, we shall immediately proceed to construct an
extensional model based on PERs.

4.4 A PER Model

We return to model semantic types as PERs in order to justify extensional term equality.
Along the way, we also add the neutral types to our universes to prepare for reasoning
about NbE.

Let Rel denote the set of relations on D and Per ⊆ Rel the PERs on D. Let A ∈ Rel.
By abuse of notation, we write a ∈ A if a is in the domain of relation A, meaning
that (a, a′) ∈ A or (a′, a) ∈ A for some a′ ∈ D. For PERs A, the statement a ∈ A is
equivalent to (a, a) ∈ A, since a PER is reflexive on its domain.

9This inductive-recursive definition can be reduced to an inductive definition, for details see Abel and
Coquand [2007], Abel et al. [2007a, 2008].

45

4 Dependent Types

Writing F ∈ A → Rel shall include the requirement that F respects relation A,
meaning that F(a) = F(a′) for all (a, a′) ∈ A. The dependent function space ΠAF ∈
Rel is then given by

ΠAF = {(f, f ′) | ∀(a, a′) ∈ A. (f · a, f ′ · a′) ∈ F(a)}.

If A is a PER and F ∈ A → Per, then ΠAF is also a PER. Neutral types E are in-
terpreted by PERs of neutral terms E = {(↑E1 e1, ↑E2 e2) | E1 = E2 = E ∈ ⊥⊥ and e1 =
e2 ∈ ⊥⊥}. Using PER Nat as defined just before Section 3.8, we construct a universe
hierarchy Setk of PERs analogously to the subset hierarchy in the last section.

E = E′ ∈ ⊥⊥
↑Setk E = ↑Setk E′ ∈ Setk

Elk(E) = E

N = N ∈ Setk
Elk(N) = Nat

j < k

Setj = Setj ∈ Setk
Elk(Setj) = Set j

A = A′ ∈ Setk ∀a = a′ ∈ Elk(A). F · a = F ′ · a′ ∈ Setk

FunAF = FunA′ F ′ ∈ Setk
Elk(FunAF) = ΠAF

where A = Elk(A)
F(a ∈ A) = Elk(F · a)

Simultaneously with the definition, we also prove that the universes Setk are indeed
PERs, and that the extension functions Elk respect PER-equality. We write Type for
the limit Setω and [] for the extension function Elω.

In the following, let us write L M ∈ Exp × Env → D for the partial function that
performs evaluation of expressions into D. Type interpretation [[T]]ρ = [LtMρ] of type
expressions T as semantic types is the composition of evaluation L M and extension [].

Each well-formed context induces a PER on environments. We simultaneously define
valid contexts � Γ and their semantic extensions ρ = ρ′ ∈ [[Γ]] by induction on the
length of Γ. Empty contexts � () are trivially valid and relate the empty environment
to itself, () = () ∈ ().

� Γ, T :⇐⇒ � Γ and ∀ρ = ρ′ ∈ Γ. LT Mρ = LT Mρ′ ∈ Type

(ρ, a) = (ρ′, a′) ∈ [[Γ, T]] :⇐⇒ ρ = ρ′ ∈ [[Γ]] and a = a′ ∈ [[T]]ρ

Semantic typing and equality judgements are defined as for System T, only that we
have to take special attention to ensure semantic well-formedness of types.

Γ � T :⇐⇒ � Γ and Γ � T : Setk for some k

Γ � t : T :⇐⇒ Γ � t = t : T

Γ � t = t′ : T :⇐⇒ Γ � T and ∀ρ = ρ′ ∈ [[Γ]]. LtMρ = Lt′Mρ′ ∈ [[T]]ρ

Γ � σ : ∆ :⇐⇒ Γ � σ = σ : ∆

Γ � σ = σ′ : ∆ :⇐⇒ � Γ and � ∆ and ∀ρ = ρ′ ∈ [[Γ]]. LσMρ = Lσ′Mρ′ ∈ [[∆]]

46

4.5 Dependently-Typed Candidate Spaces and Completeness of NbE

Semantic typing justifies the syntactic typing rules of Figure 4.2, and semantic equality
the term equality rules of Figures 3.3 to 3.5, suitably modified for dependent types.10

4.5 Dependently-Typed Candidate Spaces and Completeness
of NbE

A dependently-typed candidate space for a universe U is a pair of semantic types A,A
for each type code A ∈ U such that

1. () and () respect equality in U , i. e., if A = A′ ∈ U then A = A′ and A = A′,

2. B ⊆ B for all base types B ∈ U , and

3. for all function types FunAF ∈ U we have

FunAF ⊆ ΠAF

ΠAF ⊆ FunAF

where F and F are defined by

F ∈ A→ Per

F (a) = F · a
F ∈ A→ Per

F (a) = F · a.

We say type code A ∈ U realizes a semantic type A, written A A, if A ⊆ A ⊆ A. By
induction on A ∈ Setk we prove that A [A].

The candidate space that guarantees completeness of NbE is given by the family of
PERs

a1 = a2 ∈ A :⇐⇒ ↓A1 a1 = ↓A2 a2 ∈ >> for all A1 = A2 = A ∈ Setk
↑A1 e1 = ↑A2 e2 ∈ A :⇐⇒ e = e′ ∈ ⊥⊥ and A1 = A2 = A ∈ Setk

for all k and A ∈ Setk. Condition 1 of dependently-typed candidate spaces, (·), (·) ∈
U → Per holds since we built have invariance under type equality into the definition.
Condition 2, B ⊆ B for base types B, which are neutral types E, the natural number
type N, and universes Seti, is satisfied since Rnf

n ↓B
′ ↑B′′

e = Rne
n e for all neutrals e ∈ Dne.

Condition 3 follows from condition 1 and the properties of reflection and reification
at function types. To prove property FunAF ⊆ ΠAF , assume e1 = e2 ∈ ⊥⊥, hence,
↑FunA1 F1 e = ↑FunA2 F2 e′ ∈ FunAF for FunA1 F1 = FunA2 F2 = FunAF ∈ Setk.
Assume further a1 = a2 ∈ A and show ↑F1·a1(e1 ↓A1 a1) = ↑F2·a2(e2 ↓A2 a2) ∈ F · a1.

With d1 := ↓A1 a1 and d2 := ↓A2 a2 we have d1 = d2 ∈ >>, hence, e1 d1 = e2 d2 ∈ ⊥⊥. It
follows that ↑F1·a1(e1 d1) = ↑F2·a2(e2 d2) ∈ F · a1, since F1 · a2 = F2 · a2 = F · a1 ∈ Setk.

For property ΠAF ⊆ FunAF , assume f1 = f2 ∈ ΠAF and show ↓FunA1 F1 f1 =
↓FunA2 F2 f2 ∈ >> for FunA1 F1 = FunA2 F2 = FunAF ∈ Setk. It is sufficient to assume

10Adapting term equality to dependent types concerns only the typing, not the untyped equations
themselves. Dependent typing for term and substitution equality has been given in Abel et al.
[2008], substitution typing for a de Bruijn representation in Abel et al. [2011], Abel [2010a].

47

4 Dependent Types

e1 = e2 ∈ ⊥⊥ and prove ↓F1·a1(f1 · a1) = ↓F2·a2(f2 · a2) ∈ >> for a1 = ↑A1 e1 and
a2 = ↑A2 e2. Since a1 = a2 ∈ A, the goal follows from f1 · a1 = f2 · a2 ∈ F · a1.

In previous works [Abel et al., 2007a,b, 2011] we did not introduce the concept of
typed candidate space, but proved these statements about reflection and reification by
induction on A = A′ ∈ Setk:

1. If e = e′ ∈ ⊥⊥ then ↑A e = ↑A′
e′ ∈ [A].

2. If a = a′ ∈ [A] then ↓A a = ↓A′
a′ ∈ >>.

Typed candidate spaces capture the essence of this proof, separating it from the in-
duction on types, and thus, preparing for the treatment of impredicativity. However,
note that the definition of typed candidate spaces relies on a semantic type equality
A = A′ ∈ Type.

Completeness of NbE now follows. First, we establish ↑Γ = ↑Γ ∈ [[Γ]]. Then, by
soundness of term equality, Γ ` t = t′ : T entails a = a′ ∈ [A] with A = LT M(↑Γ) and
a = LtM(↑Γ) and a′ = Lt′M(↑Γ). Since [A] ⊆ A, we infer ↓A a = ↓A a′ ∈ >> which entails
nf(t) = nf(t′) ∈ Nf.

4.6 Dependent Function Space on Groupoids

A small nuisance in our model of dependent types is the redefinition of the dependent
function space ΠAF for PERs. We would prefer to just have one definition of Π
relative to an applicative structure, and instantiate it to subset and PER models. In
Section 3.6 we noted that the PERs on D correspond to the subgroupoids of D2, allowing
us to obtain the PER function space as an instance of the concept of function space for
applicative groupoids. In the following, we extend this development to the dependent
function space.

Let (G, · , −1, ∗) denote an applicative groupoid and Agd denote the set of
applicative subgroupoids ofG. LetA ∈ Agd. We say F ∈ G→ Agd respects A and write
F ∈ A → Agd if F is oblivious of groupoid operations: F(a) = F(a−1) = F(a ∗ b) for
all a, b ∈ A such that a∗b is defined. The intention behind this is to model invariance of
F under PER-equality, with inversion a−1 corresponding to symmetry and composition
a ∗ b corresponding to transitivity.

Given A ∈ Agd and F ∈ A → Agd, the dependent function space ΠAF is defined by

ΠAF = {f ∈ G | ∀a ∈ A. f · a ∈ F(a)}

and we show ΠAF ∈ Agd by the laws of applicative groupoids. For instance, ΠAF
is closed under composition: Let f, g ∈ ΠAF such that f ∗ g is defined (in G) and
show f ∗ g ∈ ΠAF . To this end, assume a ∈ A and show (f ∗ g) · a ∈ F(a). First,
because a ∗ a−1 ∈ A by the groupoid laws, we have f · (a ∗ a−1) ∈ F(a ∗ a−1) = F(a).
Secondly, g · a ∈ F(a). Note that by the distributivity laws of applicative groupoids,
(f · (a ∗ a−1)) ∗ (g · a) = (f ∗ g) · ((a ∗ a−1) ∗ a) = (f ∗ g) · a, since f ∗ g and (a ∗ a−1) ∗ a
and f · (a ∗ a−1) and g · a are all defined. Since F(a) is a subgroupoid of G, and
(f · (a∗a−1))∗ (g ·a) is defined, (f · (a∗a−1))∗ (g ·a) ∈ F(a), entailing (f ∗g) ·a ∈ F(a).

The dependent function space construction allows us to model pure predicative type
theory in any applicative groupoid G with constants Setk and Fun. Constants c in an

48

4.6 Dependent Function Space on Groupoids

applicative groupoid are self-inverse and idempotent in the sense that c−1 = c and c∗c =
c. By this, we capture the mapping of constants c to (c, c) in the “mother groupoid”
D2. In D2 it also holds that different constants do not compose, i. e., (c, c) ∗ (c′, c′)
is undefined for c 6= c′; adding this requirement would model the distinctiveness of
constants in G.

The definition of semantic term equality Γ � t = t′ : T calls for a refinement of
applicative groupoids. In terms of a PER model, we express semantic equality via
LtMρ = Lt′Mρ′ ∈ [[T]]ρ. Now, working in an applicative structure D2 of value pairs, each
interpreted term LtMρ is already a pair, but [[T]]ρ is a set of pairs and not of pairs of
pairs. To address this, we add a partial merge operation a ./ a′ to applicative groupoids
which on D2 is a total operation given by (a1, a2) ./ (b1, b2) = (a1, b2). In general, ./ is
not total; closing a PER A under ./ squashes11 the PER structure of A since it equates
all elements which are in the domain of A. The introduction of ./ allows us to formulate
semantic term equality in the following way: An environment ρ of value pairs can be
viewed as a pair of environments (ρ1, ρ2) of single values. Then, LtMρ = (LtMρ1, LtMρ2)
and LtMρ ./ Lt′Mρ′ = (LtMρ1, Lt′Mρ′2), thus, we can express a relationship between the
interpretation of t and the interpretation of t′. The axiomatization of ./ is inspired by
its definition for D2:

1. Extension of ∗: If a ∗ b is defined, then a ./ b is defined and a ./ b = a ∗ b.

2. Idempotency: a ./ a is always defined and a ./ a = a.

3. Merge chaining (associativity and fusion): If a ./ b and b ./ c are defined, then
a ./ (b ./ c) = (a ./ b) ./ c = a ./ c are all defined and equal. Thus, the value of
a merge chain depends only on its first and last element.

4. Inversion: If a ./ b is defined then (a ./ b)−1 = b−1 ./ a−1 are defined and equal.

5. Compatibility with composition:

a) If a ./ b and b ∗ c are defined, then a ./ (b ∗ c) = (a ./ b) ∗ c = a ./ c are all
defined and equal.

b) If a ∗ b and b ./ c are defined, then a ∗ (b ./ c) = (a ∗ b) ./ c = a ./ c are all
defined and equal.

6. Distribution over application:

a) If a ./ b and f · a and f · b are defined, then f · (a ./ b) = (f · a) ./ (f · b) are
defined and equal.

b) If f ./ g and f · a and g · a are defined, then (f ./ g) · a = (f · a) ./ (g · a) are
defined and equal.

We call an applicative groupoid with merge a mergable applicative groupoid (MAG).
Since we intend substructures of D2, which has a total merge operation, to have only
partial merging, we cannot employ the default algebraic substructure concept which
would then require that a ./ b ∈ A for all a, b ∈ A. Instead, we consider applicative

11The merge operation ./ could be useful in models of squash types that have been introduced to
dependent type theory in the context of Nuprl Constable et al. [1986].

49

4 Dependent Types

subgroupoids with merge A ∈ Mag which are applicative subgroupoids of “mother” G
and are MAGs, i. e., they fulfill the laws for merge given above.

On MAGs A we can define a PER structure a ∼ a′ ∈ A by

a ∼ b ∈ A :⇐⇒ a, b, a ./ b ∈ A.

This is indeed a PER. Transitivity is easy, it follows from the chaining laws for ./. For
symmetry, we have to derive b ./ a ∈ A. Note that (a ./ b)−1 = b−1 ./ a−1 ∈ A by
closure under inversion. Also b ∗ b−1, a−1 ∗ a ∈ A by the subgroupoid laws. Since ./
extends ∗, we have also b ./ b−1, a−1 ./ a ∈ A and b ./ b−1 ./ a−1 ./ a = b ./ a ∈ A by
merge chaining. Semantic term equality is then defined using the PER structure as

Γ � t = t′ : T :⇐⇒ ∀ρ ∼ ρ′ ∈ [[Γ]]. LtMρ ∼ Lt′Mρ′ ∈ [[T]]ρ.

With the introduction of ./ we have to update the notion of respect. For A ∈ Mag
by F ∈ A → Mag we now mean that F is also invariant under merge, so we have
F(a) = F(a−1) = F(a ∗ b) = F(a ./ b) whenever the mentioned MAG elements are
defined. In this case, we also say that F is an extension function, a well-defined mapping
of type codes to semantic types.

In the following let Mag more concretely denote the applicative subgroupoids with
merge of D2. Additional laws to integrate the groupoid and merge operations with
recursion are necessary, but they can be defined in analogy to application.

Reflection and reification can be defined on D2 as on D, using the pointwise con-
struction of function type codes Fun (A,A′) (F, F ′) = (FunAF,FunA′ F ′) and reflected
neutrals ↑(A,A′)(e, e′) = (↑A e, ↑A′

e′) and all the other constructs of D,Dne,Dnf , ex-
cluding only function closures (λt)ρ. Read-back from value pairs to a term shall be
undefined if the two individual values result in different terms, otherwise it is defined
as for a single value.

A dependently-typed candidate space (·), (·) for a universe U requires now that

(·), (·) ∈ U → Mag are extension functions, B ⊆ B for base types B ∈ U and

FunAF ⊆ ΠAF

ΠAF ⊆ FunAF

for function types FunAF ∈ U . Herein F and F are required to be extension functions
defined by

F ∈ A→ Mag

F (a) = F · a
F ∈ A→ Mag

F (a) = F · a.

This is only a sketch of the groupoid approach to PER models.12 It seems worth to
pursue it further in future work, because working uniformly with groupoid elements
(instead of sometimes with values and sometimes with pairs of values) cuts down the
design space for semantic concepts and the amount of details.

12Our (algebraic) groupoids model definitional equality and are not to be confused with the (categorical)
groupoids of Hofmann and Streicher [1994] that model propositional equality.

50

4.7 Kripke Logical Relations for Dependent Types and Soundness of NbE

4.7 Kripke Logical Relations for Dependent Types and
Soundness of NbE

As demonstrated in Section 2.6, the soundness of NbE can be established by a Kripke
logical relation between well-typed terms Γ ` t : T and values a ∈ [[T]], defined by
induction on type T . In case of dependent types, we cannot just do induction on
type expressions, but we can induct on type values A ∈ Setk instead. This induction
is the privilege of predicative type theory where types are obtained from below. We
recapitulate the proof given in Abel et al. [2007a,b, 2011].

By induction on A ∈ Setk we define a relation Γ ` T R© A between well-formed types

Γ ` T : Setk and type values A ∈ Setk and a relation Γ ` t : T R© a ∈ A between well-

typed terms Γ ` t : T and values a ∈ [A]. When using context extension σ : Γ′ ≤ Γ, we
assume Γ′ to be well-formed.

Γ ` R R© FunAF
:⇐⇒ Γ ` R = FunS T for some S, T and

Γ ` S R© A and
∀σ : Γ′ ≤ Γ. Γ′ ` s : S R© a ∈ A =⇒ Γ′ ` (T σ) s R© F · a

Γ ` r : R R© f ∈ FunAF
:⇐⇒ Γ ` R = FunS T for some S, T and

Γ ` S R© A and
∀σ : Γ′ ≤ Γ. Γ′ ` s : S R© a ∈ A =⇒ Γ′ ` (r σ) s : (T σ) s R© f · a ∈ F · a

Γ ` T R© B

:⇐⇒ ∀σ : Γ′ ≤ Γ. Γ′ ` T σ = ↓SetkΓ′ B : Setk

Γ ` T : S R© A ∈ Seti
:⇐⇒ Γ ` S = Seti and Γ ` T R© A

Γ ` t : T R© a ∈ B (B 6= Seti)

:⇐⇒ ∀σ : Γ′ ≤ Γ. Γ′ ` t σ = ↓BΓ′ a : T σ

Having completed the definition, we can subsume the relation for types Γ ` T R© A
under the relation for terms Γ ` T : Seti R© A ∈ Seti for an appropriate universe Seti.
The relation Γ ` t : T R© a ∈ A is monotone in the sense that σ : Γ′ ≤ Γ implies
Γ′ ` t σ : T σ R© a ∈ A. Further, it is closed under syntactic equality on the left,
for both terms Γ ` t′ = t : T and type Γ ` T ′ = T and it is closed under semantic
equality on the right for values a = a′ ∈ [A] and type values A = A′ ∈ Type. Further,
we can show the “sandwiching” property we usually express by a candidate space. Let
Γ ` T R© A.

1. If Γ′ ` t σ = Rne
|Γ′| e : T σ for all σ : Γ′ ≤ Γ, then Γ ` t : T R© ↑A e ∈ A.

2. If Γ ` t : T R© a ∈ A and σ : Γ′ ≤ Γ then Γ′ ` t σ = Rnf
|Γ′| ↓

A a : T σ.

The path to soundness of NbE is straightforward from here. We extend the logical
relation to environments Γ ` σ : ∆ R© ρ and build semantic judgements Γ � t : T and

51

4 Dependent Types

Γ � σ : ∆ which we prove by the fundamental lemma of logical relations.

Γ ` () : () R© () :⇐⇒ true

Γ ` (σ, s) : (∆, S) R© (ρ, a) :⇐⇒ Γ ` σ : ∆ R© ρ and Γ ` s : S σ R© a ∈ LSMρ

Γ � t : T :⇐⇒ ∀∆, σ, ρ. ∆ ` σ : Γ R© ρ
=⇒ ∆ ` t σ : T σ R© LtMρ ∈ LT Mρ

Γ � τ : Γ′ :⇐⇒ ∀∆, σ, ρ. ∆ ` σ : Γ R© ρ
=⇒ ∆ ` τ σ : Γ′ R© LτMρ

Soundness of NbE follows as in Section 2.6, and we have

Γ ` t : T =⇒ Γ � t : T

=⇒ Γ ` t id : T id R© LtM ↑Γ ∈ LT M ↑Γ

⇐⇒ Γ ` t : T R© a ∈ A with a = LtM ↑Γ and A = LT M ↑Γ

=⇒ Γ ` t = Rnf
|Γ| ↓

A a : T

⇐⇒ Γ ` t = nfTΓ t : T

Remark. In the presence of the logical relation Γ ` T R© A between syntactic types
and type values, we can define a dependently-typed candidate space as follows:

AΓ = { (t, a) | ∀A′ = A ∈ Type. ∀Γ ` T R© A. Γ ` t : T and

∀σ : Γ′ ≤ Γ. Γ′ ` t σ = Rnf
|Γ′| ↓

A′
a : T σ }

AΓ = { (t, ↑A′
e) | A′ = A ∈ Type and ∀Γ ` T R© A. Γ ` t : T and

∀σ : Γ′ ≤ Γ. Γ′ ` t σ = Rne
|Γ′|e : T σ }

Note how the presence of Γ ` T R© A lets us ensure the well-typedness of t relative to
type value A.

Let us demonstrate law (ΠAF)Γ ⊆ FunAFΓ. Assume (r, f) ∈ (ΠAF)Γ and
FunA′ F ′ = FunAF ∈ Setk and Γ ` FunS T R© FunAF . The restriction to function
types is not a loss of generality, in case of FunA′ F ′ due to inversion on semantic type
equality and for FunS T due to the type conversion rule for syntactic typing. Further
assume σ : Γ′ ≤ Γ and let n = |Γ′| and show Γ′ ` r σ = Rnf

n ↓FunA
′ F ′

f : (FunS T)σ.
Let a = ↑A′

xn and ∆ = Γ′, S σ and σ′ = σ � which entails σ′ : ∆ ≤ Γ. Note that
(v0, a) ∈ A∆ because ∀τ : ∆′ ≤ ∆. ∆′ ` v0 τ = Rne

|∆′|xn : S σ′ τ . By instantiation

of the assumption on (r, f) we obtain ((r σ′) v0, f · a) ∈ F · a∆. By definition with
F · a = F ′ · a ∈ Type it follows Γ′, Sσ ` (r σ′) v0 = Rnf

n+1 ↓F
′·a(f · a) : (T σ′) v0. By

λ-abstraction, Γ′ ` λ. (r σ �) v0 = λ.Rnf
n+1 ↓F

′·a(f · a) : Fun (Sσ)λ. (T σ �) v0. Since
Γ ` T : S → Setk and therefore Γ′ ` T σ : S σ → Setk, we can apply η-equality
to contract the type to Fun (S σ) (T σ). Similarly, since Γ ` r : FunS T we have
Γ′ ` r σ = λ. (r σ �) v0 : Fun (S σ) (T σ) and can η-contract the left-hand side. Fi-
nally, we fold back the quoting step at function type. Thus, we arrive at our goal
Γ′ ` r σ = Rnf

n ↓FunA
′ F ′

f : (FunS T)σ.

52

4.8 Summary

However, completing the program of Section 3.9 for dependent types is not yet a
low-hanging fruit. We cannot directly adapt the Kripke typed applicative structures
DT

Γ to dependently types, since dependent types with de Bruijn indices change their

denotation with Γ, violating σ() : AΓ → AΓ′ for σ : Γ′ ≤ Γ, where A ∈ D̂T . In fact,
writing D̂T does not even make sense, because a type expression T has meaning only
relative to a context.

A way out could be categories with families [Dybjer, 1996]. Alternatively, we could
switch from de Bruijn indices to named variables, which are absolute references into
a context and do not change their meaning with context extensions. We explore this
approach for System F in Section 5, but leave dependent types to future work.

4.8 Summary

How have dependent types affected the normalization-by-evaluation algorithm and its
semantic justification?

First η-expansion for dependent types is much more complicated than for simple
types. For simple types, we have the choice of η-expanding a non-normal term ev-
erywhere and obtaining an η-long normal form by β-normalization. Or we could β-
normalize first and then η-expand to a long normal form. For dependent types, such
a phase separation of β- and η-normalization does not work. η-expanding first cannot
work since the arity of a function type can be determined only after β-normalization.
For instance, the type T (suc zero) with T given by T zero = N and T (sucn) = N→ T n
is a function type of arity 1, but we know this only after computing its β-normal
form (at least the weak head normal form). On the other hand, η-expanding after
β-normalization fails in the presence of singleton types 〈t : T 〉 with η-expansion u −→ t
in case u : 〈t : T 〉. For singleton types, η-expansion can trigger new β-reductions, for
instance in T (x) where variable x has type 〈zero : N〉.

NbE analyzes η-expansion into reflection, which corresponds to η-expansion of free
variables on the inside of a term, and reification, which corresponds to an η-expansion on
the outside of a term. The inner η-expansion is lazy and interleaved with computation
(β-reduction), as witnessed by the law

(↑FunAF e) · a = ↑F ·a(e ↓A a).

Integration of singleton types into our NbE framework is effortless and has been carried
out in Abel et al. [2011]. The essence is a reification law

↑〈a:A〉 e = a

that performs η-expansion at singleton types at just the right time, meaning as soon
as the value of ↑〈a:A〉 e is demanded by a computation, and with the guarantee that e’s
type has emerged as a singleton type at this point or will never do so. This way, we
never miss a β-reduction that could be triggered by an η-expansion. An NbE-inspired
strategy for type checking in the presence of dependent and singleton-types has been
implemented as part of the prototypical language MiniAgda [Abel, 2010b].

For the semantic justification of dependently-typed NbE we could reuse a PER model
which is standard except for the inclusion of neutrals at the base types. It is constructed

53

4 Dependent Types

by an inductive-recursive definition of the valid semantic types; this inductive-recursive
definition seems to be the essence of predicative dependent type theories. The model
gets its specific touch by the dependently-typed candidate space that all of its types
inhabit. This is shown by an extra induction on valid types. Induction on valid types
lets us also construct a Kripke logical relation between syntax and semantics, which
completes the correctness proof of NbE. Dependent types certainly complicate this
logical relation, since syntactic types are context sensitive and need shifting of de Bruijn
indices in case of context extension.

The models we have constructed justify not only NbE, but also the injectivity of the
dependent function type constructor in the presence of universes and η-conversion on
the type level [Abel et al., 2007b]. Before, this result had only been established for a
formulation of type theory that confined η-conversion to terms Goguen [1994].13 Type
constructor injectivity is essential for efficiently checking type equality,14 which is an
integral part of any type checker for dependent types.

13Some formulations of type theory [Nordström et al., 1990, Altenkirch, 1994, Abel and Coquand,
2007] use an extension function El on the level of syntax, meaning that for T : Set they do not have
t : T but only t : El(T). Those variants confine βη-equality to terms t, thus, getting injectivity for
type constructors for free. However, practical implementations such as Agda [Norell, 2007] and Coq
[INRIA, 2012] spare the user the bureaucracy of El. This is very sensible, however, hardens the type
theorist’s job to prove consistency and decidability of type checking for these systems.

14Injectivity of Fun lets us reduce the problem FunS T = FunS′ T ′ to the problems S = S′ and T = T ′.

54

5 Impredicativity

Impredicative type theories allow the formation of polymorphic types that can be in-
stantiated by all other types. In predicative theories such as PTT, this is not allowed; a
type like (X : Set0)→ X → X, which is the type of the identity function polymorphic
in all types X : Set0, is legal but not a member of Set0 itself. A type that quantifies
over types of a universe Seti must live in a higher universe, at least Seti+1. We get an
impredicative universe Set0 if we relax the formation rules of function types in Set0 to

Γ ` S Γ, S ` T : Set0

Γ ` FunS λT : Set0
.

The difference to PTT is that S can now be any well-formed type, it does not have
to be from Set0. In particular, S can be Set0 itself, as in the type of the polymorphic
identity. Since Set0 is not a member of Set0 but Set1, the domain of a impredicative
polymorphic function can live in a higher universe than the whole function type.

An impredicative universe like the modified Set0 cannot be defined inductively. Be-
cause its types, like FunS λT , reference arbitrary types S in higher universes, we would
need the definition of the higher universes before defining Set0. This circularity prevents
an inductive definition of valid types from below.

In fact, impredicativity is one step from inconsistency. Several paradoxes have been
discovered in extensions of impredicative type theories and logics. By an adaption
of Burali-Forti’s paradox, Girard [1972] showed that System U−, which has another
impredicative universe stacked on the impredicative base universe, is inconsistent.1 As
a consequence, System U with a universe Set : Set that contains a code for itself is
inconsistent as well, since it simulates2 System U−. System U can be simulated in turn
if we add impredicative strong existential types to type theory [Hook and Howe, 1986].
Although Set : Set is logically inconsistent, it is computationally consistent (has subject
reduction), has (incomplete) type checking [Coquand and Takeyama, 2000, Abel and
Altenkirch, 2011] and can serve as the basis of a polymorphic programming language
[Burstall and Lampson, 1984, Cardelli, 1986]. However, due to logical inconsistency,
System U programs are not terminating in general [Hurkens, 1995], and the best we
can offer is untyped NbE.

Impredicative quantification alone seems to be consistent;3 there are several popular

1The proof of System U’s inconsistency has later been simplified by Coquand [1986] and Hurkens
[Hurkens, 1995, Barthe and Coquand, 2006].

2In fact, System U simulates any other pure type system (PTS) [Barendregt, 1991], it is the terminal
object in the category of PTSs. PTT is simulated by erasing all universe levels |Seti| = Set.

3Consistency proofs of impredicativity require impredicative principles such as complete lattices on
the meta-level. As far as I know, a proof-theoretic reduction of impredicativity to finitary methods
is unknown, as well as the proof-theoretic strength of impredicative systems in terms of ordinal
analysis. Therefore, consistency of impredicativity is empirical—but in the end, so is the consistency
of any foundation of mathematics, as the failure of Hilbert’s program demonstrated.

55

5 Impredicativity

impredicative logics and type systems, including Girard’s System Fω [1972] and Sys-
tem F [Reynolds, 1974], the Calculus of Constructions (CoC) [Coquand and Huet, 1988],
the Calculus of Inductive Constructions (CIC) [Coquand and Paulin, 1988, Paulin-
Mohring, 1993, Werner, 1994] underlying Coq [INRIA, 2012], and second- and higher-
order predicate logic, to name a few.

NbE can be adapted to impredicative type systems, as we will demonstrate in the
following, and can help to establish the meta-theoretic properties of these systems,
like normalization, consistency, and decidability of type equality and type checking.
We have considered NbE for System F [Abel, 2008], System Fω [Abel, 2009a], and
the CoC [Abel, 2010a] with inductive types in the impredicative universe. The main
difficulty in constructing models for an impredicative universe is that induction on
types in this universe is not available. Thus, we cannot define semantic types first
and prove interesting properties of them later. We did so in the predicative case: we
defined semantic types and later proved they inhabit a candidate space that lets us show
soundness and/or completeness of NbE. For impredicative types, this is not possible,
instead we have to first make up our mind and define a candidate space, yet without
reference to the collection of valid semantic types. Then, we define the semantics of
polymorphic types by quantifying over all candidates inhabiting this candidate space.

In Girard’s normalization proof of System F [Girard et al., 1989], the space consists
of the reducibility candidates A ∈ CR, which are closed under function space and ar-
bitrary intersection (impredicativity here!). The interpretation [[T]]ρ of type T in an
environment of reducibility candidates ρ ∈ TyVar→ CR is then defined by:

[[X]]ρ = ρ(X)

[[S → T]]ρ = [[S]]ρ→ [[T]]ρ

[[∀X T]]ρ =
⋂
A∈CR

[[T]](ρ,A/X)

A naive attempt to replace the “big” impredicative intersection by a “small” intersection
over syntactic types, [[∀X T]] =

⋂
S∈Ty[[T [S/X]]], fails because the type T [S/X] can be

equal to ∀XT (in case S = ∀XT and T = X) or even bigger—thus, the interpretation
function is ill-defined.4

The definition of interpretation lets us infer [[T]]ρ ∈ CR, so we know that each valid
semantic type is a reducibility candidate, but we do not know more than this. If
we need additional properties of semantic types, we have to refine the concept of CR
beforehand. In the case of NbE, we want to know that elements of a semantic type
[[A]] are reifiable at type A, thus, we have to design our candidate space accordingly.
Or, to show soundness of NbE, we want to interpret types A as sets of term-value
pairs such that the reified value is equal to the term. We cannot use the approach we
used in Section 4.7 for dependent types since it presupposes a logical relation between
syntactic and semantic types. Instead, we will adapt our concept of type structure from
Section 3.9 to polymorphic types.

It turns out that the definition of greatest candidate T of type T as a Kripke set is
inconvenient when T has free de Bruijn indices. For instance, in the simple case T =

4However, this works for predicative System F where type variables X can only be instantiated by
monotypes S that do not contain quantification ∀ over types.

56

5.1 System F Syntax

TmT it does not hold that TΓ ⊆ TΓ′ since T appears in different contexts, thus, changes
its meaning. We could use transport σ : Γ′ ≤ Γ and have TΓ ⊆ T σΓ′ , interpreting
semantics as presheafs, an approach apparently followed in Altenkirch et al. [1997].
Still, T by itself does not make sense, because to apply a transport to T we need to
know in which world Γ we have to start. We deal with these issues by ditching de Bruijn
indices and changing to named variables. Named variables keep their meaning under
context extensions, thus, a semantic type T is a valid Kripke set. The same effect could
be achieved with a de Bruijn level or locally nameless variable representation [Pollack,
1994].

The named approach to NbE has been studied in Abel et al. [2008], Abel [2008, 2009a].
It does not require nominal sets or logic Pitts [2010], only the quotation process has to
be informed of the names already in use that should be avoided when generating a fresh
name. In above works, we achieved this by contextual reification, a reification function
from value to terms directed by both type and typing context. In the following, we refine
this approach by keeping the separation of type-aware, context-oblivious reification ↓A
and a read-back function that is responsible for picking fresh names and thus, must
be informed about context length (in case of de Bruijn representations) or names of
context-bound variables (in the named approach).

TyVar 3 X,Y type variables
Ty 3 R,S, T ::= X | S → T | ∀XT types

Var 3 x, y term variables
Tm 3 r, s, t ::= x | λx :S. t | r s terms (typed lambda calculus)

| ΛXt | r S type abstraction and application
| t σ explicit substitution

Subst 3 σ, τ ::= id | σ τ category of substitutions
| (σ, s/x) | (σ, S/X) term and type substitutions

Cxt 3 Γ,∆ ::= () mixed context
| Γ, X type variable decl. (X 6∈ |Γ|)
| Γ, x :S term variable decl. (x 6∈ |Γ|)

Figure 5.1: System F syntax.

5.1 System F Syntax

We consider Church-style formulation of System F with separate syntactic categories
for types and terms, but a mixture of term and type variable valuations in substitutions
and contexts (see Figure 5.1). In contrast to the presentation in Abel [2008, Section 2],
we are explicit about type variable bindings in contexts, and we consider explicit sub-

57

5 Impredicativity

stitutions on terms.5 However, on types we use substitution as an operation, T [σ], so
that type equality is just α-equality. We maintain the invariant that in contexts each

variable can be declared at most once. The domain |Γ| of context Γ be the list of

variables declared in Γ.

Figure 5.2 presents typing for System F and the βη-axioms of term equality. There
are also the congruence rules and rules for substitution equality and propagation of
explicit substitutions, which we have omitted. They are similar to the ones presented
in Figures 3.3 and 3.4 (modulo name representation) or the ones in Abel et al. [2008]
(modulo dependent typing).

Weakening is implicit in all judgments: if a judgement holds in context Γ then it
holds also for the extended context Γ′ ≤ Γ. Consequently, shifting is missing from the
grammar of substitutions; it is simply id.

We write TyΓ for {T ∈ Ty | Γ ` T} and TmT
Γ for {t ∈ Tm | Γ ` t : T}.

5.2 System F Type Semantics via Candidate Space

We shall now sketch the semantics of System F types in terms of (applicative) System F
structures as given in Abel [2008, Section 3].

A family of sets ZΓ indexed by well-formed contexts ` Γ is called Kripke if ZΓ ⊆ ZΓ′

whenever Γ′ ≤ Γ. Examples of Kripke sets are the well-formed types TyΓ = {T ∈ Ty |
Γ ` T} and TmT

Γ = {t ∈ Tm | Γ ` t : T}, the terms of type T .

A System F application structure is a family DT of Kripke sets for each type T ∈ Ty
with a family of partial operations

appS→TΓ ∈ DS→T
Γ → DS

Γ → DT
Γ

App∀XTΓ ∈ D∀XTΓ → (S ∈ TyΓ)→ D
T [S/X]
Γ .

When type and context indices are reconstructable or do not matter, we simply write
· for any of the application operations. System F application structures are the

System F equivalent of the applicative aspect of System T’s type structures as defined
in Section 3.9. We will later complete System F application structures by an evaluation
operation to System F structures. Let us for now drop the “System F” and simply say
application structures.

A total application structure is one in which both application operations are total.
Examples for total application structures are well-typed terms TmT

Γ and well-typed
terms modulo term equality Γ ` = : T . (Partial) application structures include raw
terms Tm and values D (defined later in analogy of System T values).

The pointwise product (D × E)TΓ = DT
Γ × ETΓ of two application structures forms a

application structure with application defined componentwise. A application substruc-
ture E ⊆ D is a family of subsets ETΓ ⊆ DT

Γ on with application inherited from D. The

5The choice of explicit substitutions is forced by the generality of our notion of System F structure
(see Section 5.3). Since we do not ask for (weak) extensionality on the level of evaluation, β-equality
is not modeled for substitution as operation; the counterexample in the introduction to Section 3.5)
applies also to named variable representations.

System F’s type level has no interesting notion of computation, thus, we can use substitution as
operation there.

58

5.2 System F Type Semantics via Candidate Space

Γ ` T Well-formed types.

X ∈ |Γ|
Γ ` X

Γ ` S Γ ` T
Γ ` S → T

Γ, X ` T
Γ ` ∀XT

` Γ Well-formed contexts.

` ()

` Γ

` Γ, X

` Γ Γ ` S
` Γ, x :S

Γ ` t : T Typing.

` Γ Γ(x) = S

Γ ` x : S

Γ, x :S ` t : T

Γ ` λx :S. t : S → T

Γ ` r : S → T Γ ` s : S

Γ ` r s : T

Γ, X ` t : T

Γ ` ΛXt : ∀XT
Γ ` r : ∀XT Γ ` S

Γ ` r S : T [S/X]

Γ ` σ : ∆ ∆ ` t : T

Γ ` t σ : T [σ]

Γ′ ≤ Γ Context extension.

Γ ≤ Γ

Γ′ ≤ Γ

Γ′, X ≤ Γ

Γ′ ` S Γ′ ≤ Γ

Γ′, x :S ≤ Γ

Γ′ ≤ Γ

Γ′, X ≤ Γ, X

Γ′ ≤ Γ Γ ` S
Γ′, x :S ≤ Γ, x :S

Γ ` σ : ∆ Substitution typing.

Γ ` id : Γ

Γ1 ` τ : Γ2 Γ2 ` σ : Γ3

Γ1 ` σ τ : Γ3

Γ ` σ : ∆′ ∆′ ≤ ∆

Γ ` σ : ∆

Γ ` σ : ∆ ∆ ` S Γ ` s : S[σ]

Γ ` (σ, s/x) : ∆, x :S

Γ ` σ : ∆ Γ ` S
Γ ` (σ, S/X) : ∆, X

Γ ` t = t′ : T Term equality.

Γ, x :S ` t : T Γ ` s : S

Γ ` (λx :S. t) s = t (s/x) : T

Γ ` t : S → T

Γ ` t = λx :S. t x : S → T
x 6∈ |Γ|

Γ, X ` t : T Γ ` S
Γ ` (ΛXt)S = t (S/X) : T [S/X]

Γ ` t : ∀XT
Γ ` t = ΛX. tX : ∀XT

X 6∈ |Γ|

Figure 5.2: System F typing and equality.

59

5 Impredicativity

set of application substructures of D is denoted D̂, and we write A ∈ D̂T for the Kripke
family AΓ ⊆ DT

Γ .

The essence of normalization proofs is to show that the a priori partial type structure
with application and evaluation of normalizing terms is in fact total. In the following,
we deliver the application part of the bill: a systematic method to construct a total
System F application substructure induced by a candidate space.

On D̂, we define the Kripke function space and type abstraction, in preparation for
the specification of System F candidate spaces.

(→)S→T ∈ D̂S → D̂T → D̂S→T

(A → B)S→TΓ = {f ∈ DS→T
Γ | ∀Γ′ ≤ Γ, a ∈ AΓ′ . f · a ∈ BΓ′}

(S.)∀XT ∈ D̂T [S/X] → D̂∀XT

(S.B)∀XTΓ = {f ∈ D∀XTΓ | ∀Γ′ ≤ Γ. S ∈ TyΓ′ =⇒ f · S ∈ BΓ′}∧∀XT ∈ ((S ∈ Ty)→ D̂T [S/X])→ D̂∀XT

(
∧∀XT F)Γ =

⋂
S∈Ty(S.F(S))∀XTΓ∧∀XT is a preliminary interpretation of universal quantification with only a small in-

tersection (only over syntactic types). Note that X is a bound variable, in one case
by ∀, in the other by the substitution operation, thus, it is subject to α-equality and
does not pose a problem.6 In the following, we drop the type superscripts from these
semantic operators.

A System F candidate space is a family of two application substructures T , T ∈ D̂T

of D (formally (·), (·) ⊆ D) that satisfy the following inclusion laws (pointwise at each
world Γ):

X ⊆ X

S → T ⊆ S → T S → T ⊆ S → T

∀XT ⊆
∧
X.T

∧
X.T ⊆ ∀XT

Herein, X.TΓ(S) = T [S/X]
Γ

and X.TΓ(S) = T [S/X]Γ. We call T the least candidate

and T the greatest candidate for type T .

For a semantic (proto)type A ∈ D̂T we say T realizes A, written T A , if A
inhabits the interval of the candidate space spanned by T , i. e., if T ⊆ A ⊆ T . The
proper interpretation of universal quantification in D̂ is now given by

∀∀X.T ∈ ((S ∈ Ty)→ D̂S → D̂T [S/X])→ D̂∀XT

∀∀X.TF =
⋂
SA

S.F(S,A)

Note that the intersection here is big (impredicative), since we quantify over all candi-
dates to define a new candidate.

6In formalizations, a locally nameless style is probably preferable to a named variable presentation.
In local nameless style, bound variables like X vanish, obliviating the need for α-conversion.

60

5.2 System F Type Semantics via Candidate Space

We extend realizability to type substitutions σ and type environments ρ ∈ D̂σ by
setting

σ Γ ρ :⇐⇒ σ(X) ρ(X) for all X ∈ |Γ|.
Herein, ρ ∈ D̂σ if ρ(X) ∈ D̂σ(X) for all X ∈ |Γ|. Let σ ∈ TyΓ mean that σ is a valid
type substitution for Γ, i. e., σ(X) ∈ Ty for all X ∈ |Γ|.

Type interpretation [[]](,) ∈ (T ∈ TyΓ) → (σ ∈ TyΓ) → (ρ ∈ D̂σ) → D̂T [σ] is now
defined by recursion on T :

[[X]](σ, ρ) = ρ(X)
[[S → T]](σ, ρ) = [[S]](σ, ρ)→ [[T]](σ, ρ)

[[∀XT]](σ, ρ) = ∀∀X.T (S,A) 7→ [[T]]((σ, S/X), (ρ,A/X))

Using the laws of the candidate space we prove that type interpretation is sound in
the sense that T [σ] [[T]](σ, ρ) if σ Γ ρ. Further, interpretation is compatible with
substitution, i. e., we have

[[T [σ]]](τ, ρ) = [[T]](σ τ, [[σ]](τ, ρ))

for a pointwise extension [[σ]] of interpretation to type substitutions σ.
Pairs A = (T,A) of a semantic type A and its realizer T form a System F type

structure D of candidates with function space and quantification.

→ ∈ D → D → D

(S,A)→ (T,B) = (S → T,A → B)

∀∀ ∈ D
?→? → D

∀∀(X.T,F) = (∀XT,∀∀X.TF)

Herein, D
?→?

= (X ∈ TyVar) × (T ∈ Ty) × (((S,A) ∈ D) → D̂T [S/X]), and not the
naive D → D, which is does not give enough information to ensure the well-formedness
of ∀∀. Note that the typing of → and ∀∀ as operators on D uses the candidate space
laws. Using D, we can view the pair σ Γ ρ of matching environments as a single

environment ξ ∈ DΓ
.

We finally have the tools to exhibit total application structures wrt. to a partial

application structure D. Let [[T]]Γ = (ξ ∈ D
Γ
) → [[T]]ξ. Then [[T]] ∈ D̂T is a total

structure with application operations

appS→TΓ (f ∈ [[S → T]]Γ, a ∈ [[S]]Γ)(ξ) = f · a ∈ [[T]]ξ

App∀XTΓ (f ∈ [[∀XT]]Γ , S ∈ TyΓ) (ξ) = f · S ∈ [[T [S/X]]]ξ.

The well-formedness of type application in structure [[]] relies on the substitution prop-
erty of type interpretation.

A total substructure [[]] ⊆ D is obtained if we choose a canonical type environment
ξΓ for each context Γ. The substructure given by [[T]]Γ = [[T]]ξΓ shall be called induced
by the underlying candidate space and the type valuation ξΓ. Induced application
substructures are total since D’s application on [[]] is total by construction of the
Kripke function space and universal quantification on D̂.

A typical canonical environment for normalization proofs is ξid(X) = (X,X) which
fits each context Γ.

61

5 Impredicativity

5.3 Abstract Evaluation and the Fundamental Lemma for
System F

A System F structure D is a System F application structure with a partial operation

L M ∈ TmT
Γ → (η ∈ DΓ

∆)→ D
T [η]
∆ called evaluation which satisfies the following laws:

LxMη = η(x)

Lr sMη = LrMη · LsMη

Lr SMη = LrMη · S[η]

Lλx :S. tMη · a = LtM(η, a/x)

LΛXtMη · S = LtM(η, S/X)

Herein, η ∈ DΓ
∆ is a D-environment satisfying η(X) ∈ Ty∆ for all type variables X ∈ |Γ|

and η(x) ∈ DS[η]
∆ for all term variables x ∈ |Γ|. The equations are to be read as “if one

side is defined, so is the other, and then both sides are equal”.

Products D × E of System F structures are defined pointwise, as expected, and a
System F substructure E ⊆ D inherits interpretation from D, and if LtMη is defined in

D and η ∈ EΓ
∆ is a valid E-environment, then [[t]]η ∈ ET [η]

∆ must be defined as well.

The fundamental lemma of System F structures now states that for any System F
substructure structure [[]] ⊆ D which is induced by a System F candidate space and
canonical valuation ξΓ is total. Since application is total in induced structures, it
remains to show that evaluation LtMη is total. This follows from the more general
statement that if η Γ ρ then LtMη ∈ [[T]](η, ρ) which is proven by induction on Γ ` t : T ,
using the definition of type interpretation [[T]] and the evaluation laws.

5.4 Normalization by Evaluation for System F

In this section, we consider an algorithm of normalization by evaluation for System F.
We adapt the developments of Chapter 3 to polymorphism and named variables. By
now, we have gained sufficient familiarity with NbE to do this mechanically.

Values are as for simply-typed lambda calculus, only that we have additional poly-
morphic function closures (ΛXt)η and neutral type applications e S. Environments
hold both values for term variables and type expressions for type variables.

D 3 a, b, f ::= (λxt)η | (ΛXt)η | ↑T e

Dne 3 e ::= x | e d | e S
Dnf 3 d ::= ↓T a

Env 3 η ::= () | (η, d/x) | (η, S/X)

Ne 3 u ::= x | u v | uS
Nf 3 v ::= u | λx :S. v | ΛXv

62

5.4 Normalization by Evaluation for System F

Evaluation, application and type application are defined again as mutually recursive
partial functions.

L M ∈ Exp× Env→ D

LxM η = η(x)

Lλx :S. tMη = (λxt)η

LΛXtM η = (ΛXt)η

Lr sM η = LrMη · LsMη
Lr SM η = LrMη · S[η]

Evaluation satisfies the laws of the partial System F structure D of values, given the
following implementation of application.

· ∈ D× D→ D

(λxt)η · a = LtM(η, a/x)

↑S→T e · a = ↑T (e ↓S a)

· ∈ D× Ty→ D

(ΛXt)η · S = LtM(η, S/X)

↑∀XT e · S = ↑T [S/X](e S)

Application also applies to reflected neutrals of function or polymorphic type. Note the
impredicative character of reflection at type ∀XT : it is defined in terms of reflection at
the potentially bigger type T [S/X].

In contrast to quotation into de Bruijn terms, the (partial) read-back functions are
now indexed by a set of taken names |Γ| instead of just the number n of variables in
scope. We assume we have a function fresh |Γ| that returns a hitherto unused term
variable x 6∈ |Γ| and Fresh |Γ| that does the same for a type variable X.

Rne
|Γ| ∈ Dne → Ne

Rne
|Γ| x = x

Rne
|Γ| (e d) = (Rne

|Γ|e) (Rnf
|Γ|d)

Rne
|Γ| (e S) = (Rne

|Γ|e) S

Rnf
|Γ| ∈ Dnf → Nf

Rnf
|Γ| ↓

X e = Rne
|Γ|e

Rnf
|Γ| ↓

S→T f = λx :S. Rnf
|Γ|,x ↓

T (f · ↑S x) where x = fresh |Γ|
Rnf
|Γ| ↓

∀Y T f = ΛX. Rnf
|Γ|,X ↓

T [X/Y](f ·X) where X = Fresh |Γ|

As read-back is an algorithm, we do not rely on implicit α-conversion for types. Instead,
when reifying at polymorphic type ∀Y T , we substitute the fresh free variable X for
the bound variable Y in T . (This also lends itself nicely to locally-nameless style.)

63

5 Impredicativity

In an implementation, we could try to use Y in place of the fresh name if Y 6∈ |Γ|,
since the user-chosen name Y would be a more meaningful than an arbitrary fresh
identifier. A similar name-preserving strategy could be employed when reifying a closure
↓S→T (λxt)ξ. In case ↓∀Y T (ΛXt)ξ we have even two names to choose from.

At this point, another comment on name management is in order. Our set of used
names |Γ| is an instance of Barral’s name generation environment [2008, Def. 2.20],
or short, name supply. He discusses global name generation mechanisms like Scheme’s
gensym, but discards them because such imperative effects do not have a direct coun-
terpart in the functional world of mathematics.7 He then observes that local name
generation is sufficient; such local environments can be implemented as reader or con-
text monads which are basically functions taking the name supply as input. Berger and
Schwichtenberg’s term families [1991, 2003], which are functions from name supply to
lambda-terms and interpret the base types, are an instance of such a context monad.8

The Abel et al. [2011] approach to NbE, which we have adopted to a named term rep-
resentation here, confines name generation to quotation which is the “last” step in the
normalization procedure, not intermingled with evaluation in the way reflection and
reification are. Thus, there is no need for name generation in the semantic part of the
algorithm, concerning values and evaluation. We trade name generation semantics for
a semantics enriched with neutrals, called accumulators in Grégoire and Leroy [2002].
By this choice, we abandon tag-free interpreters9 for NbE, however, we lose the tag-free
representation of function values anyway as soon as we take untyped NbE as basis.
We consider the removal of name-generation from the semantics as a great conceptual
simplification. For instance, it enables us to proof completeness of NbE without refer-
ence to contexts (see Sections 3.7 and 4.5). Contexts and names come only back in the
soundness proof in the form of Kripke logical relations.

The definition of the NbE algorithm is unchanged w. r. t. Chapter 3, only that the
canonical environment ↑Γ needs to provide a valuation for type variables, which are
mapped to themselves.

↑Γ ∈ Env

↑() = ()

↑Γ,x:S = (↑Γ, (↑S x)/x)

↑Γ,X = (↑Γ, X/X)

nfTΓ ∈ Exp→ Nf

nfTΓ (t) = Rnf
|Γ| ↓

T LtM(↑Γ)

Showing soundness of NbE follows from the fundamental lemma for the System F

7But cf. Filinski [2001] who uses a state monad for name generation in NbE for the computational
lambda-calculus.

8 Filinski [1999], Dybjer and Filinski [2000] follow the term families approach, and present a weak
HOAS (higher-order abstract syntax) wrapper for it.

9Tag-free interpreters use untagged values. Whether a value is a function or, e. g., a number, is
determined by the typing and need not be checked during evaluation. The evaluator presented in
Section 2.1 is tag-free in this sense.

64

5.5 System Fω, the Calculus of Constructions, and Beyond

substructure of TmT
Γ × D induced by

TΓ = {(t, a) ∈ TmT
Γ × D | ∀Γ′ ≤ Γ. Γ′ ` t = Rnf

|Γ′| ↓
T a : T}

TΓ = {(t, ↑T e) ∈ TmT
Γ × D | ∀Γ′ ≤ Γ. Γ′ ` t = Rne

|Γ′| e : T}.

Our work amounts to proving that these two Kripke sets indeed form a System F
candidate space (see similar proof in Abel [2008]).

Completeness of NbE uses the fundamental lemma on the substructure of D×D given
by the (context-independent) candidate space of PERs

T = {(a, a′) ∈ D2 | ∀Γ. Rnf
|Γ| ↓

T a = Rnf
|Γ| ↓

T a′}

T = {(↑T e, ↑T e′) ∈ D2 | ∀Γ. Rne
|Γ| e = Rne

|Γ| e
′}.

Further we show by induction on Γ ` t = t′ : T that term equality is modeled by this
substructure.

Correctness of Nbe shows that normal forms generated from a closed term t via two
different name supplies Γ1 and Γ2 are α-equivalent: With di = ↓T LtM ↑Γi we get by
soundness Γ1 ` t = Rnf

|Γ1|d1 : T and Γ2 ` t = Rnf
|Γ2|d2 : T , and by strengthening and

transitivity, ` Rnf
|Γ1|d1 = Rnf

|Γ2|d2 : T . Since both terms are normal forms, they must

be α-equivalent.10 If we parameterize the readback functions Rne and Rnf over name
supplies instead of used names, we can even prove that the choice of fresh does not
influence normal forms (up to α).

This completes our presentation of NbE for System F. The main investment has been
a design of Kripke semantics based on a generic notion of candidates. It seems that as
we move on to more expressive type systems like Fω or the CoC, the main work is to
clarify and formulate the semantic structures, while the actual NbE algorithm needs
little modifications only.

5.5 System Fω, the Calculus of Constructions, and Beyond

System Fω replaces System F’s type expressions by type constructors, which are essen-
tially simply-typed expressions over the constants → and ∀, only that in this case we
say simply-kinded to avoid confusing the types of types constructors (i. e., kinds) with
the types of terms.

Normalization in Fω concerns both type constructors as well as terms. Normalization
of type constructors is as easy as normalization of simply-typed lambda-calculus. In
principle, we could restrict to normal type constructors in the first place, and use hered-
itary substitutions Watkins et al. [2003] to normalize the application of two normal type
constructors, or the substitution of a normal type constructor into another normal type
constructor. However, this would prevent us from extending Fω with inductive kinds
and types defined by recursion, such as present in LX [Crary and Weirich, 1999] or later
versions of Haskell [Yorgey et al., 2012], since the method of hereditary substitutions
does not scale to recursion. Furthermore, since we are implementing normalization for

10While this is intuitively clear, technically we must also prove transitivity elimination for judgemental
equality.

65

5 Impredicativity

lambda-terms anyway, we can use the same algorithm on the type level, if we use a
single expressions language for terms and type expressions.

In Abel [2009a], we present NbE for Fω type constructors and terms using contextual
reification. For the formulation of abstract models of Fω, we introduce kind structures,
type structures and term structures (called object structures in Abel [2009a]). We ex-
ploit the stratification of Fω, into these three layers; since types cannot depend on
terms, and kinds not on types, we can define Fω’s semantics top down, first specifying
the layer of kinds, then the layer of types, and finally the layer of terms. We define kind
candidate spaces (in analogy to simply-typed candidate spaces) and (higher-kinded)
type candidate spaces and instantiate them to obtain soundness and completeness re-
sults for type-level and term-level NbE. The full development and proofs can be found
in Abel [2009b].

The pure Calculus of Constructions [Coquand and Huet, 1988] is an extension of Fω

by dependencies: types can depend on terms. However, in the absence of inductive
types and recursion, dependencies are erasable, thus, NbE for the pure CoC is the
almost the same as NbE for Fω. It gets more interesting if we add an inductive type
like the natural numbers and types defined by recursion on numbers [Werner, 1992].
Then dependencies can no longer be erased which significantly complicates the meta-
theory. While dependencies cannot be erased in types, they can be erased in kinds, thus,
every kind has a skeleton that corresponds to a simple kind. Werner [1992] exploits
simple-kinding to define raw sets of semantic type constructors of higher kind. This
definition allows to boot-strap the semantics of CoC+N.

We adopt Werner’s trick to define higher-kinded type candidate spaces for the CoC
which enable us to prove termination and completeness of NbE for the CoC with large
eliminations [Abel, 2010a]. However, it is quite a technical battle already, and soundness
of NbE, which would require Kripke models for the CoC, remains open. Also, a general
concept of CoC structure has not been formulated in the way we did for System F and
Fω.

If we add yet another universe to CoC, Werner’s trick is no longer usable, since
dependencies on the kind level can no longer be erased. Developing a semantic technique
for this system is probably as hard as for the full Calculus of Inductive Constructions
(CIC) [Coquand and Paulin, 1988], which has a countable hierarchy of predicative
universes Typei on top of the impredicative base universe Prop, and inductive types on
each level. A justification of NbE for the CIC remains open.

66

6 Summary, Related Work, and
Perspectives

In this thesis, we have demonstrated how to normalize expressions by evaluation in
dependent and impredicative type systems. We have not followed the intrinsic-typing
style as presented in Section 2.1 where types come first and terms are elements of types
and can only be understood in connection with their type. Instead we have adopted a
extrinsic typing or type assignment style where terms come first and can be assigned
one or several types and be η-expanded w. r. t. the assigned type or not.

We describe evaluation in terms of (syntactical) partial applicative structures (see
Section 3.2) which are partial and untyped versions of Mitchell’s environment mod-
els [Mitchell, 1996, Section 4.5.3] and Barendregt’s syntactical applicative structures
[Barendregt, 1984, Section 5.3]. Partial applicative structures have many instances,
subsuming many different approaches to value representation in NbE, such as

• meta-theoretic functions (e.g. set-theoretic functions) [Berger and Schwichten-
berg, 1991],

• two-level lambda-calculus [Danvy, 1996, Vestergaard, 2001a, Aehlig and Joachim-
ski, 2004, Abel et al., 2007b],

• Scott domains [Filinski, 1999, Filinski and Rohde, 2004, Abel et al., 2007a, 2011],

• closed or open normal forms,

• weak head normal forms or closures (Martin-Löf [1975], Coquand [1996], Al-
tenkirch and Chapman [2009] and this work), and

• compiled code [Grégoire and Leroy, 2002, Boespflug et al., 2011, Aehlig et al.,
2012].

Our type assignment approach to NbE is in essence an interleaving of evaluation and
lazy reflection and reification on the level of values, followed by quotation that reads
values back into η-long normal forms. Due to the lazy nature of reification, read-back
triggers further evaluation of function bodies, which can involve further reflection and
computation. Through the study of NbE we have gained new insights into η-expansion
which is applied to the “inputs” (free variables) via reflection and to the “output”
(evaluation result) via reification. This separation of η-expansion into two phases has
enabled us to seamlessly integrate singleton types with dependent types [Abel et al.,
2011]. Our treatment considerably simplifies Stone and Harper [2006], which depends
on a non-standard notion of Kripke logical relations, and extends it to universes and
large eliminations.

67

6 Summary, Related Work, and Perspectives

The completeness of NbE, meaning that two terms result in the same normal form if
they are identified in the equational theory of the calculus, has been shown by modeling
types as partial equivalence relations (PERs). We have analyzed PERs as subsets
or predicates over groupoidal applicative structures, leading to simplified form of the
fundamental lemma for logical relations. To standard (untyped) models of type theory
we have added the necessary type assignment in form of typed candidate spaces, that
as an instance allowed us to specify the desired properties of reflection and reification
to obtain completeness of NbE. These candidate spaces have proven essential for the
treatment of NbE in impredicative type systems where properties of semantic types
have to be specified a priori since they cannot be proven by induction a posteriori.

The soundness of NbE for the impredicative systems F and Fω has been obtained
from a general semantics in typed Kripke structures. These general formulations allow
for an algebraic formulation of the fundamental lemma that can be instantiated for both
soundness and completeness of NbE. In the specification of typed Kripke structures we
have made essential use of the stratification of Fω expressions into kinds, types, and
terms, which allowed us to define kind structures, type structures, and term structures,
in this order [Abel, 2009b]. A suitable adaption of typed Kripke structures for dependent
types is missing yet, thus, we have shown soundness of NbE for predicative dependent
types by a Kripke logical relation defined by induction on semantic types. Such an
induction is not available for impredicative dependent types, and the soundness of NbE
for the Calculus of Constructions with large eliminations remains open [Abel, 2010a].

A major novel meta-theoretic result of our semantic studies of NbE for dependent
types is the decidability of type checking in the presence of predicative universes and
computation and η-equivalence on the type level [Abel et al., 2007b]. The key to this
result is the injectivity of type constructors, which is hard to establish in the presence
of a typed equality judgement, but follows from the inductive structure of our semantic
type equality and the presence of sound quotation into syntax.

A consequence of our extrinsic, type-assignment approach is that we can model NbE
for impredicative types in a meta-theory with only impredicative propositions. In con-
trast to an intrinsic approach [Altenkirch et al., 1996], impredicative types of System F
are not modeled by impredicative sets, but by impredicative predicates on values. In
terms of the Calculus of Inductive Constructions, we model impredicative Set by im-
predicative Prop. This seems to be in accord with the recent removal of impredicative
Set from Coq in favor of a predicative universe of sets, to gain set-theoretical models
[Lee and Werner, 2011].

6.1 Intrinsic Typing and NbE

Why have we dismissed intrinsic typing for our investigation of NbE for dependent
types? The reasons for this choice where three-fold:

First, computation, and thus, evaluation, is mostly oblivious of types. We are ex-
ecuting algorithms on concrete objects such as integers on machines, and the result
of the execution is dependent just on the code of the algorithm and the values of the
involved objects. Types exist in compiled code only in the form of tags that indicate
the basic type of an object, like whether it is an integer value, a function pointer, or, in

68

6.1 Intrinsic Typing and NbE

the case of a language with dynamic dispatch, which class the present object belongs
to. Higher types are absent1 from run-time code and are only used by the compiler to
chose the layout for data structures, stack frames, and the like, and to catch errors at
compile-time. For these reasons, it makes sense to consider normalization by untyped
evaluation, and separate the type-sensitive aspects such as η-expansion from the basic
computation mechanism.

The second reason for choosing type assignment is that in presence of dependent
types, intrinsic typing forces us to work with Kripke function spaces already for the
formulation of evaluation. Functions need to be Kripke functions, taking a context
extension (or morphism) as additional argument [Coquand and Gallier, 1990, Coquand,
1994, Danielsson, 2007]. This is in contrast to our type-assignment development, where
the basic evaluation mechanism is unchanged, and Kripke structures only appear in the
justification of NbE.

Finally, from a practical perspective, intrinsically dependently-typed NbE is yet
unattainable. Our current, mature programming languages that serve as host languages
to implement terms, types, and normalization, are simply-typed or polymorphically
typed and cannot express intrinsic dependent typing.2 Prototypical dependently-typed
languages such as Agda [Norell, 2007] and Coq [INRIA, 2012] can express intrinsic
dependent typing, but it is not clear yet whether full intrinsic typing is feasible at
all, although its a long-standing and actively pursued research area [Danielsson, 2007,
Chapman, 2009, McBride, 2010, Benton et al., 2012]. Boot-strapping implementations
such as Agda in Agda or Coq in Coq, which are common for non-dependently program-
ming languages, remain a grand challenge, even if self-representation has been achieved
for fragments of dependently-typed languages, such as Barras’ work on Coq [Barras
and Werner, 1997, Barras, 1999] or Marten’s work on LF [Martens and Crary, 2012].

By now, intrinsically-typed NbE for dependent types has withstood the challenge
even for a rigorous pen-and-paper formulation. The notable exception is Danielsson’s
work [2007], however, it does not cover large eliminations.

For impredicativity, some progress has been made by Altenkirch, Hofmann, and Strei-
cher. They present NbE for a variable-free, combinatory version of System F [1996], and
there is an unpublished paper extending their category-theoretical approach to System F
with variables [1997]. They express their developments in models of impredicative
extensional type theory, which liberates them of some technical battles they would
have to fight in just intensional type theory, but also removes them from an actual
formalization in a system like Coq with impredicative Set. As a consequence, while the
goal is to extract NbE for System F from their development, currently they can only
present a hand-crafted SML program with the prospect of verifying it through a logical
relation with the category-theoretical development. Still, this work is impressive, and
it is a pity it has not been completed.3

1In distributed code, complex types structures might be present for marshalling and unmarshalling
data of arbitrary structure. However, it is not the types themselves, but their run-time representa-
tion, which are computed with in this case.

2Simply intrinsic typing can be expressed in later versions of Haskell by GADTs (generalized algebraic
data types), which are type-indexed data types, but also in Scala and other strongly-typed languages.

3Vestergaard’s try on NbE for System F suffered the same fate [2001b]. He gives a normalization
algorithm for System F in terms of a two-level polymorphic lambda-calculus, but its normalization

69

6 Summary, Related Work, and Perspectives

The remaining literature on intrinsically-type NbE seems to be confined to simple
types. Besides the formalized work of Coquand [1994] we would like to emphasize work
on extensional normalization for disjoint sum types (coproducts).

6.2 On NbE for the Extensional Treatment of Finite Choice

Altenkirch, Dybjer, Hofmann, and Scott [2001] present a construction of NbE for co-
products in category theory, Danvy [1996] and Balat, DiCosmo, and Fiore [2004] out-
line an algorithm using delimited continuations, and Barral [2008] uses exceptions in
his NbE algorithm. In the presence of full extensionality for sum types, the description
of normal forms is already involved [Altenkirch et al., 2001], not mentioning getting
intuitions about algorithms using continuations. Barral’s algorithm probably the most
intuitive one, yet it has not been verified.

Full extensionality for sums models the syntactic sum type as the disjoint tagged
union, [[S + T]] = [[S]] + [[T]], there is no separate of concept of neutrals at disjoint sum
type. Reflecting a variable x of sum type S+T into the semantics has to inject it either
into [[S]] or [[T]], thus we have to make a choice which of the alternatives is valid for
x. Since the value of x is unknown, we have to place a case distinction over x into the
normal form before its first use, and normalize the remainder of the term twice, once
with x being the left injection of a new variable, once more the right injection. Inserting
these case distinctions eagerly is not feasible in the presence of unknown functions y to
a sum type, because we cannot case on y a for every possible argument a of y. Barral’s
algorithm installs an exception handler each time a new variable y is introduced whose
type ends in a sum type. If the value of the fully applied y~a is demanded, an exception is
thrown carrying the arguments ~a. Upon its catch, a case distinction on y~a is inserted,
and NbE is restarted. Termination of this process is somehow intuitively clear, but
probably hard to establish rigorously. The full theoretical and practical exploration of
NbE for extensional disjoint sums remains a research challenge.

For the very restricted case of simply typed lambda-calculus with only booleans as
base type, a sound and complete NbE algorithm has been given by Altenkirch and
Uustalu [2004]. The situation is simpler here, because the graph of any function is
finite. Thus, it is possible to describe functions by first-order data structures, and
the authors use binary trees called decision trees. Extensional equality of functions is
decidable, thus, completeness of NbE is easy to prove. The authors express doubts that
their treatment scales to extensions by unknown or infinite base types.

Whether we want full extensionality for disjoint sums and finite types in practice is
debatable anyway. Note that extensionality for booleans allows us to show by normal-
ization that each unary boolean function f is identical to its double self composition,
f ◦ f ◦ f . However, this identity is not entirely trivial, it requires us to reflect on the
possible values of f . There are only four possible boolean functions: the constant func-
tions, the identity, and negation. Negation has order 2, and the other three functions are
idempotent, thus f3 = f holds. Getting this result by normalization is a bit “spooky”,
and it is unclear if it would not irritate the users of an interactive proof assistant such
as Agda or Coq more than it would benefit them. Furthermore, it does not scale to

proof remains unfinished.

70

6.3 Applications of NbE

large finite types such as the machine integers with 232 cases for each variable—note
that extensional treatment of integers could verify any arithmetic equation over inte-
ger variables or integer function variables by normalization, quite unimaginable with
classical computing equipment.

6.3 Applications of NbE

NbE is applied successfully in practice, in fact, the “invention” of NbE was triggered
by an implementation task, and it has proven to be a useful framework for efficient
normalization.

Berger and Schwichtenberg [1991] implemented the first NbE algorithm in Scheme,
in order to normalize terms of the Minlog system [Berger et al., 2011] without having
to implement capture-avoiding substitution. Later extended to term rewriting [Berger
et al., 2003], NbE is still the algorithm underlying computation in Minlog.

Danvy [1996, 1999] has coined the term type-directed partial evaluation for NbE in
the context of partial evaluation for simply-typed functional programming languages
such as ML.

The Coq system [INRIA, 2012] requires an efficient normalization algorithm for type
checking programs and proofs, especially for proofs by reflection. Gregoire and Leroy
[2002] describe normalization for terms of the Calculus of Inductive Constructions,
Coq’s core language, by first compiling the term to byte code of an abstract machine,
then running the compiled code, and finally reading back a term in normal form. The
abstract machine has been extended by accumulators, which correspond to our neu-
tral values. Their “compiled reduction” approach is an instance of untyped NbE, as
remarked in Abel [2009a]. Boespflug, Dénès, and Grégoire [2011] present a refinement
that does not need compilation to a modified abstract machine but can be directly
translated to OCaml. They achieve a tag-less representation of function values by
considering accumulators as functions of infinite arity with a null code pointer.

Boespflug [2010] has implemented a NbE-inspired proof checker for Dedukti, a de-
pendently typed logical framework with rewriting at the level of terms and types (λΠ
modulo [Cousineau and Dowek, 2007]). He compiles Dedukti signatures into a HOAS
representation of dependent function types to speed up type checking.

Aehlig et al. [2012] implement untyped NbE for evaluation of functional programs
specified in Isabelle/HOL. Their version of NbE is proven sound, but not complete.
Normalization includes proper term rewriting rules such as the associativity of append,
and even rewriting rules which are not left-linear.

The NbE framework could be useful to compile Agda terms such that they can
compute with open expressions. This would probably help overcome the current per-
formance problems in the Agda type checker.

6.4 Future Perspectives on NbE

Untyped NbE has secured its spot in proof assistants based on higher-order logic (e. g.,
Isabelle [Aehlig et al., 2012]) and type theory (e. g., Coq [Boespflug et al., 2011]). Typed
NbE is present in Minlog (Berger et al. [2003]), but dispensable for all systems that can

71

6 Summary, Related Work, and Perspectives

postpone η-expansion until β-normalization has been completed. As far as we know,
only singleton types and the difficult extensional sum types violate η-postponement and
are really dependent on typed NbE. Our prototypical language MiniAgda [Abel, 2010b]
has singleton types, but not the more mature systems Agda and Coq.

Correctness of NbE for the Calculus of Inductive Constructions (CIC) remains open.
Possibly existing realizability models [Werner, 1994, Sacchini, 2011] could be adapted
to the needs of NbE. The result of such an enterprise would be nothing short of the
decidability of type checking for the CIC, an important backing for the increasingly
popular Coq proof assistant.

72

Index of Notations

() Empty typing context, substitution, or environment 6, 7

(S.)∀XT Semantic inverse-instantiation operator . 60

(ρ, a/x), (ρ, a) Update of environment ρ at x/0th variable with value a 18

(σ, s/x), (σ, s) Substitution extension . 26

(λt)ρ Function closure . 21

(x :S)→ T Dependent function type from S to T . 41

[A] Extension of type value A . 46

[D→ D] Continuous-function space. .18

[s] Singleton substititution s for 0 . 26

[[T]]ρ, [[T]](σ, ρ) Interpretation of expression T as semantic type 46, 61

∀∀X.T Semantic type quantification . 60

Γ Typing context . 6

Γ′ ≤ Γ Context Γ′ extends context Γ . 15, 59

Γ(x), Γ(i) Context lookup . 24, 42

Γ � T (Semantically) valid type expression T . 46

Γ � σ : ∆ Semantic substitution typing . 26

Γ � σ = σ′ : ∆ Semantic substitution equality . 27, 46

Γ � t : T Semantic typing . 16, 24, 46, 51

Γ � t = t′ : T Semantic term equality . 27, 46, 49

Γ ` T = T ′ Type T is equal to T ′ in context Γ . 42

Γ ` T ≤ T ′ Type T is a subtype of T ′ in context Γ . 42

Γ ` T R© A Kripke logical type expression-value relation . 51

Γ ` σ : ∆ Well-typed substitution σ .15, 59

Γ ` σ : ∆ R© ρ Kripke logical substitution-environment relation 16, 51

Γ ` t : T R© a ∈ A Kripke logical expression-value relation . 51

Γ ` t : T R© a Kripke logical relation between well-typed term t and value a . . . 15

Γ ` t : T Well-typed term, typing relation . 6, 42, 59

Γ ` t = t′ : T Typed definitional equality of t and t′ . 8, 28, 59

Γ ` u⇒ T Typed neutral term u . 11

Γ ` v ⇔ T Typed normal term v . 11

73

6 Summary, Related Work, and Perspectives

ΛXt Term denoting type abstraction . 57

Π Dependent function space (semantic type).45, 46, 48

∗ Concatenation (groupoid operation) . 27, 48

./ Merge operation in applicative groupoids . 49

· Application of values (partial) 20, 32, 44, 48, 58, 63

−1 Inverse (groupoid operation) . 27, 48

β Computation law . 9, 28

⊥ Least semantic type in candidate space.25, 32, 44

> Greatest semantic type in candidate space 25, 32, 44

η Extensionality law . 9, 30

∀XT Polymorphic type . 57

λxt, λx :S. t, λt Term denoting function abstraction . 6, 18

LtMρ Interpretation of expression t as value 46, 62, 63

D̂σ Set of D type environments . 61

↑T Reflection of neutral at type T . 10, 31, 44

↑Γ Canonical environment for context Γ . 31, 44, 64

↓T Reification of value at type T . 10, 31, 44

[[T]] Interpretation of type T . 7, 24

[[Γ]] Interpretation of context Γ . 7, 24, 46

[[Γ ` t : T]] Interpretation of typed term t . 7

[[σ]] Interpretation of substitution σ as environment 27

[[σ]](ρ)↘ ρ′ Evaluation of substitution σ to environment ρ′ 26

[[t]] Interpretation of term t in meta-language8, 19, 20, 35

[[t]](ρ)↘ a Evaluation relation, inductively defined. .21

� Shifting substitution . 26

Rne
n e↘ u Read-back relation for neutrals, inductively defined 21

Rnf
n d↘ v Read-back relation, inductively defined . 21

nfn(t)↘ v Normalization relation . 22

rec(dz, ds, dn)↘ d Evaluation of recursion, inductively defined. .23

T , A Greatest semantic type candidate for type T or A . . .33, 37, 47, 50,
60, 65

T , A Least semantic type candidate for type T or A33, 37, 47, 50, 60, 65

 Type expression T A or value A A realizes A 33, 60

ρ Environment . 7, 16

ρ = ρ′ ∈ [[∆]] PER of environments . 30

74

6.4 Future Perspectives on NbE

σ Substitution. .15

σ(a) Transport a via weakening σ into new world .35

σ : Γ′ ≤ Γ Weakening substitution σ with Γ′ ` σ : Γ . 34

σ τ Substitution composition . 26

→ Function type constructor . 6, 22, 30, 36, 60

� Γ (Semantically) valid typing context Γ. .46

` Γ Context Γ is well-formed . 42, 59

ξ Weak function extensionality law . 30

a = a′ ∈ A Partial equivalence relation (PER) membership.30

a ∼ a′ ∈ A PER structure on MAGs . 50

c : T Constant c can be assigned type T . 42

f · a↘ b Application relation, inductively defined . 21

r S Term denoting type application . 57

r s Term denoting function application . 6, 18

t[σ] Application of substitution σ to term t . 16

t[s/x] Capture-avoiding substitution of s for x in t . 8

t σ Explicit substitution . 26

a Value . 7

A Semantic type: value set/PER . 22, 27, 45, 48

AΓ Kripke semantic type A at world Γ . 35, 60

Abs Embedding of functions into value set D . 18

Agd Set of applicative groupoid . 48

App Application of neutral value to value . 18

App∀XTΓ Type application in type structure . 58, 61

appS→TΓ Application in type structure . 35, 58, 61

Base Set of base type values . 43

c Term constant (function or constructor symbol)6, 48

CstT Set of constants of type T . 6, 41

cstΓ Interpretation of constants in type structure . 35

Cxt Set of typing contexts . 6, 41, 57

D Set or domain of values . 18, 22, 32, 43, 62

d (Normal) value . 18

D∆
Γ Set of D-environments . 35, 62

Dne Set of neutral values . 18, 32, 62

Dnf Set of normal values . 32, 62

75

6 Summary, Related Work, and Perspectives

DT
Γ (Kripke) type(d applicative) structure35, 58, 62

D̂T Kripke predicates on DT (pre-candidates for type T).36, 60

e Neutral value in Dne .18

El Extension function, interpreting type codes as semantic types. . .45

Env Set of environments . 18, 20, 43, 62

ETΓ Type substructure. .35

Exp Set of untyped terms (expressions) . 18, 22, 41

f (Function) value. .7

F Family of semantic types . 45, 46, 48

Fresh |Γ| Fresh type variable generator . 63

fresh |Γ| Fresh term variable generator . 63

Fun Dependent function type constructor . 41

G Applicative groupoid . 48

id Identity substitution . 26

D A System F structure of realized types . 61

Mag Set of applicative subgroupoids with merge . 50

N Natural number type . 6

Nat Semantic type of natural numbers 22, 25, 30, 45

Ne Set of neutral terms. .11, 14, 18, 22, 41, 62

Nf Set of normal terms . 11, 14, 18, 22, 41, 62

nf(t) Normal form of term t . 8, 20, 31, 40, 64

N1 Unit set . 7

P(D) Set of value sets . 45

Per Set of partial equivalence relations on values.45

Rec Type of primitive recursor . 5, 43

rec Term denoting primitive recursion. .6, 32, 34

Rel Set of relations on values . 45

Rne Read-back of neutral value as neutral term 19, 32, 63

Rnf Read-back of (normal) value as normal term.19, 32, 44, 63

Setk kth semantic type universe . 45, 46

Set Universe of small sets . 7

Setk kth universe of types . 41

Subst Set of substitutions . 41, 57

suc Term denoting the successor function . 6, 22, 34

T Type expression . 6, 57

76

6.4 Future Perspectives on NbE

t Term. 6

TmT
Γ Set of terms of type T in context Γ . 6, 35

Ty Set of type expressions . 6, 57, 58

Type Universe of all types. .46

TyVar Set of type variables. .57

u Neutral term . 11, 18

û Liftable neutral term . 14

Up Embedding of neutral values into value set D 18

U A universe of types .47

v Normal term . 11, 18

v̂ Liftable normal term . 14

vi De Bruijn index i . 18

X Type variable . 57

x Placeholder for a term variable . 6

x̂SΓ Liftable variable .15

xk De Bruijn level k . 18

zero Term denoting number 0 . 6, 22, 34

77

Bibliography

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of
Functional Programming, 1(4):375–416, 1991.

A. Abel. Weak βη-normalization and normalization by evaluation for System F. In
I. Cervesato, H. Veith, and A. Voronkov, editors, 15th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2008, 22-27
November 2008, Doha, Qatar, Proceedings, volume 5330 of Lecture Notes in Artificial
Intelligence, pages 497–511. Springer-Verlag, 2008.

A. Abel. Typed applicative structures and normalization by evaluation for System Fω.
In E. Grädel and R. Kahle, editors, Computer Science Logic, 23rd international
Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal,
September 7-11, 2009. Proceedings, volume 5771 of Lecture Notes in Computer Sci-
ence, pages 40–54. Springer-Verlag, 2009a. ISBN 978-3-642-04026-9.

A. Abel. Typed applicative structures and normalization by evaluation for System Fω

(full version). http://www.tcs.ifi.lmu.de/˜abel/fomegaNbe.pdf, 2009b.

A. Abel. Towards Normalization by Evaluation for the βη-Calculus of Constructions. In
M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming,
10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-21, 2010. Pro-
ceedings, volume 6009 of Lecture Notes in Computer Science, pages 224–239. Springer-
Verlag, 2010a. ISBN 978-3-642-12250-7.

A. Abel. MiniAgda: Integrating sized and dependent types. In A. Bove, E. Komen-
dantskaya, and M. Niqui, editors, Workshop on Partiality And Recursion in Inter-
active Theorem Provers (PAR 2010), Satellite Workshop of ITP’10 at FLoC 2010,
volume 43 of Electronic Proceedings in Theoretical Computer Science, pages 14–28,
2010b.

A. Abel and T. Altenkirch. A partial type checking algorithm for Type:Type. Electronic
Notes in Theoretical Computer Science, 229(5):3–17, 2011. Proceedings of the Second
Workshop on Mathematically Structured Functional Programming (MSFP 2008).

A. Abel and T. Coquand. Untyped algorithmic equality for Martin-Löf’s logical frame-
work with surjective pairs. Fundamenta Informaticae, 77(4):345–395, 2007. TLCA’05
special issue.

A. Abel and B. Pientka. Explicit substitutions for contextual type theory. In K. Crary
and M. Miculan, editors, 5th International Workshop on Logical Frameworks and
Meta-languages: Theory and Practice (LFMTP 2010), Edinburgh, Scotland, UK,

79

Bibliography

July 14, 2010, volume 34 of Electronic Proceedings in Theoretical Computer Science,
pages 5–20, 2010.

A. Abel, K. Aehlig, and P. Dybjer. Normalization by evaluation for Martin-Löf type
theory with one universe. In M. Fiore, editor, Proceedings of the 23rd Conference
on the Mathematical Foundations of Programming Semantics (MFPS XXIII), New
Orleans, LA, USA, 11-14 April 2007, volume 173 of Electronic Notes in Theoretical
Computer Science, pages 17–39. Elsevier, 2007a.

A. Abel, T. Coquand, and P. Dybjer. Normalization by evaluation for Martin-Löf
Type Theory with typed equality judgements. In 22nd IEEE Symposium on Logic
in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings,
pages 3–12. IEEE Computer Society Press, 2007b.

A. Abel, T. Coquand, and P. Dybjer. Verifying a semantic βη-conversion test for
Martin-Löf type theory. In P. Audebaud and C. Paulin-Mohring, editors, Mathemat-
ics of Program Construction, 9th International Conference, MPC 2008, Marseille,
France, July 15-18, 2008. Proceedings, volume 5133 of Lecture Notes in Computer
Science, pages 29–56. Springer-Verlag, 2008. ISBN 978-3-540-70593-2.

A. Abel, T. Coquand, and M. Pagano. A modular type-checking algorithm for type
theory with singleton types and proof irrelevance. Logical Methods in Computer
Science, 7(2:4):1–57, May 2011.

K. Aehlig and F. Joachimski. Operational aspects of untyped normalization by evalu-
ation. Mathematical Structures in Computer Science, 14(4):587–611, Aug. 2004.

K. Aehlig, F. Haftmann, and T. Nipkow. A compiled implementation of normalisation
by evaluation. Journal of Functional Programming, 22(1):9–30, 2012.

M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional correspondence
between evaluators and abstract machines. In Proceedings of the 5th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,
27-29 August 2003, Uppsala, Sweden, pages 8–19. ACM Press, 2003. ISBN 1-58113-
705-2.

S. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis,
Cornell University, 1987.

T. Altenkirch. Proving strong normalization of CC by modifying realizability semantics.
In H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs, Interna-
tional Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993, Selected
Papers, volume 806 of Lecture Notes in Computer Science, pages 3–18. Springer-
Verlag, 1994. ISBN 3-540-58085-9.

T. Altenkirch and J. Chapman. Big-step normalisation. Journal of Functional Pro-
gramming, 19(3-4):311–333, 2009.

T. Altenkirch and T. Uustalu. Normalization by evaluation for λ→2. In Y. Kameyama
and P. J. Stuckey, editors, Functional and Logic Programming, 7th International

80

Bibliography

Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings, volume 2998
of Lecture Notes in Computer Science, pages 260–275. Springer-Verlag, 2004. ISBN
3-540-21402-X.

T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction of a reduction
free normalization proof. In D. H. Pitt, D. E. Rydeheard, and P. Johnstone, editors,
Category Theory and Computer Science, 6th International Conference, CTCS ’95,
Cambridge, UK, August 7-11, 1995, Proceedings, volume 953 of Lecture Notes in
Computer Science, pages 182–199. Springer-Verlag, 1995. ISBN 3-540-60164-3.

T. Altenkirch, M. Hofmann, and T. Streicher. Reduction-free normalisation for a poly-
morphic system. In 11th Annual IEEE Symposium on Logic in Computer Science
(LICS’96), 27-30 July 1996, New Brunswick, New Jersey, Proceedings, pages 98–106.
IEEE Computer Society Press, 1996.

T. Altenkirch, M. Hofmann, and T. Streicher. Reduction-free normalisation for Sys-
tem F. Available from http://www.cs.nott.ac.uk/~txa/publ/f97.pdf, 1997.

T. Altenkirch, P. Dybjer, M. Hofmann, and P. J. Scott. Normalization by evaluation for
typed lambda calculus with coproducts. In 16th IEEE Symposium on Logic in Com-
puter Science (LICS 2001), 16-19 June 2001, Boston University, USA, Proceedings,
pages 303–310. IEEE Computer Society Press, 2001.

L. Augustsson. Cayenne - a language with dependent types. In Proceedings of the Third
ACM SIGPLAN International Conference on Functional Programming (ICFP ’98),
Baltimore, Maryland, USA, September 27-29, 1998, volume 34 of SIGPLAN Notices,
pages 239–250. ACM Press, 1999. ISBN 0-58113-024-4.

V. Balat, R. D. Cosmo, and M. P. Fiore. Extensional normalisation and type-directed
partial evaluation for typed lambda calculus with sums. In N. D. Jones and X. Leroy,
editors, Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, pages
64–76. ACM Press, 2004. ISBN 1-58113-729-X.

H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland,
Amsterdam, 1984.

H. Barendregt. Introduction to generalized type systems. Journal of Functional Pro-
gramming, 1(2):125–154, 1991.

F. Barral. Decidability for non-standard conversions in lambda-calculus. PhD thesis,
Ludwig-Maximilians-University Munich, 2008.

B. Barras. Auto-validation d’un système de preuves avec familles inductives. PhD
thesis, Université Paris 7, 1999.

B. Barras and B. Werner. Coq in Coq. Available on the WWW, 1997.

G. Barthe and T. Coquand. Remarks on the equational theory of non-normalizing pure
type systems. Journal of Functional Programming, 16(2):137–155, 2006.

81

Bibliography

N. Benton, C.-K. Hur, A. Kennedy, and C. McBride. Strongly typed term representa-
tions in Coq. Journal of Automated Reasoning, 49(2):141–159, 2012.

U. Berger and H. Schwichtenberg. An inverse to the evaluation functional for typed λ-
calculus. In Sixth Annual Symposium on Logic in Computer Science (LICS ’91), July,
1991, Amsterdam, The Netherlands, Proceedings, pages 203–211. IEEE Computer
Society Press, 1991.

U. Berger, M. Eberl, and H. Schwichtenberg. Term rewriting for normalization by
evaluation. Information and Computation, 183(1):19–42, 2003.

U. Berger, K. Miyamoto, H. Schwichtenberg, and M. Seisenberger. Minlog - a tool for
program extraction supporting algebras and coalgebras. In A. Corradini, B. Klin, and
C. Ĉırstea, editors, Algebra and Coalgebra in Computer Science - 4th International
Conference, CALCO 2011, Winchester, UK, August 30 - September 2, 2011. Proceed-
ings, volume 6859 of Lecture Notes in Computer Science, pages 393–399. Springer-
Verlag, 2011. ISBN 978-3-642-22943-5.

E. Bishop. Foundations of Constructive Analysis. Academic Press, New York, 1967.
ISBN 4-87187-714-0.

M. Boespflug. Conversion by evaluation. In M. Carro and R. Peña, editors, Practi-
cal Aspects of Declarative Languages, 12th International Symposium, PADL 2010,
Madrid, Spain, January 18-19, 2010. Proceedings, volume 5937 of Lecture Notes in
Computer Science, pages 58–72. Springer-Verlag, 2010. ISBN 978-3-642-11502-8.

M. Boespflug, M. Dénès, and B. Grégoire. Full reduction at full throttle. In J.-P.
Jouannaud and Z. Shao, editors, Certified Programs and Proofs - First International
Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume
7086 of Lecture Notes in Computer Science, pages 362–377. Springer-Verlag, 2011.
ISBN 978-3-642-25378-2.

A. Bove, A. Krauss, and M. Sozeau. Partiality and recursion in interactive theorem
provers: An overview. Mathematical Structures in Computer Science, 2013. To
appear.

R. M. Burstall and B. W. Lampson. A kernel language for abstract data types and
modules. In G. Kahn, D. B. MacQueen, and G. D. Plotkin, editors, Semantics of
Data Types, volume 173 of Lecture Notes in Computer Science, pages 1–50. Springer-
Verlag, 1984. ISBN 3-540-13346-1.

L. Cardelli. Typechecking dependent types and subtypes. In M. Boscarol, L. C. Aiello,
and G. Levi, editors, Foundations of Logic and Functional Programming, volume 306
of Lecture Notes in Computer Science, pages 45–57. Springer-Verlag, 1986. ISBN
3-540-19129-1.

J. Chapman. Type theory should eat itself. Electronic Notes in Theoretical Computer
Science, 228:21–36, 2009. Proceedings of the International Workshop on Logical
Frameworks and Metalanguages: Theory and Practice (LFMTP 2008).

82

Bibliography

R. L. Constable, S. F. Allen, M. Bromley, R. Cleaveland, J. F. Cremer, R. W. Harper,
D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F.
Smith. Implementing mathematics with the Nuprl proof development system. Prentice
Hall, 1986. ISBN 978-0-13-451832-9.

C. Coquand. From semantics to rules: A machine assisted analysis. In E. Börger,
Y. Gurevich, and K. Meinke, editors, Computer Science Logic, 7th Workshop, CSL
’93, Swansea, United Kingdom, September 13-17, 1993, Selected Papers, volume 832
of Lecture Notes in Computer Science, pages 91–105. Springer-Verlag, 1994. ISBN
3-540-58277-0.

T. Coquand. An analysis of Girard’s Paradox. In Proceedings, Symposium on Logic in
Computer Science, 16-18 June 1986, Cambridge, Massachusetts, USA, pages 227–
236. IEEE Computer Society, 1986.

T. Coquand. An algorithm for type-checking dependent types. In Mathematics of Pro-
gram Construction. Selected Papers from the Third International Conference on the
Mathematics of Program Construction (July 17–21, 1995, Kloster Irsee, Germany),
volume 26 of Science of Computer Programming, pages 167–177. Elsevier, May 1996.

T. Coquand and P. Dybjer. Intuitionistic model constructions and normalization proofs.
Mathematical Structures in Computer Science, 7(1):75–94, 1997.

T. Coquand and J. Gallier. A proof of strong normalization for the theory of con-
structions using a kripke-like interpretation. In G. Huet and G. Plotkin, editors,
Proceedings of the First Workshop on Logical Frameworks, May 1990.

T. Coquand and G. P. Huet. The calculus of constructions. Information and Compu-
tation, 76(2/3):95–120, 1988.

T. Coquand and C. Paulin. Inductively defined types—preliminary version. In
P. Martin-Löf and G. Mints, editors, Proceedings of COLOG ’88, volume 417 of
Lecture Notes in Computer Science, pages 50–66. Springer-Verlag, 1988.

T. Coquand and M. Takeyama. An implementation of Type : Type. In P. Callaghan,
Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs and Programs, In-
ternational Workshop, TYPES 2000, Durham, UK, December 8-12, 2000, Selected
Papers, volume 2277 of Lecture Notes in Computer Science, pages 53–62. Springer-
Verlag, 2000. ISBN 3-540-43287-6.

D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-pi-calculus
modulo. In S. R. D. Rocca, editor, Typed Lambda Calculi and Applications, 8th
International Conference, TLCA 2007, Paris, France, June 26-28, 2007, Proceedings,
volume 4583 of Lecture Notes in Computer Science, pages 102–117. Springer-Verlag,
2007. ISBN 978-3-540-73227-3.

K. Crary and S. Weirich. Flexible type analysis. In Proceedings of the Fourth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’99), Paris,
France, volume 34 of SIGPLAN Notices, pages 233–248. ACM Press, 1999. ISBN
1-58113-111-9.

83

Bibliography

N. A. Danielsson. A formalisation of a dependently typed language as an inductive-
recursive family. In T. Altenkirch and C. McBride, editors, Types for Proofs and
Programs, International Workshop, TYPES 2006, Nottingham, UK, April 18-21,
2006, Revised Selected Papers, volume 4502 of Lecture Notes in Computer Science,
pages 93–109. Springer-Verlag, 2007. ISBN 978-3-540-74463-4.

O. Danvy. Type-directed partial evaluation. In H.-J. Boehm and G. L. S. Jr., editors,
Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Papers Presented at the Symposium, St.
Petersburg Beach, Florida, USA, January 21-24, 1996, pages 242–257. ACM Press,
1996. ISBN 0-89791-769-3.

O. Danvy. Type-directed partial evaluation. In J. Hatcliff, T. Æ. Mogensen, and
P. Thiemann, editors, Partial Evaluation – Practice and Theory, DIKU 1998 Inter-
national Summer School, Copenhagen, Denmark, June 29 - July 10, 1998, volume
1706 of Lecture Notes in Computer Science, pages 367–411. Springer-Verlag, 1999.
ISBN 3-540-66710-5.

O. Danvy, M. Rhiger, and K. H. Rose. Normalization by evaluation with typed abstract
syntax. Journal of Functional Programming, 11(6):673–680, 2001.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes
Mathematicae, 34:381–392, 1972.

P. Dybjer. Internal type theory. In S. Berardi and M. Coppo, editors, Types for Proofs
and Programs, International Workshop TYPES’95, Torino, Italy, June 5-8, 1995,
Selected Papers, volume 1158 of Lecture Notes in Computer Science, pages 120–134.
Springer-Verlag, 1996. ISBN 3-540-61780-9.

P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in type
theory. The Journal of Symbolic Logic, 65(2):525–549, 2000.

P. Dybjer and A. Filinski. Normalization and partial evaluation. In G. Barthe, P. Dy-
bjer, L. Pinto, and J. Saraiva, editors, Applied Semantics, International Summer
School, APPSEM 2000, Caminha, Portugal, September 9-15, 2000, Advanced Lec-
tures, volume 2395 of Lecture Notes in Computer Science, pages 137–192. Springer-
Verlag, 2000. ISBN 3-540-44044-5.

A. Filinski. A semantic account of type-directed partial evaluation. In G. Nadathur, ed-
itor, Principles and Practice of Declarative Programming, International Conference,
PPDP’99, Paris, France, September 29 - October 1, 1999, Proceedings, volume 1702
of Lecture Notes in Computer Science, pages 378–395. Springer-Verlag, 1999. ISBN
3-540-66540-4.

A. Filinski. Normalization by evaluation for the computational lambda-calculus. In
S. Abramsky, editor, Typed Lambda Calculi and Applications, 5th International Con-
ference, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceedings, volume 2044 of
Lecture Notes in Computer Science, pages 151–165. Springer-Verlag, 2001. ISBN
3-540-41960-8.

84

Bibliography

A. Filinski and H. K. Rohde. A denotational account of untyped normalization by eval-
uation. In I. Walukiewicz, editor, Foundations of Software Science and Computation
Structures, 7th International Conference, FOSSACS 2004, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona,
Spain, March 29 - April 2, 2004, Proceedings, volume 2987 of Lecture Notes in Com-
puter Science, pages 167–181. Springer-Verlag, 2004. ISBN 3-540-21298-1.

H. Friedman. Equality between functionals. In Symposium on Logic Held at Boston,
1972-73, volume 453, pages 22–37. Springer-Verlag, 1975.

F. Garillot and B. Werner. Simple types in type theory: Deep and shallow encodings.
In K. Schneider and J. Brandt, editors, Theorem Proving in Higher Order Logics,
20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September
10-13, 2007, Proceedings, volume 4732 of Lecture Notes in Computer Science, pages
368–382. Springer-Verlag, 2007. ISBN 978-3-540-74590-7.

H. Geuvers. A short and flexible proof of strong normalization for the Calculus of
Constructions. In B. N. P. Dybjer and J. Smith, editors, Types for Proofs and
Programs, Int. Workshop TYPES ’94, volume 996 of Lecture Notes in Computer
Science, pages 14–38, B̊astad, Sweden, 1994. Springer-Verlag.

J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. Thèse de Doctorat d’État, Université de Paris VII,
1972.

J.-Y. Girard. Locus solum: From the rules of logic to the logic of rules. Mathematical
Structures in Computer Science, 11(3):301–506, 2001.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1989.

K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.
Dialectica, pages 280–287, 1958.

H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University
of Edinburgh, August 1994. Available as LFCS Report ECS-LFCS-94-304.

B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In Proceed-
ings of the Seventh ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002, volume 37
of SIGPLAN Notices, pages 235–246. ACM Press, Sept. 2002. ISBN 1-58113-487-8.

R. Harper and D. Licata. Mechanizing metatheory in a logical framework. Journal of
Functional Programming, 17(4–5):613–673, July 2007.

R. Harper and F. Pfenning. On equivalence and canonical forms in the LF type theory.
ACM Transactions on Computational Logic, 6(1):61–101, 2005. ISSN 1529-3785.

85

Bibliography

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
Association of Computing Machinery, 40(1):143–184, Jan. 1993.

M. Hofmann. Syntax and semantics of dependent types. In A. M. Pitts and P. Dybjer,
editors, Semantics and Logics of Computation, volume 14, pages 79–130. Cambridge
University Press, Cambridge, 1997.

M. Hofmann and T. Streicher. The groupoid model refutes uniqueness of identity
proofs. In Ninth Annual IEEE Symposium on Logic in Computer Science (LICS’94),
4-7 July 1994, Paris, France, Proceedings, pages 208–212. IEEE Computer Society
Press, 1994.

J. G. Hook and D. J. Howe. Impredicative strong existential equivalent to Type:Type.
Technical report, Cornell University, 1986.

A. J. C. Hurkens. A simplification of Girard’s paradox. In M. Dezani-Ciancaglini and
G. D. Plotkin, editors, Typed Lambda Calculi and Applications, Second International
Conference on Typed Lambda Calculi and Applications, TLCA ’95, Edinburgh, UK,
April 10-12, 1995, Proceedings, volume 902 of Lecture Notes in Computer Science,
pages 266–278. Springer-Verlag, 1995. ISBN 3-540-59048-X.

INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.4 edition, 2012.

G. Kahn. Natural semantics. In F.-J. Brandenburg, G. Vidal-Naquet, and M. Wirsing,
editors, STACS 87, 4th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Passau, Germany, February 19-21, 1987, Proceedings, volume 247 of Lecture
Notes in Computer Science, pages 22–39. Springer-Verlag, 1987. ISBN 3-540-17219-
X.

P. J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):
308–320, Jan. 1964. ISSN 0010-4620 (print), 1460-2067 (electronic).

G. Lee and B. Werner. Proof-irrelevant model of CC with predicative induction and
judgmental equality. Logical Methods in Computer Science, 7(4), 2011.

C. Martens and K. Crary. LF in LF: Mechanizing the metatheory of LF in Twelf. In
Logical Frameworks and Metalanguages: Theory and Practice, 2012.

P. Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and
J. C. Shepherdson, editors, Logic Colloquium ‘73, pages 73–118. North-Holland, 1975.

P. Martin-Löf. Substitution calculus. Unpublished notes from a lecture in Göteborg,
November 1992.

C. McBride. Outrageous but meaningful coincidences: Dependent type-safe syntax and
evaluation. In B. C. d. S. Oliveira and M. Zalewski, editors, Proceedings of the ACM
SIGPLAN Workshop on Generic Programming, WGP 2010, Baltimore, MD, USA,
September 27-29, 2010, pages 1–12. ACM Press, 2010. ISBN 978-1-4503-0251-7.

R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348–375, Aug. 1978.

86

Bibliography

J. Mitchell. Foundations of Programming Languages. MIT Press, 1996.

G. Nadathur. The suspension notation for lambda terms and its use in metalanguage
implementations. Electronic Notes in Theoretical Computer Science, 67:35–48, 2002.

B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin Löf ’s Type
Theory: An Introduction. Clarendon Press, Oxford, 1990.

U. Norell. Towards a Practical Programming Language Based on Dependent Type The-
ory. PhD thesis, Department of Computer Science and Engineering, Chalmers Uni-
versity of Technology, Göteborg, Sweden, Sept. 2007.

C. Paulin-Mohring. Inductive definitions in the system Coq - rules and properties.
In M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and Applications,
International Conference on Typed Lambda Calculi and Applications, TLCA ’93,
Utrecht, The Netherlands, March 16-18, 1993, Proceedings, volume 664 of Lecture
Notes in Computer Science, pages 328–345. Springer-Verlag, 1993. ISBN 3-540-56517-
5.

G. Peano. Arithmetices principia: nova methodo exposito. Fratres Bocca, 1889.

A. M. Pitts. Nominal System T. In M. V. Hermenegildo and J. Palsberg, editors, Pro-
ceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages 159–170.
ACM Press, 2010. ISBN 978-1-60558-479-9.

R. Pollack. Closure under alpha-conversion. In H. Barendregt and T. Nipkow, edi-
tors, Types for Proofs and Programs, International Workshop TYPES’93, Nijmegen,
The Netherlands, May 24-28, 1993, Selected Papers, volume 806 of Lecture Notes in
Computer Science, pages 313–332. Springer-Verlag, 1994.

J. C. Reynolds. Definitional interpreters for higher-order programming languages. In
Proceedings of the ACM Annual Conference, Boston, Massachusetts, pages 717–740,
Aug. 1972.

J. C. Reynolds. Towards a theory of type structure. In B. Robinet, editor, Programming
Symposium, volume 19 of Lecture Notes in Computer Science, pages 408–425, Berlin,
1974. Springer-Verlag.

J. L. Sacchini. On Type-Based Termination and Pattern Matching in the Calculus of
Inductive Constructions. PhD thesis, INRIA Sophia-Antipolis and École des Mines
de Paris, 2011.

D. A. Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, 1986. ISBN 0-205-10450-9.

U. Schöning. Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag, 4.
Auflage (korrig. Nachdruck 2003) edition, 2003. ISBN 3827410991.

87

Bibliography

A. Setzer. An introduction to well-ordering proofs in Martin-Löf’s type theory. In
G. Sambin and J. Smith, editors, Twenty-five years of constructive type theory, pages
245 – 263, Oxford, 1998. Clarendon Press.

T. Skolem. Begründung der elementaren Arithmetik durch die rekurrierende Denkweise
ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich.
Videnskapsselskapets skrifter. 1. Matematisk-naturvidenskabelig klasse, (6), 1923.

C. A. Stone and R. Harper. Extensional equivalence and singleton types. ACM Trans-
actions on Computational Logic, 7(4):676–722, 2006. ISSN 1529-3785.

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge, MA, USA, 1977. ISBN 0262191474.

W. W. Tait. Intensional interpretations of functionals of finite type I. The Journal of
Symbolic Logic, 32(2):198–212, 1967.

R. Vestergaard. The simple type theory of normalization by evaluation. Electronic
Notes in Theoretical Computer Science, 57:163–183, 2001a.

R. Vestergaard. The polymorphic type theory of normalisation by evaluation. Available
on the author’s home page, 2001b.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical framework I:
Judgements and properties. Technical report, School of Computer Science, Carnegie
Mellon University, Pittsburgh, 2003.

B. Werner. A normalization proof for an impredicative type system with large elimi-
nations over integers. In B. Nordström, K. Petersson, and G. Plotkin, editors, Pro-
ceedings of the 1992 Workshop on Types for Proofs and Programs, B̊astad, Sweden,
June 1992, pages 341–357, 1992.

B. Werner. Une Théorie des Constructiones Inductives. PhD thesis, Universite Paris
7, 1994.

A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press,
1910–1913.

H. Xi and F. Pfenning. Dependent types in practical programming. In Conference
Record of POPL 99: The 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Antonio, Texas, pages 214–227, New York, NY,
1999.

B. A. Yorgey, S. Weirich, J. Cretin, S. L. P. Jones, D. Vytiniotis, and J. P. Magalhães.
Giving haskell a promotion. In B. C. Pierce, editor, Proceedings of TLDI 2012: The
Seventh ACM SIGPLAN Workshop on Types in Languages Design and Implementa-
tion, Philadelphia, PA, USA, Saturday, January 28, 2012, pages 53–66. ACM Press,
2012. ISBN 978-1-4503-1120-5.

C. Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147–165, 1997.

88

	Introduction
	How to Read this Thesis
	Acknowledgments

	Simple Types: From Evaluation to Normalization
	Evaluation
	Normalization
	Normalization by Evaluation
	Variable Handling
	Liftable Terms
	Soundness of Normalization by Evaluation
	Summary

	Untyped Normalization-By-Evaluation and Type Assignment
	Untyped NbE Using Domains
	Untyped NbE Using Partial Applicative Structures
	Type-Assignment System T
	Candidate Spaces and Normalization for Type-Assignment System T
	Explicit Substitutions and -Equality
	Extensionality and Partial Equivalence Relations
	Typed Candidate Spaces and Completeness of NbE
	Restoring Curried Constants
	Kripke Logical Relations and Soundness of NbE
	Summary

	Dependent Types
	A Full Dependently-Typed Language
	Type Values, Reflection and Reification
	Dependent Function Space and Universes
	A PER Model
	Dependently-Typed Candidate Spaces and Completeness of NbE
	Dependent Function Space on Groupoids
	Kripke Logical Relations for Dependent Types and Soundness of NbE
	Summary

	Impredicativity
	System F Syntax
	System F Type Semantics via Candidate Space
	Abstract Evaluation and the Fundamental Lemma for System F
	Normalization by Evaluation for System F
	System F, the Calculus of Constructions, and Beyond

	Summary, Related Work, and Perspectives
	Intrinsic Typing and NbE
	On NbE for the Extensional Treatment of Finite Choice
	Applications of NbE
	Future Perspectives on NbE

	Index of Notations
	Bibliography

