
DRAFT of March 29, 2013

Wellfounded Recursion with Copatterns
A Unified Approach to Termination and Productivity

Andreas Abel
Department of Computer Science,

Ludwig-Maximilians-University Munich, Germany
andreas.abel@ifi.lmu.de

Brigitte Pientka
School of Computer Science,

McGill University, Montreal, Canada
bpientka@cs.mcgill.ca

Abstract
In this paper, we study strong normalization of a core language
based on System F-omega which supports programming with fi-
nite and infinite structures. Building on our prior work, finite data
such as finite lists and trees are defined via constructors and ma-
nipulated via pattern matching, while infinite data such as streams
and infinite trees is defined by observations and synthesized via co-
pattern matching. In this work, we take a type-based approach to
strong normalization by tracking size information about finite and
infinite data in the type. This guarantees compositionality. More
importantly, the duality of pattern and copatterns provide a unify-
ing semantic concept which allows us for the first time to elegantly
and uniformly support both well-founded induction and coinduc-
tion by mere rewriting. The strong normalization proof is struc-
tured around Girard’s reducibility candidates. As such our system
allows for non-determinism and does not rely on coverage. Since
System F-omega is general enough that it can be the target of com-
pilation for the Calculus of Constructions, this work is a significant
step towards representing observation-centric infinite data in proof
assistants such as Coq and Agda.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures, Patterns, Recursion; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—Program and recursion
schemes, Type structure; F.4.1 [Mathematical Logic and Formal
Languages]: Mathematical Logic—Lambda calculus

General Terms Languages, Theory

Keywords Recursion, Coinduction, Pattern matching, Productiv-
ity, Strong normalization, Type-based termination

1. Introduction
Integrating infinite data and coinduction with dependent types is
tricky. For example, in the Calculus of (Co)Inductive Construc-
tions, the core theory underlying Coq (INRIA 2012), coinduction is
broken, since computation does not preserve types (Giménez 1996;

[Copyright notice will appear here once ’preprint’ option is removed.]

Oury 2008). In Agda (Norell 2007), a dependently typed proof and
programming environment based on Martin-Löf Type Theory, in-
ductive and coinductive types cannot be mixed in a compositional
way.1 In previous work (Abel et al. 2013) we have introduced co-
patterns as a novel perspective on defining infinite structures that
might serve as a new foundation for coinduction in dependently-
typed languages, overcoming the problems in the present solutions.

In the copattern approach, finite data such as finite lists and
trees are defined as usual via constructors and manipulated via
pattern matching, while infinite data such as streams and infinite
trees are defined by observations and synthesized via copattern
matching. For example, instead of conceiving streams as built by
the constructor cons, we consider the observations head and tail
about streams as primitive. Programs about streams are defined in
terms of the observations head and tail.

Our previous work left the question of termination of recursive
function and the productivity of infinite objects open. Both issues
are crucial since we want to program inductive proofs as recursive
functions and coinductive proofs as infinite objects or corecursive
functions producing infinite objects. In this article, we adapt type-
based termination (Hughes et al. 1996; Amadio and Coupet-Grimal
1998; Barthe et al. 2004; Blanqui 2004; Abel 2006; Sacchini 2011,
2013) to definitions by copatterns.

A syntactic termination check would ensure that recursive calls
occur only with arguments smaller than the ones of the original call.
In type-based termination, inductive types are tagged with a size
expression that denotes the (ordinal) maximal height of the trees
inhabiting it, i. e., an upper bound on the number of constructors
in the longest path of the tree. To prove termination of a recursive
function means to show that it can safely handle arguments of ar-
bitrary size. This can be established by well-founded induction: to
show that a function can handle arguments up to a fixed size a, we
may assume it already safely processes arguments of any smaller
size b < a. This induction principle can be turned into a typing
rule for recursive functions, using sized types and size quantifica-
tion. How can this be dualized to coinduction? A stream is produc-
tive if we can make arbitrarily deep observations, i. e., if we can
take its tail arbitrarily many times. To show that a stream definition
is productive, we also proceed by well-founded induction. To show
that it can safely handle a observations, we may assume that b ob-
servations are fine for any b < a. The number of observations we
can safely make is called the depth of the stream, or more general,
of the coinductive structure. One should not be mislead and think
of the depth as “size”; streams do not have a size since they are not
tree-structures in memory—they only exist as processes that con-

1 In Agda, one can encode the property “infinitely often” from temporal
logic, but not its dual “eventually forever” (Altenkirch and Danielsson
2010).

Wellfounded Recursion 1 2013/3/29

tinuously yield elements on demand. But it is fruitful to transfer the
concept of depth to (co)recursive functions. The depth of a function
is the maximal size of arguments it can safely handle. As we are
only interested in streams of infinite depth in the end, we care only
about functions of infinite depth. Yet to establish productivity and
termination, we need to induct on depth.

The type-based termination approach is in contrast to common
approaches taken in systems such as Coq (Bertot and Castéran
2004) and Agda (Norell 2007) which employ a syntactic guard-
edness check to ensure corecursive programs are productive: all
corecursive calls must occur under a constructor. This ensures that
the next unit of information can be computed in a finite amount
of time (Sijtsma 1989). However, this approach has also known
limitations: it is difficult to handle higher-order programs such as
g f = cons 0 (f (g f)) where the productivity of g depends on the
behavior of the function f . It is also not compositional, i. e., we can-
not easily abstract over a constructor cons in a productive program
and replace it with a function f . Both limitations are due to the lack
of information we have about f in the syntactic guardedness check.
Types on the other hand already track information about each argu-
ment to a definition and its output. Type-based termination piggy-
backs on the typing analysis and avoids a separate formal system to
traverse the definitions. By indexing types with sizes, we are able to
carry more precise information about input and output arguments
and their relation which is then verified simultaneously while type
checking the definitions.

The contributions of our work are:

• We present Fcop
ω , an extension of System Fω by inductive

and coinductive types, sizes and bounded size quantification,
pattern and copattern matching and lexicographic termination
measures.
• In contrast to previous approaches on type-based termination,

we use well-founded induction on ordinals instead of conven-
tional induction that distinguishes between zero, successor and
limit ordinals. Disposing of this case distinction, we operate
within constructive foundations of mathematics (Taylor 1996).
• Well-founded induction leads to a construction of inductive

types by inflationary iteration, which has been utilized to justify
cyclic proofs in the sequent calculus (Sprenger and Dam 2003).
We are the first to utilize inflationary iteration in a type system.
• Well-founded induction alleviates the need for a semi-continuity

check for sized types of recursive functions (Hughes et al. 1996;
Abel 2008b) which sometimes disguises itself as a monotonic-
ity check (Barthe et al. 2004; Blanqui 2004; Barthe et al. 2008;
Sacchini 2013). Thus, we put type-based termination on leaner
and better understandable foundations.
• Since we construct infinite objects by copattern matching, stan-

dard rewriting becomes strongly normalizing even for corecur-
sive definitions, and productivity becomes an instance of ter-
mination. Thus, we add the last brick to a unified treatment of
recursion and corecursion that is central to type-based termina-
tion.
• Our typing rules are formulated as a bidirectional type-checking

algorithm that can be implemented as such. A prototype, which
additionally features dependent types, is MiniAgda (Abel
2012).
• We prove soundness of Fcop

ω by an untyped term model based
on Girard’s reducibility candidates. The proof exhibits semantic
counterparts of pattern and copattern typing and accounts for
incomplete and overlapping rewrite rules.

2. Copatterns and Termination
Let us illustrate how to program with copatterns using a simple
example of generating a stream of zeros. A streams s over an
element type A is given by the two observations head and tail:
We can inspect the head of s by applying the projection s .head and
obtain an element ofA. To obtain the tail of s, we use the projection
s .tail. We can then define the stream of zeros recursively by the
following two clauses:

zeros .head = 0
zeros .tail = zeros

More generally, zeros can be coded as repeat 0 with

repeat a .head = a
repeat a .tail = repeat a

The left hand side of each clause is considering the definiendum,
here repeat, in a copattern, here · a .head and · a .head, resp. A
copattern consists of a hole, ·, applied to a sequence of patterns
and/or projections. In this case, we have first a variable pattern, a,
and then a projection head/tail.

The definition of repeat is complete because the given copat-
terns are covering all possible cases (Abel et al. 2013). In this ar-
ticle, we investigate the termination of definitions by copatterns
if read as rewrite rules, regardless of their completeness. In sys-
tems without the copattern facility, repeat would be defined using
a stream constructor cons as follows:

repeat a = cons a (repeat a)

Read as rewrite rule, this equation leads immediately to non-
termination; this is why in the absence of copatterns one speaks
about productivity instead of termination (Coquand 1993). A defi-
nition is productive if it unfolds to an infinite stream in all cases—
which certainly holds for repeat a. In the presence of copatterns,
productivity is subsumed under plain termination.

Coming back to our copattern-based definition we see that
repeat a terminates in all contexts since it does not unfold by it-
self and consumes one projection in each unfolding. For example,
projecting the n+ 1st element (counting from 0) of repeat a, i. e.,
repeat a .tailn+1 .head reduces in one step to repeat a .tailn .head
and after n more steps to repeat a .head.

There are many formalisms that ensure termination or produc-
tivity of recursive definitions. In this article, we adapt type-based
termination (Hughes et al. 1996; Barthe et al. 2004; Abel 2006)
to copatterns, i. e., we will present a type system that only accepts
terminating definitions. There are good reasons to integrate termi-
nation checking into the type system, the foremost one is compo-
sitionality. Good type systems are defined in a compositional way,
i. e., one can replace any expression with a different one of the same
type without destroying well-typedness, in particular, one can re-
place a complex expression by a variable, abstracting from the con-
crete behavior or the expression. In contrast, syntactic termination
checks often lack similarly powerful means of abstraction. For in-
stance, if we abstract the constructor

f a = cons a

in the second, non-copattern definition of repeat, obtaining

repeat a = f a (repeat a),

then syntactic productivity checks such as constructor-counting
will fail unless they have access to the definition of f . Put f into a
different module you per-module termination checking will fail.

Type-based termination restores compositionality by giving
function f a refined type that not only expresses that it takes an
element an a stream and produces a stream, but also that the gen-
erated stream is extended by one element in the front. In this way,

Wellfounded Recursion 2 2013/3/29

productivity of repeat is guaranteed by the typing of f , without
need to reveal its definition. One could say that type-based termi-
nation facilitates termination checking under assumptions.

2.1 Example: Fibonacci
Let us look at programming with copatterns and type-based ter-
mination for a more interesting example, the stream of Fibonacci
numbers. It can be elegantly implemented in terms of zipWith f s t
which pointwise applies the binary function f to the elements of
streams s and t.

zipWith f s t .head = f (s .head) (t .head)
zipWith f s t .tail = zipWith f (s .tail) (t .tail)

fib .head = 0
fib .tail .head = 1
fib .tail .tail = zipWith (+) fib (fib .tail)

The last equation states in terms of streams that the n + 2nd
element of the Fibonacci stream is the sum of the nth and the
n+1st. It looks like fib is a terminating definition since fib .tail .tail
only refers to fib and fib .tail, thus, one projection is removed in
each recursive call. However, termination of fib is also dependent
on good properties of zipWith. For instance, the following faulty
clause for zipWith would make fib .tail .tail .head loop:

zipWith f s t .head = f (s .tail .head) (t .tail .head)

fib .tail .tail .head
= zipWith (+) fib (fib .tail) .head
= (fib .tail .head) + (fib .tail .tail .head)
= (fib .tail .head) + (fib .tail .head) + (fib .tail .tail .head)
= . . .

The problem is that the faulty zipWith adds again one tail pro-
jection that has been removed in going from the original call
fib .tail .tail to the recursive call fib .tail, thus, we are left with
the same number of projections, leading to an infinite call cycle.

What we learn from this counterexample is that in order to
reason about termination of stream expressions, we need to trade
the naive image of streams as infinite sequences for a notion of
streams that can safely be subjected to α many projections, where
α ≤ ω can be a natural number or (the smallest) infinity ω. We
refer to such streams as sized streams, or streams having depth α.
Clearly, if a stream of depth α is required, we can safely supply
a stream of depth β ≥ α, thus, sized streams are subject to
contravariant subtyping.

The original zipWith delivers, if called with input streams of
depth α, an output stream of the same depth. This allows us to
reason about the termination of fib as follows. We show that fib
is a stream of arbitrary depth α by induction on α ≤ ω. Cases
α < 2 are easy. The interesting case is α = n + 2 when we take
two tail projections and then another n projections, thus, n + 2
projections in total. Then we may assume (by induction hypothesis)
that on the rhs taking up to n + 1 projections of fib is fine, thus,
fib and fib .tail behave well under another n projections—they
both can be assigned depth n using subtyping. Passing them to
zipWith (+) returns in turn a stream of the same depth n, hence
the lhs fib .tail .tail can be assigned depth n and, consequently, fib
depth n+ 2, which was our goal.

The faulty zipWith, however, needs streams of depth n + 1
to deliver a stream of depth n. Since fib .tail can only safely be
assumed to have depth n, not depth n + 1, the termination proof
attempt fails, rightfully so.

In this model proof we assumed that taking a projection will
decrease the depth by exactly one. In the following, we will loosen
this assumption and let projections take us to any strictly smaller
depth.

2.2 Type-based termination for copatterns
In this section, we present the key ideas behind Fcop

ω , our polymor-
phic core language for type-based termination checking of recur-
sive definitions involving inductive and coinductive types. We il-
lustrate how the integration of size expressions into the type system
captures and mechanizes the informal reasoning about termination
employed in the previous section.

Size quantification for inductive and coinductive types. Besides
quantification over types ∀A:∗. B we have quantification over sizes
∀i<a.B. To unify these two forms of quantification we add to the
base kind ∗ of types the base kinds <a denoting sets of ordinals
below a and conceive ∀i<a.B as shorthand for ∀i:(<a). B. Thus,
size expressions fall in the same syntactic class as type expres-
sions. We introduce a special ordinal∞, the closure ordinal for all
(co)inductive types we consider. As far as streams are concerned,
∞ can be thought of as ω. In general, valid size expressions are of
the form a ::= i + n | ∞ + n where i is a size variable and n a
concrete number (we drop +0).

The type of streams of depth a over element type A will be
denoted by StreamaA, and we consider the following typing rules
for the projections:

s : StreamaA

s .head : ∀i<a↑. A
s : StreamaA

s .tail : ∀i<a↑. StreamiA
(1)

These rules state that if you want to project a stream of depth
a, you will need to provide a witness that you are able to do so,
i. e., an ordinal i < a↑. In case of tail, this witness serves also as
the depth of the projected stream. For instance, if s : Streami+2A,
then s .tail (i + 1) .head i : A. Bound normalization a↑, defined
by (i+ n)↑ = i + n and (∞+ n)↑ = ∞ + 1, allows us to
turn bounds a ≥ ∞ into ∞ + 1 and project from the fixpoint
Stream∞A without information loss. For s : Stream∞A we have
s .tail∞ : Stream∞A since∞ < ∞↑ = ∞ + 1, reflecting that
the tail of a fully defined stream has infinite depth as well.

In practice, we often use the following derived rule which elim-
inates the universal quantifier and directly compares sizes.

s : StreamaA

s .head b : A
b < a↑

s : StreamaA

s .tail b : StreambA
b < a↑

More generally, following previous work (Abel et al. 2013), we
represent coinductive types as recursive records νR, with R =
{d1 : F1; . . . ; dn : Fn} giving (sized) types to the projections
d1..n as follows:

r : νaR

r .dk : ∀i<a↑. Fk(νiR)

For instance, with StreamiA = νi{head : λX.A; tail : λX.X}
we obtain the typing of head and tail presented above (1). Consid-
ering R as a finite map from projections to type constructors, we
write Rdk for Fk.

Dually, inductive types are recursive variants µS with S = 〈c1 :
F1; . . . ; cn : Fn〉 and constructor typing

t : ∃i<a↑. Fk(µiS)

ck t : µaS
.

For instance, finite lists can be defined as follows: ListiA =
µi〈nil : λX. 1; cons : λX.A × X〉. Integrating the quantifier
rules, we derive the following inferences for constructors and de-
structors:

s : Sc(µ
bS)

cbs : µaS
b < a↑

r : νaR

r .d b : Fd(νbR)
b < a↑.

Wellfounded Recursion 3 2013/3/29

Specifying termination measures. The polymorphically typed
version of zipWith officially looks as follows, where we write
∀i≤a as abbreviation for ∀i<(a+ 1):

zipWith : ∀i≤∞. |i| ⇒ ∀A:∗. ∀B:∗.∀C:∗.
(A→ B → C)→
StreamiA→ StreamiB → StreamiC

zipWith i A B C f s t .head j = f (s .head j) (t .head j)
zipWith i A B C f s t .tail j = zipWith j A B C f

(s .tail j) (t .tail j)

The first equation has type C and the second one type StreamjC.
The kind of j is<i due to the typing of head and tail, thus, zipWith
is well-defined (and terminating) by induction on its first argument,
the size argument. The associated termination measure is written
|i| and located after the size variable(s). A measure in general is
a tuple |a, b, c| of size expressions under the lexicographic order,
here it is just the unary tuple.2 It is not officially part of the type;
it is rather an annotation that allows us to termination check the
clauses without having to infer a termination order.

High-level idea of size-based termination checking. When we
check a corecursive definition such as the second clause of zipWith
we start with traversing the the left hand side (lhs). We first intro-
duce assumption i≤∞ into the context and now hit the measure
annotation |i| in the type. At this point we introduce the assump-
tion zipWith : ∀j≤∞. |j|<|i| ⇒ ∀A:∗. ∀B:∗.∀C:∗. (A→ B →
C)→ StreamjA→ StreamjB → StreamjC which will be used
to check the recursive call on the right hand side (rhs). It has a con-
straint |j| < |i| which is checked before applying zipWith j to
A. Continued checking of the lhs introduces further assumptions
A,B,C : ∗, f : A → B → C, s : StreamiA, t : StreamiB, and
j < i. Checking the rhs succeeds since the constraint |j| < |i| is
satisfied and s .tail j : StreamjA and t .tail j : StreamjB.

In the following, we abbreviate ∀A:∗ to just ∀A and ∀i≤∞
to just ∀i. With all size and type-arguments, the definition of the
Fibonacci stream becomes:

fib : ∀i. |i| ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = zipWith k N N N (+) (fib k) (fib j .tail k)

In the last line, the lhs introduces size variables i and j < i and k <
j and an assumption fib : ∀i′. |i′| < |i| ⇒ Streami′N and expects
a rhs of type StreamkN. Since k < j < i, both recursive calls
are valid, and the expressions fib k and fib j .tail k both have type
StreamkN. With zipWith kNNN : StreamkN → StreamkN →
StreamkN, the rhs is well-typed, and fib is terminating.

2.3 Example: Stream processor
Ghani et al. (2009) describe programs for continuous stream func-
tions StreamA → StreamB in terms of a mixed coinductive-
inductive data type SP with two constructors get : (A → SP) →
SP and put : (B × SP) → SP. We use this example to illustrate
how our foundation supports size-based reasoning on such mixed
datatypes and lexicographic termination measures for mutually re-
cursive functions. A stream processor can either get an element
v : A from the input stream and enter a new state, depending on the
read value, or it can put an element w : B on the output stream and
enter a new state. To be productive, it can only read finitely many
values from the input stream before writing a value on the output
stream, thus, SP is actually a nesting of a least fixed-point into a
greatest one: SP = νX. µY. (A → Y) + (B × X). We express

2 The notation for termination measures is taken from Xi (2002)

this nesting by the definition of two data types, an inductive variant
SPµ and a coinductive record type SPν .

SPiµX = µi〈get : λY.A→ Y ; put : λY.B ×X〉
SPiν = νi{out : λX. SP∞µ X}

Inside the coinductive type, we use the inductive type SPµ at size
∞ since we want to allow an arbitrary (finite) number of gets
between two puts. We get the following derived rules for typing
constructors and destructors:

f : A→ SPbµX

getbf : SPaµX
b < a↑

w : B sp : X

putb(w, sp) : SPaµX
b < a↑

sp : SPaν

sp .out b : SP∞µ SPbν
b < a↑

In the context of stream processors it is convenient to consider
streams as given by a single destructor force which returns head
and tail in a pair, thus, StriA = νi{force : λX.A×X}. Dedicated
projections hd and tl can be defined by

hd : ∀i.Stri+1A→ A
hd i s = fst (s .force i)

tl : ∀i.Stri+1A→ StriA
tl i s = snd (s .force i)

with fst and snd the obvious first and second projections from pairs.
Since Str∞ = Str∞+1, we obtain instances hd∞ : Str∞A → A
and tl∞ : Str∞A→ Str∞A.

Running a stream processor on an input stream produces an
output stream as follows (informally coded in a Haskell-like lan-
guage):

run (get f) (v, vs) = run (f v) vs
run (put(w, sp)) vs = (w, run sp vs)

We represent this function via two mutually recursive functions,
one handling SPµ and one SPν :

runµ : ∀i∀j. |i, j + 1| ⇒ SPjµ(SPiν)→ Str∞A→ B × StriB

runµ i j (getj
′
f) vs = runµ i j

′ (f (hd∞ vs)) (tl∞ vs)

runµ i j (putj
′
(w, sp)) vs = (w, runν i sp vs)

runν : ∀i. |i, 0| ⇒ SPiν → Str∞A→ StriB
runν i sp vs .force i′ = runµ i

′∞ (sp .out i′) vs

The recursive runµ handles a sequence of gets terminated by put
and emits the head of a forced stream B × StriB. The tail is pro-
duced by the corecursive runν which, upon forcing, calls runµ
again. The termination is guaranteed by the lexicographic mea-
sures, which decrease in each recursive call:

runµ→ runµ : |i, j + 1| > |i, j′ + 1| since j > j′

runµ→ runν : |i, j + 1| > |i, 0|
runν → runµ : |i, 0| > |i′,∞+ 1| since i > i′

Note that since we are not doing induction on SPiν , but coinduction
into Stri, we could use SP∞ν instead of SPiν in the types of runµ
and runν . However, the given types are more precise: instead of
a stream processor of infinite depth, they only require a stream
processor of depth i to produce a stream of depth i.

2.4 Example: breadth-first labelled infinite trees
Jones and Gibbons (1993) present tree labeling as a cyclic program.
We will now describe a modified version for infinite trees and apply
type-based termination to it. Figure 1 explains the core idea of
this algorithm. Given a stream vs1 = cons v1 vs2 of labels, we
construct an infinite tree with root v1 (at level 1) and use vs2 to
construct the left and right subtree (both at level 2). To provide

Wellfounded Recursion 4 2013/3/29

Output streams

vs2

vs2vs1

vs3

v1

v2 v3

v4 v5 v6 v7

Level 2

Level 3

Level 1

vs3 vs4

Input streams

Figure 1. Breadth-first labeled infinite tree

labels for all levels, a stream of streams vs1, vs2, vs3, . . . is used as
input and a stream of streams of the remaining labels vs2, vs3, . . .
is output. In a Haskell-like language, we would code this as follows:

bfs (cons (cons v vs) vss) = (node v l r, cons vs vss ′′)
where (l, vss ′) = bfs vss

(r, vss ′′) = bfs vss ′

The stream vss of streams is created from a single label stream vs
by tying the knot:

bf vs = t where (t, vss) = bfs (cons vs vss)

Is this cyclic program productive, or will the creation of tree t get
stuck in an infinite loop? Danielsson has shown productivity by
coding an interpreter for stream expressions in Agda (Danielsson
2010); we shall succeed by appropriate size assignment. At this
point, it is worth mentioning that bfs does not fall into the usual
scheme of a corecursive definition such as supported by the Coq
proof assistant (INRIA 2012), since its target is not a coinductive
type, but a tuple type. Our approach, however, breaks out of this
restriction since it unifies recursion and corecursion under measure-
based termination on ordinals (sizes and depths).

Fixing a type V of labels, we define a coinductive type of
infinite binary trees, a type of streams of streams, and a type of
results of function bfs.

SSi = Streami(Stream∞V)
Treei = νi {label : λX.V ; left : λX.X; right : λX.X}
Resulti = ν∞{tree : λX.Treei; rest : λX.SSi}.

Since Result is not recursive (X is not used), Resulti is just a lazy
product of Treei and SSi. We need a record here instead of a tuple
because we want to define bfs by copattern matching, the copatterns
being .tree∞ and .rest∞.

In the following definition of bfs, each of the five components
v, l, r, vs , and vss ′′ of its result (node v l r, cons vs vss ′′) is given
by one equation:

bfs : ∀i. |i| ⇒ SSi → Resulti

bfs i ss .tree∞ .label j = v
bfs i ss .tree∞ .left j = p1 .tree∞
bfs i ss .tree∞ .right j = p2 .tree∞
bfs i ss .rest ∞ .head j = vs
bfs i ss .rest ∞ .tail j = p2 .rest∞

where v : V = ss .head j .head∞
vs : Stream∞V = ss .head j .tail∞
vss : SSj = ss .tail j
p1 : Resultj = bfs j vss
p2 : Resultj = bfs j (p1 .rest∞)

For the sake of readability, and to make the connection to the orig-
inal program obvious, we have taken the liberty to name and type
the intermediate results v, vs , vss (decomposition of ss) and p1,
and p2 (the pairs created by the recursive calls). Well-definedness

of bfs is apparent since recursive calls are restricted to depth j < i.
For well-typedness it is crucial that the SS of input and output and
the output Tree are all considered at the same depth i.

The final step is tying the knot, (t, vss) = bfs (cons vs vss).
We define the pair (t, vss) by recursion, informally by bfp vs =
bf (cons vs (bfp vs .rest)). How to assign sizes?

bfp : ∀i. |i| ⇒ Stream∞V → Resulti

bfp i vs = bf i (cons vs (bfp ? vs .rest∞))

For the recursive call, we need a depth ? smaller than i, but we only
get one by pattern matching if we analyse the result further:

bfp : ∀i. |i| ⇒ Stream∞V → Resulti

bfp i vs .tree∞ .label j = p .tree∞ .label j
bfp i vs .tree∞ .left j = p .tree∞ .left j
bfp i vs .tree∞ .right j = p .tree∞ .right j
bfp i vs .rest ∞ .head j = p .rest ∞ .head j
bfp i vs .rest ∞ .tail j = p .rest ∞ .tail j

where p : Resultj+1

p = bf (j + 1) (cons vs (bfp j vs .rest∞))

This works, but is a lot of boilerplate code. In previously studied
type systems for productivity (Pareto 2000; Abel 2006) one as-
sumes size i + 1 on the lhs, which in our notation would simply
become

bfp : ∀i. Stream∞V → Resulti

bfp (i+ 1) vs = bf (i+ 1) (cons vs (bfp i vs .rest∞)).

Our present system disallows such matching on sizes, which has
some consistency issues (Abel 2010, Sec. 5.2) and also requires the
result type to be upper semi-continuous in i (which it is in this case)
(Hughes et al. 1996; Abel 2008b). However, we can first code a
fixpoint combinator for Result and then use it to define bfp, hiding
the unpleasant boilerplate.

fixR : ∀i. |i| ⇒ (∀j.Resultj → Resultj+1)→ Resulti

fixR i f .tree∞ .label j = r .tree∞ .label j
fixR i f .tree∞ .left j = r .tree∞ .left j
fixR i f .tree∞ .right j = r .tree∞ .right j
fixR i f .rest ∞ .head j = r .rest ∞ .head j
fixR i f .rest ∞ .tail j = r .rest ∞ .tail j

where r : Resultj+1

r = f j (fixR j f)

bfp : ∀i. Stream∞V → Resulti

bfp i vs = fixR i f
where f j r = bfs (j + 1) (cons vs (r .rest∞)).

Digression. For which types Ai can we define a fixpoint combi-
nator of type ∀i. (∀j. Aj → Aj+1) → Ai? We conjecture those
are at least the admissible types of Pareto (2000) and Abel (2008b).
While in these works admissible types are determined by inference
rules derived from by semantic criteria, in our present types system
we can “prove” admissibility by programming the fixed-point prin-
ciple ourselves! This gives greater flexibility (and we could employ
generic programming to derive fixpoint combinators in the standard
cases).

3. Syntax
In this section, we formally define Fcop

ω , our higher-order polymor-
phic lambda-calculus with sized inductive and coinductive types,
polarized higher-order subtyping, and definitions by pattern and
copattern matching. As in previous work (Abel 2006) we choose
System Fω rather than System F as basis since the notion of a type
constructor is required (at least, semantically) if one wants to talk
its fixed-points, i. e., about (co)inductive types.

Wellfounded Recursion 5 2013/3/29

SizeVar 3 i, j
SizeExp 3 a, b ::= i+ n | ∞+ n (n ≥ 0)
SizeExp+ 3 a+, b+ ::= a | n
Measure 3 m ::= · | a+,m

Pol 3 π ::= ◦ | + | − | >
SizeCxt 3 Ψ ::= · | Ψ, i:π(<a)

Figure 2. Sizes and measures.

3.1 Sizes
Fig. 2 gives a grammar for sizes, measures, and size contexts. A
size expression a consists of a base, which is either a size variable
i or∞, and an offset, a natural number n.

a ::= i+ n | ∞+ n

We omit the offset when 0. Each size variable i comes with a bound
i < a, which is recorded in a size context

Ψ ::= · | Ψ, i:π(<a).

A size context is considered as finite map from size variables i to
their polarity π (see below) and their kind <a. We write ≤a for
<(a+ 1) and size for ≤∞. Extended size expressions a+ allow as
a third base, n, i.e. just a natural number. Measures m are tuples of
extended size expressions. There are a number of trivial judgements
concerning well-formedness and partial ordering of (extended) size
expressions and measures (see Table 1). These judgements may use
the bounds stored in size context Ψ and are all defined as expected;
their inference rules can be found in Fig. 12.

Ψ ` a size a is well-formed
Ψ ` a < b strict size comparison
Ψ ` a ≤ b size comparison

Ψ ` a+ extended size a+ is well-formed
Ψ ` a+ < b+ strict comparison
Ψ ` a+ ≤ b+ comparison

Ψ `n m measure m is a well-formed n-tuple
Ψ ` m < m′ strict lexicographic measure comparison
Ψ ` m ≤ m′ lexicographic measure comparison

Ψ ` ∃Ψ′ Ψ′ is consistent for each valuation of Ψ

Table 1. Size-related judgements.

In constraint-based systems, strong normalization is usually lost
in inconsistent contexts.3 While our size contexts Ψ are always
consistent, i. e., enjoy a valuation η of the declared size variables
(by natural numbers even), we need sometimes a stronger property
that a size context extension Ψ′ is consistent with a fixed valuation
η of Ψ, i. e., Ψ′ must be consistent even when we apply η to its
declared bounds. For instance, i≤∞, j<i is consistent, but j<i is
not a consistent extension of i≤∞ under valuation η(i) = 0. We
write Ψ ` ∃Ψ′ if Ψ′ consistently extends Ψ in this sense. This
judgement is inspired by Blanqui and Riba (2006).

Proposition Ψ ` ∃Ψ′ can be tested by computing a minimal
valuation η of Ψ and then checking whether Ψ′ has a (minimal)
valuation under η. In the following, let η be a finite map from
size variables to natural numbers. Then η(a) is an extended size
expression. We say η |= Ψ if η(i) < η(a) for all (i < a) ∈ Ψ.

3 For instance, in extensional type theory, X : Type, p : X = (X →
X) ` (λx:X.xx)(λx:X.xx) : X). The blame is on the false equality
assumption X = X → X which is used for type conversion.

A minimal valuation valη(Ψ) for Ψ above η can be defined as
follows:

valη(·) = η
valη(Ψ, j < a) = valη(Ψ) if η(j) < η(a)

otherwise, if η(j) 6< η(a) :
valη(Ψ, j < i+ n) = valη[i7→η(j)−n+1](Ψ) if i ∈ dom(Ψ)
valη(Ψ, j < i+ n) = undefined if i 6∈ dom(Ψ)

Note that if η′ = valη(Ψ) is defined, then η′ ≥ η (pointwise),
and η′ |= Ψ. If valη(Ψ) is undefined and η′ ≥ η then η′ 6|= Ψ.
In particular, if η(i) = 0 for all i ∈ dom(Ψ) and valη(Ψ) is
undefined, then Ψ is inconsistent. To check Ψ ` ∃Ψ′ we let
η0(i) = 0 the null-valuation and η = valη0(Ψ). Then we check
whether valη(Ψ′) is defined.

SKind 3 ι ::= ∗ | o | ι→ ι′

Kind 3 κ ::= ∗ | <a | πκ→ κ′

TyCxt 3∆ ::= · | ∆, X:πκ
Cxt 3 Γ ::= · | Γ, x:A, x:?A

TyVar 3X,Y, Z, i, j
TyAtom 3K ::= a | X | 1 | × | → | ∀κ | ∃κ
Type 3 F,G,A,B,C ::= K | λX:ι. F | F G

| µaS | νaR

Var 3 x, y, z
Cons 3 c
Proj 3 d
Variant 3 S ::= 〈c1:F1; . . . ; cn:Fn〉 n ≥ 0
Record 3 R ::= {d1:F1; . . . ; dn:Fn} n ≥ 0

MType 3 ′A, ′B ::= ∀Ψ.m⇒ A
CType 3 ?A, ?B ::= ∀Ψ. c⇒ A
Cond 3 c ::= m<m′

Figure 3. Kinds and type constructors.

3.2 Kinds and type constructors
The type constructors of Fω are assigned kinds ι ::= ∗ | ι → ι′,
with base kind ∗ classifying all proper types and function kinds
ι → ι′ the (higher-order) type operators. We add a second base
kind ι ::= · · · | o that classifies size expressions, which we locate
at the type level, since they are computationally irrelevant and can
be erased during compilation, just as the types are.

These simple kinds ι form with the type constructor a simply-
“typed” type-level lambda calculus. We refine these kinds into Fcop

ω -
kinds

κ ::= ∗ | <a | κ π→ κ′

where <a refines o into the kind of size expressions b < a. The
polarized function kind κ π→ κ′, also written πκ→ κ′, allows us to
express that the classified type constructor is co-variant (π = +),
contravariant (π = −), constant (π = >) or mixed-variant or of
unknown variance (π = ◦). The polarities π are partially ordered
◦ ≤ +,− ≤ > according to their information content. This and the
order on size expressions induce a subkinding relation Ψ ` κ ≤ κ′
on kinds of the same structure |κ| = |κ′|. Here, when comparing
two o-kinds (<a) ≤ (<b), we resort to size comparison a ≤ b.
The default variance is ◦ (no information) and we may omit it,
writing simply κ → κ′ or Ψ, i:(<a), which is further abbreviated
by Ψ, i<a.

Kinding contexts ∆ ::= · | ∆, X:πκ, which provide scoping
and kinding information for type constructors, generalize size con-
texts from bounds (<a) to arbitrary kinds κ. We may use a ∆ where

Wellfounded Recursion 6 2013/3/29

a Ψ is formally required, silently erasing all non-size variables from
∆. More generally, context restriction ∆ � ~X of context ∆ to a set
of variables ~X deletes the bindings for all Y 6∈ ~X from ∆.

Ψ ` κ kind κ is well-formed in Ψ
Ψ ` κ ≤ κ′ κ is a subkind of κ′

∆ ` ∆′ kinding context ∆′ is well-formed in ∆
∆ ` ∃∆′ ∆′ is consistent for each valuation of ∆

Table 2. Kind-related judgements.

The judgement ∆ ` ∃∆′ (see Table 2) states that ∆′ is consis-
tent for each valuation of ∆. Only the size declarations matter here,
so it is a straightforward extension of Ψ ` ∃Ψ′.

Figure 3 contains a grammar for the type constructors of Fcop
ω .

Its core is a simply-kinded lambda-calculus X | λX:ι. F | F G
with constants 1,×,→, ∀κ, and ∃κ to form unit, product, function,
universal, and existential types. Size expressions a are considered
type constructors so that sizes can be abstracted over and applied.
We use the following short-hands:

λXF for λX:ι. F if ι inferable
A×B for (×)AB product type
A→ B for (→)AB function type

∀X:κ.A for ∀κ(λX:|κ|. A) universal type
∃X:κ.A for ∃κ(λX:|κ|. A) existential type

∀i<a.A for ∀<a (λi:o.A) bounded universal
∃i<a.A for ∃<a (λi:o.A) bounded existential

∀i. A for ∀i:size. A “unbounded” universal
∃i. A for ∀i:size. A “unbounded” existential.

We also write ∀∆. A for the universal abstraction of all type vari-
ables of ∆ in type A.

The simple kind annotation ι in λX:ι. F allows us to infer a
unique kind for closed type constructors. The simple kind of an
open type constructor depends only on the simple kinds of its free
type variables. This property simplifies the interpretation [[F]] of
type constructors as set-theoretic functions on semantic types we
will give later.

For the purpose of type checking, we are only interested in β-
normal type constructors. We write F @ι G for the normalizing
application of F to an argument G of simple kind ι. We may write
@κ instead of @|κ|, or even just @.

Sized inductive µaS and coinductive types νaR are given in
terms of variant rows S and record rows R. A variant row S =
〈c1:F1; . . . ; cn:Fn〉 is a finite map from variant labels ci, called
constructors, to type constructors Sci = Fi. Dually, a record row
R maps record labels d, called destructors or projections, to type
constructors Rd. Instead of presenting, for instance, streams as
νaX. {head : A; tail : X}, we move the abstraction over X into
the record row as νa{head : λX.A; tail : λX.X}, in order to
formulate the typing rules more conveniently.

Finally, we have constrained types ∀Ψ.m<m′ ⇒ A that allow
its inhabitants to be used only if the condition m < m′ is fulfilled.
We use them to restrict recursive calls to situations where the
termination measure has decreased. Recursive function definitions
come with measured types ′A ::= ∀∆. m ⇒ A. These are not
proper types but rather blueprints for constrained types. The idea
is that kinding context ∆ declares some size variables that are
used in measure m (and type A). When we analyze the body
of a recursive function of measure type ′A and the variables of
∆ are in scope (thus, the measure m is well-formed), we make
a copy ′B = ∀∆′.m′ ⇒ A′ of ′A by renaming the variables
of ∆ to ∆′. Then, by measure replacement ′B<m we create the

constrained type ∀∆′. m′<m ⇒ A′ which is used to type the
recursive occurrences of the function in its body.

∆ ` A type A is well-formed
∆ ` F ⇒ κ F has kind κ (inference)
∆ ` F ⇔ κ F has kind κ (checking)

∆ ` Γ typing context Γ is well-formed

∆ ` A ≤ A′ A is subtype of A′

∆ ` F ≤π F ′ ⇒ κ F is higher-ord. subtype of F ′ (κ inferred)
∆ ` F ≤π F ′ ⇔ κ F is higher-ord. subtype of F ′ (κ given)

Table 3. Type-related judgements.

Table 3 lists judgements for well-kindedness and partial order-
ing of types and type constructors. The judgements for typesA only
invoke the judgments for type constructors F in checking mode at
base kind (⇔ ∗). The judgements for constructors are bidirectional
with inference mode that computes the kind κ and checking mode
that starts with a given κ. Bidirectional checking is complete since
we are only interested in normal type constructors.

The rules for these judgements are given in figures 13 and
14 . A thorough discussion of polarized higher-order subtyp-
ing, i. e., subtyping for type constructors that take variance into
account, is available in Abel (2008a) and Steffen (1998), we
just recapitulate the basic principle here: A constructor F with
X1:π1κ1, . . . , Xn:πnκn ` F ⇔ κ is interpreted as an operator

λX1 . . . λXn.F : κ1
π1→ . . . κn

πn→ κ

with variance given as noted in its kinding context. This induces
the kinding rules, for instanceX:−∗, Y :+∗ ` X → Y : ∗ is valid
since function space is contravariant in its domain and covariant in
its codomain. In particular, the hypothesis rule X:πκ ` X : κ is
only valid if π ≤ +, i. e., π = ◦which just states that λX.X : κ→
κ is a well-formed operator, or π = + which additionally states
that λX.X is monotone. Using the hypothesis rule on π = − or
π = > is invalid since λX.X is neither an antitone nor a constant
operator.

Given a partial order G ≤ G′, its π-parameterized version
G ≤π G′ can be defined as follows:

G ≤+ G′ = G ≤ G′
G ≤− G′ = G′ ≤ G
G ≤◦ G′ = G ≤ G′ and G′ ≤ G
G ≤> G′ = true

π-variance of a constructor F ⇒ πκ → κ′ means that F G ≤
F G′ ⇒ κ whenever G ≤π G′ ⇔ κ. (The reader is advised
to play through the four cases for π in his mind.) Theoretically,
the π-parameterized versions ∆ ` F ≤π F ′ . . . of higher-
order subtyping could be defined from a non-parameterized version
∆ ` F ≤ F ′ . . . , but to avoid the potential exponential blowup
due to duplication of work in case of ≤◦, the π-parameterized
versions are primitive.

3.3 Terms and (co)patterns
Figure 4 presents the abstract syntax of Fcop

ω terms t, which are cat-
egorized into introductions v, applicative terms u, and anonymous
objects λ~D. Introductions (), (t1, t2), (c t) and Gt construct tuples
and inductive and existential types. Applicative terms x, f , and r e
are identifiers and generalized applications of a term r to an elimi-
nation e, which can be a term s for function elimination, a type G
for instantiation of a polymorphic function, or a destructor .d for
projection from a coinductive type.

For each introduction form v we have the corresponding form
of pattern p, and for each elimination form e there is a copattern q.

Wellfounded Recursion 7 2013/3/29

Exp 3 r, s, t ::= u | v | λ~D term
Intro 3 v ::= () | (t1, t2) | c t | Gt introduction
App 3 u ::= x | f | r e applicative
Fun 3 f, g function name
Elim 3 e ::= t | G | .d elimination

Pat 3 p ::= x | () | (p1, p2) | c p | Qp pattern
TyPat 3 Q ::= X | ∞ type pattern
Copat 3 q ::= p | Q | .d copattern
PatSp 3 q ::= ~q pattern spine

DCl 3D ::= {q→ t} def. clause
Def 3 ~D ::= {D1; . . . ;Dn} def. clauses

Figure 4. Terms, (co)patterns, and clauses.

Application copatterns are just patterns p to match the argument,
type application copatterns Q are either type variables X or the
special size pattern ∞, which matches anything, and projection
copatterns are simply destructors d that match the same destructor
in an elimination. A sequence of ~q of copatterns is called a pattern
spine q, in correspondence to an elimination spine ~e.

Generalized lambda abstraction λ~D introduces an object whose
behavior is given by the clauses ~D, each of which consists of a lhs, a
(possibly empty) copattern sequence ~q, and a rhs, a term t. Objects
subsume both record and λ expressions of traditional functional
languages. Here are a few simple examples:

λ{x→ t} ordinary λ-abstraction λxt
λ{X → t} type abstraction ΛXt
λ{(x, y)→ x} first projection from pair
λ{Xx y → y X x} elimination of existential
λ{Axy .head∞→ x

;Axy .tail ∞→ y} cons for Stream∞A
λ{· → s; · → t} non-deterministic choice s⊕ t

The meaning, given by the operational semantics, is that when-
ever λ~D is applied to a sequence of eliminations ~e that match the
copatterns ~q of a clause with rhs t under a substitution σ and a
type substitution τ , then (λ~D)~e reduces to tστ , the rhs instanti-
ated by the substitutions computed from pattern matching. Using
~e / ~q ↘ σ; τ for pattern matching, the basic rule for contraction

t 7→ t′ becomes:

~e / qk ↘ σ; τ

λ{−−−⇀q→ t} ~e ~e ′ 7→ tkστ ~e ′

As usual, t is called a redex and t′ its reduct if t 7→ t′. We allow
overlapping lhss, a spine ~e may match different pattern spines q,
resulting in different contractions of the same redex. Also, if no lhs
in the clauses ~D matches ~e, the expression λ~D ~e is stuck. While a
coverage checker as described in previous work (Abel et al. 2013)
could exclude overlapping and incomplete clauses in well-typed
programs, we do not require coverage in this paper and confine
ourselves to show strong normalization, i. e., the absence of infinite
reduction sequences.

Not all stuck terms are pathological; since we are matching the
whole pattern spine in one go, partially applied functions such as
λ{xy → t}s are stuck, but can become unstuck if more arguments
are supplied. The existence of partially applied functions will re-
quire careful treatment in the normalization proof, because non-
contractibility of a non-introduction term is not preserved under
application (as would be in the case of λ-calculus).

Decl 3 δ ::= f : A = ~D declaration
MDecl 3 ′δ ::= f : ′A = ~D declaration with measure
Block 3 β ::= mutualm ~′δ mutual block
Prg 3 P ::= ~β;u program
Sig 3 Σ ::= ~δ signature

Figure 5. Declarations, blocks, and programs.

3.4 Declarations and programs
An Fcop

ω program consists of a sequence ~β of mutual blocks and
an applicative term u, the entry point (this could be the name
of the main function or a call to the main function with some
initial arguments). Each mutual block mutualm~′δ is a sequence ~′δ
of mutually recursive declarations with a lexicographic termination
measure of length m. Each declaration f : ′A = ~D assigns to a
function symbol f its measured type ′A and its clauses ~D. Measures
serve their purpose during checking of the mutual block and are
discarded afterwards. Erasure of measure |′δ| yields a (unmeasured)
declaration f : A = ~D; after checking a mutual block and erasing
the measures, the individual declarations of the block become part
of the signature Σ which is used for type-checking and evaluation
of the remainder of the program. An applied function f ~e reduces
if one of its clauses does:

(λ~D)~e 7→ t

f ~e 7→ t
(f : A = ~D) ∈ Σ

The one-step reduction relation t −→ t′ is the compatible closure
of the contraction relation t 7→ t′, i. e., t −→ t′ if t′ is the result of
contracting exactly one redex in (an arbitrary subterm of) t. Strong
normalization of reduction will be shown to hold for well-typed
programs.

∆; Γ ` r ⇒ C Infer type C for term r
∆; Γ ` t⇔ C Term t checks against type C
∆; Γ ` D ⇔ A Clause D checks against type A
∆; Γ ` ~D ⇔ A Clauses D check against type A

∆; Γ `∆0 p⇔ A Pattern p checks against type A
∆; Γ | A `∆0 q⇒ C Pattern spine q eliminates A into C

Table 4. Type checking.

3.5 Type checking
Table 4 lists the judgements involved in type checking Fcop

ω pro-
grams. Type-checking terms is bidirectional and a straightforward
adaption of Abel et al. (2013) to polymorphism, bounded quan-
tification, and constraints. The rules are given in Figure 6, and we
briefly explain them.

Inference ∆; Γ ` r ⇒ C . A function symbol f ’s type Σ(f)

is looked up in the signature, and a variable x’s type Γ(x) in
the typing context. If Γ(x) is a constrained type ∀Ψ. c ⇒ A,
the variable x must be immediately applied to size arguments ~a
satisfying both Ψ and the condition c; after all, a constrained type
is, for consistency reasons, not a proper type for an expression. An
application r s of a function r of inferred type A → B has type
B if the argument s checks against type A. Instantiation r G of a
polymorphic term r of inferred type ∀κF has type F @κ G if G
has kind κ. In particular, r could be of type ∀i<a.A, then G must
be a size expression < a to succeed. If r is of coinductive type
νaR, then r .d has type ∀j<a↑.Rd (νjR), see Section 2.3.

Wellfounded Recursion 8 2013/3/29

∆; Γ ` r ⇒ C Expression typing (inference mode). In: ∆,Γ, r with ∆ ` Γ. Out: C with ∆ ` C

∆; Γ ` f ⇒ Σ(f)

(x:A) ∈ Γ

∆; Γ ` x⇒ A

(x : ∀Ψ. c⇒ A) ∈ Γ ∆ ` ~a⇔ Ψ τ = ~a/Ψ̂ ∆ ` cτ

∆; Γ ` x~a⇒ Aτ

∆; Γ ` r ⇒ A→ B ∆; Γ ` s⇔ A

∆; Γ ` r s⇒ B

∆; Γ ` r ⇒ νaR

∆; Γ ` r.d⇒ ∀j<a↑. Rd (νjR)

∆; Γ ` r ⇒ ∀κF ∆ ` G⇔ κ

∆; Γ ` r G⇒ F @κ G

Switching.

∆ ` A ∆; Γ ` t⇔ A

∆; Γ ` (t : A)⇒ A

∆; Γ ` r ⇒ A ∆ ` A ≤ C
∆; Γ ` r ⇔ C

∆; Γ ` t⇔ C Expression typing (checking mode). In: ∆; Γ, t, C with ∆ ` Γ and ∆ ` C. (Out: success/failure.)

∆; Γ ` ()⇔ 1

∆; Γ ` t1 ⇔ A1 ∆; Γ ` t2 ⇔ A2

∆; Γ ` (t1, t2)⇔ A1 ×A2

∆; Γ ` t⇔ ∃j<a↑. Sc (µjS)

∆; Γ ` c t⇔ µaS

∆ ` G⇔ κ ∆; Γ ` t⇔ F @κ G

∆; Γ ` Gt⇔ ∃κF
∆; Γ ` ~D ⇔ A

∆; Γ ` λ~D ⇔ A

∆; Γ ` D ⇔ A and ∆; Γ ` ~D ⇔ A definition typing. In: ∆, Γ, A, D or ~D with ∆ ` Γ and Γ ` A. (Out: success/failure.)

∆′; Γ′ | A `∆ ~q ⇒ C ∆ ` ∃∆′ ∆,∆′; Γ,Γ′ ` t⇔ C

∆; Γ ` {~q → t}⇔ A

∆; Γ ` Dk ⇔ A for all k

∆; Γ ` ~D ⇔ A

Figure 6. Type checking rules.

∆; Γ `∆0 p⇔ A Pattern typing (linear). In: ∆0, p, A with ∆0 ` A. Out: ∆,Γ with ∆0,∆; Γ ` p⇔ A.

·;x:A `∆0 x⇔ A ·; · `∆0 ()⇔ 1

∆1; Γ1 `∆0 p1 ⇔ A1 ∆2; Γ2 `∆0 p2 ⇔ A2

∆1,∆2; Γ1,Γ2 `∆0 (p1, p2)⇔ A1 ×A2

∆; Γ `∆0 p⇔ ∃j<a↑. Sc (µjS)

∆; Γ `∆0 c p⇔ µaS

∆; Γ `∆0,X:κ p⇔ F @κ X

X:κ,∆; Γ `∆0
Xp⇔ ∃κF

∆; Γ `∆0 p⇔ F @ ∞
∆; Γ `∆0

∞p⇔ ∃sizeF
if ∆0 ` F ⇔ size

+→ ∗

∆; Γ | A `∆0 ~q ⇒ C Pattern spine typing. In: ∆0, A, ~q with ∆0 ` A. Out: ∆,Γ, C with ∆0,∆; Γ ` C and ∆0,∆; Γ, z:A ` z ~q ⇒ C.

·; · | A `∆0 ·⇒ A

∆1; Γ1 `∆0 p⇔ A ∆2; Γ2 | B `∆0 ~q ⇒ C

∆1,∆2; Γ1,Γ2 | A→ B `∆0 p ~q ⇒ C

∆; Γ | ∀j<a↑. Rd (νjR) `∆0 ~q ⇒ C

∆; Γ | νaR `∆0 .d ~q ⇒ C

∆; Γ | F @κ X `∆0,X:κ ~q ⇒ C

X:κ,∆; Γ | ∀κF `∆0 X ~q ⇒ C

∆; Γ | F @ ∞ `∆0 ~q ⇒ C

∆; Γ | ∀sizeF `∆0 ∞ ~q ⇒ C
if ∆0 ` F ⇔ size

−→ ∗

Figure 7. Pattern Typing.

There are two rules to switch direction. Checking r against type
C succeeds if r’s type is inferred as A and A is a subtype of C.
Also, we can add type ascription (t : A) to the term language; then
inference of (t : A) succeeds and yields A if A is a well-formed
type and t checks against A. While type ascription is needed to
bidirectionally type check redexes or stuck terms, it is dispensable
if one confines to checking normal terms (in the sense that no elim-
ination is applied to a λ in the source program). We will consider
type ascriptions be removed before execution of the program, so
they do not pop up in the operational and denotational semantics.

Checking ∆; Γ ` t⇔ C . Introductions and λs are checked

against a given type. Checking a pair Gt of a type expression G
and a term t against an existential type ∃kF succeeds if G has kind
κ and t is of the correct instance F @κ G. Checking a constructor
term c t against an inductive type µaS succeeds if t checks against

∃j < a↑. Sc (µjS). This means that t should be essentially a pair
bt′ of a size b < a↑ and t′ be a correct argument to constructor c,
i. e., having variant Sc instantiated to µjS. If a ≥ ∞, by bound
normalization b = ∞ is a valid size index, which implies that in a
value v in the fixpoint µ∞S all size witnesses can uniformly be∞.
To check λ~D we check all clauses Dk.

Clause checking ∆; Γ ` {q→ t}⇔ A . We first check that
pattern spine q eliminates indeed type A. As a result, we obtain
a kinding context ∆′ which binds the type variables X contained
in q and a typing context Γ′ which binds the pattern variables x
contained in q’s patterns, and a remaining type C of lhs and rhs.
We now need to make sure that ∆ ` ∃∆′ such that any valuation
of ∆ can be extended to a valuation of ∆′. Complementing the
original contexts ∆; Γ by the pattern contexts ∆′; Γ′ we check the
rhs t against C.

Wellfounded Recursion 9 2013/3/29

Pattern spine checking ∆; Γ | A `∆0 ~q ⇒ C . We eliminate
type A which is well-formed in ∆0. If there are no copatterns in ~q,
thus, the clause has an empty lhs, we simply return A which must
be the type of the rhs. If we encounter an application pattern p,
the eliminated type must be a function type A → B. We check p
againstA and obtain pattern contexts ∆1; Γ1. We continue to check
the remaining copatterns, obtaining more pattern contexts ∆2; Γ2

and a result typeC, which we return together with the concatenated
pattern contexts. Concatenation, and thus, pattern spine checking
fails if the contexts do not have disjoint domains. A common
variable would mean a non-linear lhs, which we exclude.

If we encounter a projection pattern .d, the eliminated type
must be a coinductive type νaR. Taking projection .d yields type
∀j<a↑. Rd(νjR), thus, we continue to eliminate this type. It could
be eliminated by an∞-pattern if a was ≥ ∞, hence a↑ =∞+ 1.
In this case, we must additionally ensure that the coinductive type
actually reached its fixed-point at∞. This is the case if Rd (νjR)
is antitone in j (we shall prove this in Section 4). In general, when
eliminating ∀≤∞F by an∞-pattern, we can continue with F @ ∞
if F is antitone, i. e., has kind size

−→ ∗. The general form of
eliminating a universal type ∀κF is by a type variable pattern X ,
in this case we record X:κ in the type variable pattern context and
continue eliminating F @κ X .

Pattern typing ∆; Γ `∆0 p⇔ A . This judgement checks pat-
tern p against type A which is valid in kinding context ∆0, and re-
turns pattern contexts ∆; Γ. Pattern x succeeds against any type, re-
turning singleton context x:A. The empty tuple () succeeds against
the unit type 1, binding no variables. The pair pattern (p1, p2)
succeeds against the product type A1 × A2 if each component
pi checks against its type Ai. The resulting pattern contexts are
concatenated, checking for disjointness. A constructor pattern c p
checks against an inductive type µaS if p checks against ∃j <
a↑. Sc (µjS). This can succeed if p = ∞p′ and Sc (µjS) is mono-
tone in j, meaning that µ∞S was indeed the fixed-point, and we
continue checking p′ against Sc (µ∞S). Or, p = jp′, then we add
size variable j<a to the pattern context and continue checking p′

against Sc (µjS). The last two cases were instances of checking
against the general existential type ∃κF .

In the next section, we will validate all the typing rules by
exhibiting a semantics of strongly normalizing terms based on
Girard’s reducibility candidates (Girard et al. 1989).

4. Semantics
In this section we show strong normalization of Fcop

ω by a term
model. Types are interpreted as reducibility candidates à la Girard
adapted to our needs. Our semantic constructions rely only on the
terms and the operational semantics of Fcop

ω , not to the types, kinds,
or inference rules. Based on the operational semantics, semantic
types and kinds are constructed that interpret the syntactic types,
yet syntactic types are never used for semantic constructions.4 We
consider this conceptual hygiene important from a philosophic per-
spective: we use types just as a vehicle to assign properties to our
programs; clearly, they have no run-time significance. While in the
end we succeeded to keep syntactic types out of the semantic con-
structions, it was hard to get the semantic counterpart (Lemma 30)
of pattern spine typing (Figure 7) right.

One clarification: Since Fcop
ω has Church-style polymorphism

with explicit type abstraction and application, we can of course
not talk about terms and operational semantics without mention-
ing syntactic types. However, we never refer to the structure of
syntactic types, they remain abstract, and we could remove ev-

4 Humbly following the masters (Vouillon and Melliès 2004).

erything but type variables from our type language without alter-
ing the construction of semantic types and semantic typing “judge-
ments”. In particular, in the construction of the semantic universal
type ∀∀KF = {r ∈ SN | r G ∈ F(G) for all G ∈ Type,G ∈ K}
there is no connection between the syntactic type constructorG and
the semantic type constructor G (of semantic kind K). Type appli-
cations serve only to make type-checking decidable, they do not
play any role in evaluation.

Preliminaries. We use partially applied relations to denote sets.
For instance, we write (t −→) or simply t−→ for the set
{t′ | t −→ t′} of reducts of t. Similarly, <α = {β | β < α}.
The identity substitution is denoted by σid.

Let t v t′ be the compatible closure of b v ∞.

Lemma 1 (Soundness and completeness of matching). s / p ↘
τ ;σ iff s v pτσ.

Strong normalization. Classically, a term t is strongly normaliz-
ing if it admits no infinite reduction sequences t −→ t1 −→ t2
starting with t. Inductively, we define t ∈ SN if all of its reducts
are already in SN:

(t −→) ⊆ SN

t ∈ SN
Naturally, if t ∈ SN then all its reducts and subterms are also
strongly normalizing.

We extend the notion SN to other syntactic categories: An
elimination e is strongly normalizing, e ∈ SN, if it either is not
a term (but a type G or a projection .d), or if it is a strongly
normalizing term. A definition clause D = {~q → t} is strongly
normalizing if t ∈ SN.

Simulation. Our typing rules (see Figure 6) state that a definition
λ~D : A or (f : A = ~D) is well-typed if each of the clauses
Dk is of type A, individually. In the absence of a coverage check,
there is no concept of “the clauses make sense together”. We would
like to see this independence of clauses reflected in our semantics.
In particular, we would like to have compositionality, i. e., if each
clause of a definition is semantically meaningful (in particular,
does not lead to non-termination), then the clauses are meaningful
together. Our type-checker for functions works exactly like that:
each clause is checked individually, using the termination measure,
an interaction between clauses need not be taken into account.5

One idea is to say that a defined function f : A = ~D reduces
non-deterministically to one of its clausesDk, however, this imme-
diately destroys strong normalization, because Dk might mention
f . We need to defer unfolding of f until the pattern of one of its
clauses matches. Thus, instead we say that f ~e reduces if (λ~D)~e

reduces; f is simulated by its clauses ~D. In general, a term r is
simulated by terms ~r, written r B ~r , iff each of its contractions
under some eliminations is accounted for by one of the terms ~r,
formally

∀~e, t. r ~e 7→ t =⇒ ∃k. rk ~e 7→ t.

Closing reducibility candidates by simulation is one of the new
ideas of our proof.

Lemma 2 (Simulation).

1. λ{D1; . . . ;Dn}B λD1, . . . , λDn.
2. If (f : A = ~D) ∈ Σ then f B λ~D.
3. If r B r1, . . . , rn then r eB r1 e, . . . , rn e.

5 In general, normalization of rewriting is of course not compositional. E. g.,
the rule f true −→ f false by itself terminates, but adding f false −→
f true destroys normalization.

Wellfounded Recursion 10 2013/3/29

Proof.

1. Assume (λ~D)~e 7→ t. By inversion, (λDk)~e 7→ t for some k.

2. Assume f ~e 7→ t. By inversion (λ~D)~e 7→ t.

3. We have to show ∀~e, t. r e~e 7→ t =⇒ ∃k. rk e~e 7→ t.
This holds directly by assumption rB~r with elimination vector
e,~e.

4.1 Semantic Types
In order to show strong normalization we model types as set of
strongly normalizing terms, more precisely, as reducibility candi-
dates à la Girard. We choose reducibility candidates over Tait’s sat-
urated sets, since they allow us to show strong normalization in the
absence of standardization and confluence. As a consequence, we
can model definitions with incomplete and overlapping patterns.

A set of termsA is a reducibility candidate (Girard et al. 1989),
written A ∈ CR, if the following conditions hold.

CR1 A ⊆ SN: “each term in A is strongly normalizing”.

CR2 if t ∈ A then (t −→) ⊆ A: “A is closed under reduction”.

CR3 if t ∈ Ne and (t −→) ⊆ A then t ∈ A: “A contains a
neutral already if all its redexes are in A”.

CR4 if t 6∈ Intro and (t −→) ⊆ A and t B ~t ∈ A then t ∈ A:
“A is closed under simulation”.

CR4 is new, it allows us to show that multi-clause objects λ~D and
function symbols f inhabit a semantic type (candidate).

Lemma 3 (Multi-clause objects).

1. If λD1, . . . , λDn ∈ A then λ~D ∈ A.
2. If (f : A = ~D) ∈ Σ and λ~D ∈ A, then f ∈ A.

Proof.

1. We show λ~D ∈ A by induction on ~D ∈ SN. Since λ{ ~D}B
−⇀
λD,

we may use CR4. It remains to show that λ~D −→ t implies t ∈
A. If λ~D 7→ t, then λDk 7→ t for some k, and since λDk ∈ A
we infer t ∈ A by CR2. Otherwise the reduction takes place
in some body and we have t = λ~D′ with ~D −→ ~D′. Since
λ~D′ B

−−⇀
λD′, we conclude by induction hypothesis.

2. Directly by CR4, since f B λ~D by Lemma 2 and all reducts of
f are reducts of λ~D.

In CR3, Ne is a suitable set of so-called neutral terms. These
are “good”, i. e., inhabit a candidate, as soon as all their redexes are
good. For Girard’s technique to work, neutral terms need to include
redexes such as (λx.t) s and variables x, and need to be closed
under application, i. e., r neutral implies r s neutral. In case of pure
lambda calculus, any term which is not a lambda-abstraction can
be considered neutral.

In our setting of matching the whole pattern spine ~q against
the eliminations ~e, things are more subtle. For instance, the partial
application λ{x y → xx} δ with δ = λ{x → xx} is stuck (even
in normal form). However, it cannot be neutral and inhabit every
candidate (following CR3), in particular semantic function types,
since it reduces to the diverging term δ δ if applied to any term
t. Thus, we can only accept stuck terms as neutral which cannot
become unstuck by extra eliminations. This leads to the following
definition:

Definition 4 (Neutral term, terminally stuck).

1. A applicative term u ∈ App is terminally stuck if u~e is not a
redex for all eliminations ~e.

2. A term r is neutral, written r ∈ Ne, if it is a redex or terminally
stuck.

As Girard’s, our refined notion of neutrality includes redexes,
variables, and is closed under eliminations. Further, if r ∈ Ne then
any reduction in r e is either a reduction in r or in e. A reducibility
candidate A is never empty since Var ⊆ A by virtue of CR3.

Closure. For a set A ⊆ SN which is closed under reduction let A
be the least reducibility candidate ⊇ A. Inductively, A is defined
as the closure under neutrals and simulation:

t ∈ A
t ∈ A

t ∈ Ne (t −→) ⊆ A
t ∈ A

t 6∈ Intro (t −→) ⊆ A tB ~t ∈ A
t ∈ A

A 7→ A is a closure operation, i. e., it is monotone (A ⊆ B implies
A ⊆ B), extensive (A ⊆ A), and idempotent (A ⊆ A). Note
that the closure operator never adds introduction terms such as (),
(t1, t2), c t, or Gt to a term set A. Thus, for introductions v ∈ A
we have v ∈ A already.

CR is closed under arbitrary intersections and forms, under the
inclusion ⊆ order, a complete lattice with greatest element SN and
least element ∅.

Semantic types. In the following, let A,B ∈ CR be candidates,
P a proposition, K some index set and F ∈ K → CR a family
of reducibility candidates. The following operations, except the
conditional P ⇒ A, construct new candidates from existing ones.

A→→B = {r ∈ SN | ∀s ∈ A. r s ∈ B}
∀∀KF = {r ∈ SN | ∀G ∈ Type,G ∈ K. r G ∈ F(G)}
P ⇒ A = {r ∈ Exp | r ∈ A if P}
1 = {()}
A××B = {(t1, t2) | t1 ∈ A and t2 ∈ B}
∃∃KF = {Gt | ∃G ∈ K, t ∈ F(G)}

Note that the condition r ∈ SN in the definition of A→→B is
redundant, since x ∈ A by CR3 and r x ∈ SN implies r ∈ SN.
However, in the definition of ∀∀KF it is important since K could be
empty, e. g.,K = <0. Conditional types are not first-class; P ⇒ A
only forms a candidate if P is true, otherwise, it is just a set of
expressions.

Lemma 5 (Function space candidate). If Var ⊆ A ⊆ SN and
B ∈ CR then A→→B ∈ CR.

Proof.

CR1 Strong normalization: Let r ∈ A→→B. Since x ∈ A we
have r x ∈ B ⊆ SN, thus, r ∈ SN.

CR2 Closure under reduction: Let r ∈ A→→B and r −→ r′.
Assume s ∈ A and show r′ s ∈ B, which we conclude by
CR2 on r s ∈ B, since r s −→ r′ s.

CR3 Closure under neutrals: Let r ∈ Ne and (r −→) ⊆
A→→B. Since A→→B ⊆ SN we have r ∈ SN. Assume
s ∈ A. We show r s ∈ B by CR3, exploiting r s ∈ Ne.
Consider r s −→ t; we show t ∈ B by induction on
r, s ∈ SN. Since r ∈ Ne, either t = r′ s with r −→ r′ and
we conclude by induction hypothesis on r′ ∈ SN, or t = r s′

with s −→ s′ and we conclude by induction hypothesis on
s′ ∈ SN.

Wellfounded Recursion 11 2013/3/29

CR4 Closure under simulation: Let r 6∈ Intro and (r −→) ⊆
A→→B and r B ~r ∈ A → B. Assume s ∈ A and
show r s ∈ B by CR4, exploiting that r s 6∈ Intro and
r sB r1 s, . . . , rn s ∈ B. Assume r s −→ t and show t ∈ B
by induction on r, s ∈ SN. In cases t = r′ s or t = r s′

we conclude by induction hypothesis. In the remaining case
r s 7→ t we have rk s 7→ t for some k ∈ 1..n. Since
rk s ∈ B we conclude t ∈ B by CR2.

Lemma 6 (Semantic typing rules). The following inferences are
trivial consequences of the construction of semantic types:

r ∈ A→→B s ∈ A
r s ∈ B

r ∈ ∀∀KF G ∈ K
r G ∈ F(G)

() ∈ 1

t1 ∈ A1 t2 ∈ A2

(t1, t2) ∈ A1××A2

G ∈ K t ∈ F(G)
Gt ∈ ∃∃KF

Besides definitions (which we will treat in Section 4.5), rules for
constructors and destructors are missing. We will describe semantic
(co)inductive types in the next section.

4.2 Ordinals and Fixed-Points
Previous approaches to type-based termination (Hughes et al. 1996;
Amadio and Coupet-Grimal 1998; Barthe et al. 2004; Blanqui
2004; Barthe et al. 2008; Sacchini 2013) have defined approximants
of least µαF and greatest fixed-points ναF of monotone type
constructors F ∈ CR

+→ CR by conventional induction on ordinal
α, distinguishing zero (0), successor (α + 1), and limit ordinals
(λ).

µ0 F = ∅
µα+1F = F (µα F)

µλ F =
⋃
α<λ µ

αF

ν0 F = SN
να+1F = F (να F)
νλ F =

⋂
α<λ ν

αF
In this work, we adopt the approach of Sprenger and Dam (2003)
for approximations in µ-calculus and use well-founded induction
instead, which amounts to construct µαF by inflationary iteration
and ναF by deflationary iteration.

µαF =
⋃
β<α

F (µβF) ναF =
⋂
β<α

F (νβF)

In this definition, F does not have to be monotone to obtain an
ascending chain of approximants in case of µ and a descending
chain for ν. However, if F is monotone, one can derive above
equations as special cases for α being zero, successor, or limit
ordinal, if such a distinction on ordinals exists. Intuitionistically,
this distinction is not valid (Taylor 1996); by building on well-
founded induction, we remain within constructive foundations.

Let α, β, γ range over ordinals. We write ∀∀β<αF(β) for ∀∀<αF
and analogously for ∃∃. Let S ∈ Cons ⇀ CR → CR and
R ∈ Proj ⇀ CR → CR where we write the first argument,
the constructor c, or the destructor d, resp., as index, thus, Sc and
Rd resp. We define the αth approximants µαS,ναR ∈ CR of
recursive variant and record type as follows.

µαS = {c t | c ∈ dom(S) and t ∈ ∃∃β<αSc(µβS)}
ναR = {r ∈ SN | ∀d ∈ dom(R). r.d ∈ ∀∀β<αRd(νβR)}

Since ∃∃<αF is monotonic in α for any F , so is µαS. Dually
∀∀<αF and ναR are antitonic in α. We obtain chains:

∅ = µ0S ⊆ µ1S ⊆ . . . ⊆ µγS ⊆ µγ+1S ⊆ . . .
SN = ν0R⊇ ν1R⊇ . . . ⊇ νγR⊇ νγ+1R⊇ . . .

If µαS = µγS for some α > γ then µβS = µγS for all β > γ
and we say that the chain has become stationary at γ. Since the set

Exp of expressions is countable and all elements of these chains are
subsets of Exp, the chains must become stationary latest at the first
uncountable ordinal Ω. We call the ordinal at which all such chains
of our language are stationary the closure ordinal and denote it by
∞.

Since it does not make sense to inspect chains beyond the
closure ordinal, we introduce bound normalization

α↑ =

{
∞+ 1 if α ≥∞,
α otherwise.

Note that µαS = µα
↑
S and ναR = να

↑
R. In the following we

will talk about ordinals that are as big as∞+n for finite n, but not
bigger ones, so all ordinals will be in O = {α | α < ∞ + ω}, a
set closed under successor. As size index to a least or greatest fixed
point, only the ordinals in Size = {α | α ≤ ∞} are interesting.
Thus, if no bound for an ordinal β is given, we assume β ∈ Size,
for instance, we write ∃∃βF(β) instead of ∃∃β∈SizeF(β) or ∃∃SizeF .

The stationary point µ∞S is a pre-fixed point in the sense
that t ∈ Sc(µ∞S) implies c∞t ∈ µ∞+1S = µ∞S. Dually,
ν∞R is a post-fixed point as r ∈ ν∞R = ν∞+1R implies
r.d∞ ∈ Rd(ν∞R). Note that we do not require R or S to be
monotone for these directions. Yet we do if we want µ∞S and
ν∞R to be fixed-points.

Lemma 7 (Pre/post-fixed points).

1. If t ∈ ∃∃β≤∞Sc(µβS) then c t ∈ µ∞S.
2. If r ∈ ν∞R then r.d ∈ ∀∀β≤∞Rd(νβR).

Proof.

1. By definition c t ∈ µ∞+1S = µ∞S.

2. By definition, since r ∈ ν∞+1R.

Lemma 8 (Fixed-points). If Sc,Rd be monotone for all c ∈
dom(S) and d ∈ dom(R), then

1. µ∞S = {c bt | c ∈ dom(S), b ∈ Type, t ∈ Sc(µ∞S)}, and
2. ν∞R = {r | ∀d ∈ dom(R), b ∈ Type. r.d b ∈ Rd(ν∞R)}.

Proof. For 1, it is sufficient to show ⊆, meaning that µ∞S is a
post-fixed point. Note that by definition

µ∞ =
⋃
β<∞

{c bt | c ∈ dom(S), b ∈ Type, t ∈ Sc(µβS)},

so we conclude by monotonicity of Sc and the closure operator,
using µβS ⊆ µ∞S.

For 2, it is sufficient to show that ν∞R is a pre-fixed point.
So, if r.d b ∈ Rd(ν∞R) for all d ∈ dom(R) and b ∈ Type,
then r ∈ ν∞R. It is sufficient to show r.d b ∈ Rd(νβR) for all
β <∞, and this follows from ν∞R ⊆ νβR by monotonicity of
Rd.

Corollary 9.

1. If c bt ∈ µ∞S and Sc is monotone, then t ∈ Sc(µ∞S).
2. If r.d b ∈ Rd(ν∞R) andRd is monotone, then r ∈ ν∞R.

4.3 Kinds
Simple kinds ι are interpreted as sets of semantic types, ordinals,
or semantic type constructors.

[[∗]] = CR
[[o]] = O
[[ι→ ι′]] = [[ι]]→ [[ι′]]

A simple function kind ι → ι′ is interpreted as the function space
[[ι]] → [[ι′]] of the meta-language (e.g. the set-theoretical function
space).

Wellfounded Recursion 12 2013/3/29

With each simple kind ι we associate a set KI(ι) of semantic
kinds K ⊆ [[ι]]. Semantic kinds K are pointed preorders. We write
⊥K for the least element of K and F ≤ F ′ ∈ K for the preorder
relation, omitting “∈ K” when clear from the context of discourse.
Also let

F ≤◦ F ′ :⇐⇒F ≤ F ′ and F ′ ≤ F
F ≤+ F ′ :⇐⇒F ≤ F ′
F ≤− F ′ :⇐⇒F ′ ≤ F
F ≤> F ′ :⇐⇒ true.

For the special case of posets, ≤◦ coincides with equality, but we
will later encounter preordered sets, where ≤◦ is just an equiva-
lence relation and not identity.

Lemma 10 (Soundness of variance ordering). If π ≤ π′ and
F ≤π F ′ then F ≤π

′
F ′.

If K ∈ KI(ι) and K′ ∈ KI(ι′) is a pointed preorder then the
function space

K → K′ ∈ KI(ι→ ι′)

K → K′ = {F ∈ [[ι]]→ [[ι′]] | ∀G ∈ K. F(G) ∈ K′}

is a pointed preorder with least element ⊥K→K′(G) = ⊥K′ ,
pointwise ordered byF ≤ F ′ ∈ K → K′ iffF(G) ≤ F ′(G) ∈ K′
for all G ∈ K.

For posets K,K′ let K ◦→ K′ be just K → K′, the full function
space, K +→ K′ denote the subspace of monotone functions, K −→
K′ the antitone ones and K >→ K′ the constant functions. Clearly,
if F ∈ K π→ K′ and G ≤π G′ ∈ K, then F(G) ≤ F(G′) ∈ K′.

Let (<β) = {α | α < β}. We define the type of semantic kinds
KI(ι) associated to simple kind ι inductively by the rules

CR ∈ KI(∗)
β ∈ O

(<β) ∈ KI(o)

K ∈ KI(ι) K′ ∈ KI(ι′)

K π→ K′ ∈ KI(ι→ ι′)
.

Note that ⊥CR = ∅ and ⊥O = 0.

Type environments. We extend the kind erasure |κ| = ι to kind-
ing contexts ∆ in the obvious way: |·| = · and |∆, X:πκ| =
|∆|, X:|κ|. Erased kinding contexts are interpreted as sets of en-
vironments ρ ∈ [[|∆|]] inductively defined by

· ∈ [[·]]
ρ ∈ [[|∆|]] G ∈ [[ι]]

(ρ,G/X) ∈ [[|∆|, X:ι]]
.

Environments ρ can be understood as finite maps from type
constructor variables X to an appropriate semantic object G ∈
[[|∆(X)|]] (an ordinal, a semantic type or a type operator). We will
also use the notation ρ, ρ′ for environment concatenation.

Semantic kinding contexts. In the following, we define seman-
tic kinding contexts D ∈ KICXT(|∆|) as counterparts of syn-
tactic kinding contexts ∆. Each D induces a preordered subset
[D] ⊆ [[|∆|]] of (semantic) type environments ρ ∈ [D] (writ-
ten just ρ ∈ D). Analogously to syntactic contexts, semantic
kinding contexts are finite maps from type constructor variables
X to a pair of variance π and semantic kind K which may de-
pend on “earlier variables” of mixed variance only. This depen-
dency is expressed by D′ ∈ ◦−1D → KICXT(|∆′|) in the rule
for ΣDD′ ∈ KICXT(|∆,∆′|) below. It means that D′ respects
equivalence in D given by ρ ≤◦ ρ′ ∈ D, meaning that then
D′(ρ) = D′(ρ′). Semantic kinding contexts D ∈ KICXT(|∆|)

are defined inductively by the rules

· ∈ KICXT(·)
K ∈ KI(ι)

(X:πK) ∈ KICXT(X:ι)

D ∈ KICXT(|∆|) D′ ∈ ◦−1D → KICXT(|∆′|)
ΣDD′ ∈ KICXT(|∆,∆′|) .

Simultaneously with D ∈ KICXT(|∆|), we construct a preordered
set of type environments; we define ρ ≤ ρ′ ∈ D by recursion
on D ∈ KICXT(|∆|)—an inductive-recursive definition (Dybjer
2000).

· ≤ · ∈ · :⇐⇒ true
(G/X) ≤ (G′/X) ∈ (X:πK) :⇐⇒ G ≤π G′ ∈ K
(ρ1, ρ2) ≤ (ρ′1, ρ

′
2) ∈ ΣDD′ :⇐⇒ ρ1 ≤ ρ′1 ∈ D

and ρ2 ≤ ρ′2 ∈ D′(ρ1)

The last line shows that it is important that D′ respects D, because
how would we otherwise know that D′(ρ1) = D′(ρ′1), and thus
ρ′2 ∈ D′(ρ1)?

Lemma 11 (Well-definedness of partial order on type environ-
ments). If D ∈ KICXT(|∆|) then ρ ≤ ρ′ ∈ D is well-defined.
Further, if ρ ≤ ρ′ ∈ D then ρ ≤ ρ′ ∈ ◦−1D and even ρ ≤◦ ρ′ ∈
◦−1D.

Proof. By induction on D ∈ KICXT(|∆|). It is even true that
ρ ≤ ρ′ ∈ π−1

1 D implies ρ ≤ ρ′ ∈ π−1
2 D for any π1 ≥ π2.

Instantiating this with π1 = + and π2 = ◦ yields the first statement
on orders; for the second we observe that ρ ≤π ρ′ ∈ D iff
ρ ≤ ρ′ ∈ πD and that ◦◦−1D = ◦−1D. Well-definedness follows
in case ΣDD′ since ρ1 ≤ ρ′1 ∈ D implies ρ1 ≤◦ ρ′1 ∈ ◦−1D and
thus D′(ρ1) = D′(ρ′1).

ρ ∈ D is now simply defined as ρ ≤ ρ ∈ D. If in singleton
contexts (X:πK) we restrictK to be of the form<β, we obtain se-
mantic size contexts D ∈ SICXT(|Ψ|) . Clearly, these are special
semantic kinding contexts.

We shall omit |∆| from KICXT(|∆|) when inessential or infer-
able. We drop singleton function domains, e.g., we identify · →
KICXT with KICXT. Given a parametrized kinding context D2 ∈
D → KICXT we can weaken it to WD1D2 ∈ (D1×D)→ KICXT
where (WD1D2)(ρ1 ∈ D1, ρ) = D2(ρ). For non-dependent con-
catenation of semantic kinding contexts D1 and D2 we introduce
the notation (D1,D2) defined as ΣD1(WD1D2). As a derived rule
we have:

D1 ∈ KICXT|∆1| D2 ∈ KICXT|∆2|
(D1,D2) ∈ KICXT|∆1,∆2|

Lemma 12 (Preservation of context well-formedness). If D ∈
KICXT(|∆|) then π−1D ∈ KICXT(|∆|).

Proof. By induction onD ∈ KICXT(|∆|). The interesting case is
concatenation:

D ∈ KICXT(|∆|) D′ ∈ ◦−1D → KICXT(|∆′|)
ΣDD′ ∈ KICXT(|∆,∆′|)

By induction hypothesis π−1D ∈ KICXT(|∆|) and π−1D′(ρ) ∈
KICXT(|∆′|) for all ρ ∈ ◦−1D. It remains to show that π−1D′
respects π−1◦−1D which is equal to (π◦)−1D. Assume ρ ≤◦ ρ′ ∈
(π◦)−1D. Since ρ ≤◦ ρ′ ∈ ◦−1D by antitonicity (π◦ ≥ ◦),
we have D′(ρ) = D′(ρ′) and, thus, π−1D′(ρ) = π−1D′(ρ′) as
desired.

Interpretation of sizes, measures, kinds, and kinding contexts.
In the following let ρ ∈ [[|∆0|]] for some erased kinding context
|∆0|. (Extended) sizes a+ are interpreted as ordinals [[a+]]ρ ∈ O

Wellfounded Recursion 13 2013/3/29

and measures m as ordinal tuples [[m]]ρ ∈ O∗.

[[i+ n]]ρ = [[i]]ρ + n
[[∞+ n]]ρ = ∞+ n

[[n]]ρ = n

[[a+,m]]ρ = ([[a+]]ρ, [[m]]ρ)

Kinds κ are interpreted as semantic kinds [[κ]]ρ ∈ KI(|κ|) and kind-
ing contexts ∆ as semantic kinding contexts [[∆]]ρ ∈ KICXT(|∆|).

[[∗]]ρ = CR
[[<b]]ρ = <[[b]]ρ

[[πκ→ κ′]]ρ = [[κ]]ρ
π→ [[κ′]]ρ

[[·]]ρ = ·
[[∆, X:πκ]]ρ = ΣD(X:πK)

where D = [[∆]]ρ
and K(ρ′ ∈ D) = [[κ]](ρ,ρ′)

The structurally recursive interpretation [[O]]ρ for a kind-level ob-
ject O ::= a+ | m | κ as given above is well-defined if ρ(i) ∈ O
for all i ∈ FV(O). In the following, we show that the interpreta-
tions fit into the appropriate semantic concepts.

Lemma 13 (Soundness of size (context) formation). Let ` Ψ.

1. Then [[Ψ]] ∈ SICXT(|Ψ|).

2. If Ψ ` a then [[a]] ∈ [[Ψ]]
+→ O.

3. If Ψ ` i < a and ρ ≤ ρ′ ∈ [[Ψ]] then [[a]]ρ ≤ [[a]]ρ′ ∈ O and
ρ(i) ≤ ρ′(i) < [[a]]ρ.

Proof. By induction on the length of context Ψ. We demonstrate
the case for context extension.

` Ψ ◦−1Ψ ` a
` Ψ, i:π(<a)

By induction hypothesis 1, D := [[Ψ]] ∈ SICXT(|Ψ|). By induc-
tion hypothesis 2, [[a]] ∈ [[◦−1Ψ]] → O, thus [[a]] ∈ ◦−1D → O,
entailing respect, and ΣD(i:π(<[[a]])) ∈ SICXT(|Ψ|, i:o).

Theorem 14 (Soundness of kind-level judgements). Let ` Ψ and
let ρ ≤ ρ′ ∈ D := [[Ψ]].

1. If Ψ ` a+ then [[a+]]ρ ≤ [[a+]]ρ′ ∈ O.
2. If Ψ ` a+ ≤ b+ then [[a+]]ρ ≤ [[b+]]ρ′ ∈ O.
3. If Ψ ` a+ < b+ then [[a+]]ρ < [[b+]]ρ′ ∈ O.
4. If Ψ `m m then [[m]]ρ ≤ [[m]]ρ′ ∈ Om.
5. If Ψ ` m ≤ m′ then [[m]]ρ ≤ [[m]]ρ′ ∈ O∗.
6. If Ψ ` m < m′ then [[m]]ρ < [[m]]ρ′ ∈ O∗.
7. If Ψ ` κ then [[κ]]ρ ≤ [[κ]]ρ′ ∈ KI(|κ|).
8. If Ψ ` κ ≤ κ′ then |κ| = |κ′| and [[κ]]ρ ≤ [[κ]]ρ′ ∈ KI(|κ|).

Proof. Each by induction on the derivation.
The following theorem is the reason that we do not allow finitely

bounded size variables i < n in kinding contexts.

Theorem 15 (Context satisfaction). If ` ∆ then there is some
ρ0 ∈ [[∆]].

Proof. We prove the following stronger theorem by induction on
∆: For each α <∞ there is some ρ ∈ [[∆]] such that ρ(i) ≥ α for
each size variable i declared in ∆.

Case
` ∆ ◦−1∆ ` <(∞+ n)

` ∆, i : π(<(∞+ n))
By induction hypothesis there is some ρ ∈ [[∆]], thus,
ρ[i 7→ α] is the desired environment.

Case
` ∆ ◦−1∆ ` <(j + n)

` ∆, i : π(<(j + n))

By induction hypothesis there is some ρ ∈ [[∆]] with ρ(j) ≥
α + 1, thus, α < ρ(j) + n and ρ[i 7→ α] is the desired
environment.

Case
` ∆ ◦−1∆ ` κ
` ∆, X:πκ

κ 6= (<a)

Return ρ[X 7→ ⊥[[κ]]ρ] where ρ is obtained by induction
hypothesis.

Theorem 16 (Conditional context satisfaction).

1. If Ψ ` ∃Ψ′ and ρ ∈ [[Ψ]] then there is some ρ′ ∈ [[Ψ′]]ρ.
2. If ∆ ` ∃∆′ and ρ ∈ [[∆]] then there is some ρ′ ∈ [[∆′]]ρ.

4.4 Type Constructors
In order to interpret type constructors semantically, we need to re-
strict to well-kinded ones. However, we do not wish to define the
semantics of a type constructor by recursion on its kinding deriva-
tion. After all, since we have subkinding, the kinding derivation is
not unique. This dilemma can be solved by interpreting all type
constructors which have a simple kind. Using simple kind anno-
tations in type function λX:ι. F , we obtain a deterministic sim-
ple kinding judgement |∆| ` F : ι . By induction on this judge-
ment, whose derivation is in one-to-one correspondence with F ,
we can then define type (constructor) interpretation [[F]]ρ ∈ [[ι]] for
ρ ∈ [[|∆|]].

Simple kinding is standard, we only present some of the rules to
convey the idea. Here, |∆| shall denote a simple kinding context.

|∆| ` X : |∆|(X)

|∆|, X:ι ` F : ι′

|∆| ` λX:ι. F : ι→ ι′

|∆| ` F : ι→ ι′ |∆| ` G : ι

|∆| ` F G : ι′

|∆| ` ∀κ : (|κ| → ∗)→ ∗
Simple kinding is unique, so we have a partial computable function
taking a simple kinding context |∆| and a type constructor F and
computing its simple kind ι, if it exists.

Now given a derivation J :: |∆| ` F : ι and an environment
ρ ∈ [[|∆|]] we define the type interpretation [[J]]ρ ∈ [[|ι|]] by
recursion on J . Since J is completely determined by F and |∆|,
we simply write [[F]]ρ, hiding |∆| as it is implicit in the typing of
ρ.

[[X]]ρ = ρ(X)
[[λX:ι. F]]ρ(G ∈ [[ι]]) = [[F]]ρ[X 7→G]

[[F G]]ρ = [[F]]ρ([[G]]ρ)
[[1]]ρ = 1
[[×]]ρ(A,B) = A××B
[[→]]ρ(A,B) = A→→B
[[∀κ]]ρ(F ∈ [[|κ|]]→ CR) = ∀∀[[κ]]ρ

F
[[∃κ]]ρ(F ∈ [[κ|]]→ CR) = ∃∃[[κ]]ρ

F
[[µaS]]ρ = µ[[a]]ρ [[S]]ρ
[[νaR]]ρ = ν[[a]]ρ [[R]]ρ

([[S]]ρ)c = [[Sc]]ρ
([[R]]ρ)d = [[Rd]]ρ

Wellfounded Recursion 14 2013/3/29

The interpretation of F depends only on the value of ρ for the free
variables of F :

Lemma 17 (Well-definedness). If |∆| ` F : ι then (|∆| �
FV(F)) ` F : ι. If ρ ∈ [[|∆|]] and ρ′ = (ρ � FV(F)) then
[[F]]ρ = [[F]]ρ′ .

Theorem 18 (Soundness of type-level judgements). Let ` ∆ and
D := [[∆]] and ρ ≤ ρ′ ∈ D.

1. If ∆ ` F ⇒ κ or ∆ ` F ⇔ κ then |∆| ` F : |κ| and
[[F]]ρ ≤ [[F]]ρ′ ∈ [[κ]]ρ.

2. If ∆ ` F ≤π F ′ ⇒ κ or ∆ ` F ≤π F ′ ⇔ κ then
|∆| ` F, F ′ : |κ| and [[F]]ρ ≤

π [[F ′]]ρ′ ∈ [[κ]]ρ.

Proof. By induction on the derivation.

Lemma 19 (Soundness of normalizing substitution and applica-
tion). Let |∆| ` G : ι1.

1. If |∆|, X:ι1 ` F : ι2 then [[[G/X]ι1F]]ρ = [[F]]ρ[X 7→[[G]]ρ].

2. If |∆| ` F : ι1 → ι2 then [[F @ι1 G]]ρ = [[F]]ρ([[G]]ρ).

Lemma 20 (Soundness of substitution). If |∆′| ` F : ι and
|∆| ` τ : |∆′| then [[Fτ]]ρ = [[F]][[τ]]ρ

.

The interpretation can be extended to constraint types ?A by
adding the case:

[[m<m′ ⇒ A]]ρ = [[m]]ρ<[[m′]]ρ ⇒ [[A]]ρ

4.5 Patterns, copatterns, λ-abstractions
In this section, we explain patterns and copatterns by developing
semantic notions of pattern and pattern spine typing. These provide
us with semantic conditions when a definition λ~D in habits a
semantic type A. As a consequence, we can prove soundness of
syntactic pattern, pattern spine, and expression typing.

Semantic typing. We want to isolate conditions under which ob-
jects λ~D are member or a semantic type A ∈ CR. Let us recapitu-
late the proof for lambda calculus:

Lemma 21 (Lambda abstraction). The following implication, writ-
ten as a rule, holds for A,B ∈ CR.

∀s ∈ A. t[s/x] ∈ B
λx.t ∈ A→→B

Proof. First note that t ∈ B because x ∈ A, so t ∈ SN. By
definition of A→→B, it is sufficient to show (λx.t) s for arbitrary
s ∈ A. Since (λx.t) s is neutral, by CR3 we only need to show
that each of its reducts r is in B. We do this by induction on t ∈ SN
and s ∈ SN.

Case r = (λx.t′) s where t −→ t′: By induction hypothesis on
t′ ∈ SN.

Case r = (λx.t) s′ where s −→ s′: By i.h. on s′ ∈ SN.

Case r = t[s/x]: By assumption.

Next, we turn to the slightly more general case λ{p→ t}.

Semantic typing contexts and semantic pattern typing. A se-
mantic typing context E ∈ CXT(·) (E for typing environment) is a
finite map from term variables to semantic types, so E ∈ Var ⇀
CR. We write · for the empty semantic typing context, x:A for the
singleton and E , E ′ for the disjoint union. Semantic substitution typ-
ing σ ∈ E is defined as σ(x) ∈ E(x) for all x ∈ dom(E).

A parameterized semantic typing context E ∈ CXT(D) is
a family E(ρ) of semantic typing contexts indexed by semantic
type substitutions ρ that belong to a semantic kinding context D.

Each instance E(ρ) is a partial function from variables to semantic
types. We overload the notation for non-parameterized semantic
typing contexts by setting ·(ρ) = · and (x:A)(ρ) = x:A(ρ) and
(E , E ′)(ρ) = E(ρ), E ′(ρ) with dom(E(ρ)) ∩ dom(E ′(ρ)) = ∅.

For two differently parameterized semantic typing contexts
E1 ∈ CXT(D1) and E2 ∈ CXT(D2) we let their disjoint union
E1 ∗ E2 ∈ CXT(D1,D2) be defined by (E1 ∗ E2)(ρ1 ∈ D1, ρ2 ∈
D2) = (E1(ρ1), E2(ρ2)). Further, if E ∈ CXT(ΣDD′) and ρ ∈ D
we let the partial application E(ρ,) ∈ CXT(D′(ρ)) be defined by
E(ρ,)(ρ′) = E(ρ, ρ′).

If C(G)(ρ) is a type parameterized by another type G and a type
substitution ρ, we let CX be defined by (CX)(ρ) = C(ρ(X))(ρ \
X). In particular, (CX)(G/X, ρ) = C(G)(ρ). The notations DX
and EX are defined analogously.

A pattern p is semantically of type A in context E if it acts as
a bidirectional (invertible) map from E to A, i. e., pσ ∈ A for
all σ ∈ E , and, for any substitution σ with pσ ∈ A we have
σ ∈ E . Extending this to type substitutions we define semantic
pattern typing by

A / p↘ D; E :⇐⇒

∀τ, σ. (∃ρ ∈ D. σ ∈ E(ρ)) ⇐⇒ pτσ ∈ A.
Here, and in the following, τ denotes a syntactic type substitution.
Note that it is unconstrained, it needs not bear a relationship with
the semantic type substitution ρ.

One could have expected that semantic pattern typing implies
that p matches any introduction term v ∈ A. But since we are not
interested in pattern coverage, but merely strong normalization, we
do not require this strong guarantee.6

Lemma 22 (Semantic pattern typing). The following implications,
written as rules, hold.

A / x↘ ·; (x:A) 1 / ()↘ ·; ·

A1 / p1 ↘ D1; E1 A2 / p2 ↘ D2; E2
A1××A2 / (p1, p2)↘ D1,D2; E1 ∗ E2

∃∃β<α↑Sc(µβS) / p↘ D; E
µαS / c p↘ D; E

F(G) / p↘ D(G); E(G) for all G ∈ K
∃∃KF / Xp↘ ΣX:KD; EX

F(∞) / p↘ D; E
∃∃βF(β) / ∞p↘ D; E F mon.

Proof. We consider a few rules.

∃∃β<α↑Sc(µβS) / p↘ D; E
µαS / c p↘ D; E

For µαS / c p ↘ D; E , first assume (c p)τσ ∈ µαS and de-
rive σ ∈ E(ρ) for some ρ ∈ D. Note that µαS = µα

↑
S,

thus, by definition, pτσ ∈ ∃∃β<α↑Sc(µβS). Using the assump-
tion ∃∃β<α↑Sc(µβS) / p↘ D; E , we conclude σ ∈ E(ρ) for some
ρ ∈ D. For the opposite direction, assume ρ ∈ D and σ ∈ E(ρ). By
the hypothesis, pτσ ∈ ∃∃β<α↑Sc(µβS), hence (c p)τσ ∈ µαS.

F(G) / p↘ D(G); E(G) for all G ∈ K
∃∃KF / Xp↘ ΣX:KD; EX

6 On the contrary, we can live with junk introductions in our semantic types.
For instance, it would not endanger normalization to throw the empty tuple
into each semantic type.

Wellfounded Recursion 15 2013/3/29

To prove ∃∃KF / Xp ↘ ΣX:KD; EX , first assume (Xp)τσ ∈
∃∃KF and show σ ∈ (EX)(G/X, ρ) = E(G)(ρ) for some G ∈ K
and ρ ∈ D(G). Since pτσ ∈ F(G) for some G ∈ K, we can
apply the hypothesis to obtain σ ∈ E(G)(ρ) for some ρ ∈ D(G).
For the other direction, assume G ∈ K and ρ ∈ D(G) and σ ∈
(EX)(G/X, ρ) and show (Xp)τσ ∈ ∃∃KF . Since σ ∈ E(G)(ρ),
by hypothesis, pτσ ∈ F(G), yielding (Xp)τσ ∈ ∃∃KF .

F(∞) / p↘ D; E
∃∃βF(β) / ∞p↘ D; E F mon.

First, assume (∞p)τσ ∈ ∃∃βF(β) which entails pτσ ∈ F(β) for
some β ≤∞. Since F is monotone, thus, pτσ ∈ F(∞), we can
apply the hypothesis to infer σ ∈ E(ρ) for some ρ ∈ D.

For the other direction, assume ρ ∈ D and σ ∈ E(ρ). By the
hypothesis, pτσ ∈ F(∞), thus, (∞p)τσ ∈ ∃∃βF(β).

Theorem 23 (Soundness of pattern typing). Let ` ∆0,∆ and
∆0,∆ ` Γ. If ∆; Γ `∆0 p ⇔ A and ρ0 ∈ [[∆0]] then
[[A]]ρ0 / p↘ [[∆]]ρ0 ; [[Γ]](ρ0,).

Proof. By induction on ∆; Γ `∆0 p⇔ A using the inferences of
Lemma 22.

Lemma 24 (Single pattern abstraction). Let E ∈ Var → CR and
B ∈ CR.

A / p↘ D; E ∀ρ ∈ D, σ ∈ E(ρ). tτσ ∈ B
λ{p→ t} ∈ A→→B

Proof. Assume s ∈ A and show λ{p → t} s −→ r implies
r ∈ B. The interesting case is s / p ↘ τ ;σ and r = tτσ. Since
s = pτσ ∈ A, we have σ ∈ E(ρ) for some ρ ∈ D, hence r ∈ B
by assumption. Example: If C ∈ [[∗]] and
k ∈ ∀∀X∈[[∗]](X→→ C) then λ{Xx 7→ kX x} ∈ (∃∃X∈[[∗]]X)→→ C.

Lemma 25 (Case). Let p1..n be patterns (not necessarily disjoint),
Ek ∈ Var→ CR for k = 1..n and B ∈ CR.

∀k : A / pk ↘ Dk; Ek and ∀ρ ∈ Dk, σ ∈ Ek. tkσ ∈ B
λ{p1 → t1, . . . , pn → tn} ∈ A→→B

Proof. Assume s ∈ A and r := λ{p1 → t1, . . . , pn → tn} s.
Since r is neutral it is sufficient to show r −→ r′ implies r′ ∈ B.
We proceed by induction on ~t, s ∈ SN. If s matches none of ~p,
the only redexes are in ~t, s. The interesting case is s / pk ↘ τ ;σ
and r′ = tkτσ for some (not necessarily unique) k. Since s =
pkτσ ∈ A, we have σ ∈ Ek(ρ) for some ρ ∈ Dk, hence r′ ∈ B by
assumption.

Lemma 26 (Single destructor pattern).

t ∈ ∀∀β<α↑Rd(νβR)

λ{.d→ t} ∈ ναR

Proof. It is sufficient to show λ{.d→ t}.d′ ∈ ∀∀β<α↑Rd′(νβR)
for all d′ ∈ dom(R), by analyzing the reducts of this neutral term.
If d′ 6= d the redex is stuck, only reductions in t are possible which
are covered by t ∈ SN. Otherwise, λ{.d → t}.d −→ t and we
conclude by the assumption.

Lemma 27 (Records). Let d1..n be projections (not necessarily
distinct ones).

for all k = 1..n : tk ∈ ∀∀β<α↑Rdk (νβR)

λ{.d1 → t1, . . . , .dn → tn} ∈ ναR
Proof. Assume an arbitrary d ∈ dom(R) and let r := λ{.d1 →
t1, . . . , .dn → tn}.d. We show r ∈ ∀∀β<α↑Rd(νβR) by analyz-
ing the reducts of this neutral term. If d 6∈ ~d the redex is stuck,
only reductions in ~t are possible which are covered by ~t ∈ SN.

Otherwise, some tk is a possible reduct of r and we conclude by
the hypothesis for tk.

In the following, we work our way up to the general case of
multiple clauses with multiple patterns per clause.

Semantic typing in context. Given a parameterized semantic type
C ∈ D′ → CR we define weakening WDC ∈ (D,D′) → CR of
C by semantic kinding context D as (WDC)(ρ ∈ D, ρ′) = C(ρ′).
Given a semantic type family C ∈ (D,D′) → CR and a semantic
type substitution ρ ∈ D, we let the partial application C(ρ,) ∈
D′ → CR be defined by C(ρ,)(ρ′) = C(ρ, ρ′). Semantic typing
under a context is defined by

D; E ` t ∈ C :⇐⇒ ∀ρ ∈ D, σ ∈ E(ρ), τ. tτσ ∈ C(ρ)

Lemma 28 (Partial instantiation). The following implications
hold:

D,D′; E ∗ E ′ ` t ∈ C
D′; E ′ ` tτσ ∈ C(ρ,)

ρ ∈ D, σ ∈ E(ρ)

ΣX:KD; EX ` t ∈ CX
D(G); E(G) ` t[G/X] ∈ C(G)

G ∈ K

Let P be a proposition depending on the pattern variables and
pattern type variables of a copattern spine ~q. We define the fol-
lowing shorthand for the replacement of the pattern variables by
expressions obtained from matching ~q against an elimination list ~e:

P [~e/~q] :⇐⇒ ∃τ, σ. ~e / ~q ↘ τ ;σ ∧ Pτσ

Semantic pattern spines. 7 A pattern spine ~q has to be understood
by its purpose, to serve as the lhs of a definition. Semantically, q
eliminates type A into C at contexts D; E if any definition λ{~q →
t} that can be formed with ~q is in A as long as the rhs t is in C
under contexts D; E . We further generalize this to partially applied
definitions λ{~q ′ ~q → t}~e where ~e matches ~q ′. We let

A | ~q ↘ D; E ; C :⇐⇒ ∀t, ~e ∈ SN.∀~q ′.

D; E ` t[~e/~q ′] ∈ C =⇒ λ{~q ′~q → t}~e ∈ A.

For reasoning about semantic pattern spines we will expand the
definition of pattern substitution so the implication becomes

∀τ, σ. ~e / ~q ′ ↘ τ ;σ ∧ D; E ` tτσ ∈ C
=⇒ λ{~q ′~q → t}~e ∈ A.

Lemma 29 (Semantic clause typing). The following implication
holds:

A | ~q ↘ D; E ; C D; E ` t ∈ C ρ ∈ D
λ{~q → t} ∈ A

Proof. With σid ∈ E(ρ) we have t = tσid ∈ C(ρ) ⊆ SN. The rest
follows by definition of semantic pattern spine typing with empty ~e
and empty ~q ′. Note that we cannot proceed ifD is inconsistent.

7 This definition is tricky to get right in a term-centered semantics. It might
be easier in a semantics based on orthogonality where eliminations are first-
class citizens (Pitts 2000).

Wellfounded Recursion 16 2013/3/29

Lemma 30 (Semantic pattern spine typing). The following impli-
cations hold.

A | · ↘ ·; ·;A

A1 / p↘ D1; E1 A2 | ~q ↘ D2; E2; C
A1→→A2 | p ~q ↘ D1,D2; E1 ∗ E2; WD1C

∀∀β<α↑Rd (νβR) | ~q ↘ D; E ; C
ναR | .d ~q ↘ D; E ; C

∀G ∈ K. F(G) | ~q ↘ D(G); E(G); C(G)

∀∀KF | X ~q ↘ ΣX:KD; EX; CX

F(∞) | ~q ↘ D; E ; C
∀∀βF(β) | ∞ ~q ↘ D; E ; C F antitone

Proof. Let us consider a few of these statements:

A1 / p↘ D1; E1 A2 | ~q ↘ D2; E2; C
A1→→A2 | p ~q ↘ D1,D2; E1 ∗ E2; WD1C

Assume ~e ∈ SN with ~e / ~q ′ ↘ τ ;σ and D1,D2; E1, E2 ` tτσ ∈
WC and show λ{~q ′p~q → t}~e ∈ A1→→A2. Assume s ∈ A1.

Case s / p ↘ τ1;σ1. Then σ1 ∈ E1(ρ1) for some ρ1 ∈ D1 by
the first premise of the “rule”. Since ~es / ~q ′p↘ τ, τ1;σ, σ1

and (WC)(ρ1) = C, we haveD2; E2 ` t(τ, τ1)(σ, σ1) ∈ C.
Thus, by the second premise, λ{~q ′p~q → t}~es ∈ A2.

Case s does not match p. Then λ{~q ′p~q → t}~es ∈ ∅ ⊆ A2

because it is terminally stuck.

∀G ∈ K. F(G) | ~q ↘ D(G); E(G); C(G)

∀∀KF | X ~q ↘ ΣX:KD; EX; CX
Assume ~e / ~q ′ ↘ τ ;σ and ΣX:KD; EX ` tτσ ∈ CX and show
r := λ{~q ′X~q → t}~e ∈ ∀∀KF . First r ∈ SN since t, ~e ∈ SN and
r is not a redex. Now assume G and G ∈ K. Since ~eG / ~q ′X ↘
τ,G/X;σ and D(G); E(G) ` t(τ,G/X)σ ∈ C(G), we can
conclude λ{~q ′X~q → t}~eG ∈ F(G) by the premise.

F(∞) | ~q ↘ D; E ; C
∀∀βF(β) | ∞ ~q ↘ D; E ; C F antitone

Assume ~e / ~q ′ ↘ τ ;σ and D; E ` tτσ ∈ C and show
λ{~q ′∞ ~q → t}~e ∈ ∀∀βF(β). Assume b and β ≤ ∞. Since
~e b / ~q ′∞ ↘ τ ;σ we can conclude λ{~q ′∞ ~q → t}~e b ∈
F(∞) ⊆ F(β) by the premise and antitonicity of F .

Theorem 31 (Soundness of pattern spine typing). Let ` ∆0,∆
and ∆0,∆ ` Γ. If ∆; Γ | A `∆0 ~q ⇒ C and ρ0 ∈ [[∆0]] then
[[A]]ρ0 | ~q ↘ [[∆]]ρ0 ; [[Γ]](ρ0,); [[C]](ρ0,).

Proof. By induction on ∆; Γ | A `∆0 ~q ⇒ C using Lem. 30.

Semantic declaration and signature well-formedness. Having
understood definitons by clauses λ~D we can now show that any
well-typed term inhabits its corresponding semantic type. For func-
tion symbols f , we simply assume it, by postulating a sematically
well-formed signature Σ. We define |= δ and |= Σ by

|= (f : A = ~D) :⇐⇒ f ∈ [[A]]
|= Σ :⇐⇒ ∀δ ∈ Σ. |= δ.

Theorem 32 (Soundness of expression typing). Assume |= Σ. Let
` ∆ and ∆ ` Γ and ∆ ` C and D = [[∆]] and E(ρ) = [[Γ]]ρ and
C(ρ) = [[C]]ρ.

1. If ∆; Γ ` r ⇒ C in Σ then D; E ` r ∈ C.
2. If ∆; Γ ` t⇔ C in Σ then D; E ` t ∈ C.
3. If ∆; Γ ` ~D ⇔ C in Σ then D; E ` λ~D ∈ C.

Proof. Simultaneously by induction on the typing derivation.

Case Function symbol.

∆; Γ ` f ⇒ Σ(f)

Follows directly by well-formedness of the signature.

Case Subsumption.

∆; Γ ` r ⇒ A ∆ ` A ≤ C
∆; Γ ` r ⇔ C

Follows by soundness of subtyping.

Case Definition clause.

∆′; Γ′ | A `∆ ~q ⇒ C ∆ ` ∃∆′
∆,∆′; Γ,Γ′ ` t⇔ C

∆; Γ ` {~q → t}⇔ A

Let A(ρ) = [[A]]ρ and ρ ∈ D and σ ∈ E(ρ) and τ arbi-
trary and show λ{~q → tτσ} ∈ A(ρ). We set D′ = [[∆′]]ρ
and E ′(ρ′) = [[Γ′]](ρ,ρ′) and C′(ρ′) = [[C]](ρ,ρ′). By induc-
tion hypothesis D′; E ′ ` tτσ ∈ C′, and by Theorem 31
A(ρ) | ~q ↘ D′; E ′; C′ entailing λ{~q → tτσ} ∈ A(ρ)
by Lemma 29. The lemma can be applied since ∆ ` ∃∆′
guarantess that for each ρ ∈ D there is some ρ′ ∈ D′(ρ).

What remains to be proven is that well-typed programs yield,
after measure erasure, semantically well-formed signatures. This
is shown mutual block by mutual block using a lexicographic
induction on ordinals as given by the termination measure assigned
to each block. A formal description of program typing and its
soundness proof is given in the next section.

5. Program typing and soundness
5.1 Program typing
Figure 8 presents the operations and judgements needed to type-
check programs. The rules describe a type-checking process that is
at the core of MiniAgda (Abel 2010).

The interesting rule is how to type-check a mutual block ~′δ with
measure annotations in the function types. First, we check well-
formedness of the measured function types ′A and ensure that all
measures have the same length m. Then we check each individual
declaration ′δ in the mutual block. The form of such a declaration
is

f : (∀Ψ. m⇒ A) = Ψ̂ ~D[~f/−⇀xf].

This means that f should consist of a list of clauses Ψ̂ ~D that all start
by abstracting over the size variables Ψ̂ declared in size context Ψ.
These are the size variables that can be used in measure m. Further,
before type-checking is completed, the recursive occurrences of the
mutually defined functions ~f are represented as special variables
−⇀xf in the clauses ~D; after type-checking, they get substituted by
the actual function symbols. This trick allows us to type-check
the clauses under a special context Γ = ~′δ

<m
giving constrained

types xf ′ : ∀Ψ′.m′<m ⇒ A′ to mutually defined functions
f ′ : ∀Ψ′.m′ ⇒ A′. Thus, we ensure that recursive-call sequences
are well-founded w. r. t. the termination measure.

After a mutual block ~′δ has been checked, its measure-erased
declarations |~′δ| are added to the signature Σ. The entry point u of

Wellfounded Recursion 17 2013/3/29

′A
<m

= A ′δ
<m

= x:A ~′δ
<m

= Γ Measure replacement and |′A| = A |′δ| = δ |~′δ| = Σ |β| = Σ deletion.

(∀Ψ.m′ ⇒ A)<m = ∀Ψ.m′<m⇒ A

(f : ′A = ~D)<m = xf : ′A
<m

(~′δ)<m =
−−⇀
′δ
<m

|∀Ψ.m′ ⇒ A| = ∀Ψ. A
|f : ′A = ~D| = f : |′A| = ~D

|~′δ| =
−⇀
|′δ|

|mutualm~′δ| = |~′δ|

`m ′A Measured-type well-formedness and ~′δ `m ′δ declaration typing.

` Ψ Ψ ` A Ψ `m m

`m ∀Ψ.m⇒ A

Ψ `m m for k = 1..n : ∆k; Γk | A `Ψ ~qk ⇒ Ck Ψ,∆k; ~′δ
<m
,Γk ` tk ⇔ Ck

~′δ `m (f : ∀Ψ.m⇒ A = {Ψ̂~q1 → t1σ; . . . ; Ψ̂~qn → tnσ})
σ = ~f/−⇀xf

` β Block, ` ~β in Σ blocks, and ` P program typing.

`m ′A for all (f :′A = ~D) ∈ ~′δ ~′δ `m ′δk for all k

` mutualm ~′δ

` · in Σ

` β in Σ ` ~β in Σ, |β|
` β, ~β in Σ

` ~β in · ` u⇒ A in |~β|
` ~β;u

Figure 8. Program and signature typing.

program ~β;u is finally checked in the signature |~β| created from all
mutual blocks ~β.

5.2 Soundness of program typing
In the following we prove program typing correct by giving a
meaning to measured types and declarations. The correctness of
mutually recursive definitions will follow from a lexicographic
induction on ordinals.

A measured type ′A is not a proper type, it does not have a

meaning by itself. Bounded type interpretation [[′A]]<~α assigns it
a meaning relative to a tuple of ordinals which has the same length
as the measure m in ′A.

[[∀Ψ.m⇒ A]]<~α = ∀∀ρ∈[[Ψ]] ([[m]]ρ < ~α)⇒ [[A]]ρ

[[′A]]<~α denotes a constrained type. It is the semantic counterpart of
′A
<m, as the following lemma proves:

Lemma 33 (Soundness of measure replacement). Let ′A =
∀Ψ.m⇒ A. If `n ′A and ρ ∈ [[Ψ]] then [[′A

<m
]]ρ = [[′A]]<[[m]]ρ .

Proof. Let ~α = [[m]]ρ. Recall that ′A<m
= ∀Ψ′.m′ < m ⇒ A′

where Ψ′ is a renaming of Ψ and m′, A′ are the corresponding re-
namings of of m, A. We thus have [[′A

<m
]]ρ = (∀∀ρ′∈[[Ψ′]]([[m

′]]ρ′ <

~α)⇒ [[A′]]ρ′) = [[′A]]<~α.
Erasure of the measure in ′A turns a bounded quantification into

an unbounded one:

Lemma 34 (Soundness of measure erasure). Let m be the length
of the measure in measure-decorated type ′A. Then [[|′A|]] =⋂
~α∈Om [[′A]]<~α.

Proof. For “⊆”, assume r ∈ [[|′A|]] = [[∀Ψ. A]] and ~α ∈ Om and
ρ ∈ [[Ψ]] and ~b : Ψ and show r~b ∈ ([[m]]ρ < ~α) ⇒ [[A]]ρ. This
follows from r~b ∈ [[A]]ρ, since by definition A ⊆ (P ⇒ A) for
all P,A.

For “⊇”, assume r ∈
⋂
~α ∀∀ρ∈[[Ψ]] ([[m]]ρ < ~α) ⇒ [[A]]ρ and

ρ ∈ [[Ψ]] and ~b : Ψ and show r~b ∈ [[A]]ρ. Choosing some

~α > [[m]]ρ (this is always possible due to the open nature of O),
we conclude by instantiation of the first assumption.

In order to justify a block of mutually recursive functions, we
perform an lexicographic induction over over a tuple ~α of ordinals.
This requires us to interpret the declarations of the mutual block
relative to the upper bound ~α on the measure of the recursive calls.

Bounded semantic declaration typing for body ~′δ |=~α
body

′δ and

function symbol |=~α ′δ are defined by

f1:′A1 = ~D1, . . . , fn:′An= ~Dn |=~α
body f : (∀Ψ.m⇒ A) = ~D

:⇐⇒ if fi ∈ [[′Ai]]
<~α for i = 1..n

and ρ ∈ [[Ψ]] with [[m]]ρ ≤ α
and~b : Ψ

then (λ~D)~b ∈ [[A]]ρ

|=~α f : (∀Ψ.m⇒ A) = ~D

:⇐⇒ if ρ ∈ [[Ψ]] with [[m]]ρ ≤ α
and~b : Ψ

then f ~b ∈ [[A]]ρ.

In these definition~b : Ψ shall mean that~b is a list of size expressions
that has the same length as size context Ψ.

Corollary 35 (Soundness of measure erasure in declarations). |=
|′δ| iff |=~α ′δ for all α ∈ Om.

Lemma 36 (Soundness of declaration typing). If ~′δ `m ′δ then
~′δ |=~α

body
′δ for all ~α ∈ Om.

Theorem 37 (Soundness of block typing). Let |= Σ. If ` β in Σ
then |= Σ, |β|.

Proof. Let n the number of mutual declarations and ′δk = (fk :
′Ak = ~Dk) and ′Ak = ∀Ψk.mk ⇒ Ak for k = 1..n. Note that

Wellfounded Recursion 18 2013/3/29

|~′δ| = (fk : ∀Ψk. Ak = ~Dk)k=1..n in this case.

`m ′Ak for k = 1..n ~′δ `m ′δk in Σ for k = 1..n

` mutualm ~′δ in Σ

By soundness of declaration typing (Lemma 36) we have ~′δ |=~α
body

′δk for ~α ∈ Om and k = 1..n. By lexicographic induction
on ~α ∈ Om this entails |=~α ′δk for k = 1..n, since fk B
λ~Dk in the extended signature Σ, |~′δ|. This entails |= |′δk| by
Corollary 35.

Corollary 38 (Soundness of program typing).

1. If |= Σ and ` ~β in Σ then |= Σ, |~β|.
2. If ` ~β; t then t ∈ SN in signature |~β|.

6. Conclusion
Our work provides a uniform type-based approach to proving ter-
mination of (co)inductive definitions. It is centered around patterns
and copatterns which allow us to reason about both finite and infi-
nite data by well-founded induction. Proving strong normalization
for this language is a significant step towards understanding well-
founded corecursion in terms of the depth of observation we can
safely make.

As a next step, we plan to extend our work to full dependently
typed systems to allow coinductive definitions to be defined and
reasoned with by observations. This will put coinduction in these
systems on a robust foundation. We have already implemented size-
based type checking for patterns and copatterns in MiniAgda (Abel
2012) which gives us confidence in the approach.

References
A. Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types.

PhD thesis, Ludwig-Maximilians-Universität München, 2006.

A. Abel. Polarized subtyping for sized types. MSCS, 18:797–822, 2008a.
Special issue on subtyping, edited by Healfdene Goguen and Adriana
Compagnoni.

A. Abel. Semi-continuous sized types and termination. LMCS, 4(2:3):1–33,
2008b. CSL’06 special issue.

A. Abel. MiniAgda: Integrating sized and dependent types. In Partiality
and Recursion (PAR 2010), volume 43 of EPTCS, pages 14–28, 2010.

A. Abel. Type-based termination, inflationary fixed-points, and mixed
inductive-coinductive types. EPTCS, 77:1–11, 2012. Proceedings of
FICS 2012.

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming
infinite structures by observations. In POPL’13, pages 27–38. ACM,
2013.

T. Altenkirch and N. A. Danielsson. Termination checking in
the presence of nested inductive and coinductive types. Short
note supporting a talk given at PAR 2010, Workshop on Par-
tiality and Recursion in Interactive Theorem Provers, FLoC 2010,
2010. URL http://www.cse.chalmers.se/~nad/publications/
altenkirch-danielsson-par2010.pdf.

R. M. Amadio and S. Coupet-Grimal. Analysis of a guard condition in
type theory (extended abstract). In FoSSaCS’98, volume 1378 of LNCS,
pages 48–62. Springer, 1998.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based
termination of recursive definitions. MSCS, 14(1):97–141, 2004.

G. Barthe, B. Grégoire, and C. Riba. Type-based termination with sized
products. In CSL’08, volume 5213 of LNCS, pages 493–507. Springer,
2008.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts

in Theoretical Computer Science. An EATCS Series. Springer, Berlin,
2004.

F. Blanqui. A type-based termination criterion for dependently-typed
higher-order rewrite systems. In RTA’04, volume 3091 of LNCS, pages
24–39. Springer, 2004.

F. Blanqui and C. Riba. Combining typing and size constraints for checking
the termination of higher-order conditional rewrite systems. In LPAR’06,
volume 4246 of LNCS, pages 105–119. Springer, 2006.

T. Coquand. Infinite objects in type theory. In Types for Proofs and
Programs (TYPES ’93), volume 806 of LNCS, pages 62–78. Springer,
1993.

N. A. Danielsson. Beating the productivity checker using embedded lan-
guages. Partiality and Recursion (PAR 2010), 2010.

P. Dybjer. A general formulation of simultaneous inductive-recursive defi-
nitions in type theory. JSL, 65(2):525–549, 2000.

N. Ghani, P. Hancock, and D. Pattinson. Representations of stream proces-
sors using nested fixed points. LMCS, 5(3), 2009.

E. Giménez. Un Calcul de Constructions Infinies et son application a
la vérification de systèmes communicants. PhD thesis, Ecole Normale
Supérieure de Lyon, 1996. Thèse d’université.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in TCS. CUP, 1989.

J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. In POPL’96, pages 410–423, 1996.

INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.4
edition, 2012. URL http://coq.inria.fr/.

G. Jones and J. Gibbons. Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips. Technical report, University
of Auckland, 1993. Computer Science Report No. 71.

U. Norell. Towards a Practical Programming Language Based on Depen-
dent Type Theory. PhD thesis, Chalmers, Göteborg, Sweden, 2007.

N. Oury. Coinductive types and type preservation. Message on the coq-
club mailing list, 2008. URL https://sympa.inria.fr/sympa/
arc/coq-club/2008-06/msg00022.html.

L. Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of
Technology, 2000.

A. M. Pitts. Parametric polymorphism and operational equivalence. MSCS,
10(3):321–359, 2000.

J. L. Sacchini. On Type-Based Termination and Pattern Matching in
the Calculus of Inductive Constructions. PhD thesis, INRIA Sophia-
Antipolis and École des Mines de Paris, 2011.

J. L. Sacchini. Type-based productivity of stream definitions in the calculus
of constructions. In LICS’13, 2013. To appear.

B. A. Sijtsma. On the productivity of recursive list definitions. ACM Trans.
Prog. Lang. Syst., 11(4):633–649, 1989.

C. Sprenger and M. Dam. On the structure of inductive reasoning: Circular
and tree-shaped proofs in the µ-calculus. In FoSSaCS’03, volume 2620
of LNCS, pages 425–440. Springer, 2003.

M. Steffen. Polarized Higher-Order Subtyping. PhD thesis, Technische
Fakultät, Universität Erlangen, 1998.

P. Taylor. Intuitionistic sets and ordinals. JSL, 61(3):705–744, 1996.
J. Vouillon and P.-A. Melliès. Semantic types: A fresh look at the ideal

model for types. In POPL’04, pages 52–63. ACM, 2004.
H. Xi. Dependent types for program termination verification. HOSC, 15

(1):91–131, 2002.

A. Appendix
The appendix contains a recapitulation of syntax and notational
definitions of Fcop

ω and the detailed rules for size, kind, and type
well-formedness, and size comparison, subkinding and subtyping.
We also provide pattern matching and reduction rules in detail.

Wellfounded Recursion 19 2013/3/29

http://www.cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf
http://www.cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf
http://coq.inria.fr/
https://sympa.inria.fr/sympa/arc/coq-club/2008-06/msg00022.html
https://sympa.inria.fr/sympa/arc/coq-club/2008-06/msg00022.html

Language grammar.

SizeVar 3 i, j size variable
SizeExp 3 a, b ::= i+ n | ∞+ n size expression (n ≥ 0)

SizeExp ⊆ SizeExp+ 3 a+, b+ ::= a | n extended size expression (n ≥ 0)
SizeExp+ ⊆ Measure 3 m ::= a+ | a+,m measure expression

Cond 3 c ::= m<m′ condition

Pol 3 π ::= ◦ | + | − | > variance
SKind 3 ι ::= ∗ | o | ι→ ι′ simple kinds
Kind 3 κ ::= ∗ | <a | πκ→ κ′ kinds with variance information

SizeVar ⊆ TyVar 3X,Y, Z, i, j type and size variables
TyVar ∪ SizeExp ⊆ TyAtom 3K ::= X | a | 1 | × | → type atoms

TyAtom ⊆ Type 3 F,G,A,B,C ::= K | λX:ι. F | F G type-level lambda-calculus
| ∀κ | ∃κ quantifiers
| µaS | νaR variant and record types

MType 3 ′A, ′B ::= ∀Ψ.m⇒ C type with measure
CType 3 ?A, ?B ::= ∀Ψ. c⇒ C constrained type
Variant 3 S ::= 〈c1:F1; . . . ; cn:Fn〉 variant row (n ≥ 0)
Record 3 R ::= {d1:F1; . . . ; dn:Fn} record row (n ≥ 0)

Cons 3 c constructor (variant label)
Proj 3 d destructor (record label)
Var 3 x, y, z term variable

TyVar ⊆ TyPat 3 Q ::= X | ∞ type pattern
Var ⊆ Pat 3 p ::= x | () | (p1, p2) | c p | Qp pattern

Pat ∪ TyPat ⊆ Copat 3 q ::= p | Q | .d copattern
PatSp 3 q ::= ~q pattern spine

Fun 3 f, g, h defined function symbol
Elim 3 e ::= t | G | .d eliminations

Var ⊆ App 3 u ::= x | f | r e applicative expressions
Intro 3 v ::= () | (t1, t2) | c t | Gt introductions (checkable)

App ∪ Intro ⊆ Exp 3 r, s, t ::= u | (t : A) inferable expressions
| v | λ~D intros, anonymous object (checkable)

DCl 3D ::= {~q → t} definition clause
Def 3 ~D ::= {D1; . . . ;Dn} definition

Decl 3 δ ::= f : A = ~D declaration
MDecl 3 ′δ ::= f : ′A = ~D declaration with measure
Block 3 β ::= mutualm ~′δ mutual block (m ≥ 1)

Prg 3 P ::= ~β; t program

Sig 3 Σ ::= ~δ signature
SizeCxt 3 Ψ ::= · | Ψ, i:π(<a) size variable context

SizeCxt ⊆ TyCxt 3∆ ::= · | ∆, X:πκ type/size variable context
Cxt 3 Γ ::= · | Γ, x:A | Γ, x:?A term variable context

Figure 9. Syntax.

Wellfounded Recursion 20 2013/3/29

Notation.

κ
π→ κ′ for πκ→ κ′ function kind

κ→ κ′ for κ
◦→ κ′ default variance

≤a for <(a+ 1) weak bound
size for ≤∞

λXF for λX:ι. F if ι inferable
A×B for (×)AB product type
A→ B for (→)AB function type
∀X:κ.A for ∀κ(λX:|κ|. A) universal type
∃X:κ.A for ∃κ(λX:|κ|. A) existential type
∀j<a.A for ∀<a (λj:o.A) bounded universal
∃j<a.A for ∃<a (λj:o.A) bounded existential
Sc for F where (c:F) ∈ S type of constructor
Rd for F where (d:F) ∈ R type of destructor

∆, X:κ for ∆, X:◦κ default variance
∆, i<a for ∆, i:◦(<a) default variance

· → A for A context abstraction
∀∆, X:κ.A for ∀∆. ∀X:κ.A ∀∆. A

·̂ for · context domain
∆̂, X:πκ for ∆̂, X ∆̂ (variable list)

(t1, t2, . . . , tn) for (t1, (t2, . . . , tn)) n-ary tuples
λx. t for λ{x→ t} lambda abstraction
λ~q. t for λ{~q → t} single-clause object

Figure 10. Notational definitions.

π ≤ π′ Lattice of variances and ππ′ variance composition (commutative).

π ≤ π ◦ ≤ π π ≤ > >π = > ◦π = ◦ (if π 6= >) +π = π −− = +

π−1π′ Variance inverse composition.

>−1π = ◦ ◦−1◦ = ◦ ◦−1π = > (if π 6= >) +−1π = π −−1π = −π

π−1∆ Variance inverse composition with kinding context.

π−1· = · π−1(∆, X:π′κ) = (π−1∆), X:(π−1π′)κ −∆ = −−1∆

Figure 11. Variances (polarities).

Wellfounded Recursion 21 2013/3/29

Ψ ` a Well-formed sizes, ` Ψ well-formed size contexts, and Ψ ` i < a size bound lookup.

Ψ ` ∞+ n

Ψ ` i < a

Ψ ` i+ n ` ·
` Ψ ◦−1Ψ ` a
` Ψ, i:π(<a)

(i:π(<a)) ∈ Ψ

Ψ ` i < a
π ≤ +

∆ ` ~a⇔ Ψ Well-formed size substitution

Ψ ` ·⇔ ·
Ψ′ ` ~a⇔ Ψ τ = ~a/Ψ̂ Ψ′ ` a < bτ

Ψ′ ` ~a a⇔ Ψ, i : π(<b)

Ψ ` a < b Strict and Ψ ` a ≤ b weak size comparison.

n < m

Ψ ` ∞+ n <∞+m

n < m Ψ ` i < a

Ψ ` i+ n < i+m

Ψ ` i <∞
Ψ ` i+ n <∞+m

Ψ ` i <∞+m

Ψ ` i+ n <∞+ (m+ n)

Ψ ` a+ n ≤ b
Ψ, i:π(<a),Ψ′ ` i+ n < b

π ≤ +
Ψ ` a < b+ 1

Ψ ` a ≤ b

Ψ `1 a
+ Extended size and Ψ `k m Ψ ` m measure well-formedness.

Ψ `1 n

Ψ ` a
Ψ `1 a

Ψ `1 a
+ Ψ `k m

Ψ `k+1 a+,m

Ψ `k m

Ψ ` m
k is length of m

Ψ ` a+ < b+ Extending strict and Ψ ` a+ ≤ b+ weak size comparison.

n1 < n2

Ψ ` n1 < n2

n1 < n2

Ψ ` n1 < i+ n2 Ψ ` n1 <∞+ n2

Ψ ` a+ < b+ + 1

Ψ ` a+ ≤ b+

Ψ ` c Ψ ` m < m′ Strict and Ψ ` m ≤ m′ weak measure comparison.

Ψ ` a+
1 < a+

2

Ψ ` a+
1 ,m1 < a+

2 ,m2

Ψ ` a+
1 ≤ a

+
2 Ψ ` m1 < m2

Ψ ` a+
1 ,m1 < a+

2 ,m2

Ψ ` a+
1 ≤ a

+
2 Ψ ` m1 ≤ m2

Ψ ` a+
1 ,m1 ≤ a+

2 ,m2

|κ| = ι Kind erasure defined by |∗| = ∗ and |<b| = o and |πκ→ κ′| = |κ| → |κ′|.

Ψ ` κ Wellformed kinds.

Ψ ` ∗
Ψ ` a

Ψ ` <a
−Ψ ` κ Ψ ` κ′

Ψ ` πκ→ κ′

Ψ ` κ ≤ κ′ Subkinding.

Ψ ` ∗ ≤ ∗
Ψ ` a ≤ b

Ψ ` (<a) ≤ (<b)

π′ ≤ π −Ψ ` κ′1 ≤ κ1 Ψ ` κ2 ≤ κ′2
Ψ ` πκ1 → κ2 ≤ π′κ′1 → κ′2

Ψ ` O ≤π O′ for O ::= a | m | κ Parametrized size, measure, and kind comparison.

Ψ ` O ≤ O′ Ψ ` O′ ≤ O
Ψ ` O ≤◦ O′

Ψ ` O ≤ O′

Ψ ` O ≤+ O′
Ψ ` O′ ≤ O

Ψ ` O ≤− O′ Ψ ` O ≤> O′

Figure 12. Sizes, measures, and kinds.

Wellfounded Recursion 22 2013/3/29

∆ ` A Well-formed types (entry point for kinding) and ∆ ` F ⇒ κ kinding (inference mode).

∆ ` A⇒ ∗
∆ ` A ∆ ` 1⇒ ∗ ∆ ` ×⇒ ∗ +→ ∗ +→ ∗ ∆ ` →⇒ ∗ −→ ∗ +→ ∗

∆ ` a
∆ ` a⇒ ≤a

(X:πκ) ∈ ∆

∆ ` X ⇒ κ
π ≤ +

∆ ` F ⇒ κ
π→ κ′ π−1∆ ` G⇔ κ

∆ ` F G⇒ κ′

−∆ ` κ

∆ ` ∀κ ⇒ (κ
◦→ ∗) +→ ∗

∆ ` κ

∆ ` ∃κ ⇒ (κ
◦→ ∗) +→ ∗

∆ ` a ∆ ` S ⇔ ∗ ◦→ ∗
∆ ` µaS ⇒ ∗

−∆ ` a ∆ ` R⇔ ∗ ◦→ ∗
∆ ` νaR⇒ ∗

∆ ` F ⇔ κ Kinding (checking mode).

∆ ` F ⇒ κ ∆ ` κ ≤ κ′

∆ ` F ⇔ κ′
|κ| = ι ∆, X:πκ ` F ⇔ κ′

∆ ` λX:ι. F ⇔ πκ→ κ′

∆ ` Sc ⇔ κ for all c ∈ S
∆ ` S ⇔ κ

∆ ` Rd ⇔ κ for all d ∈ R
∆ ` R⇔ κ

∆ ` ?A Well-formed constrained types.

∆ ` m ∆ ` Ψ ∆,Ψ ` m′ ∆,Ψ ` A
∆ ` ∀Ψ. m′<m⇒ A

∆ ` ∆′ Well-formed kinding and ∆ ` Γ typing contexts.

∆ ` ·
◦−1∆ ` κ ∆, X:πκ ` ∆′

∆ ` X:πκ,∆′ ∆ ` ·
∆ ` Γ ∆ ` A

∆ ` Γ, x:A

∆ ` Γ ∆ ` ?A

∆ ` Γ, x:?A

Figure 13. Kinding

a↑ Bound normalization defined by (∞+ n)↑ =∞+ 1 for n ≥ 0 and a↑ = a for a ::= i+ n.

∆ ` F ≤π F ′ ⇒ κ for π 6= > Subtyping and type equality (inference mode).

∆ ` K ⇒ κ

∆ ` K ≤π K ⇒ κ

∆ ` F ≤π F ′ ⇒ π1κ1 → κ2 π−1
1 ∆ ` G ≤π1π G′ ⇔ κ1

∆ ` F G ≤π F ′G′ ⇒ κ2

−∆ ` κ ≤−π κ′ κ′′ = max−π(κ, κ′)

∆ ` ∀κ ≤π ∀κ′ ⇒ (κ′′
◦→ ∗) −→ ∗

∆ ` κ ≤π κ′ κ′′ = maxπ(κ, κ′)

∆ ` ∃κ ≤π ∃κ′ ⇒ (κ′′
◦→ ∗) +→ ∗

max+ = max◦ = max
max− = min

∆ ` a↑ ≤π a′↑ ∆ ` S ≤π S′ ⇔ ∗ ◦→ ∗
∆ ` µaS ≤π µa′S′ ⇒ ∗

−∆ ` a↑ ≤−π a′↑ ∆ ` R ≤π R′ ⇔ ∗ ◦→ ∗
∆ ` νaR ≤π νa′R′ ⇒ ∗

∆ ` F ≤π F ′ ⇔ κ Subtyping and type equality (checking mode) and ∆ ` A ≤ A′ entry point for subtyping.

∆ ` F ≤> F ′ ⇔ κ

∆ ` A ≤π A′ ⇒ ∗
∆ ` A ≤π A′ ⇔ ∗

∆, X:π1κ1 ` (F @ X) ≤π (F ′ @ X)⇔ κ2

∆ ` F ≤π F ′ ⇔ π1κ1 → κ2

∆ ` Sc ≤π S′c ⇔ κ for all c ∈ S
∆ ` S ≤π S′ ⇔ κ

∆ ` Rd ≤π R′d ⇔ κ for all d ∈ R′

∆ ` R ≤π R′ ⇔ κ

∆ ` A ≤+ A′ ⇒ ∗
∆ ` A ≤ A′

Figure 14. Subtyping.

Wellfounded Recursion 23 2013/3/29

t / p↘ τ ;σ Pattern, e / q ↘ τ ;σ destructor pattern, and ~e / ~q ↘ τ ;σ pattern spine matching.

t / x↘ ·; t/x () / ()↘ ·; ·
t1 / p1 ↘ τ1;σ1 t2 / p2 ↘ τ2;σ2

(t1, t2) / (p1, p2)↘ τ1, τ2;σ1, σ2

t / p↘ τ ;σ

c t / c p↘ τ ;σ

t / p↘ τ ;σ
Gt / Xp↘ G/X, τ ;σ

t / p↘ τ ;σ
Gt / ∞p↘ τ ;σ

G / X ↘ G/X; · G /∞↘ ·; · .d / .d↘ ·; · · / · ↘ ·; ·
e / q ↘ τ ;σ ~e / ~q ↘ τ ′;σ′

e~e / q ~q ↘ τ, τ ′;σ, σ′

t 7→ t′ Weak head reduction.

~e / ~q ↘ τ ;σ

λ{~q → t}~e~e ′ 7→ tτσ ~e ′
λDk ~e 7→ t′ for some k

λ~D~e 7→ t′

λ~D~e 7→ t′

f ~e 7→ t′
(f :A = ~D) ∈ Σ

t −→ t′ Reduction of terms, D −→ D′ clauses, and ~D −→ ~D′ definitions.

t 7→ t′

t −→ t′
t1 −→ t′1

(t1, t2) −→ (t′1, t2)

t2 −→ t′2
(t1, t2) −→ (t1, t′2)

t −→ t′

c t −→ c t′
t −→ t′

Gt −→ Gt′
r −→ r′

r e −→ r′ e

s −→ s′

r s −→ r s′

~D −→ ~D′

λ~D −→ λ~D′

t −→ t′

{~q → t} −→ {~q → t′}
D −→ D′

~D1, D, ~D2 −→ ~D1, D′, ~D2

r B ~r Term r is simulated by terms ~r.

∀~e, t. r ~e 7→ t =⇒ ∃k. rk ~e 7→ t

r B ~r

Figure 15. Operational Semantics.

Wellfounded Recursion 24 2013/3/29

	Introduction
	Copatterns and Termination
	Example: Fibonacci
	Type-based termination for copatterns
	Example: Stream processor
	Example: breadth-first labelled infinite trees

	Syntax
	Sizes
	Kinds and type constructors
	Terms and (co)patterns
	Declarations and programs
	Type checking

	Semantics
	Semantic Types
	Ordinals and Fixed-Points
	Kinds
	Type Constructors
	Patterns, copatterns, -abstractions

	Program typing and soundness
	Program typing
	Soundness of program typing

	Conclusion
	Appendix

