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Abstract

In the simply-typed lambda-calculus, a hereditary substitution replaces a free variable in
a normal form r by another normal form s of type a, removing freshly created redexes
on the �y. It can be de�ned by lexicographic induction on a and r, thus, giving rise to
a structurally recursive normalizer for the simply-typed lambda-calculus. We implement
hereditary substitutions in a functional programming language with sized heterogeneous
inductive types, Fωb, arriving at an interpreter whose termination can be tracked by the
type system of its host programming language.

1 Introduction

An interpreter for a total programming language, i. e., a language in which only

terminating programs can be written, will naturally terminate on all executions.

However, this fact is sometimes hard to prove, as the abundant literature on nor-

malization results shows. Often such a termination proof requires considerable in-

sight into the semantics of the considered language. In this article, we consider a

particularly easy example of a total language: the simply-typed lambda-calculus

(STL). Its termination has been proven long ago and there are many di�erent

proofs. However, we will implement an interpreter for the STL whose termination

can be checked automatically ! As host programming language for the implementa-

tion we use Fω̂ , a polymorphic, purely functional language with sized types. Each

well-typed Fω̂ -program is terminating (Abel, 2006b), hence, it is su�cient to show

that the interpreter is a well-typed program. Provided the functions of the imple-

mentation are supplied with Haskell-style type signatures, well-typedness can be

checked mechanically. Before we detail the structure of the interpreter, let us have

a look at the idea behind Fω̂ .

Inductive types T can be expressed as the least solution of the recursive equation

F X = X for some suitable monotone type function F ; we write T = µF and say
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2 A. Abel

that T is the least �xed-point of F . The least �xed point can be obtained in two

ways: from above, using the theorem of Knaster and Tarski, and from below using

trans�nite iteration. De�ning

µ0 F = empty

µα+1 F = F (µαF )
µλ F =

⋃
α<λ µ

αF,

the least �xed-point of F is reached for some ordinal γ and we have F (µγF ) = µγF .

The construction of an inductive type from below is convenient if we want to de�ne a

function f : T → C over an inductive type; we can reason by trans�nite induction

that f is well-de�ned. This is especially the case if f de�ned by course-of-value

recursion, i. e., refers in recursive calls only to smaller elements of the inductive

type. Consider f = fix s being the �xed point of a functional s, i. e., fix s = s (fix s).
Such functions can be introduced by the rule

s ∈ (µαF → C)→ (µα+1F → C) for all α < β

fix s ∈ µβF → C
.

The rule can be justi�ed by trans�nite induction up to β. Base case: since µ0F

is empty, fix s ∈ µ0F → C trivially. For the step case, assume fix s ∈ µαF → C.

By the premise of the rule, s (fix s) ∈ µα+1F → C, and by the fix-point equation,

fix s ∈ µα+1F → C. Finally, for the limit case, assume fix s ∈ µαF → C for all

α < λ and assume t ∈ µλF . By de�nition of iteration at a limit, t ∈ µαF for some

α < λ, hence fix s t ∈ C. Since t was arbitrary, fix s ∈ µλF → C.

Up to now, we have considered the semantics of inductive types and the jus-

ti�cation of semantical functions. Mendler (1987) �rst observed that by turning

these semantical concepts into syntax,1 one gets a type system that accepts struc-

turally recursive functions, hence, guarantees termination of well-typed programs.

This idea has been taken up by Hughes, Pareto, and Sabry (1996), Giménez (1998),

Amadio and Coupet-Grimal (1998), Barthe et al. (2004), Blanqui (2004) and myself

(Abel, 2004a). In this article we use Fω̂ , an extension of the higher-order polymor-

phic lambda-calculus Fω by sized inductive types and recursion on sizes. A sized

inductive type µaF is the syntactic equivalent of an iteration stage µαF , only that

a is now a syntactic ordinal expression and F is a syntactic type constructor whose

monotonicity is established syntactically.

In this article, we give a non-trivial example of a structurally recursive function

whose termination is automatically established using sized types: a β-normalizer for

simply-typed λ-terms. At the heart of the normalizer are hereditary substitutions

(Watkins et al., 2003): substitution of a normal form into another one, triggering

new substitutions to remove freshly created redexes, until a normal form is returned.

Surprisingly, this process can be formulated by a lexicographic recursion on the type

of the substituted value and the normal form substituted into. We generalize them

1 Another example where semantics has been successfully turned into syntax is the monad. In-
vented by Moggi as a tool to reason about impure features, it has become a device to program
imperatively in Haskell.
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to hereditary simultaneous substitutions in order to handle de Bruijn-style λ-terms

with static guarantee of well-scopedness. Such de Bruijn terms can be represented

using a data structure of heterogeneous type (Bellegarde & Hook, 1994; Altenkirch

& Reus, 1999; Bird & Paterson, 1999). In Fω̂ , heterogeneous types can be expressed

by higher-kinded inductive types, i. e., type µaF where F is an operator on type

constructors instead of just types. As a result, we obtain an implementation of a

normalizer in Fω̂ whose termination and well-scopedness is ensured by type-checking

in Fω̂ .

The remainder of this article is organized as follows. In Section 2, we brie�y

present system Fω̂ . Then, we specify and verify hereditary substitutions and nor-

malization for simply-typed λ-terms in Section 3. In Section 4 we modify the spec-

i�cation to account for simultaneous hereditary substitutions. An implementation

in Fω̂ is provided in Section 5. We conclude by discussing related and further work.

A preliminary version of this article has been presented at MSFP'06 (Abel,

2006a).

2 Fω̂ : A Polymorphic λ-calculus with Sized Types

In this section, we brie�y introduce the most important concepts of Fω̂ . We assume

some familiarity with system Fω and inductive types.

Kinds. Kinds classify type constructors. In Fω, one has the kind ∗ of types and

function kinds κ→ κ′ for type constructors. In Fω̂ we additionally have a kind ord

for syntactic ordinals. Moreover, we distinguish type constructors by their variance:

they can be covariant (monotonic), contravariant (antitonic), constant (both mono-

and antitonic) or mixed-variant (no monotonicity information). This is achieved by

annotating function kinds with a polarity p.

p, q ::= ◦ mixed-variant (no monotonicity information)

| + covariant (monotone)

| − contravariant (antitone)

| > constant (both mono- and antitone)

κ ::= ∗ kind of types

| ord kind of ordinals

| κ
p→ κ′ kind of p-variant type constructors

The order on polarities is the re�exive-transitive closure of the axioms ◦ ≤ p and

p ≤ >. This means that the bigger a polarity, the more information it provides about

the functions: just a function (◦), a mono-/antitone function (+/−), a constant

function (>).
If one composes a function in κ1

p→ κ2 with a function in κ2
q→ κ3 one obtains

a function in κ1
pq→ κ3. For the associative and commutative polarity composition

pq we have the laws >p = >, ◦p = ◦ (for p 6= >), +p = p, and −− = +. Inverse

application p−1q of a polarity p to a polarity q is de�ned as the solution of

∀q, q′. p−1q ≤ q′ ⇐⇒ q ≤ pq′.
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In other words, the operations f(q) = p−1q and g(q′) = pq′ form a Galois con-

nection. It is not hard to see that the unique solution is given by the equations:

+−1q = q, −−1q = −q, >−1q = ◦, ◦−1◦ = ◦ and ◦−1q = > (for q 6= ◦).

Type constructors. Type constructors are expressions of a type-level λ-calculus,

given by the following grammar.

A,B, F,G ::= C | X | λXF | F G

Z λY λXX Y is to be read as Z ((λY (λXX))Y ); we use the dot �.� as an opening

parenthesis which closes as far to the right as syntactically possible, e.g. λXλY. Y X

means λXλY (Y X). The constants C are drawn from a signature Σ. It contains at
least the following symbols together with their kinding:

1 : ∗ unit type

+ : ∗ +→ ∗ +→ ∗ disjoint sum

× : ∗ +→ ∗ +→ ∗ cartesian product

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ ◦→ ∗) +→ ∗ quanti�cation

µκ : ord
+→ (κ +→ κ) +→ κ inductive constructors

s : ord
+→ ord successor of ordinal

∞ : ord in�nity ordinal.

We use +, ×, and→ in�x and write ∀X :κ.A for ∀κ(λX.A). If clear from the context

or inessential, we omit the kind annotation κ in ∀X :κ.A and µκ. We also write the

�rst argument to µκ�the size index�superscript. For instance, µα(λX. 1+A×X)
denotes the lists of length < α containing elements of type A.

Kinding. A kinding context ∆ is a �nite map from type constructor variables X to

pairs pκ of a polarity p and a kind κ. Inverse application p−1∆ of a polarity p to a

context ∆ is de�ned by (p−1∆)(X) = p−1(∆(X)) (inverse-apply p to the polarity

component of ∆(X)). The judgement ∆ ` F : κ assigns kind κ to constructor F in

context ∆. It is given inductively by the following rules:

(C : κ) ∈ Σ
∆ ` C : κ

∆(X) = pκ p ≤ +
∆ ` X : κ

∆, X :pκ ` F : κ′

∆ ` λXF : κ
p→ κ′

∆ ` F : κ
p→ κ′ p−1∆ ` G : κ

∆ ` F G : κ′

The judgement X1 : p1κ1, . . . , Xn : pnκn ` F : κ means that λX1 . . . λXn.F is

a function which is pi-variant in its ith argument. Hence, one can only extract

variables of polarity + or ◦ from the context; X :−κ ` X : κ would state that the

identity function is antitone, which is certainly wrong. The application rule forms

a function H ′ = λ ~X.F ′ ~X (G ~X) from functions F ′ = λ ~X.F and G′ = λ ~X.G. The

variance p′i of H
′ in its ith argument depends on the variance pi of F

′ and qi of G
′

in this argument and the variance p of F ′ in its last argument: p′i is the in�mum of
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pi and pqi, thus, p
′
i = pi if pi ≤ pqi, which is equivalent to p−1pi ≤ qi. So the most

liberal setting for qi is p
−1pi, which is what happens in the application rule.

Example 1

Using the rules, we can derive

λFλGλX.F X → GX : (∗ ◦→ ∗) −→ (∗ ◦→ ∗) +→ (∗ ◦→ ∗).

Let ∆ = F :−(∗ ◦→ ∗), G : +(∗ ◦→ ∗), X : ◦∗. We show ∆ ` F X → GX : ∗ which
means that F X → GX is antitone in F and monotone in G. (It is mixed-variant

in X.) The type-functions F and G are assumed to be mixed-variant. Observe

that +−1∆ = ∆ and −−1∆ = −∆ = F : +(∗ ◦→ ∗), G : −(∗ ◦→ ∗), X : ◦∗ and

◦−1∆ = ◦−1(−∆) = F :>(∗ ◦→ ∗), G :>(∗ ◦→ ∗), X :◦∗.

∆ ` → : ∗ ◦→ ∗ +→ ∗ −−1∆ ` F X : ∗

∆ ` (→) (F X) : ∗ +→ ∗ ∆ ` GX : ∗

∆ ` (→) (F X) (GX) : ∗

Herein, we use the subderivations

−−1∆(F ) = +(∗ ◦→ ∗)

−−1∆ ` F : ∗ ◦→ ∗

◦−1(−−1∆)(X) = ◦∗

◦−1(−−1∆) ` X : ∗

−−1∆ ` F X : ∗
and

∆(G) = +(∗ ◦→ ∗)

∆ ` G : ∗ ◦→ ∗

◦−1∆(X) = ◦∗

◦−1∆ ` X : ∗

∆ ` GX : ∗
Observe the polarity change of F from − to + as we step into the domain part of

the arrow.

Example 2

Doubly negative counts as positive: λX.(X → 1)→ 1 : ∗ +→ ∗.

Type constructor equality. The judgement ∆ ` F = F ′ : κ states that the two

constructors F, F ′ which have kind κ in context ∆, are considered equal in Fω̂ . It

is the least congruence over the following axioms:

∆, X :pκ ` F : κ′ p−1∆ ` G : κ
∆ ` (λXF )G = [G/X]F : κ′

∆ ` F : κ
p→ κ′

∆ ` λX.F X = F : κ
p→ κ′

X 6∈ FV(F )

∆ ` F : κ >→ κ′ ∆ ` G : κ ∆ ` G′ : κ
∆ ` F G = F G′ : κ′

∆ ` s∞ =∞ : ord

∆ ` α : ord

∆ ` µsα = λF. F (µα F ) : (∗ +→ ∗) +→ ∗
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The �rst rule encodes β- and the second η-equality. The third rule states that a

constant function has the same value for all arguments. Let us look at the remaining

two rules.

The normal forms of constructors α : ord that denote ordinal expressions are

essentially following the grammar

α ::= ı | ∞ | sα

where we use ı and  for variables of kind ord. Not captured by this grammar are

neutral expressions like X ~G; they stem from variables X : ~κ
~p→ ord which are not

forbidden, but of no use in the type system to follow. The ordinal expression ∞
denotes an ordinal large enough such that all inductive types have reached their

�xed-point, thus, we have

F (µ∞F ) = µ∞F. (1)

The ordinal expression sα denotes the ordinal successor of α. We also write α+ n

as shorthand for s (. . . (sα)) (n successors). The closure ordinal∞ is the largest size

we need to consider, so we set

s∞ =∞. (2)

In general, we have the type equation

µα+1F = F (µαF ) (3)

for sized inductive types, which re�ects the semantical construction of inductive

types given in the introduction. Equations (2) and (3) are axioms of our judgmental

constructor equality ∆ ` F = F ′ : κ, the equation (1) follows from the other two.

Subtyping ∆ ` F ≤ F ′ : κ is induced by axioms expressing relations between

ordinals and equipped with congruence rules that respect polarities.

∆ ` α : ord

∆ ` α ≤ sα : ord

∆ ` α : ord

∆ ` α ≤ ∞ : ord

∆ ` F ≤ F ′ : κ
p→ κ′ p−1∆ ` G : κ

∆ ` F G ≤ F ′G : κ′

∆ ` F : κ +→ κ′ ∆ ` G ≤ G′ : κ
∆ ` F G ≤ F G′ : κ′

∆ ` F : κ −→ κ′ ∆ ` G′ ≤ G : κ
∆ ` F G ≤ F G′ : κ′

Additionally, we have a congruence rule for λ-abstraction and rules for re�ex-

ivity, transitivity and antisymmetry. The rules for ordinal expressions are self-

explanatory; the third rule states that functions are compared point-wise; and the

last two rules generate inequalities from mono-/antitone type functions.

Using the application rules and the polarized kind κ of constants C : κ from the

signature, we can establish interesting subtyping relations: Since µ is covariant in

its �rst argument, the rules allow us to derive

µıF ≤ µı+1F ≤ · · · ≤ µ∞F.

This re�ects the fact that by de�nition of the semantics, ordinals are upper bounds
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on size. For instance ListαA = µα(λX. 1 + A × X) contains lists of length < α,

BTreeαA = µα(λX. 1 + A × X × X) binary trees of height < α, and Natα =
µα(λX. 1 + X) natural numbers < α. Trans�nite sizes are needed for in�nitely

branching trees, e. g., µα(λX. 1 + Nat∞ ×X + (Nat∞ → X)).

Programs (terms). Fω̂ is a purely functional language with categorical datatypes2

and recursion. Programs are given by the following grammar.

e, f ::= x | λxe | f e λ-calculus

| 〈〉 inhabitant of type 1
| 〈e1, e2〉 | fst e | snd e pairing and projections

| inl e | inr e | case e f1 f2 injections into disjoint sum, case distinction

| fix f recursion.

Typing. Wellformed typing contexts are generated by the rules

� cxt

Γ cxt

Γ, X :◦κ cxt

Γ cxt Γ ` A : ∗
Γ, x :A cxt

.

Typing contexts can always be viewed as kinding contexts, forgetting the bindings

for the term variables. The typing rules for the λ-calculus part are inherited from

Curry-style system Fω.

(x :A) ∈ Γ Γ cxt

Γ ` x : A
Γ, x :A ` e : B

Γ ` λxe : A→ B

Γ ` f : A→ B Γ ` e : A
Γ ` f e : B

Γ, X :◦κ ` e : F X
Γ ` e : ∀κF

X 6∈ FV(F )
Γ ` e : ∀κ F Γ ` G : κ

Γ ` e : F G

Γ ` e : A Γ ` A ≤ B : ∗
Γ ` e : B

Unit type, cartesian product and disjoint sum are introduced and eliminated using

the respective terms given in the grammar (we omit the obvious typing rules).

Inductive types can be introduced and eliminated using the type equations. For

instance, the empty list is typed as

inl 〈〉 : 1 +A× ListıA = Listı+1A.

The central feature of Fω̂ is the type-based recursion rule which has been seman-

tically motivated in the introduction:

Γ ` α : ord

Γ ` G : ord
+→ ∗

Γ ` f : ∀ı :ord. (∀ ~X. µıF ~X → G ı)→ ∀ ~X. µı+1F ~X → G (ı+ 1)

Γ ` fix f : ∀ ~X. µαF ~X → Gα

2 Categorical datatypes do not contain names, just structure. Constructors of data structures are
derived from the program primitives. This is in opposition to nominal languages where data
constructors are themselves primitives (e. g., in Haskell).
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In comparison with the semantic rule given in the introduction, we now allow poly-

morphic recursion, and the result type Gα may mention the ordinal index α, but

only positively (Barthe et al., 2004; Abel, 2004a; Blanqui, 2004). Note that the size

index α in the conclusion can be arbitrary. (Alternatively, one could formulate the

rule with conclusion fix f : ∀ı∀ ~X. µıF ~X → G ı. This size-polymorphic function can

then be instantiated to any size α.)

Typing is not decidable, since Fω̂ features impredicative polymorphism and poly-

morphic recursion, which are both undecidable by themselves already. However

undecidability may not be a problem in practice, as the experience with Haskell

shows. There, it is usually su�cient that the programmer provides the types of

all recursive functions. Type information is then propagated using heuristics like

bidirectional type-checking. In previous work (Abel, 2004a) I have described a bidi-

rectional type-checking algorithm for a simply-typed language with sized types,

and I expect that sized types can be integrated into Haskell type-checking without

causing new undecidability issues.

We illustrate the potential of type-based termination à la Fω̂ with the following

example.

Example 3 (Quicksort)

Fω̂ accepts the usual functional quicksort as terminating. The type system can track

the size of the output of filter f l (the list of elements of l for which f holds) which

is at most the size of l.

filter : ∀A. (A→ Bool)→ ∀ı. ListıA→ ListıA

filter f = fixλfiltλl. case l

(λ_. inl〈〉)
(λp. if f (fst p) then inr 〈fst p, filt (snd p)〉 else filt (snd p))

quicksort : ∀ı. Listı Int→ List∞ Int

quicksort = fixλquicksortλl. case l

(λ_. inl〈〉)
(λp. append (quicksort (filter (≤ (fst p)) (snd p)))

(inr 〈fst p, quicksort (filter (> (fst p)) (snd p))〉))

Using the size bound on �ltered lists, quicksort is well-typed, hence, terminating.

In the next section, we start developing an interpreter for an object language, in

our case, the simply-typed λ-calculus, which we will later implement in our meta

language, Fω̂ .

3 A Terminating Normalizer for Simply-Typed Lambda-Terms

In this section, we formally de�ne hereditary substitution for the simply-typed λ-

calculus. We show its termination, soundness, and completeness.

Types and terms. The following grammars introduce our object language, the simp-

ly-typed λ-calculus. To distinguish it from our meta-language, Fω̂ , we use lower case
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letters for the types.

a, b, c ::= o | a→ b simple types

r, s, t ::= x | λx :a.t | r s simply-typed terms

n ::= x | n s neutral terms (required in Section 3.3)

Γ ::= � | Γ, x :a typing contexts

Ordinary (capture-avoiding) substitution [s/x]t of s for x in t, the set FV(t) of free
variables of term t, and β-equality t =β t

′ of terms t, t′ shall be de�ned as usual, as

well as the typing judgement Γ ` t : a. We need these notions to prove correctness

of the normalization algorithm which we are going to implement in Fω̂ .

Let |a| ∈ N denote a measure on types with |b| < |b→ c| and |c| ≤ |b→ c|. There
are three natural candidates for this measure:

|o| |a→ b| measure

1 |a|+ |b|+ 1 tree size

1 max(|a|, |b|) + 1 tree height, or structural measure

0 max(|a|+ 1, |b|) order of the type

The last two can be expressed in Fω̂ , see Section 5.

3.1 Hereditary substitution

We de�ne a 4-ary function [s/x]at, called hereditary substitution, which returns a

result r̂. A result is either just a term r or a term annotated with a type, written

rc. The intention is that if s and t are β-normal and well-typed terms and a is

the type of s and x, then the result will also be β-normal (and well-typed). Our

de�nition is a simpli�cation of Watkins et al.'s (2003) hereditary substitutions for

terms of the concurrent logical framework CLF. Implicitly, hereditary substitutions

are present already in Joachimski and Matthes' (2003) normalization proof for the

simply-typed λ-calculus. This proof is similar to normalization proofs before Tait

(1967), e. g., Gentzen (1935)3, Turing, Prawitz (1965)4, and others.

Let us �rst introduce some overloaded notation on results r̂. The operation r̂

discards the type annotation on the result if present, i. e., ra := r and r := r. This

operation is to be applied implicitly when the context demands it. For example,

application of two results r̂ and ŝ implicitly discards the type annotations: r̂ ŝ := r̂ ŝ.

Similarly for abstraction: λx : a.r̂ := λx : a.r̂. Finally, reannotation r̂a := (r̂)a puts

a fresh type annotation a onto a result.

Using these notations, we can compactly de�ne the process [s/x]at = r̂ of hered-

itarily substituting s of type a for variable x in t. The type a should be viewed as

fuel which is spent on triggering new hereditary substitutions. If the result r̂ is rc,

then the process returns fuel c. If the result is simply a term r, no fuel is returned,

3 pp. 197�
4 Thm. III.2
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i. e., it has all been spent or wasted.

[s/x]ax = sa

[s/x]ay = y if x 6= y

[s/x]a(λy :b.r) = λy :b. [s/x]ar where y fresh for s, x

[s/x]a(t u) = ([û/y]br′)c if t̂ = (λy :b′.r′)b→c

t̂ û otherwise

where t̂ = [s/x]at
û = [s/x]au

In lines 2, 3, and 5, all fuel is wasted. In line 1, all fuel is returned. And in line 4,

the fuel (b→ c) returned by the hereditary substitution into t is partially spent (b)

on a new substitution, and partially returned (c).

Example 4
Let us demonstrate hereditary substitution for a few cases. We will write λxt instead

of λx :a. t if the type a of the abstracted variable does not matter for our purposes.

1. Di�erent head variable (x 6= y):

[s/x]a(y t1 . . . tn) = y ([s/x]at1) . . . ([s/x]atn)

Hereditarily substituting for x into a term y t1 . . . tn with a di�erent head vari-

able behaves on the surface level like ordinary substitution. (In the subterms

ti something more interesting might happen, of course.)
2. Same head variable, out of fuel : creates redexes.

[λy. y λzz/x]o(xλff) = (λy. y λzz)λff.

We have [λy. y λzz/x]ox = (λy. y λzz)o, and since o is a base type, the appli-

cation of the result to λff does not trigger a new substitution.
3. Same head variable, some fuel left :

[λy. y λzz/x]o→o(xλff) = (λff)λzz.

This time, executing the hereditary substitution for x in x returns o→ o fuel,

so a new hereditary substitution [λff/y]o(y λzz) is triggered. However, now
we run out of fuel, and one redex remains.

4. Same head variable, enough fuel :

[λy. y λzz/x](o→o)→o(xλff) = (λzz)o.

Finally, we reach a normal form, since the hereditary substitution for y returns

fuel o→ o, so a third and last hereditary substitution, [λzz/f ]of is triggered.
5. Substituting into redexes:

[s/x]a((λyt)u) = (λy. [s/x]at)([s/x]au)

Already present redexes are preserved by hereditary substitution, only new

redexes which are created by the substitution process can be eliminated. Sim-

ilarly, redexes in s are kept:

[(λxr) s/y]a(y z) = (λxr) s z
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In the following we will prove termination of hereditary substitution and soundness,

i. e., the hereditary substitution [s/x]at returns a term with the same meaning as

ordinary substitution [s/x]t. A necessary condition for termination is that driving

does not create fuel, which we can more formally express as:

Lemma 1 (Invariant)
If [s/x]at = rc then |c| ≤ |a|.

Proof

By induction on t. There are only two cases which return an annotated term:

• [s/x]ax = sa. Trivially |a| ≤ |a|.
• [s/x]a(t u) = ([û/y]br′)c where [s/x]at = (λy :b′.r′)b→c. By induction hypoth-

esis, |b→ c| ≤ |a|. This proves the invariant, since |c| ≤ |b→ c| by de�nition

of the measure | · |.

This entails termination, because whenever we want to execute a new hereditary

substitution, we need to have b → c fuel left, from which we take b for the new

substitution and keep the c for further substitutions which may arise.

Lemma 2 (Termination and soundness)
[s/x]at =β [s/x]t for all a, s, x, t.

Remark 1

The statement � [s/x]at =β some term� entails the statement �[s/x]at is de�ned�
(termination).

Proof

By lexicographic induction on (|a|, t). In the case of application, [s/x]a(t u), by
induction hypothesis, t̂ = [s/x]at and û = [s/x]au are both de�ned. We consider

the subcase t̂ = (λy : b′.r′)b→c. Using the invariant, we infer |b| < |b → c| ≤ |a|.
Hence, we can again apply the induction hypothesis to infer that [û/y]br′ terminates,

thus, by de�nition, also [s/x]a(t u). Soundness holds by the induction hypotheses,

since (λy :b′.r′) û =β [û/y]r′.

In Sec. 3.3 we will show that hereditary substitution is complete, i. e., returns a

normal form, if run on normal forms with su�cient fuel. For well-typed terms, the

type of the substituted variable provides su�cient fuel. For non-well-typed terms, no

amount of fuel might be su�cient; consider [λx. x x/x]a(xx), which has no normal

form.

3.2 Full Normalization

We de�ne a function [[t]] which β-normalizes term t, provided it is well-typed. Even

if it is not well-typed, the normalizer terminates and returns a term which is β-equal

to the input.

[[x]] = x

[[λx :a.r]] = λx :a. [[r]]

[[r s]] = [[[s]]/x]at if [[r]] = λx :a.t
[[r]] [[s]] otherwise
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The normalizer is structurally recursive in its argument, thus, once we have estab-

lished termination of hereditary substitution, its termination is trivial.

Lemma 3 (Termination and soundness)

[[t]] =β t for all t.

Proof

By induction on t, using termination and soundness of hereditary substitution.

Example 5 (Behavior of normalizer)

[[(λx :o→ o.λy :b. x y) (λz :a.z)]] = λy :b.y

Hereditarily substituting (λz : a.z) at function type o → o for x into x y triggers

another substitution of y for z in z. However, if variable x is annotated with base

type o only, this second substitution is not invoked and we get a non-normal result:

[[(λx :o.λy :b. x y) (λz :a.z)]] = λy :b. (λz :a.z) y

Evaluation of terms that are diverging under β-reduction also stops, e.g.,

[[(λx :o. x x) (λx :o. x x)]] = (λx :o. x x) (λx :o. x x).

3.3 Completeness of the Normalizer

In the following we show that the normalizer actually computes normal forms for

well-typed terms.

Typed normal forms. We introduce a judgement Γ ` t ⇓ a which expresses that t

is a β-normal form of type a in context Γ.

(x :a) ∈ Γ
Γ ` x ⇓ a

Γ ` n ⇓ a→ b Γ ` s ⇓ a
Γ ` n s ⇓ b

n not a λ
Γ, x :a ` r ⇓ b

Γ ` λx :a.r ⇓ a→ b

Note that in the second rule, the head n of the application n s is a neutral term, in

particular, not an abstraction.

Lemma 4 (Completeness of hereditary substitution)

Let Γ ` s ⇓ a and Γ, x :a ` t ⇓ c. Then exists an r with the following properties: if

t is neutral then either [s/x]at = rc, or r is also neutral and [s/x]at = r. Otherwise,

if t is not neutral, [s/x]at = r. In all cases, Γ ` r ⇓ c.

Proof

By lexicographic induction on (|a|, t). We consider the interesting case t = nu:

Γ, x :a ` n ⇓ b→ c Γ, x :a ` u ⇓ b
Γ, x :a ` nu ⇓ c

Let û = [s/x]au. If [s/x]an = r̂ and r̂ is neutral, then Γ ` r̂ û : c follows easily by

induction hypothesis. Otherwise, [s/x]an = (λy : b.r′)b→c. By the invariant, |b| <
|b → c| ≤ a, and we can apply the induction hypothesis to infer Γ ` [û/y]br′ ⇓ c,
which is by de�nition equivalent to Γ ` [s/x]a(nu) ⇓ c.

Theorem 1 (Completeness of the normalizer)
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If Γ ` t : a then Γ ` [[t]] ⇓ a.

Proof

By induction on t, using the previous lemma in case of a β-redex.

4 Adaptation to Simultaneous Substitutions

Our aim is to implement the normalizer of the last section for a representation of

terms using de Bruijn indices. Following Bellegarde and Hook (Bellegarde & Hook,

1994), Altenkirch and Reus (1999) and Bird and Paterson (1999), untyped λ-terms

over the set of free variables A can be implemented by a heterogeneous datatype

TmA with the three constructors:

var : ∀A.A→ TmA

abs : ∀A.Tm (1 +A)→ TmA

app : ∀A.TmA→ TmA→ TmA

The second constructor, abs, expects a term with one more free variable (1 + A)

and binds this variable such that the result will only have free variables in A.

In this representation of de Bruijn terms, which uses types A as indices of the

family TmA, substitution [s/x]t for a single variable x is most elegantly obtained

as an instance of simultaneous substitution tρ for all free variables in t: if t has type

TmA and ρ has type A→ TmB, the result tρ of the substitution has type TmB.5

Hereditary simultaneous substitution. A valuation ρ is a function from variables to

results r̂. Let the update ρ[x 7→ r̂] of valuation ρ in x by result r̂ be de�ned as

usual:

ρ[x 7→ r̂](x) = r̂

ρ[x 7→ r̂](y) = ρ(y) if x 6= y

The singleton valuation which maps x to r̂ and all other variables to themselves

shall be denoted by (x 7→ r̂). A single substitution [s/x]t can be implemented using

the simultaneous substitution t(x 7→ s) with a singleton valuation.

The hereditary simultaneous substitution t!ρ returns a result r̂ and is de�ned by

the following equations:

x!ρ = ρ(x)
(λy :b.r)!ρ = λy :b. (r!ρ[y 7→ y]) where y fresh for any ρ(x) with x ∈ FV(λyr)

(t u)!ρ = (r′!(y 7→ ûb))c if t̂ = (λy :b′.r′)b→c

t̂ û otherwise

where t̂ = t!ρ
û = u!ρ

A closer look reveals that we use only three operations on valuations: lookup, ρ(x),
lifting, ρ[y 7→ y] for y fresh, and creation of a singleton valuation, (y 7→ ûb). In

5 The type constructor Tm forms a Kleisli triple with unit var and simultaneous substitution as
the bind-operation.
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particular, if t!ρ is invoked with a singleton valuation ρ, all recursive calls will also

just involve a singleton valuation. We could therefore restrict ourselves to singleton

valuations (see also Appendix A). However, for termination, a weaker requirement

is su�cient:

In the following we consider only valuations ρ where ρ(x) = ra for only �nitely

many variables x. For such valuations,

|ρ| := max{|a| | ρ(x) = ra}

is a well-de�ned measure, |ρ| ∈ N. Trivially, |(y 7→ sa)| = |a| for a singleton valua-

tion.

Hereditary simultaneous substitutions always terminate, and the respective proof

for hereditary singleton substitutions can be adopted:

Lemma 5 (Invariant)

If t!ρ = rc, then |c| ≤ |ρ|.

Proof

By induction on t.

Lemma 6 (Termination and soundness of hereditary simultaneous substitutions)

For all terms r and valuations ρ such that |ρ| exists, we have r!ρ =β rρ.

Proof

By lexicographic induction on (|ρ|, r). In case r = t u and t̂ = t!ρ = (λy : b′.r′)b→c,
use the invariant to establish |(y 7→ ûb)| = |b| < |b → c| ≤ |ρ| and apply the

induction hypothesis.

By setting [s/x]at := t!(x 7→ sa) we can reuse the code for the normalization

function [[r]] from the last section.

5 Implementation in Fω̂

In this section, we implement hereditary substitutions in Fω̂ . As a result, we will

get a normalizer whose termination is certi�ed by the type system of Fω̂ .

Simple types over a single base type o can be de�ned as follows in Fω̂ :

Ty : ord
+→ ∗

Ty := λı. µı∗λX. 1 +X ×X

o : ∀ı.Tyı+1

o := inl 〈〉

arr : ∀ı.Tyı → Tyı → Tyı+1

arr := λaλb. inr 〈a, b〉

The de�nition of Ty forces the types of the constructors o and arr. The size index

ı in Tyı implements the structural measure on simple types. The requirements

|b| < |arr b c| and |c| ≤ |arr b c| hold since b, c : Tyı implies arr b c : Tyı+1.

Remark 2
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If we choose to implement types as (naked) rose trees, Tyı = µıλX. List∞X, the

constructors o and arr, de�ned as above, now receive the typing:

o : ∀ı.Tyı+1

arr : ∀ı.Tyı → Tyı+1 → Tyı+1.

To see this, observe that Tyı+1 = List∞Tyı and o = nil and arr = cons. The resulting

measure is an upper bound on the order of a type and ful�lls the requirements as

well. However, I do not see how one could code Tyı such that ı would be an upper

bound on the number of arr-nodes.

5.1 De Bruijn Terms as a Sized Heterogeneous Data Type

We can express the sized type constructor Tm for de Bruijn terms by a least �xed

point of kind ∗ +→ ∗.

Tm : ord
+→ ∗ +→ ∗

Tm := λı. µı∗+→∗λXλA. A+ (X A×X A+ Ty∞ ×X (1 +A))

var : ∀ı∀A.A→ Tmı+1A

var := λx. inlx

app : ∀ı∀A.TmıA→ TmıA→ Tmı+1A

app := λrλs. inr (inl 〈r, s〉)

abs : ∀ı∀A.Ty∞ → Tmı (1 +A)→ Tmı+1A

abs := λaλr. inr (inr 〈a, r〉)

Note that the �rst argument to abs is the object-level type of the abstraction: abs a r

represents λx :a. r.
Lifting the free de Bruijn indices of a term t by one is implemented as mapTm inr

where mapTm is the functorial action of Tm.

mapTm : ∀ı∀A∀B. (A→ B)→ TmıA→ TmıB

mapTm := λfλr.map′Tm r f

map′Tm : ∀ı∀A.TmıA→ ∀B. (A→ B)→ TmıB

map′Tm := fixλmap′λtλf. match t with

var x 7→ var (f x)
app r s 7→ app (map′ r f) (map′ s f)
abs a r 7→ abs a (map′ r (mapMaybe f))

mapMaybe : ∀A∀B. (A→ B)→ (1 +A→ 1 +B)
mapMaybe := λfλt.match t with

inl 〈〉 7→ inl 〈〉
inr x 7→ inr (f x)

liftTm : ∀ı∀A.TmıA→ Tmı(1 +A)
liftTm := mapTm inr
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The call mapTm f t renames all free variables in t according to f ; the structure of t

remains unchanged, which is partially re�ected in the type of mapTm: it expresses

that the output term is not larger than the input term.

5.2 Implementation of Hereditary Simultaneous Substitution

The result of a hereditary substitution of a normal term into a neutral term is either

a neutral term r or a normal term r plus (its) type a, which we have written as ra.

We encode these alternatives in the type ResıA, where ı is an upper bound on the

size of the type a and A is the set of free variables that might occur in the result

term r. We de�ne two constructors: neRes r for the �rst alternative, and nfRes r a for

the second alternative.

Res : ord
+→ ∗ +→ ∗

Res := λıλA.Tm∞A× (1 + Tyı)

neRes : ∀ı.Tm∞A→ ResıA

neRes := λr. 〈r, inl 〈〉〉

nfRes : ∀ı.Tm∞A→ Tyı → ResıA

nfRes := λrλa. 〈r, inr a〉

The destructor tm just extracts the term component. The function liftRes lifts the

free variables in a result term by one.

tm : ∀ı∀A.ResıA→ Tm∞A

tm := λ〈r, a〉. r

liftRes : ∀ı∀A.ResıA→ Resı (1 +A)
liftRes := λ〈r, a〉. 〈liftTm r, a〉

Finally, we can mimic all term constructors on Res. They should all discard the

type component, if present. This is why the size index ı on the result of these

operations is arbitrarily small:

varRes : ∀ı∀A.A→ ResıA

varRes := λa. neRes (var a)

absRes : ∀ı∀A.Ty∞ → Res∞(1 +A)→ ResıA

absRes := λaλr. neRes (abs a (tm r))

appRes : ∀A.Res∞A→ Res∞A→ ResıA

appRes := λtλu. neRes (app (tm t) (tmu))

We represent valuations ρ which map all variables in A to a result with variables
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in B by the sized type ValıAB. The size index ı is an upper bound for |ρ|.

Val : ord
+→ ∗ −→ ∗ +→ ∗

Val := λıλAλB.A→ ResıB

lookupVal : ∀ı∀A∀B.ValıAB → A→ ResıB

lookupVal := λρλx. ρ x

sgVal : ∀ı∀A.Tm∞A→ Tyı → Valı (1 +A)A
sgVal := λsλaλmy . match my with

inl 〈〉 7→ nfRes s a

inr y 7→ varRes y

liftVal : ∀ı∀A∀B.ValıAB → Valı (1 +A) (1 +B)
liftVal := λρλmx . match mx with

inl 〈〉 7→ varRes (inl 〈〉)
inr x 7→ liftRes (ρ x)

The expression sgVal s a : Valı (1 + A)A corresponds to the singleton valuation

(x 7→ sa); it generates a valuation which maps the variable x in 1 to nfRes s a

and the variables y in A to neRes (var y). The extension ρ[y 7→ y] of a valuation ρ

is implemented by liftVal ρ and lookup of variable x in ρ by lookupVal. Other imple-

mentations of valuations are possible, see Appendix A.

For implementing hereditary substitutions, we have to take into account the

limitations of recursion in Fω̂ . Lexicographic recursion on type and term, Tyı ×
TmA, needs to be split up into an outer recursion on Tyı and an inner recursion

on Tm.

Thus, we de�ne hereditary substitution [s/x]ar by a function subst a s r recursive

in a. This outer function calls an inner function simsubst r (sgVal a s) recursive in

r, which performs hereditary simultaneous substitutions in r, starting with the

singleton valuation (x 7→ sa). In one case, the inner function calls the outer function,
albeit with a smaller type b. That b is in fact smaller than a is tracked by the type

system.

subst : ∀ı. Tyı → ∀A.Tm∞A→ Tm∞(1 +A)→ Tm∞A

subst := fixλsubstλaλsλt. tm (simsubst t (sgVal s a))

where

simsubst : ∀. ∀A∀B.TmA→ Valı+1AB → Resı+1B

simsubst := fixλsimsubstλrλρ. match r with

var x 7→ lookupVal ρ x

abs b t 7→ absRes b (simsubst t (liftVal ρ))
app t u 7→ let t̂ = simsubst t ρ

û = simsubst u ρ
in match t̂ with

nfRes (abs b′ r′) (arr b c) 7→ nfRes (subst b (tm û) r′) c
_ 7→ appRes t̂ û

The outer function is de�ned by induction on size ı; we have the following important
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types of bound variables:

subst : Tyı → ∀A.Tm∞A→ Tm∞(1 +A)→ Tm∞A

a : Tyı+1

This explains why in the type of the inner function, we have used size index ı + 1
for Val and Res. The inner function is de�ned by induction on . It is important

that liftVal does not touch the size argument to Val. Also, absRes and appRes can

return results Res with any size argument, thus, ı + 1 is �ne. In lookupVal ρ x, the

size index on Val is returned as the size of Res. Finally, when we match t̂ : Resı+1B

as the result of a recursive call to simsubst , the expression arr b c has sized type

Tyı+1, hence, b : Tyı, and the recursive call to subst is legal. Since c : Tyı ≤ Tyı+1

by subtyping, the result nfRes (. . . ) c is well-typed.
The normalizer [[−]] can now be implemented straightforwardly. Its termination

is guaranteed by sized types!

norm : ∀ı∀A.TmıA→ Tm∞A

norm := fixλnormλt.match t with

var x 7→ var x

abs a r 7→ abs a (norm r)
app r s 7→ let r′ = norm r

s′ = norm s

in match r′ with abs a t′ 7→ subst a s′ t′

_ 7→ app r′ s′

6 Discussion and Related Work

We have seen an interesting example for certifying termination with sized types.

One may wonder, is this normalizer extensible beyond the simply typed lambda-

calculus, and are sized types strictly necessary to implement terminating hereditary

substitutions? The answer to the �rst question is, yes, but not substantially. One

can add product and sum types and probably control operators such as the µ

in the λµ-calculus (David & Nour, 2005). Yet System T is clearly out of reach,

since the termination orderings are well beyond lexicographic. With respect to

the second question: one can obtain a structurally recursive implementation of

hereditary substitutions if one uses a spine representation of λ-terms: r, s, t ::= x~t |
λx : a. t | r s. This was pointed out to me by one of the referees. However, as we

have seen, sized types o�er more �exibility and means to abstract: we can always

replace a piece of code by something di�erent with the same type and maintain

termination. For instance, we have factored out the implementation of valuations

from the implementation of simultaneous substitutions, so now we can choose a

completely di�erent representation.

Terminating normalizers for object languages like System T or System F (Al-

tenkirch, 1993) can be implemented in dependently typed meta-languages of ap-

propriate strength, like Coq (2007) which is based on a type theory called the

Calculus of Inductive Constructions. There have been proposals to integrate sized

types into the type theory (Barthe et al., 2006; Blanqui, 2005) to check termination
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of recursive de�nitions behind the scenes. In Fω̂ , sizes are �rst-class, i. e., one can

speak about non-size-increasing functions like filter and pass them as parameters to

other functions. Of course, dependent type theories already feature indexed types,

thus, one can simulate sized types to a certain extent. E. g., sized types requiring

only sizes < ω can be simulated by an inductive family indexed by a natural num-

ber, and size ω through an existential type. However, subtyping sized types is then

not available, one has to insert explicit coercions instead, and the conveniences of

a size ∞ are lost.6 A lightweight integration of sized types into dependent types is

still a topic of research.

We continue with a review of some related work.

Type-based termination and sized types. Mendler (1991) �rst devised a typing rule

for general recursive programs that would single out the ones that are iterative�

like fold for lists. Mendler's system was extended by Giménez (1998) and Barthe

et al. (2004; 2005) to account for course-of-value recursion�covering functions like

quicksort. I have explored how the type of a recursive function may depend on the

size index (Abel, 2006c)�now functions like breadth-�rst traversal are recognized

as terminating by the type system. In my thesis (Abel, 2006b), I cover also het-

erogeneous types like this article's Tm. Blanqui (2004; 2005) extended type-based

termination to dependent types and rewriting.

Independently of these �type-theoretic� developments, Hughes, Pareto, and Sabry

(Hughes et al., 1996; Pareto, 2000) have explored sized types for preventing crashes

of functional programs. They arrived at a similar rule for type-based terminating

recursion.

De Bruijn representation by a heterogeneous type. Since the 1960s it is known that

simultaneous substitution can be viewed as the bind operation of a suitable monad

(Lane, 1971; Manes, 1976). For terms with binders, the idea was taken up by Bird

and Paterson (1999) as a case study for heterogeneous types in Haskell. Altenkirch

and Reus (1999) implement simultaneous substitutions for de Bruijn terms in a

more type-theoretic setting; they carry out the renaming�performed in substitu-

tion under a binder�also by an invocation of substitution. Thus, termination of

substitution becomes more complicated; they justify it by a lexicographic argu-

ment. McBride (2006) strati�es this situation by exhibiting a common scheme with

substitution and renaming as special instances. This scheme is again structurally

recursive. McBride considers the object language of simply-typed terms in a de-

pendently typed meta language; this way, he even establishes that substitution and

renaming are type-preserving.

Adams (2006) has carried out metatheory of pure type systems using de Bruijn

representations as a heterogeneous type. He found that he had to pass from small-

step statements, which speak about a single variable, e.g., a single substitution,

6 Implementing arr′ : Ty∞ → Ty∞ → Ty∞ as arr′ : (∃ı : N.Tyı) → (∃ı : N.Tyı) → (∃ı : N.Tyı)
involves computation of a maximum.
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to big-step statements, that take all variables into account at the same time, like

simultaneous substitution. We can only con�rm his �ndings.

Arithmetic normalization proofs and functions. Joachimski and Matthes (2003)

present strong and weak normalization proofs of the simply-typed λ-calculus using

a lexicographic induction on types and derivations, similar to the one we have given

in Section 3. They hand-extract a general recursive normalization algorithm which

may diverge on ill-typed input. Berghofer (2006) implements the weak normaliza-

tion proof in Isabelle and automatically extracts a normalizer, being much more

complicated and keeping some intermediate data structures. I have implemented a

similar proof in Twelf (Abel, 2004b). The termination checker of Twelf is capable

to certify termination of the normalization proof, if viewed as a recursive function.

Watkins et al. (2003) de�ne hereditary substitutions for terms of the logical

framework LF, and its extensions to linearity and concurrency. These substitutions

proved to be terminating by a lexicographic induction on type and term�as in

this article. Hereditary substitutions enable us to specify a framework which only

treats canonical forms (β-normal η-long objects), thus, simplifying its metatheory

considerably; see also the tutorial on LF by Harper and Licata (2007).

7 Conclusion

We have presented Fω̂ , a pure polymorphic programming language with sized het-

erogeneous inductive types and type-based termination. As a non-trivial example,

we have implemented a normalizer for simply-typed λ-terms in Fω̂ . The termina-

tion of the normalizer is statically ensured in Fω̂ . Additionally, the normalizer is

well-scoped, by virtue of an implementation of λ-terms using a heterogeneous type.

One can go further and aim for a normalizer for statically well-typed λ-terms,

�well-typed� referring here to typing in the object language of simple types. McBride

(2006) has done a �rst step and implemented type-preserving renaming and substi-

tution for the object language using a dependently-typed meta language. Pursuing

this approach, one can modify the normalizer such that it does not any more ex-

plicitly manipulate object-level types but considers only object-level terms. The

object-level types are then visible only in the meta-level typing of the normalizer.

The normalizer, viewed purely operationally, has the possibility to diverge on ill-

typed terms, but the static well-typedness condition guarantees its termination for

all actual inputs.7

Acknowledgments. Thanks to the anonymous referees for their careful reading and

their humorous, helpful, and encouraging comments.

7 One referee has sent me Agda code which implements the type-preserving normalizer I describe
here.
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A Variation

In this section, we consider an alternative representation of a single substitution

for de Bruijn terms. It will turn out that the alternative is not so di�erent to what

we had already; substitution [s/i]t of a term s for a free de Bruijn index i in t is

just an instance of simultaneous substitution tρ, using a special representation of

the valuation ρ.

Consider λ-terms as given by the grammar Tm 3 r, s, t ::= i | λt | r s, where
i ∈ N is a de Bruijn index, and λt binds index 0 in t. The set of free indices and the

lifting operation ↑ t, which increases each free index by 1, shall be de�ned as usual.

Let ρ ∈ N→ Tm. Simultaneous substitution tρ is given by the three equations:

iρ = ρ(i)
(λt)ρ = λ. t(⇑ ρ)
(r s)ρ = (rρ) (sρ)

Herein, (⇑ ρ)(0) = 0 and (⇑ ρ)(i+ 1) = ↑(ρ(i)). Substitution [s/i]t for a single index
i is an instance of simultaneous substitution tρ with

ρ(j) =


s if j = i

j if j < i

j − 1 if j > i.

There is also a direct implementation of substitution [s/i]t for a single index:

[s/i]j =


s if j = i

j if j < i

j − 1 if j > i

[s/i](λt) = λ. [↑ s/i+ 1]t
[s/i](t u) = ([s/i]t) ([s/i]u)

However, this algorithm di�ers not much from the instance of simultaneous substi-

tution we had before. It just uses a representation of the valuation ρ as a pair (s, i),
with lookup ρ(j) and lifting ⇑ ρ de�ned accordingly.

We will now investigate how this implementation of a single substitution carries

over to our representation of de Bruijn terms as a heterogeneous datatype. The

operations <, >, and −1 cannot be implemented in Fω̂ on our type of variables,

which has a shape of the form 1 + · · ·+ 1 +A; we would need advanced type-level

programming features such type classes or inductive kinds. But we can massage our

implementation of singleton valuations into a form which is implementable in Fω̂ .

The new representation of a singleton valuation is a pair (s, φ) where φ ∈ N →
(N ∪ {∗}), and we de�ne lookup and lifting as follows:

(s, φ)(j) =
{
s if φ(j) = ∗
φ(j) otherwise

⇑(s, φ) = (↑ s, φ′) where φ′(0) = 0

φ′(j + 1) =
{
∗ if φ(j) = ∗
φ(j) + 1 otherwise
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Substitution [s/0]t for the index 0 is then obtained by tρ with ρ = (s, φ), φ(0) = ∗
and φ(j + 1) = j.

This representation of singleton valuations can also be used with the represen-

tation of de Bruijn terms as a heterogeneous type in Section 5. Then, φ(j) = ∗ is
represented as φ(y) = inl〈〉. If y is not the one variable which is assigned to ŝ in

the singleton valuation, then φ(y) = inr y′ for some variable y′ which is either iden-

tical to y or the variable just below y (thus, we have y ∈ {y′, inr y′}). A singleton

valuation is de�ned for at least one variable, thus, the domain of φ is 1 +A.

SgVal : ord
+→ ∗ ◦→ ∗

SgVal := λıλA.Tm∞A× Tyı × (1 +A→ 1 +A)

lookupVal : ∀ı∀A.SgValıA→ 1 +A→ ResıA

lookupVal := λ〈s, a, φ〉λy. match φ y with

inl 〈〉 7→ nfRes s a

inr y′ 7→ neRes (var y′)

sgVal : ∀ı∀A.Tm∞A→ Tyı → SgValıA

sgVal := λsλa. 〈s, a, λy.y〉

liftVal : ∀ı∀A.SgValıA→ SgValı (1 +A)
liftVal := λ〈s, a, φ〉. 〈liftTm s, a, φ

′〉
where φ′ := λy. match y with

inl 〈〉 7→ inl 〈〉
inr y′ 7→ mapMaybe inr (φ y′)

The code for subst can be reused, only simsubst now receives the less general type

simsubst : ∀. ∀A.Tm(1 +A)→ SgValı+1A→ Resı+1A.

By parametricity for the type of simsubst, SgVal needs to have a functional compo-

nent with a domain that mentions A positively. Thus, no fundamentally di�erent

implementations of substitution are possible for the chosen, type-indexed represen-

tation of de Bruijn terms.
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