
Wellfounded Recursion with Copatterns
A Unified Approach to Termination and Productivity

Andreas Abel
Department of Computer Science,

Ludwig-Maximilians-University Munich, Germany
andreas.abel@ifi.lmu.de

Brigitte Pientka
School of Computer Science,

McGill University, Montreal, Canada
bpientka@cs.mcgill.ca

Abstract
In this paper, we study strong normalization of a core language
based on System Fω which supports programming with finite and
infinite structures. Building on our prior work, finite data such as
finite lists and trees are defined via constructors and manipulated
via pattern matching, while infinite data such as streams and infi-
nite trees is defined by observations and synthesized via copattern
matching. In this work, we take a type-based approach to strong
normalization by tracking size information about finite and infi-
nite data in the type. This guarantees compositionality. More im-
portantly, the duality of pattern and copatterns provide a unifying
semantic concept which allows us for the first time to elegantly
and uniformly support both well-founded induction and coinduc-
tion by mere rewriting. The strong normalization proof is struc-
tured around Girard’s reducibility candidates. As such our system
allows for non-determinism and does not rely on coverage. Since
System Fω is general enough that it can be the target of compi-
lation for the Calculus of Constructions, this work is a significant
step towards representing observation-centric infinite data in proof
assistants such as Coq and Agda.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures, Patterns, Recursion; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—Program and recursion
schemes, Type structure; F.4.1 [Mathematical Logic and Formal
Languages]: Mathematical Logic—Lambda calculus

General Terms Languages, Theory

Keywords Recursion, Coinduction, Pattern matching, Productiv-
ity, Strong normalization, Type-based termination

1. Introduction
Integrating infinite data and coinduction with dependent types is
tricky. For example, in the Calculus of (Co)Inductive Construc-
tions, the core theory underlying Coq (INRIA 2012), coinduction
is broken, since computation does not preserve types (Giménez

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’13, September, 2013, Boston, USA.
Copyright c© 2013 ACM . . . $15.00

1996). In Agda (Norell 2007), a dependently typed proof and pro-
gramming environment based on Martin-Löf Type Theory, induc-
tive and coinductive types cannot be mixed in a compositional
way.1 In previous work (Abel et al. 2013) we have introduced co-
patterns as a novel perspective on defining infinite structures that
might serve as a new foundation for coinduction in dependently-
typed languages, overcoming the problems in the present solutions.

In the copattern approach, finite data such as finite lists and
trees are defined as usual via constructors and manipulated via
pattern matching, while infinite data such as streams and infinite
trees are defined by observations and synthesized via copattern
matching. For example, instead of conceiving streams as built by
the constructor cons, we consider the observations head and tail
about streams as primitive. Programs about streams are defined in
terms of the observations head and tail.

Our previous work left the question of termination of recursive
function and the productivity of infinite objects open. Both issues
are crucial since we want to program inductive proofs as recursive
functions and coinductive proofs as infinite objects or corecursive
functions producing infinite objects. In this article, we adapt type-
based termination (Hughes et al. 1996; Amadio and Coupet-Grimal
1998; Barthe et al. 2004; Blanqui 2004; Abel 2008b; Sacchini
2013) to definitions by copatterns.

A syntactic termination check would ensure that recursive calls
occur only with arguments smaller than the ones of the original call.
In type-based termination, inductive types are tagged with a size
expression that denotes the (ordinal) maximal height of the trees
inhabiting it, i. e., an upper bound on the number of constructors
in the longest path of the tree. To prove termination of a recursive
function means to show that it can safely handle arguments of ar-
bitrary size. This can be established by well-founded induction: to
show that a function can handle arguments up to a fixed size a, we
may assume it already safely processes arguments of any smaller
size b < a. This induction principle can be turned into a typing
rule for recursive functions, using sized types and size quantifica-
tion. How can this be dualized to coinduction? A stream is produc-
tive if we can make arbitrarily deep observations, i. e., if we can
take its tail arbitrarily many times. To show that a stream definition
is productive, we also proceed by well-founded induction. To show
that it can safely handle a observations, we may assume that b ob-
servations are fine for any b < a. The number of observations we
can safely make is called the depth of the stream, or more general,
of the coinductive structure. One should not be mislead and think
of the depth as “size”; streams do not have a size since they are not
tree-structures in memory—they only exist as processes that con-

1 In Agda, one can encode the property “infinitely often” from temporal
logic, but not its dual “eventually forever” (Altenkirch and Danielsson
2010).

tinuously yield elements on demand. But it is fruitful to transfer the
concept of depth to (co)recursive functions. The depth of a function
is the maximal size of arguments it can safely handle. As we are
only interested in streams of infinite depth in the end, we care only
about functions of infinite depth. Yet to establish productivity and
termination, we need to induct on depth.

The type-based termination approach is in contrast to common
approaches taken in systems such as Coq (INRIA 2012) and Agda
(Norell 2007) which employ a syntactic guardedness check to en-
sure corecursive programs are productive: all corecursive calls must
occur under a constructor. This ensures that the next unit of infor-
mation can be computed in a finite amount of time (Sijtsma 1989).
However, this approach has also known limitations: it is difficult
to handle higher-order programs such as g f = cons 0 (f (g f))
where the productivity of g depends on the behavior of the func-
tion f . It is also not compositional, i. e., we cannot easily abstract
over a constructor cons in a productive program and replace it with
a function f . Both limitations are due to the lack of information
we have about f in the syntactic guardedness check. Types on the
other hand already track information about each argument to a def-
inition and its output. Type-based termination piggy-backs on the
typing analysis and avoids a separate formal system to traverse the
definitions. By indexing types with sizes, we are able to carry more
precise information about input and output arguments and their re-
lation which is then verified simultaneously while type checking
the definitions.

The contributions of our work are:

• We present Fcop
ω , an extension of System Fω by inductive

and coinductive types, sizes and bounded size quantification,
pattern and copattern matching and lexicographic termination
measures.
• In contrast to previous approaches on type-based termination,

we use well-founded induction on ordinals instead of conven-
tional induction that distinguishes between zero, successor and
limit ordinals. Disposing of this case distinction, we operate
within constructive foundations of mathematics (Taylor 1996).
• Well-founded induction leads to a construction of inductive

types by inflationary iteration, which has been utilized to justify
cyclic proofs in the sequent calculus (Sprenger and Dam 2003).
We are the first to utilize inflationary iteration in a type system.
• Well-founded induction alleviates the need for a semi-continuity

check for sized types of recursive functions (Hughes et al. 1996;
Abel 2008b) which sometimes disguises itself as a monotonic-
ity check (Barthe et al. 2004; Blanqui 2004; Barthe et al. 2008;
Sacchini 2013). Thus, we put type-based termination on leaner
and better understandable foundations.
• Since we construct infinite objects by copattern matching, stan-

dard rewriting becomes strongly normalizing even for corecur-
sive definitions, and productivity becomes an instance of termi-
nation. Thus, we achieve a unified treatment of recursion and
corecursion that is central to type-based termination.
• Our typing rules are formulated as a bidirectional type-checking

algorithm that can be implemented as such. See, e. g., Mini-
Agda (Abel 2012).
• We prove soundness of Fcop

ω by an untyped term model based
on Girard’s reducibility candidates. The proof exhibits semantic
counterparts of pattern and copattern typing and accounts for
incomplete and overlapping rewrite rules.

Due to lack of space, we leave out Fcop
ω ’s inference rules con-

cerning the kind and type level, the description of program typing,
and most details of the soundness proof. The full development can
be found in the extended version (Abel and Pientka 2013).

2. Copatterns and Termination
Let us illustrate how to program with copatterns using a simple
example of generating a stream of zeros. A streams s over an
element type A is given by the two observations head and tail:
We can inspect the head of s by applying the projection s .head and
obtain an element ofA. To obtain the tail of s, we use the projection
s .tail. We can then define the stream of zeros recursively by the
following two clauses:

zeros .head = 0
zeros .tail = zeros

More generally, zeros can be coded as repeat 0 with

repeat a .head = a
repeat a .tail = repeat a

The left hand side of each clause is considering the definiendum,
here repeat, in a copattern, here · a .head and · a .tail, resp. A
copattern consists of a hole, ·, applied to a sequence of patterns
and/or projections. The hole is filled, e. g., by the definiendum. In
this case, we have first a variable pattern, a, and then a projection
head/tail.

The definition of repeat is complete because the given copat-
terns are covering all possible cases (Abel et al. 2013). Rewriting
with the equations for repeat terminates in all situations, since one
projection is consumed in each rewriting step. For example, pro-
jecting the (n + 1)st element (counting from 0) of repeat a, i. e.,
repeat a .tailn+1 .head reduces in one step to repeat a .tailn .head
and after n more steps to repeat a .head.

2.1 Example: Fibonacci
Let us look at programming with copatterns and type-based ter-
mination for a more interesting example, the stream of Fibonacci
numbers. It can be elegantly implemented in terms of zipWith f s t
which pointwise applies the binary function f to the elements of
streams s and t.

zipWith f s t .head = f (s .head) (t .head)
zipWith f s t .tail = zipWith f (s .tail) (t .tail)

fib .head = 0
fib .tail .head = 1
fib .tail .tail = zipWith (+) fib (fib .tail)

The last equation states in terms of streams that the (n + 2)nd
element of the Fibonacci stream is the sum of the nth and the (n+
1)st. It looks like fib is a terminating definition since fib .tail .tail
only refers to fib and fib .tail, thus, one projection is removed in
each recursive call. However, termination of fib is also dependent
on good properties of zipWith. For instance, the following faulty
clause for zipWith would make fib .tail .tail .head loop:

zipWith f s t .head = f (s .tail .head) (t .tail .head)

fib .tail .tail .head
= zipWith (+) fib (fib .tail) .head
= (fib .tail .head) + (fib .tail .tail .head)
= (fib .tail .head) + (fib .tail .head) + (fib .tail .tail .head)
= . . .

The problem is that the faulty zipWith adds again one tail pro-
jection that has been removed in going from the original call
fib .tail .tail to the recursive call fib .tail, thus, we are left with
the same number of projections, leading to an infinite call cycle.

What we learn from this counterexample is that in order to
reason about termination of stream expressions, we need to trade
the naive image of streams as infinite sequences for a notion of
streams that can safely be subjected to α many projections, where

α ≤ ω can be a natural number or (the smallest) infinity ω. We
refer to such streams as sized streams, or streams having depth α.
Clearly, if a stream of depth α is required, we can safely supply
a stream of depth β ≥ α, thus, sized streams are subject to
contravariant subtyping.

The original zipWith delivers, if called with input streams of
depth α, an output stream of the same depth. This allows us to
reason about the termination of fib as follows. We show that fib
is a stream of arbitrary depth α by induction on α ≤ ω. Cases
α < 2 are easy. The interesting case is α = n + 2 when we take
two tail projections and then another n projections, thus, n + 2
projections in total. Then we may assume (by induction hypothesis)
that on the rhs taking up to n + 1 projections of fib is fine, thus,
fib and fib .tail behave well under another n projections—they
both can be assigned depth n using subtyping. Passing them to
zipWith (+) returns in turn a stream of the same depth n, hence
the lhs fib .tail .tail can be assigned depth n and, consequently, fib
depth n+ 2, which was our goal.

The faulty zipWith, however, needs streams of depth n + 1
to deliver a stream of depth n. Since fib .tail can only safely be
assumed to have depth n, not depth n + 1, the termination proof
attempt fails, and rightfully so.

In this model proof we assumed that taking a projection will
decrease the depth by exactly one. In the following, we will loosen
this assumption and let projections take us to any strictly smaller
depth.

2.2 Type-based termination for copatterns
In this section, we present the key ideas behind Fcop

ω , our polymor-
phic core language for type-based termination checking of recur-
sive definitions involving inductive and coinductive types. We il-
lustrate how the integration of size expressions into the type system
captures and mechanizes the informal reasoning about termination
employed in the previous section.

Size quantification for inductive and coinductive types. Besides
quantification over types ∀A:∗. B we have quantification over sizes
∀i<a.B. To unify these two forms of quantification we add to the
base kind ∗ of types the base kinds <a denoting sets of ordinals
below a and conceive ∀i<a.B as shorthand for ∀i:(<a). B. Thus,
size expressions fall in the same syntactic class as type expres-
sions. We introduce a special ordinal∞, the closure ordinal for all
(co)inductive types we consider. As far as streams are concerned,
∞ can be thought of as ω. In general, valid size expressions are of
the form a ::= i + n | ∞ + n where i is a size variable and n a
concrete number (we drop +0).

The type of streams of depth a over element type A will be
denoted by StreamaA, and we consider the following typing rules
for the projections:

s : StreamaA

s .head : ∀i<a↑. A
s : StreamaA

s .tail : ∀i<a↑.StreamiA
(1)

These rules state that if you want to project a stream of depth
a, you will need to provide a witness that you are able to do so,
i. e., an ordinal i < a↑. In case of tail, this witness serves also as
the depth of the projected stream. For instance, if s : Streami+2A,
then s .tail (i + 1) .head i : A. Bound normalization a↑, defined
by (i+ n)↑ = i + n and (∞+ n)↑ = ∞ + 1, allows us to
turn bounds a ≥ ∞ into ∞ + 1 and project from the fixpoint
Stream∞A without information loss. For s : Stream∞A we have
s .tail∞ : Stream∞A since∞ < ∞↑ = ∞ + 1, reflecting that
the tail of a fully defined stream has infinite depth as well.

In practice, we often use the following derived rule which elim-
inates the universal quantifier and directly compares sizes.

s : StreamaA

s .head b : A
b < a↑

s : StreamaA

s .tail b : StreambA
b < a↑

More generally, following previous work (Abel et al. 2013), we
represent coinductive types as recursive records νR, with R =
{d1 : F1; . . . ; dn : Fn} giving (sized) types to the projections
d1..n as follows:

r : νaR

r .dk : ∀i<a↑. Fk(νiR)

For instance, with StreamiA = νi{head : λX.A; tail : λX.X}
we obtain the typing of head and tail presented above (1). Consid-
ering R as a finite map from projections to type constructors, we
write Rdk for Fk.

Dually, inductive types are recursive variants µS with S = 〈c1 :
F1; . . . ; cn : Fn〉 and constructor typing

t : ∃i<a↑. Fk(µiS)

ck t : µaS
.

For instance, finite lists can be defined as follows: ListiA =
µi〈nil : λX. 1; cons : λX.A × X〉. Integrating the quantifier
rules, we derive the following inferences for constructors and de-
structors:

s : Sc(µ
bS)

cbs : µaS
b < a↑

r : νaR

r .d b : Rd(νbR)
b < a↑.

Specifying termination measures. The polymorphically typed
version of zipWith officially looks as follows, where we write
∀i≤a as abbreviation for ∀i<(a+ 1):

zipWith : ∀i≤∞. |i| ⇒ ∀A:∗. ∀B:∗.∀C:∗.
(A→ B → C)→
StreamiA→ StreamiB → StreamiC

zipWith i A B C f s t .head j = f (s .head j) (t .head j)
zipWith i A B C f s t .tail j = zipWith j A B C f

(s .tail j) (t .tail j)

The first equation has type C and the second one type StreamjC.
The kind of j is<i due to the typing of head and tail, thus, zipWith
is well-defined (and terminating) by induction on its first argument,
the size argument. The associated termination measure is located
after the size variable(s) and, in general, a tuple |a, b, c| of size
expressions under the lexicographic order.2 In this case, it is just
the unary tuple |i|, meaning that the termination measure is just the
value of size variable i. The measure is not officially part of the
type; it is rather an annotation that allows us to termination check
the clauses without having to infer a termination order.

High-level idea of size-based termination checking. When we
check a corecursive definition such as the second clause of zipWith
we start with traversing the left hand side (lhs). We first introduce
assumption i≤∞ into the context and now hit the measure anno-
tation |i| in the type. At this point we introduce the assumption
zipWith : ∀j≤∞. |j|<|i| ⇒ ∀A:∗.∀B:∗. ∀C:∗. (A → B →
C)→ StreamjA→ StreamjB → StreamjC which will be used
to check the recursive call on the right hand side (rhs). It has a
constraint |j| < |i|, a lexicographic comparison of size expression
tuples (which here just means j < i), that is checked before ap-
plying zipWith j to A. Continued checking of the lhs introduces
further assumptions A,B,C : ∗, f : A→ B → C, s : StreamiA,
t : StreamiB, and j < i. Checking the rhs succeeds since the

2 The notation for termination measures is taken from Xi (2002)

constraint |j| < |i| is satisfied and s .tail j : StreamjA and
t .tail j : StreamjB.

In the following, we abbreviate ∀A:∗ to just ∀A and ∀i≤∞
to just ∀i. With all size and type-arguments, the definition of the
Fibonacci stream becomes:

fib : ∀i. |i| ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = zipWith k N N N (+) (fib k) (fib j .tail k)

In the last line, the lhs introduces size variables i and j < i and k <
j and an assumption fib : ∀i′. |i′| < |i| ⇒ Streami′N and expects
a rhs of type StreamkN. Since k < j < i, both recursive calls
are valid, and the expressions fib k and fib j .tail k both have type
StreamkN. With zipWith kNNN : StreamkN → StreamkN →
StreamkN, the rhs is well-typed, and fib is terminating.

2.3 Example: Stream processor
Ghani et al. (2009) describe programs for continuous stream func-
tions StreamA → StreamB in terms of a mixed coinductive-
inductive data type SP with two constructors get : (A → SP) →
SP and put : (B × SP) → SP. We use this example to illustrate
how our foundation supports size-based reasoning on such mixed
datatypes and lexicographic termination measures for mutually re-
cursive functions. A stream processor can either get an element
v : A from the input stream and enter a new state, depending on the
read value, or it can put an element w : B on the output stream and
enter a new state. To be productive, it can only read finitely many
values from the input stream before writing a value on the output
stream, thus, SP is actually a nesting of a least fixed-point into a
greatest one: SP = νX. µY. (A → Y) + (B × X). We express
this nesting by the definition of two data types, an inductive variant
SPµ and a coinductive record type SPν .

SPiµX = µi〈get : λY.A→ Y ; put : λY.B ×X〉
SPiν = νi{out : λX. SP∞µ X}

Inside the coinductive type, we use the inductive type SPµ at size
∞ since we want to allow an arbitrary (finite) number of gets
between two puts. We get the following derived rules for typing
constructors and destructors:

f : A→ SPbµX

getbf : SPaµX
b < a↑

w : B sp : X

putb(w, sp) : SPaµX
b < a↑

sp : SPaν

sp .out b : SP∞µ SPbν
b < a↑

In the context of stream processors it is convenient to consider
streams as given by a single destructor force which returns head
and tail in a pair, thus, StriA = νi{force : λX.A×X}. Dedicated
projections hd and tl can be defined by

hd : ∀i.Stri+1A→ A
hd i s = fst (s .force i)

tl : ∀i.Stri+1A→ StriA
tl i s = snd (s .force i)

with fst and snd the obvious first and second projections from pairs.
Via bound normalization, facilitating Str∞ = Str∞+1, we obtain
instances hd∞ : Str∞A→ A and tl∞ : Str∞A→ Str∞A.

Running a stream processor on an input stream produces an
output stream as follows (informally coded in a Haskell-like lan-
guage):

run (get f) (v, vs) = run (f v) vs
run (put(w, sp)) vs = (w, run sp vs)

We represent this function via two mutually recursive functions,
one handling SPµ and one SPν :

runµ : ∀i∀j. |i, j + 1| ⇒ SPjµ(SPiν)→ Str∞A→ B × StriB

runµ i j (getj
′
f) vs = runµ i j

′ (f (hd∞ vs)) (tl∞ vs)

runµ i j (putj
′
(w, sp)) vs = (w, runν i sp vs)

runν : ∀i. |i, 0| ⇒ SPiν → Str∞A→ StriB
runν i sp vs .force i′ = runµ i

′∞ (sp .out i′) vs

The recursive runµ handles a sequence of gets terminated by put
and emits the head of a forced stream B × StriB. The tail is pro-
duced by the corecursive runν which, upon forcing, calls runµ
again. The termination is guaranteed by the lexicographic mea-
sures, which decrease in each recursive call:

runµ→ runµ : |i, j + 1| > |i, j′ + 1| since j > j′

runµ→ runν : |i, j + 1| > |i, 0|
runν → runµ : |i, 0| > |i′,∞+ 1| since i > i′

Note that since we are not doing induction on SPiν , but coinduction
into Stri, we could use SP∞ν instead of SPiν in the types of runµ
and runν . However, the given types are more precise: instead of
a stream processor of infinite depth, they only require a stream
processor of depth i to produce a stream of depth i.

3. Syntax
In this section, we formally define Fcop

ω , our higher-order polymor-
phic lambda-calculus with sized inductive and coinductive types,
polarized higher-order subtyping, and definitions by pattern and
copattern matching. As in previous work (Abel 2008b) we choose
System Fω rather than System F as basis since the notion of a type
constructor is required (at least, semantically) if one wants to talk
its fixed-points, i. e., about (co)inductive types.

SizeVar 3 i, j
SizeExp 3 a, b ::= i+ n | ∞+ n (n ≥ 0)
SizeExp+ 3 a+, b+ ::= a | n
Measure 3 m ::= · | a+,m

Pol 3 π ::= ◦ | + | − | >
SizeCxt 3 Ψ ::= · | Ψ, i:π(<a)

Figure 1. Sizes and measures.

3.1 Sizes
Fig. 1 gives a grammar for sizes, measures, and size contexts. A
size expression a consists of a base, which is either a size variable
i or∞, and an offset, a natural number n.

a ::= i+ n | ∞+ n

We omit the offset when 0. Each size variable i comes with a bound
i < a, which is recorded in a size context

Ψ ::= · | Ψ, i:π(<a).

A size context is considered as finite map from size variables i to
their polarity π (see below) and their kind <a. We write ≤a for
<(a+ 1) and size for ≤∞. Extended size expressions a+ allow as
a third base, n, i.e. just a natural number. Measures m are tuples of
extended size expressions. There are a number of trivial judgements
concerning well-formedness and partial ordering of (extended) size
expressions and measures (see Table 1). These judgements may use
the bounds stored in size context Ψ and are all defined as expected;
their inference rules can be found in the extended version.

Ψ ` a size a is well-formed
Ψ ` a < b strict size comparison
Ψ ` a ≤ b size comparison

Ψ ` a+ extended size a+ is well-formed
Ψ ` a+ < b+ strict comparison
Ψ ` a+ ≤ b+ comparison

Ψ `n m measure m is a well-formed n-tuple
Ψ ` m < m′ strict lexicographic measure comparison
Ψ ` m ≤ m′ lexicographic measure comparison

Ψ ` ∃Ψ′ Ψ′ is consistent for each valuation of Ψ

Table 1. Size-related judgements.

In constraint-based systems, strong normalization is usually lost
in inconsistent contexts.3 While our size contexts Ψ are always
consistent, i. e., enjoy a valuation4 η of the declared size variables
(by natural numbers even), we need sometimes a stronger property
that a size context extension Ψ′ is consistent with a fixed valuation
η of Ψ, i. e., Ψ′ must be consistent even when we apply η to its
declared bounds. For instance, i≤∞, j<i is consistent, but j<i is
not a consistent extension of i≤∞ under valuation η(i) = 0, since
there is no solution for j. We write Ψ ` ∃Ψ′ if Ψ′ consistently
extends Ψ in this sense. This judgement is inspired by Blanqui and
Riba (2006).

SKind 3 ι ::= ∗ | o | ι→ ι′

Kind 3 κ ::= ∗ | <a | πκ→ κ′

TyCxt 3∆ ::= · | ∆, X:πκ
Cxt 3 Γ ::= · | Γ, x : A | Γ, x : ?A

TyVar 3X,Y, Z, i, j
TyAtom 3K ::= a | X | 1 | × | → | ∀κ | ∃κ
Type 3 F,G,A,B,C ::= K | λX:ι. F | F G

| µaS | νaR

Var 3 x, y, z
Cons 3 c
Proj 3 d
Variant 3 S ::= 〈c1:F1; . . . ; cn:Fn〉 n ≥ 0
Record 3 R ::= {d1:F1; . . . ; dn:Fn} n ≥ 0

MType 3 ′A, ′B ::= ∀Ψ.m⇒ A
CType 3 ?A, ?B ::= ∀Ψ. c⇒ A
Cond 3 c ::= m<m′

Figure 2. Kinds and type constructors.

3.2 Kinds and type constructors
The type constructors of Fω are assigned kinds ι ::= ∗ | ι → ι′,
with base kind ∗ classifying all proper types and function kinds
ι → ι′ the (higher-order) type operators. We add a second base
kind ι ::= · · · | o that classifies size expressions, which we locate
at the type level, since they are computationally irrelevant and can
be erased during compilation, just as the types are.

3 For instance, in extensional type theory, X : Type, p : X = (X →
X) ` (λx:X.xx)(λx:X.xx) : X . The blame is on the false equality
assumption X = X → X which is used for type conversion.
4 A valuation η of size context Ψ is a map from size variables i to sizes
η(i) that fulfills the constraints for the size variables given by Ψ. Formally,
η(i) < [[a]]η must hold in case i:π(<a) ∈ Ψ, where [[a]]η is the value of
size expression a in environment η.

These simple kinds ι form with the type constructor a simply-
“typed” type-level lambda calculus. We refine these kinds into Fcop

ω -
kinds

κ ::= ∗ | <a | κ π→ κ′

where <a refines o into the kind of size expressions b < a. The
polarized function kind κ π→ κ′, also written πκ→ κ′, allows us to
express that the classified type constructor is co-variant (π = +),
contravariant (π = −), constant (π = >) or mixed-variant or of
unknown variance (π = ◦). The polarities π are partially ordered
◦ ≤ +,− ≤ > according to their information content. This and the
order on size expressions induce a subkinding relation Ψ ` κ ≤ κ′
on kinds of the same structure, i. e., the same underlying simple
kind |κ| = |κ′|. Here, when comparing two o-kinds (<a) ≤ (<b),
we resort to size comparison a ≤ b. The default variance is ◦
(no information) and we may omit it, writing simply κ → κ′ or
Ψ, i:(<a), which is further abbreviated by Ψ, i<a.

Kinding or type variable contexts ∆ ::= · | ∆, X:πκ, which
provide scoping and kinding information for type constructors,
generalize size contexts from bounds (<a) to arbitrary kinds κ.
We may use a ∆ where a Ψ is formally required, silently erasing
all non-size variables from ∆. More generally, context restriction
∆ � ~X of context ∆ to a set of variables ~X deletes the bindings for
all Y 6∈ ~X from ∆.

Ψ ` κ kind κ is well-formed in Ψ
Ψ ` κ ≤ κ′ κ is a subkind of κ′

∆ ` ∆′ kinding context ∆′ is well-formed in ∆
∆ ` ∃∆′ ∆′ is consistent for each valuation of ∆

Table 2. Kind-related judgements.

The judgement ∆ ` ∃∆′ (see Table 2) states that ∆′ is consis-
tent for each valuation of ∆. Only the size declarations matter here,
so it is a straightforward extension of Ψ ` ∃Ψ′.

Figure 2 contains a grammar for the type constructors of Fcop
ω .

Its core is a simply-kinded lambda-calculus X | λX:ι. F | F G
with constants 1,×,→, ∀κ, and ∃κ to form unit, product, function,
universal, and existential types. Size expressions a are considered
type constructors so that sizes can be abstracted over and applied.
We use the following short-hands:

λXF for λX:ι. F if ι inferable
A×B for (×)AB product type
A→ B for (→)AB function type

∀X:κ.A for ∀κ(λX:|κ|. A) universal type
∃X:κ.A for ∃κ(λX:|κ|. A) existential type

∀i<a.A for ∀<a (λi:o.A) bounded universal
∃i<a.A for ∃<a (λi:o.A) bounded existential

∀i. A for ∀i:size. A “unbounded” universal
∃i. A for ∀i:size. A “unbounded” existential.

We also write ∀∆. A for the universal abstraction of all type vari-
ables of ∆ in type A.

The simple kind annotation ι in λX:ι. F allows us to infer a
unique simple kind for closed type constructors. The simple kind
of an open type constructor depends only on the simple kinds of its
free type variables. This property simplifies the interpretation [[F]]
of type constructors as set-theoretic functions on semantic types we
will give later.

For the purpose of type checking, we are only interested in β-
normal type constructors. We write F @ι G for the normalizing
application of F to an argument G of simple kind ι. We may write
@κ instead of @|κ|, or even just @.

Sized inductive µaS and coinductive types νaR are given in
terms of variant rows S and record rows R. A variant row S =

〈c1:F1; . . . ; cn:Fn〉 is a finite map from variant labels ci, called
constructors, to type constructors Sci = Fi. Dually, a record row
R maps record labels d, called destructors or projections, to type
constructors Rd. Instead of presenting, for instance, streams as
νaX. {head : A; tail : X}, we move the abstraction over X into
the record row as νa{head : λX.A; tail : λX.X}, in order to
formulate the typing rules more conveniently.

Finally, we have constrained types ∀Ψ.m<m′ ⇒ A that allow
its inhabitants to be used only if the condition m < m′ is fulfilled.
We use them to restrict recursive calls to situations where the
termination measure has decreased. Recursive function definitions
come with measured types ′A ::= ∀∆. m ⇒ A. These are not
proper types but rather blueprints for constrained types. The idea
is that kinding context ∆ declares some size variables that are
used in measure m (and type A). When we analyze the body
of a recursive function of measure type ′A and the variables of
∆ are in scope (thus, the measure m is well-formed), we make
a copy ′B = ∀∆′.m′ ⇒ A′ of ′A by renaming the variables
of ∆ to ∆′. Then, by measure replacement ′B<m we create the
constrained type ∀∆′. m′<m ⇒ A′ which is used to type the
recursive occurrences of the function in its body.

∆ ` A type A is well-formed
∆ ` F ⇒ κ F has kind κ (inference)
∆ ` F ⇔ κ F has kind κ (checking)

∆ ` Γ typing context Γ is well-formed

∆ ` A ≤ A′ A is subtype of A′

∆ ` F ≤π F ′ ⇒ κ F is higher-ord. subtype of F ′ (κ inferred)
∆ ` F ≤π F ′ ⇔ κ F is higher-ord. subtype of F ′ (κ given)

Table 3. Type-related judgements.

Table 3 lists judgements for well-kindedness and partial order-
ing of types and type constructors. The judgements for typesA only
invoke the judgments for type constructors F in checking mode at
base kind (⇔ ∗). The judgements for constructors are bidirectional
with inference mode that computes the kind κ and checking mode
that starts with a given κ. Bidirectional checking is complete since
we are only interested in normal type constructors.

The rules for these judgements are given in an extended version
of this article. A thorough discussion of polarized higher-order
subtyping, i. e., subtyping for type constructors that take variance
into account, is available in Abel (2008a) and Steffen (1998), we
just recapitulate the basic principle here: A constructor F with
X1:π1κ1, . . . , Xn:πnκn ` F ⇔ κ is interpreted as an operator

λX1 . . . λXn.F : κ1
π1→ . . . κn

πn→ κ

with variance given as noted in its kinding context. This induces
the kinding rules, for instanceX:−∗, Y :+∗ ` X → Y : ∗ is valid
since function space is contravariant in its domain and covariant in
its codomain. In particular, the hypothesis rule X:πκ ` X : κ is
only valid if π ≤ +, i. e., π = ◦which just states that λX.X : κ→
κ is a well-formed operator, or π = + which additionally states
that λX.X is monotone. Using the hypothesis rule on π = − or
π = > is invalid since λX.X is neither an antitone nor a constant
operator.

Given a partial order G ≤ G′, its π-parameterized version
G ≤π G′ can be defined as follows:

G ≤+ G′ = G ≤ G′
G ≤− G′ = G′ ≤ G
G ≤◦ G′ = G ≤ G′ and G′ ≤ G
G ≤> G′ = true

π-variance of a constructor F ⇒ πκ → κ′ means that F G ≤
F G′ ⇒ κ whenever G ≤π G′ ⇔ κ. (The reader is advised

to play through the four cases for π in his mind.) Theoretically,
the π-parameterized versions ∆ ` F ≤π F ′ . . . of higher-
order subtyping could be defined from a non-parameterized version
∆ ` F ≤ F ′ . . . , but to avoid the potential exponential blowup
due to duplication of work in case of ≤◦, the π-parameterized
versions are taken as primitive.

Exp 3 r, s, t ::= u | v | λ~D term
Intro 3 v ::= () | (t1, t2) | c t | Gt introduction
App 3 u ::= x | f | r e applicative
Fun 3 f, g function name
Elim 3 e ::= t | G | .d elimination

Pat 3 p ::= x | () | (p1, p2) | c p | Xp pattern
Copat 3 q ::= p | X | .d copattern
PatSp 3 q ::= ~q pattern spine

DCl 3D ::= {q→ t} def. clause
Def 3 ~D ::= {D1; . . . ;Dn} def. clauses

Figure 3. Terms, (co)patterns, and clauses.

3.3 Terms and (co)patterns
Figure 3 presents the abstract syntax of Fcop

ω terms t, which are cat-
egorized into introductions v, applicative terms u, and anonymous
objects λ~D. Introductions (), (t1, t2), c t and Gt construct tuples
and inductive and existential types. Applicative terms x, f , and r e
are identifiers and generalized applications of a term r to an elimi-
nation e, which can be a term s for function elimination, a type G
for instantiation of a polymorphic function, or a destructor .d for
projection from a coinductive type.

For each introduction form v we have the corresponding form
of pattern p, and for each elimination form e there is a copattern q.
Application copatterns are just patterns p to match the argument,
type application copatterns Q are either type variables X or the
special size pattern ∞, which matches anything, and projection
copatterns are simply destructors d that match the same destructor
in an elimination. A sequence of ~q of copatterns is called a pattern
spine q, in correspondence to an elimination spine ~e.

Generalized lambda abstraction λ~D introduces an object whose
behavior is given by the clauses ~D, each of which consists of a lhs, a
(possibly empty) copattern sequence ~q, and a rhs, a term t. Objects
subsume both record and λ expressions of traditional functional
languages. Here are a few simple examples:

λ{x→ t} ordinary λ-abstraction λxt
λ{X → t} type abstraction ΛXt
λ{(x, y)→ x} first projection from pair
λ{Xx y → y X x} elimination of existential
λ{Axy .head∞→ x

;Axy .tail ∞→ y} cons for Stream∞A
λ{· → s; · → t} non-deterministic choice s⊕ t
The meaning, given by the operational semantics, is that when-

ever λ~D is applied to a sequence of eliminations ~e that match the
copatterns ~q of a clause with rhs t under a substitution σ and a
type substitution τ , then (λ~D)~e reduces to tστ , the rhs instanti-
ated by the substitutions computed from pattern matching. Using
~e / ~q ↘ σ; τ for pattern matching, the basic rule for contraction

r 7→ r′ becomes:

~e / qk ↘ σ; τ

λ{−−−⇀q→ t} ~e ~e ′ 7→ tkστ ~e ′

As usual, r is called a redex and r′ its reduct if r 7→ r′. We allow
overlapping lhss, a spine ~e may match different pattern spines q,
resulting in different contractions of the same redex. Also, if no lhs
in the clauses ~D matches ~e, the expression λ~D ~e is stuck. While a
coverage checker as described in previous work (Abel et al. 2013)
could exclude overlapping and incomplete clauses in well-typed
programs, we do not require coverage in this paper and confine
ourselves to show strong normalization, i. e., the absence of infinite
reduction sequences.

Not all stuck terms are pathological; since we are matching the
whole pattern spine in one go, partially applied functions such as
λ{xy → t}s are stuck, but can become unstuck if more arguments
are supplied. The existence of partially applied functions will re-
quire careful treatment in the normalization proof, because non-
contractibility of a non-introduction term is not preserved under
application (as would be in the case of λ-calculus).

Decl 3 δ ::= f : A = ~D declaration
MDecl 3 ′δ ::= f : ′A = ~D declaration with measure
Block 3 β ::= mutualm ~′δ mutual block
Prg 3 P ::= ~β;u program
Sig 3 Σ ::= ~δ signature

Figure 4. Declarations, blocks, and programs.

3.4 Declarations and programs
An Fcop

ω program consists of a sequence ~β of mutual blocks and an
applicative term u, the entry point (this could be the name of the
main function or a call to the main function with some initial argu-
ments). Each mutual block mutualm~′δ is a sequence ~′δ of mutually
recursive declarations with a lexicographic termination measure of
length m. Each declaration f : ′A = ~D assigns to a function sym-
bol f its measured type ′A and its clauses ~D. Measures serve their
purpose during checking of the mutual block and are discarded af-
terwards. Erasure of measure L′δM yields a (unmeasured) declaration
f : A = ~D; after checking a mutual block and erasing the mea-
sures, the individual declarations of the block become part of the
signature Σ which is used for type-checking and evaluation of the
remainder of the program. An applied function f ~e reduces if one
of its clauses does:

(λ~D)~e 7→ t

f ~e 7→ t
(f : A = ~D) ∈ Σ

The one-step reduction relation t −→ t′ is the compatible closure
of the contraction relation t 7→ t′, i. e., t −→ t′ if t′ is the result of
contracting exactly one redex in (an arbitrary subterm of) t. Strong
normalization of reduction will be shown to hold for well-typed
programs.

∆; Γ ` r ⇒ C Infer type C for term r
∆; Γ ` t⇔ C Term t checks against type C
∆; Γ ` {q→ t}⇔ A Clause {q→ t} checks against type A
∆; Γ ` ~D ⇔ A Clauses D check against type A

∆; Γ `∆0 p⇔ A Pattern p checks against type A
∆; Γ | A `∆0 q⇒ C Pattern spine q eliminates A into C

Table 4. Type checking.

3.5 Type checking
Table 4 lists the judgements involved in type checking Fcop

ω pro-
grams. Type-checking terms is bidirectional and a straightforward
adaption of Abel et al. (2013) to polymorphism, bounded quantifi-
cation, and constraints. The rules are given in figures 5 and 6, and
we briefly explain them.

Inference ∆; Γ ` r ⇒ C . A function symbol f ’s type Σ(f)

is looked up in the signature, and a variable x’s type Γ(x) in
the typing context. If Γ(x) is a constrained type ∀Ψ. c ⇒ A,
the variable x must be immediately applied to size arguments ~a
satisfying both Ψ and the condition c; after all, a constrained type
is, for consistency reasons, not a proper type for an expression. An
application r s of a function r of inferred type A → B has type
B if the argument s checks against type A. Instantiation r G of a
polymorphic term r of inferred type ∀κF has type F @κ G if G
has kind κ. In particular, r could be of type ∀i<a.A, then G must
be a size expression < a to succeed. If r is of coinductive type
νaR, then r .d has type ∀j<a↑.Rd (νjR), see Section 2.3.

There are two rules to switch direction. Checking r against type
C succeeds if r’s type is inferred as A and A is a subtype of C.
Also, we can add type ascription (t : A) to the term language; then
inference of (t : A) succeeds and yields A if A is a well-formed
type and t checks against A. While type ascription is needed to
bidirectionally type check redexes or stuck terms, it is dispensable
if one confines to checking normal terms (in the sense that no elim-
ination is applied to a λ in the source program). We will consider
type ascriptions be removed before execution of the program, so
they do not pop up in the operational and denotational semantics.

Checking ∆; Γ ` t⇔ C . Introductions and λs are checked

against a given type. Checking a pair Gt of a type expression G
and a term t against an existential type ∃kF succeeds if G has kind
κ and t is of the correct instance F @κ G. Checking a constructor
term c t against an inductive type µaS succeeds if t checks against
∃j < a↑. Sc (µjS). This means that t should be essentially a pair
bt′ of a size b < a↑ and t′ be a correct argument to constructor c,
i. e., having variant Sc instantiated to µjS. If a ≥ ∞, by bound
normalization b = ∞ is a valid size index, which implies that in a
value v in the fixpoint µ∞S all size witnesses can uniformly be∞.
To check λ~D we check all clauses Dk.

Clause checking ∆; Γ ` {q→ t}⇔ A . We first check that
pattern spine q eliminates indeed type A. As a result, we obtain
a kinding context ∆′ which binds the type variables X contained
in q and a typing context Γ′ which binds the pattern variables x
contained in q’s patterns, and a remaining type C of lhs and rhs.
We now need to make sure that ∆ ` ∃∆′ such that any valuation
of ∆ can be extended to a valuation of ∆′. Complementing the
original contexts ∆; Γ by the pattern contexts ∆′; Γ′ we check the
rhs t against C.

Pattern spine checking ∆; Γ | A `∆0 q⇒ C . We eliminate
type A which is well-formed in ∆0. If there are no copatterns in
q, thus, the clause has an empty lhs, we simply return A which
must be the type of the rhs. If we encounter an application pattern
p, the eliminated type must be a function typeA→ B. We check p
againstA and obtain pattern contexts ∆1; Γ1. We continue to check
the remaining copatterns, obtaining more pattern contexts ∆2; Γ2

and a result typeC, which we return together with the concatenated
pattern contexts. Concatenation, and thus, pattern spine checking
fails if the contexts do not have disjoint domains. A common
variable would mean a non-linear lhs, which we exclude.

If we encounter a projection pattern .d, the eliminated type
must be a coinductive type νaR. Taking projection .d yields type
∀j<a↑. Rd(νjR), thus, we continue to eliminate this type by ap-

∆; Γ ` r ⇒ C Expression typing (inference mode). In: ∆,Γ, r with ∆ ` Γ. Out: C with ∆ ` C

∆; Γ ` f ⇒ Σ(f)

(x:A) ∈ Γ

∆; Γ ` x⇒ A

(x : ∀Ψ. c⇒ A) ∈ Γ ∆ ` ~a⇔ Ψ τ = ~a/Ψ̂ ∆ ` cτ

∆; Γ ` x~a⇒ Aτ

∆; Γ ` r ⇒ A→ B ∆; Γ ` s⇔ A

∆; Γ ` r s⇒ B

∆; Γ ` r ⇒ νaR

∆; Γ ` r.d⇒ ∀j<a↑. Rd (νjR)

∆; Γ ` r ⇒ ∀κF ∆ ` G⇔ κ

∆; Γ ` r G⇒ F @κ G

Switching.

∆ ` A ∆; Γ ` t⇔ A

∆; Γ ` (t : A)⇒ A

∆; Γ ` r ⇒ A ∆ ` A ≤ C
∆; Γ ` r ⇔ C

∆; Γ ` t⇔ C Expression typing (checking mode). In: ∆; Γ, t, C with ∆ ` Γ and ∆ ` C. Out: success/failure.

∆; Γ ` ()⇔ 1

∆; Γ ` t1 ⇔ A1 ∆; Γ ` t2 ⇔ A2

∆; Γ ` (t1, t2)⇔ A1 ×A2

∆; Γ ` t⇔ ∃j<a↑. Sc (µjS)

∆; Γ ` c t⇔ µaS

∆ ` G⇔ κ ∆; Γ ` t⇔ F @κ G

∆; Γ ` Gt⇔ ∃κF
∆; Γ ` ~D ⇔ A

∆; Γ ` λ~D ⇔ A

∆; Γ ` D ⇔ A and ∆; Γ ` ~D ⇔ A definition typing. In: ∆, Γ, A, D or ~D with ∆ ` Γ and Γ ` A. Out: success/failure.

∆′; Γ′ | A `∆ ~q ⇒ C ∆ ` ∃∆′ ∆,∆′; Γ,Γ′ ` t⇔ C

∆; Γ ` {~q → t}⇔ A

∆; Γ ` Dk ⇔ A for all k

∆; Γ ` ~D ⇔ A

Figure 5. Type checking rules.

∆; Γ `∆0 p⇔ A Pattern typing (linear). In: ∆0, p, A with ∆0 ` A. Out: ∆,Γ with ∆0,∆; Γ ` p⇔ A.

·;x:A `∆0 x⇔ A ·; · `∆0 ()⇔ 1

∆1; Γ1 `∆0 p1 ⇔ A1 ∆2; Γ2 `∆0 p2 ⇔ A2

∆1,∆2; Γ1,Γ2 `∆0 (p1, p2)⇔ A1 ×A2

∆; Γ `∆0 p⇔ ∃j<a↑. Sc (µjS)

∆; Γ `∆0 c p⇔ µaS

∆; Γ `∆0,X:κ p⇔ F @κ X

X:κ,∆; Γ `∆0
Xp⇔ ∃κF

∆; Γ | A `∆0 ~q ⇒ C Pattern spine typing. In: ∆0, A, ~q with ∆0 ` A. Out: ∆,Γ, C with ∆0,∆; Γ ` C and ∆0,∆; Γ, z:A ` z ~q ⇒ C.

·; · | A `∆0 ·⇒ A

∆1; Γ1 `∆0 p⇔ A ∆2; Γ2 | B `∆0 ~q ⇒ C

∆1,∆2; Γ1,Γ2 | A→ B `∆0 p ~q ⇒ C

∆; Γ | ∀j<a↑. Rd (νjR) `∆0 ~q ⇒ C

∆; Γ | νaR `∆0 .d ~q ⇒ C

∆; Γ | F @κ X `∆0,X:κ ~q ⇒ C

X:κ,∆; Γ | ∀κF `∆0 X ~q ⇒ C

Figure 6. Pattern Typing.

plying it to a fresh size variable. The general form of a universal
type ∀κF is eliminated by a type variable pattern X; we record
X:κ in the type variable pattern context and continue eliminating
F @κ X .

Pattern typing ∆; Γ `∆0 p⇔ A . This judgement checks pat-
tern p against type A which is valid in kinding context ∆0, and re-
turns pattern contexts ∆; Γ. Pattern x succeeds against any type, re-
turning singleton context x:A. The empty tuple () succeeds against
the unit type 1, binding no variables. The pair pattern (p1, p2)
succeeds against the product type A1 × A2 if each component
pi checks against its type Ai. The resulting pattern contexts are
concatenated, checking for disjointness. A constructor pattern c p
checks against an inductive type µaS if p checks against ∃j <
a↑. Sc (µjS). The latter succeeds if p = jp′, then we add size vari-
able j<a to the pattern context and continue checking p′ against

Sc (µjS). This is an instance of checking against the general exis-
tential type ∃κF .

In the next section, we will validate all the typing rules by
exhibiting a semantics of strongly normalizing terms based on
Girard’s reducibility candidates (Girard et al. 1989).

4. Semantics
In this section we show strong normalization of Fcop

ω by a term
model. Types are interpreted as reducibility candidates à la Girard
adapted to our needs. Our semantic constructions rely only on the
terms and the operational semantics of Fcop

ω , not to the types, kinds,
or inference rules. Based on the operational semantics, semantic
types and kinds are constructed that interpret the syntactic types,

yet syntactic types are never used for semantic constructions.5 We
consider this conceptual hygiene important from a philosophic per-
spective: we use types just as a vehicle to assign properties to our
programs; clearly, they have no run-time significance. While in the
end we managed to keep syntactic types out of the semantic con-
structions, it was hard to get the semantic counterpart (Lemma 9)
of pattern spine typing (Figure 6) right.

One clarification: Since Fcop
ω has Church-style polymorphism

with explicit type abstraction and application, we can of course
not talk about terms and operational semantics without mention-
ing syntactic types. However, we never refer to the structure of
syntactic types, they remain abstract, and we could remove ev-
erything but type variables from our type language without alter-
ing the construction of semantic types and semantic typing “judge-
ments”. In particular, in the construction of the semantic universal
type ∀∀KF = {r ∈ SN | r G ∈ F(G) for all G ∈ Type,G ∈ K}
there is no connection between the syntactic type constructorG and
the semantic type constructor G (of semantic kind K). Type appli-
cations serve only to make type-checking decidable, they do not
play any role in evaluation.

Preliminaries. We use partially applied relations to denote sets.
For instance, we write (t −→) or simply t−→ for the set
{t′ | t −→ t′} of reducts of t. Similarly, <α = {β | β < α}.
The identity substitution is denoted by σid.

Strong normalization. Classically, a term t is strongly normaliz-
ing if it admits no infinite reduction sequences t −→ t1 −→ t2
starting with t. Inductively, we define t ∈ SN if all of its reducts
are already in SN:

(t −→) ⊆ SN

t ∈ SN
Naturally, if t ∈ SN then all its reducts and subterms are also
strongly normalizing.

We extend the notion SN to other syntactic categories: An
elimination e is strongly normalizing, e ∈ SN, if it either is not
a term (but a type G or a projection .d), or if it is a strongly
normalizing term. A definition clause D = {~q → t} is strongly
normalizing if t ∈ SN.

Simulation. Our typing rules (see Figure 5) state that a definition
λ~D : A or (f : A = ~D) is well-typed if each of the clauses
Dk is of type A, individually. In the absence of a coverage check,
there is no concept of “the clauses make sense together”. We would
like to see this independence of clauses reflected in our semantics.
In particular, we would like to have compositionality, i. e., if each
clause of a definition is semantically meaningful (in particular,
does not lead to non-termination), then the clauses are meaningful
together. For functions, our type-checker works exactly like that:
each clause is checked individually, using the termination measure;
an interaction between clauses need not be taken into account.

One idea is to say that a defined function f : A = ~D reduces
non-deterministically to one of its clausesDk, however, this imme-
diately destroys strong normalization, because Dk might mention
f . We need to defer unfolding of f until the pattern of one of its
clauses matches. Thus, instead we say that f ~e reduces if (λ~D)~e

reduces; f is simulated by its clauses ~D. In general, a term r is
simulated by terms ~r, written r B ~r , iff each of its contractions
under some eliminations is accounted for by one of the terms ~r,
formally ∀~e, t. r ~e 7→ t =⇒ ∃k. rk ~e 7→ t. Closing reducibility
candidates by simulation is one of the new ideas of our proof.

Lemma 1 (Simulation).

1. λ{D1; . . . ;Dn}B λD1, . . . , λDn.

5 Humbly following the masters (Vouillon and Melliès 2004).

2. If (f : A = ~D) ∈ Σ then f B λ~D.
3. If r B r1, . . . , rn then r eB r1 e, . . . , rn e.

4.1 Semantic Types
In order to show strong normalization we model types as sets of
strongly normalizing terms, more precisely, as reducibility candi-
dates à la Girard. We choose reducibility candidates over Tait’s sat-
urated sets, since they allow us to show strong normalization in the
absence of standardization and confluence. As a consequence, we
can model definitions with incomplete and overlapping patterns.

A set of termsA is a reducibility candidate (Girard et al. 1989),
written A ∈ CR, if the following conditions hold.

CR1 A ⊆ SN: “each term in A is strongly normalizing”.

CR2 if t ∈ A then (t −→) ⊆ A: “A is closed under reduction”.

CR3 if t ∈ Ne and (t −→) ⊆ A then t ∈ A: “A contains a
neutral already if all its redexes are in A”.

CR4 if t 6∈ Intro and (t −→) ⊆ A and t B ~t ∈ A then t ∈ A:
“A is closed under simulation”.

Condition CR4, is new; it introduces multi-clause objects λ~D and
function symbols f into a semantic type (candidate).

Lemma 2 (Multi-clause objects).

1. If λD1, . . . , λDn ∈ A then λ~D ∈ A.
2. If (f : A = ~D) ∈ Σ and λ~D ∈ A, then f ∈ A.

In CR3, Ne is a suitable set of so-called neutral terms. These
are “good”, i. e., inhabit a candidate, as soon as all their reducts are
good. For Girard’s technique to work, neutral terms need to include
redexes such as (λx.t) s~e and variables x, and need to be closed
under application, i. e., r neutral implies r s neutral. In case of pure
lambda calculus, any term which is not a lambda-abstraction can
be considered neutral.

In our setting of matching the whole pattern spine ~q against
the eliminations ~e, things are more subtle. For instance, the partial
application λ{x y → xx} δ with δ = λ{x → xx} is stuck (and
even in normal form). However, it cannot be neutral and inhabit
every candidate (following CR3), in particular semantic function
types, since it reduces to the diverging term δ δ if applied to one
more argument. Thus, we can only accept stuck terms as neutral
which cannot become unstuck by extra eliminations. This leads to
the following definition:

Definition 3 (Neutral term, terminally stuck). A applicative term
u ∈ App is terminally stuck if u~e is not a redex for all eliminations
~e. A term r is neutral, written r ∈ Ne, if it is a redex or terminally
stuck.

As Girard’s, our refined notion of neutrality includes redexes,
variables, and is closed under eliminations. Further, if r ∈ Ne then
any reduction in r e is either a reduction in r or in e. A reducibility
candidate A is never empty since Var ⊆ A by virtue of CR3.

Closure. For a set A ⊆ SN which is closed under reduction let A
be the least reducibility candidate ⊇ A. Inductively, A is defined
as the closure under neutrals and simulation:

t ∈ A
t ∈ A

t ∈ Ne (t −→) ⊆ A
t ∈ A

t 6∈ Intro (t −→) ⊆ A tB ~t ∈ A
t ∈ A

A 7→ A is a closure operation, i. e., it is monotone (A ⊆ B implies
A ⊆ B), extensive (A ⊆ A), and idempotent (A ⊆ A). Note

that the closure operator never adds introduction terms such as (),
(t1, t2), c t, or Gt to a term set A. Thus, for introductions v ∈ A
we have v ∈ A already.

CR is closed under arbitrary intersections and forms, under the
inclusion ⊆ order, a complete lattice with greatest element SN and
least element ∅.

Semantic types. In the following, let A,B ∈ CR be candidates,
P a proposition, K some index set and F ∈ K → CR a family
of reducibility candidates. The following operations, except the
conditional P ⇒ A, construct new candidates from existing ones.

A→→B = {r ∈ SN | ∀s ∈ A. r s ∈ B}
∀∀KF = {r ∈ SN | ∀G ∈ Type,G ∈ K. r G ∈ F(G)}
P ⇒ A = {r ∈ Exp | r ∈ A if P}
1 = {()}
A1××A2 = {(t1, t2) | t1 ∈ A1 and t2 ∈ A2}
∃∃KF = {Gt | G ∈ Type, ∃G ∈ K, t ∈ F(G)}

Note that the condition r ∈ SN in the definition of A→→B is
redundant, since x ∈ A by CR3 and r x ∈ SN implies r ∈ SN.
However, in the definition of ∀∀KF it is important since K could be
empty, e. g.,K = <0. Conditional types are not first-class; P ⇒ A
only forms a candidate if P is true, otherwise, it is just a set of
expressions.

Lemma 4 (Semantic typing rules). The following inferences are
trivial consequences of the construction of semantic types:

r ∈ A→→B s ∈ A
r s ∈ B

r ∈ ∀∀KF G ∈ K
r G ∈ F(G)

() ∈ 1

t1 ∈ A1 t2 ∈ A2

(t1, t2) ∈ A1××A2

G ∈ K t ∈ F(G)
Gt ∈ ∃∃KF

Besides definitions (which we will treat in Section 4.5), rules for
constructors and destructors are missing. We will describe semantic
(co)inductive types in the next section.

4.2 Ordinals and Fixed-Points
Previous approaches to type-based termination (Hughes et al. 1996;
Amadio and Coupet-Grimal 1998; Barthe et al. 2004; Blanqui
2004; Sacchini 2013) have defined approximants of least µαF
and greatest fixed-points ναF of monotone type constructors F ∈
CR

+→ CR by conventional induction on ordinal α, distinguishing
zero (0), successor (α+ 1), and limit ordinals (λ).

µ0 F = ∅
µα+1F = F (µα F)

µλ F =
⋃
α<λ µ

αF

ν0 F = SN
να+1F = F (να F)
νλ F =

⋂
α<λ ν

αF
In this work, we adopt the approach of Sprenger and Dam (2003)
for approximations in µ-calculus and use well-founded induction
instead, which amounts to construct µαF by inflationary iteration
and ναF by deflationary iteration.

µαF =
⋃
β<α

F (µβF) ναF =
⋂
β<α

F (νβF)

In this definition, F does not have to be monotone to obtain an
ascending chain of approximants in case of µ and a descending
chain for ν. However, if F is monotone, one can derive above
equations as special cases for α being zero, successor, or limit
ordinal, if such a distinction on ordinals exists. Intuitionistically,
this distinction is not valid (Taylor 1996); by building on well-
founded induction, we remain within constructive foundations.

Let α, β, γ range over ordinals. We write ∀∀β<αF(β) for ∀∀<αF
and analogously for ∃∃. Let S ∈ Cons ⇀ CR → CR and
R ∈ Proj ⇀ CR → CR where we write the first argument,
the constructor c, or the destructor d, resp., as index, thus, Sc and
Rd resp. We define the αth approximants µαS,ναR ∈ CR of
recursive variant and record type as follows.

µαS = {c t | c ∈ dom(S) and t ∈ ∃∃β<αSc(µβS)}
ναR = {r ∈ SN | ∀d ∈ dom(R). r.d ∈ ∀∀β<αRd(νβR)}

Since ∃∃<αF is monotonic in α for any F , so is µαS. Dually
∀∀<αF and ναR are antitonic in α. We obtain chains:

∅ = µ0S ⊆ µ1S ⊆ . . . ⊆ µγS ⊆ µγ+1S ⊆ . . .
SN = ν0R⊇ ν1R⊇ . . . ⊇ νγR⊇ νγ+1R⊇ . . .

If µαS = µγS for some α > γ then µβS = µγS for all β > γ
and we say that the chain has become stationary at γ. Since the set
Exp of expressions is countable and all elements of these chains are
subsets of Exp, the chains must become stationary latest at the first
uncountable ordinal Ω. We call the ordinal at which all such chains
of our language are stationary the closure ordinal and denote it by
∞.

Since it does not make sense to inspect chains beyond the
closure ordinal, we introduce bound normalization

α↑ =

{
∞+ 1 if α ≥∞,
α otherwise.

Note that µαS = µα
↑
S and ναR = να

↑
R. In the following we

will talk about ordinals that are as big as∞+n for finite n, but not
bigger ones, so all ordinals will be in O = {α | α < ∞ + ω}, a
set closed under successor. As size index to a least or greatest fixed
point, only the ordinals in Size = {α | α ≤ ∞} are interesting.
Thus, if no bound for an ordinal β is given, we assume β ∈ Size,
for instance, we write ∃∃βF(β) instead of ∃∃β∈SizeF(β) or ∃∃SizeF .

The stationary point µ∞S is a pre-fixed point in the sense
that t ∈ Sc(µ∞S) implies c∞t ∈ µ∞+1S = µ∞S. Dually,
ν∞R is a post-fixed point as r ∈ ν∞R = ν∞+1R implies
r.d∞ ∈ Rd(ν∞R). Note that we do not require R or S to be
monotone for the implications to hold in these directions. Yet we
do if we want µ∞S and ν∞R to be fixed-points.

Lemma 5 (Fixed-points). If Sc,Rd be monotone for all c ∈
dom(S) and d ∈ dom(R), then

1. µ∞S = {c bt | c ∈ dom(S), b ∈ Type, t ∈ Sc(µ∞S)}, and
2. ν∞R = {r | ∀d ∈ dom(R), b ∈ Type. r.d b ∈ Rd(ν∞R)}.

Proof. For 1, it is sufficient to show ⊆, meaning that µ∞S is a
post-fixed point. Note that by definition

µ∞S =
⋃
β<∞

{c bt | c ∈ dom(S), b ∈ Type, t ∈ Sc(µβS)},

so we conclude by monotonicity of Sc and the closure operator,
using µβS ⊆ µ∞S. For 2, it is sufficient to show that ν∞R is
a pre-fixed point. So, if r.d b ∈ Rd(ν∞R) for all d ∈ dom(R)
and b ∈ Type, then r ∈ ν∞R. It is sufficient to show r.d b ∈
Rd(νβR) for all β <∞, and this follows from ν∞R ⊆ νβR by
monotonicity ofRd.

4.3 Kinds
Higher kinds are interpreted as π-variant set-theoretical function
spaces K1

π→ K2 over the base kinds CR and <α. For ρ a size
valuation mapping size variables to ordinals, kind interpretation
[[κ]]ρ is defined in the obvious way.

A semantic kinding context D maps type variables X to seman-
tic kindsK. Semantic kinding contexts classify type environments ρ
mapping type variables to semantic types or type constructors; we
have ρ ∈ D if ρ(X) ∈ D(X) for all X ∈ dom(D). Since kinds
in D can depend on size variables declared earlier in D, semantic
kinding contexts are dependent. Given D and a family D′(ρ ∈ D),
the dependent concatenation of D and D′ is written ΣDD′.

4.4 Type constructors
Type constructors of higher kind are interpreted as operators on
semantic types. For ρ a type environment mapping type variables to
semantic types or type constructors, type interpretation [[F]]ρ maps
the syntactic type constructors to the corresponding semantic ones.

Kind and type interpretation model the kind- and type-level
judgements in the usual way. For lack of space, we cannot provide
more detail here, see the extended version of this paper instead.

4.5 Patterns, copatterns, λ-abstractions
In this section, we explain patterns and copatterns by developing
semantic notions of pattern and pattern spine typing. These pro-
vide us with semantic conditions when a definition λ~D inhabits a
semantic type A. As a consequence, we can prove soundness of
syntactic pattern, pattern spine, and expression typing.

Semantic typing contexts and semantic pattern typing. A se-
mantic typing context E ∈ CXT(·) (E for typing environment) is a
finite map from term variables to semantic types, so E ∈ Var ⇀
CR. We write · for the empty semantic typing context, x:A for the
singleton and E , E ′ for the disjoint union. Semantic substitution typ-
ing σ ∈ E is defined as σ(x) ∈ E(x) for all x ∈ dom(E).

A parameterized semantic typing context E ∈ CXT(D) is
a family E(ρ) of semantic typing contexts indexed by semantic
type substitutions ρ that belong to a semantic kinding context D.
Each instance E(ρ) is a partial function from variables to semantic
types. We overload the notation for non-parameterized semantic
typing contexts by setting ·(ρ) = · and (x:A)(ρ) = x:A(ρ) and
(E , E ′)(ρ) = E(ρ), E ′(ρ) with dom(E(ρ)) ∩ dom(E ′(ρ)) = ∅.

For two differently parameterized semantic typing contexts
E1 ∈ CXT(D1) and E2 ∈ CXT(D2) we let their disjoint union
E1 ∗ E2 ∈ CXT(D1,D2) be defined by (E1 ∗ E2)(ρ1 ∈ D1, ρ2 ∈
D2) = (E1(ρ1), E2(ρ2)). Further, if E ∈ CXT(ΣDD′) and ρ ∈ D
we let the partial application E(ρ,) ∈ CXT(D′(ρ)) be defined by
E(ρ,)(ρ′) = E(ρ, ρ′).

If C(G)(ρ) is a type parameterized by another type G and a type
substitution ρ, we let CX be defined by (CX)(ρ) = C(ρ(X))(ρ \
X). In particular, (CX)(G/X, ρ) = C(G)(ρ). The notations DX
and EX are defined analogously.

A pattern p is semantically of type A in context E if it acts as
a bidirectional (invertible) map from E to A, i. e., pσ ∈ A for
all σ ∈ E , and, for any substitution σ with pσ ∈ A we have
σ ∈ E . Extending this to type substitutions we define semantic
pattern typing by

A / p↘ D; E :⇐⇒

∀τ, σ. (∃ρ ∈ D. σ ∈ E(ρ)) ⇐⇒ pτσ ∈ A.

Here, and in the following, τ denotes a syntactic type substitution.
Note that it is unconstrained, it needs not bear a relationship with
the semantic type substitution ρ.

One could have expected that semantic pattern typing implies
that p matches any introduction term v ∈ A. But since we are not

interested in pattern coverage, but merely strong normalization, we
do not require this strong guarantee.6

Lemma 6 (Semantic pattern typing). The following implications,
written as rules, hold.

A / x↘ ·; (x:A) 1 / ()↘ ·; ·

A1 / p1 ↘ D1; E1 A2 / p2 ↘ D2; E2
A1××A2 / (p1, p2)↘ D1,D2; E1 ∗ E2

∃∃β<α↑Sc(µβS) / p↘ D; E
µαS / c p↘ D; E

F(G) / p↘ D(G); E(G) for all G ∈ K
∃∃KF / Xp↘ ΣX:KD; EX

Theorem 7 (Soundness of pattern typing). Let ` ∆0,∆ and
∆0,∆ ` Γ. If ∆; Γ `∆0 p ⇔ A and ρ0 ∈ [[∆0]] then
[[A]]ρ0 / p↘ [[∆]]ρ0 ; [[Γ]](ρ0,).

Proof. By induction on ∆; Γ `∆0 p⇔ A using the inferences of
Lemma 6.

Semantic typing in context. Given a parameterized semantic type
C ∈ D′ → CR we define weakening WDC ∈ (D,D′) → CR of
C by semantic kinding context D as (WDC)(ρ ∈ D, ρ′) = C(ρ′).
Given a semantic type family C ∈ (D,D′) → CR and a semantic
type substitution ρ ∈ D, we let the partial application C(ρ,) ∈
D′ → CR be defined by C(ρ,)(ρ′) = C(ρ, ρ′). Semantic typing
under a context is defined by

D; E ` t ∈ C :⇐⇒ ∀ρ ∈ D, σ ∈ E(ρ), τ. tτσ ∈ C(ρ)

Let P be a proposition depending on the pattern variables and
pattern type variables of a copattern spine ~q. We define the fol-
lowing shorthand for the replacement of the pattern variables by
expressions obtained from matching ~q against an elimination list ~e:

P [~e/~q] :⇐⇒ ∃τ, σ. ~e / ~q ↘ τ ;σ ∧ Pτσ

Semantic pattern spines. A pattern spine ~q has to be understood
by its purpose, to serve as the lhs of a definition. Semantically, q
eliminates type A into C at contexts D; E if any definition λ{~q →
t} that can be formed with ~q is in A as long as the rhs t is in C
under contexts D; E . We further generalize this to partially applied
definitions λ{~q ′ ~q → t}~e where ~e matches ~q ′. We let

A | ~q ↘ D; E ; C :⇐⇒ ∀t, ~e ∈ SN.∀~q ′.

D; E ` t[~e/~q ′] ∈ C =⇒ λ{~q ′~q → t}~e ∈ A.
Lemma 8 (Semantic clause typing). The following implication
holds:

A | ~q ↘ D; E ; C D; E ` t ∈ C ρ ∈ D
λ{~q → t} ∈ A

Proof. With σid ∈ E(ρ) we have t = tσid ∈ C(ρ) ⊆ SN. The rest
follows by definition of semantic pattern spine typing with empty ~e
and empty ~q ′. Note that we cannot proceed ifD is inconsistent.

Lemma 9 (Semantic pattern spine typing). The following implica-
tions hold.

A | · ↘ ·; ·;A
A1 / p↘ D1; E1 A2 | ~q ↘ D2; E2; C
A1→→A2 | p ~q ↘ D1,D2; E1 ∗ E2; WD1C

6 On the contrary, we can live with junk introductions in our semantic types.
For instance, it would not endanger normalization to throw the empty tuple
into each semantic type.

∀∀β<α↑Rd (νβR) | ~q ↘ D; E ; C
ναR | .d ~q ↘ D; E ; C

∀G ∈ K. F(G) | ~q ↘ D(G); E(G); C(G)

∀∀KF | X ~q ↘ ΣX:KD; EX; CX
Theorem 10 (Soundness of pattern spine typing). Let ` ∆0,∆
and ∆0,∆ ` Γ. If ∆; Γ | A `∆0 ~q ⇒ C and ρ0 ∈ [[∆0]] then
[[A]]ρ0 | ~q ↘ [[∆]]ρ0 ; [[Γ]](ρ0,); [[C]](ρ0,).

Proof. By induction on ∆; Γ | A `∆0 ~q ⇒ C using Lem. 9.

Semantic declaration and signature well-formedness. Having
understood definitons by clauses λ~D we can now show that any
well-typed term inhabits its corresponding semantic type. For func-
tion symbols f , we simply assume it, by postulating a sematically
well-formed signature Σ. We define |= δ and |= Σ by

|= (f : A = ~D) :⇐⇒ f ∈ [[A]]
|= Σ :⇐⇒ ∀δ ∈ Σ. |= δ.

Theorem 11 (Soundness of expression typing). Assume |= Σ. Let
` ∆ and ∆ ` Γ and ∆ ` C and D = [[∆]] and E(ρ) = [[Γ]]ρ and
C(ρ) = [[C]]ρ.

1. If ∆; Γ ` r ⇒ C in Σ then D; E ` r ∈ C.
2. If ∆; Γ ` t⇔ C in Σ then D; E ` t ∈ C.
3. If ∆; Γ ` ~D ⇔ C in Σ then D; E ` λ~D ∈ C.

What remains to be proven is that well-typed programs yield,
after measure erasure, semantically well-formed signatures. This
is shown mutual block by mutual block using a lexicographic
induction on ordinals as given by the termination measure assigned
to each block. A formal description of program typing and its
soundness proof has to be delegated to the long version of this paper
due to lack of space.

5. Conclusion
Our work provides a uniform type-based approach to proving ter-
mination of (co)inductive definitions. It is centered around patterns
and copatterns which allow us to reason about both finite and infi-
nite data by well-founded induction. Proving strong normalization
for this language is a significant step towards understanding well-
founded corecursion in terms of the depth of observation we can
safely make.

As a next step, we plan to extend our work to full dependently
typed systems to allow coinductive definitions to be defined and
reasoned with by observations. This will put coinduction in these
systems on a robust foundation. We have already implemented size-
based type checking for patterns and copatterns in MiniAgda (Abel
2012) which gives us confidence in the approach.

References
A. Abel. Polarized subtyping for sized types. Math. Struct. in Comput. Sci.,

18:797–822, 2008a. Special issue on subtyping, edited by Healfdene
Goguen and Adriana Compagnoni.

A. Abel. Semi-continuous sized types and termination. Logical Meth. in
Comput. Sci., 4(2:3):1–33, 2008b. CSL’06 special issue.

A. Abel. Type-based termination, inflationary fixed-points, and mixed
inductive-coinductive types. Electr. Proc. in Theor. Comp. Sci., 77:1–
11, 2012. Proceedings of FICS 2012.

A. Abel and B. Pientka. Wellfounded recursion with copatterns: A unified
approach to termination and productivity. URL http://www.tcs.
ifi.lmu.de/~abel/icfp13-long.pdf. Extended version, 2013.

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming
infinite structures by observations. In Proc. of the 40th ACM Symp. on
Principles of Programming Languages, POPL 2013, pages 27–38. ACM
Press, 2013.

T. Altenkirch and N. A. Danielsson. Termination checking in
the presence of nested inductive and coinductive types. Short
note supporting a talk given at PAR 2010, Workshop on Par-
tiality and Recursion in Interactive Theorem Provers, FLoC 2010,
2010. URL http://www.cse.chalmers.se/~nad/publications/
altenkirch-danielsson-par2010.pdf.

R. M. Amadio and S. Coupet-Grimal. Analysis of a guard condition in type
theory (extended abstract). In Proc. of the 1st Int. Conf. on Foundations
of Software Science and Computation Structure, FoSSaCS’98, volume
1378 of Lect. Notes in Comput. Sci., pages 48–62. Springer, 1998.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based
termination of recursive definitions. Math. Struct. in Comput. Sci., 14
(1):97–141, 2004.

G. Barthe, B. Grégoire, and C. Riba. Type-based termination with sized
products. In Computer Science Logic, 22nd Int. Wksh., CSL 2008, 17th
Annual Conf. of the EACSL, volume 5213 of Lect. Notes in Comput. Sci.,
pages 493–507. Springer, 2008.

F. Blanqui. A type-based termination criterion for dependently-typed
higher-order rewrite systems. In Rewriting Techniques and Applications
(RTA 2004), Aachen, Germany, volume 3091 of Lect. Notes in Comput.
Sci., pages 24–39. Springer, 2004.

F. Blanqui and C. Riba. Combining typing and size constraints for checking
the termination of higher-order conditional rewrite systems. In Proc.
of the 13th Int. Conf. on Logic for Programming, Artificial Intelligence,
and Reasoning, LPAR 2006, volume 4246 of Lect. Notes in Comput. Sci.,
pages 105–119. Springer, 2006.

N. Ghani, P. Hancock, and D. Pattinson. Representations of stream pro-
cessors using nested fixed points. Logical Meth. in Comput. Sci., 5(3),
2009.

E. Giménez. Un Calcul de Constructions Infinies et son application a
la vérification de systèmes communicants. PhD thesis, Ecole Normale
Supérieure de Lyon, 1996. Thèse d’université.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoret. Comput. Sci. Cambridge University Press,
1989.

J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. In Proc. of the 23rd ACM Symp. on Principles
of Programming Languages, POPL’96, pages 410–423, 1996.

INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.4
edition, 2012. URL http://coq.inria.fr/.

U. Norell. Towards a Practical Programming Language Based on De-
pendent Type Theory. PhD thesis, Dept of Comput. Sci. and Engrg.,
Chalmers, Göteborg, Sweden, 2007.

J. L. Sacchini. Type-based productivity of stream definitions in the calculus
of constructions. In Logics in Computer Science (LICS 2013), June 25-
28, 2013, New Orleans, 2013.

B. A. Sijtsma. On the productivity of recursive list definitions. ACM Trans.
Prog. Lang. Syst., 11(4):633–649, 1989.

C. Sprenger and M. Dam. On the structure of inductive reasoning: Circular
and tree-shaped proofs in the µ-calculus. In Proc. of the 6th Int. Conf.
on Foundations of Software Science and Computational Structures, FoS-
SaCS 2003, volume 2620 of Lect. Notes in Comput. Sci., pages 425–440.
Springer, 2003.

M. Steffen. Polarized Higher-Order Subtyping. PhD thesis, Technische
Fakultät, Universität Erlangen, 1998.

P. Taylor. Intuitionistic sets and ordinals. J. Symb. Logic, 61(3):705–744,
1996.

J. Vouillon and P.-A. Melliès. Semantic types: A fresh look at the ideal
model for types. In Proc. of the 31st ACM Symp. on Principles of
Programming Languages, POPL 2004, pages 52–63. ACM Press, 2004.

H. Xi. Dependent types for program termination verification. J. Higher-
Order and Symb. Comput., 15(1):91–131, 2002.

http://www.tcs.ifi.lmu.de/~abel/icfp13-long.pdf
http://www.tcs.ifi.lmu.de/~abel/icfp13-long.pdf
http://www.cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf
http://www.cse.chalmers.se/~nad/publications/altenkirch-danielsson-par2010.pdf
http://coq.inria.fr/

	Introduction
	Copatterns and Termination
	Example: Fibonacci
	Type-based termination for copatterns
	Example: Stream processor

	Syntax
	Sizes
	Kinds and type constructors
	Terms and (co)patterns
	Declarations and programs
	Type checking

	Semantics
	Semantic Types
	Ordinals and Fixed-Points
	Kinds
	Type constructors
	Patterns, copatterns, -abstractions

	Conclusion

