Interactive Programming in Agda – Objects and Graphical User Interfaces

ANDREAS ABEL
Department of Computer Science and Engineering, Gothenburg University, Sweden

STEPHAN ADELSBERGER
Department of Information Systems and Operations, Vienna University of Economics, Austria

ANTON SETZER
Department of Computer Science, Swansea University, Swansea SA2 8PP, UK

(e-mail: andreas.abel@gu.se, sadelsbe@wu.ac.at, a.g.setzer@swan.ac.uk)

Abstract

We develop a methodology for writing interactive and object-based programs (in the sense of Wegner) in dependently-typed functional programming languages. The methodology is implemented in the ooAgda library. ooAgda provides a syntax similar to the one used in object-oriented programming languages, thanks to Agda’s copattern matching facility. The library allows for the development of graphical user interfaces (GUIs), including the use of action listeners.

Our notion of interactive programs is based on the IO monad defined by Hancock and Setzer, which is a coinductive data type. We use a sized coinductive type which allows us to write corecursive programs in a modular way. Objects are server-side interactive programs that respond to method calls by giving answers and changing their state. We introduce two kinds of objects: simple objects and IO objects. Methods in simple objects are pure, while method calls in IO objects allow for interactions before returning their result. Our approach also allows us to extend interfaces and objects by additional methods.

We refine our approach to state-dependent interactive programs and objects through which we can avoid exceptions. For example, with a state-dependent stack object, we can statically disable the pop method for empty stacks. As an example, we develop the implementation of recursive functions using a safe stack. Using a coinductive notion of object bisimilarity, we verify basic correctness properties of stack objects and show the equivalence of different stack implementations. Finally, we give a proof of concept that our interaction model allows to write GUI programs in a natural way: we present a simple drawing program, and a program which allows users to move a small spaceship using a button.

Note. We recommend printing this paper in color.

1 Introduction

Functional programming is based on the idea of reduction of expressions. This is a good notion for writing batch programs which take a fixed number of inputs to compute a fixed number of outputs. Interactive programs, however, do not fit directly into this paradigm, since they are programs which over time accept a possibly infinite number of inputs and respond in sequence with a possibly infinite number of outputs. There are several ways
Andreas Abel, Stephan Adelsberger, and Anton Setzer

to overcome this. In functional programming, the main method currently used is Moggi’s IO monad (Moggi, 1991). The IO monad is a type \( \text{IO } a \) of computations depending on a return type \( a \). Its elements are interactive programs which possibly terminate with a result of type \( a \). It is an open-ended type: programming languages such as Haskell provide various functions constructing atomic elements of \( \text{IO } a \) for various types \( a \), and the bindings \( \gg= : \text{IO } a \rightarrow (a \rightarrow \text{IO } b) \rightarrow \text{IO } b \) and \( \text{return} : a \rightarrow \text{IO } a \) are used to construct programs from these atomic operations.

In a series of articles (Hancock & Setzer, 2000b,a, 2005; Setzer & Hancock, 2004) Peter Hancock and the third author of this article have developed a representation of interactive programs in dependent type theory. This approach is based on the notion of a coalgebra. The idea is that a (client-side) interactive program is represented by a possibly non-well-founded tree. The nodes are labeled with commands being issued to the real world, and the subtrees of a tree are labeled with responses from the real world to the respective command. For instance, if a node is labeled with the command \textit{input a string}, its subtrees would be indexed over strings the user has entered; if the command is \textit{write a character}, the response would be an element of the singleton type \text{Unit}, so there is only one subtree.

Execution of an interactive program thus is no longer the simple reduction of an expression. Instead, it is performed as follows: one computes a label from the root of the tree. A corresponding program is executed in the real world. The real world returns a corresponding response. Then, the subtree labeled with this response is chosen, and one repeats the same procedure for the root of that subtree. Additionally, there are special nodes called leaves, labeled by an element of the result type of the interactive program. If we reach such a leaf, the program terminates returning the label. The monadic operations \text{bind} and \text{return} can now be defined in a straightforward way as operations on such trees.

If we define trees by inductive data types (Agda keyword \text{data}), we obtain only well-founded trees, which means trees which have no infinitely deep branches. Interactive programs correspond to non-well-founded trees because they may run forever if never terminated. A non-well-founded tree can be represented in Agda by a \text{record} which is \text{coinductive}.

The programs discussed above were client-side interactive programs: they send a command to the real world and then receive a response and continue. In contrast, \textit{graphical user interfaces} are server-side programs; they wait for an event—such as a click on a button—which means they wait for a command from the real world, answer with a result and then wait for the next command. Similarly, \textit{objects} are ready to accept any call of a method. In response, they return a result, and the object changes its state. Based on this idea, the third author has developed (Setzer, 2006) the theory of defining object-based programs (in the sense of Wegner (1987)) in dependent type theory. The interaction trees of server-side programs and objects are functors of the form \( \Pi \Sigma \) (meaning \textit{for all requests, return some response}), rather than \( \Sigma \Pi \) (send some request and react to any response) as for client-side programs.

The goal of this article is to substantially extend this theory and develop a methodology for actually implementing interactive and object-based programs in Agda in a user-friendly way. This will include object-based graphical user interfaces. We have developed the library ooAgda (Abel et al., 2016), which allows writing objects and interactive programs in a way that is very close to how it would be done in an object-based programming
language. At this stage, inheritance and subtyping are not available in ooAgda, so ooAgda is currently an object-based library. Using illustrative examples, we will show how ooAgda can be used for writing interactive programs which make use of objects. The simplest example will be a program which interacts with a cell containing a string via its methods put and get. Then, we will look at how to extend an object by adding more methods and extending its implementation. Furthermore, we will look at state-dependent interactive programs and objects. This allows us to write a safe stack, where popping is only allowed if the stack is non-empty; by safe we mean we can avoid exceptions.\footnote{In their simplest form, exceptions can be represented by using the \texttt{Maybe} type. This corresponds to its standard use: if we have an unsafe stack, we would need to, in case we pop from an empty stack, return a result, although we don’t have an element of the type of stack elements given. One can solve this by using as result type for pop the \texttt{Maybe} type, and returning in case one pops from the empty stack the element \texttt{nothing}, which represents an exception. When using the result of the pop operation, one needs to deal with the case that the result could be such an exception, i.e. \texttt{nothing}, which amounts to a form of exception handling.} We will introduce bisimulation as equality, and show that the operations of put and get are inverse to each other w.r.t. bisimulation. We also show the equivalence of different stack implementations.

So far, in dependent type theory, not many interactive programs have been written. We prove that it is possible to write graphical interfaces by presenting two examples. The first one is a simple drawing program. The second example will be a graphical user interface having one button. In this example, we will make use of an object, which has action listeners as methods, which in turn will be added to a button event and a repaint event. Note that the focus here is not on developing advanced user interfaces, but to demonstrate that one can use objects and action listeners to develop graphical user interfaces in dependently typed programming.

The content of this article is as follows: in Sect. 2 we give a brief introduction into Agda. In Sect. 3 we recapitulate the theory of coalgebras and their representation in Agda. Then we review (Sect. 4) the theory of interactive programs in Agda. In Sect. 5 we introduce objects in Agda and write a small interactive program which makes use of an object representing a cell.

Guarded recursion (Coquand, 1994) allows only recursive calls of the following three forms: direct recursive calls to the function being defined, an expression which was defined before the function was defined, or constructors applied to the previous two possibilities. In particular, we cannot use functions to combine elements of the coalgebra to form new elements of it. This restricts modularity of programs since one cannot use an auxiliary function in a corecursive call. Instead, one needs to define a new function simultaneously with the function to be defined which computes the result of applying the auxiliary function to its arguments. The function is defined exactly like the auxiliary function, repeating essentially its definition. This makes programming tedious. In Sect. 6 we discuss how sized types allow for corecursive programs to be written more naturally. With sized types, such auxiliary functions are allowed in corecursive definitions provided they are size-preserving.

In Sect. 7 we give an example of how to extend an object by adding a new method. In Subsect. 8.1 and 8.2 we introduce state-dependent objects and show how a stack can be implemented which statically prevents pop-operations when empty. In 8.2.1 we develop a small example of how to implement recursive functions using a safe stack. In Subsect. 8.3

\textit{Interactive Programming in Agda – Objects and Graphical User Interfaces}
we demonstrate how to define bisimilarity as equality on objects. This equality is used to prove that the push and pop operations are inverse of each other. In Subsect. 8.4 we look at how to define state-dependent interactive programs which will be used later to define a more complex graphical user interface. In the last two sections, we will give examples of how to define graphical user interfaces in Agda; in Sect. 9 we introduce a simple drawing program; in Sect. 10 we introduce a graphical user interface in which we assign an action listener to a button. There are 3 versions of this interface. In the most complex one, action listeners are defined as in ordinary object-oriented programming: by creating an object which contains all the required action listeners as methods and associating them with the button and the repaint event.

We finish with a review of related work (Sect. 11), which in includes a comparison of our approach with Brady’s work in Idris, and a conclusion with an outlook on future steps (Sect. 12).

Every line of Agda code provided in this paper has been type-checked by Agda and rendered by the Agda LaTeX-backend. However, we mostly omitadministrative parts of the code such as modules and namespace handling; thus, the code as printed in this article will not be accepted by Agda as-is. Relative to the correctness of Agda itself, our code is typesafe. However, we see the need for a more solid theoretical foundation for Agda’s sized types (Sect. 6). The complete code, including advanced examples, can be found in Abel et al. (2016). These examples compile to executable binaries using Agda 2.5 and GHC 7.8.

2 Introduction to Agda

Agda (Agda Wiki, 2016; Stump, 2016) is a theorem prover based on intensional Martin-Löf type theory (Martin-Löf, 1984). Code can be compiled using the MAlonzo compiler (Agda Wiki, 2011), which is a Monadic form of the Alonzo compiler (Benke, 2007); therefore, Agda can also be seen as a dependently typed programming language. It is closely related to the theorem prover Coq (2015). Furthermore, Agda is a total language, which is guaranteed by its termination and coverage checker without which Agda would be inconsistent. The current version of Agda is Agda 2, which was originally designed and implemented by Ulf Norell in his PhD thesis (2007).

In Agda, there are infinitely many levels of types: the lowest one is called Set. The next type level is called Set₁, which has the same closure properties as Set but also contains Set as an element. The next type level is called Set₂, etc. Furthermore, we can quantify over type levels, and obtain types (Set σ) depending on levels σ.

The main type constructors in Agda are dependent function types, inductive types, and coinductive types. In addition, there exist record types, which are used for defining coinductive types by their observations or elimination rules. Furthermore, there exists a highly generalised version of inductive-recursive and inductive-inductive definitions.

Inductive data types are dependent versions of algebraic data types as they occur in functional programming. They are given as sets A together with constructors which are strictly positive in A. For instance, the even and odd numbers are given by the simultaneous — as denoted by the keyword mutual — indexed inductive data types:
mutual
data Even : N → Set where
  0p : Even 0
  sucp : {n : N} → Odd n → Even (suc n)
data Odd : N → Set where
  sucp : {n : N} → Even n → Odd (suc n)

The expression \((n : N) \rightarrow A\) denotes a dependent function type, which is similar to a function type, but \(A\) can depend on \(n\). The expression \(\{n : N\} \rightarrow A\) is an implicit version of the previous construct. Implicit arguments can be omitted, provided they can be inferred by the type checker. We can make an implicit argument explicit by writing, e.g., \((sucp \{n\} p)\).

If there are several explicit or implicit dependent arguments in a type, one can omit “\(\rightarrow\)”, as illustrated in the following example:

\[
(\text{a : A}) (\text{b : B}) \rightarrow \text{C}
\]

instead of

\[
(\text{a : A}) \rightarrow (\text{b : B}) \rightarrow \text{C}
\]

The elements of \((\text{Even } n)\) and \((\text{Odd } n)\) are those that result from applying the respective constructors. Therefore, we can define functions by case distinction on these constructors using pattern matching, e.g.

mutual
  _+e_ : ∀ \{n m\} → Even n → Even m → Even (n + m)
  0p +e p = p
  sucp p +e q = sucp (p +o q)

  _+o_ : ∀ \{n m\} → Odd n → Even m → Odd (n + m)
  sucp p +o q = sucp (p +e q)

Here, \(\forall a \rightarrow B\) is an abbreviation for \((a : A) \rightarrow B\), where \(A\) can be inferred by Agda. \(\forall \{a\} \rightarrow B\) is the same but for an implicit argument, while \(\forall \{n m\} \rightarrow B\) abbreviates \(\forall \{n\} \rightarrow (\forall \{m\} \rightarrow B)\). Agda supports mixfix operators, where “\(\_\)” denotes the position of the arguments. For instance, \((0p +e p)\) stands for \((\_+e_ \_0p \ p)\). The combination of mixfix symbols together with the availability of Unicode symbols makes it possible to define Agda code which is very close to standard mathematical notation.

Nested patterns are allowed in pattern matching. The coverage checker verifies completeness and the termination checker ensures that the recursive calls follow a schema of extended primitive recursion.

An important indexed data type is propositional equality \(x \equiv y\) (for \(x, y : A\)) which has as constructor a proof of reflexivity:\(^2\)

---

\(^2\) By propositional equality we mean the standard equality type as introduced by Martin-Löf. Definitional equality is — as in Martin-Löf’s original definition — based on definiens equals definiendum (see e.g. Nordström et al. (2001), Sect. 3.5). Due to nested pattern matching, we allow definitions which give more definitional equalities than one would have when reducing the terms to the corresponding recursion combinators. But these definitions are covered by the meaning explanations, therefore our notion of definitional equality is still in the spirit of Martin-Löf. See for instance the discussion of Martin-Löf in Martin-Löf (1984), p. 31.
This definition says that propositional equality is the least reflexive relation (modulo the built-in definitional equality of Agda).

3 Coalgebras in Agda

The approach to interactive programs that we employ in this article is based on (weakly) terminal coalgebras. In this section, we recapitulate coalgebras and their definition in Agda, first by example, then in the general case.

3.1 Coalgebra by Example: Colists

Coalgebras are a versatile mathematical tool; for instance, they can model various classes of transition systems. Here, we consider output automatons, which consist of a (not necessarily) finite state set \( S \) and a transition function \( t : S \to (1 + A \times S) \). Given a state \( s : S \), the transition \( ts \) can either lead us to termination (type alternative 1) or emit some output \( a : A \) and lead us into a successor state \( s' : S \) (type alternative \( A \times S \)). Defining the functor \( F_S = 1 + A \times S \), we say the pair \( (S,t) \) is an \( F \)-coalgebra. We may sometimes refer to this coalgebra by simply \( S \) or \( t \), when the other component is clear from the context of discourse.

Let us call this functor \( \text{ListF} \), for reasons that are apparent to the reader or will become so in a short while, and define it in Agda as a disjoint sum type \( \text{ListF} \) with two constructors \( \text{nil} \) and \( \text{cons} \).

\[
data \text{ListF} A S : \text{Set} \text{ where}
\begin{align*}
\text{nil} & : \text{ListF} A S \\
\text{cons} & : (a : A) (s : S) \to \text{ListF} A S
\end{align*}
\]

It should be clear that \( (\text{ListF} A S) \) is a faithful implementation of \( 1 + A \times S \), with \( \text{nil} \) corresponding to the left injection of the empty tuple, and \( \text{cons} a s \) to the right injection of the pair \( (a,s) \).

A \( \text{ListF} \)-coalgebra is now a pair \( (S,t) \) of a type \( S \) and a function \( t : S \to \text{ListF} A S \) for a fixed type \( A \), and a transition will take us either to \( \text{nil} \), meaning the automaton terminates, or \( \text{cons} a s' \), meaning the automaton outputs \( a \) and enters the new state \( s' \).

A \( \text{ListF} \)-coalgebra morphism from automaton \( t : S \to \text{ListF} A S \) to automaton \( t' : S' \to \text{ListF} A S' \) is a state map \( f : S \to S' \) with two conditions:

1. Terminal states of \( t \) are mapped to terminal states of \( t' \), meaning that \( t'(f s) = \text{nil} \) whenever \( t s = \text{nil} \).
2. Non-terminal states of \( t \) are mapped to corresponding non-terminal states of \( t' \) with the same output, meaning that \( t'(f s_1) = \text{cons} a (f s_2) \) whenever \( t s_1 = \text{cons} a s_2 \).

These two conditions can be summarized as \( t'(f s) = \text{mapF} f (t s) \) for all \( s : S \), using the functoriality witness \( \text{mapF} \) of \( \text{ListF} A \).
mapF : ∀(A S S′) (f : S → S′) → (ListF A S → ListF A S′)
mapF f nil = nil
mapF f (cons a s) = cons a (f s)

Or, for the category-theory enthusiast, we can display this condition in the form of a commutative diagram:

If we run an output automaton \( t \), starting in state \( s \), to completion, we obtain a possibly terminating sequence, aka colist, of outputs \( a_0, a_1, \ldots \). We call this colist \( \text{unfold} t s : \text{Colist} A \). In Agda, the type of colists over \( A \) is defined as a recursive record type:

record Colist A : Set where
  force : ListF A (Colist A)

An element \( l : \text{Colist} A \) is a lazily computed record with a single field \( \text{force} l : \text{ListF} A (\text{Colist} A) \); one could also view it as an object with a single method \( \text{force} \). Invocation of this method via \( (\text{force} l) \) will yield either \( \text{nil} \) or \( \text{cons} a l' \) for an output \( a : A \) and a new colist \( l' \).

In this sense, the pair \((\text{Colist} A, \text{force})\) can be seen as a \( \text{ListF} \)-coalgebra; any colist \( l \) is the state of an output automaton with \( \text{force} \) as the transition function. \( \text{Colist} A \) is even the weakly terminal or weakly final coalgebra, as every coalgebra \((S, t)\) can be mapped into it via morphism \((\text{unfold} t)\), so there exists a function, \( \text{unfold} t : S → \text{Colist} A \), which makes the diagram commute. If we take bisimulation on \( \text{Colist} \) as equality, then \( \text{Colist} \) is actually terminal or final. This means that \((\text{unfold} t)\) is the only function which makes this diagram commute:

The (weak) finality witness \( \text{unfold} \) can be implemented in Agda as follows. Herein, read the “\( \text{with} t s \ldots \)” followed by pattern matching as an additional case distinction over \( (t s) : \text{ListF} A S \). The three dots “\( \ldots \)” indicate that the pattern from the previous line is repeated, and “\(’\)” starts a pattern related to the term of the \text{with} construct:
Andreas Abel, Stephan Adelsberger, and Anton Setzer

\[
\forall \{A \, S\} \, (t : S \to \text{ListF} \, A \, S) \to (S \to \text{Colist} \, A)
\]

force (unfold \(t \, s\)) with \(t \, s\)

\[
\begin{align*}
\text{... | nil} &= \text{nil} \\
\text{... | cons} \, a \, s' &= \text{cons} \, a \, (\text{unfold} \, t \, s')
\end{align*}
\]

This definition is an instance of a function defined by copattern matching (Abel et al., 2013). By itself, \((\text{unfold} \, t \, s)\) does not reduce. Only when we subject it to projection \(\text{force}\), it reduces as given by the right hand side of the definition; in this case, to a case distinction over \((t \, s)\).

Agda’s termination checker accepts the recursively defined \(\text{unfold}\): Since each recursive call removes one use of \(\text{force}\), the reduction cannot continue forever. In fact, this definition follows the rules of guarded recursion (Coquand, 1994). Guarded recursion means in this setting that we can define a function recursively as long on the left hand side we apply at least one observation (here \(\text{force}\)) to the function applied to its arguments (of course we need to cover all copatterns). On the right hand side of the recursive definition, one can have either an element of the coalgebra defined before, a recursive call of the function to be defined, or constructors applied to such a recursive call. An example, which demonstrates that we cannot allow arbitrary functions to be applied to the recursive call, would be the black hole recursive definition \(f : A \to \text{Colist} \, A, \text{force} \, (f \, a) = \text{force} \, (f \, a)\).

The above definition of \(\text{unfold}\) is equivalent to the generic \(\text{force} \, (\text{unfold} \, t \, s) = \text{mapF} \, (\text{unfold} \, t) \, (t \, s)\) obtained from the commutative diagram. However, the latter falls out of the scheme of guarded recursion and termination is less obvious. We will further discuss this issue in Section 3.2.

As an application of \(\text{unfold}\), we generate the Collatz sequence. It starts with some number \(n\). If \(n = 1\), the sequence terminates. Otherwise, if \(n\) is even, it continues with \(n/2\), and if \(n\) is odd, then it continues with \(3n + 1\). In the following code, “\_” is the Agda notation for an unused argument. The application \((n \, \text{divMod} \, m)\) returns \((\text{result} \, q \, r \, s)\), with quotient \(q = n \, \text{div} \, m\), remainder \(r = n \, \text{mod} \, m\), and a proof \(s\) of \(n \equiv q \, m + r\). Note also that pattern matching is executed in sequence: The pattern \((\text{collatzStep} \, n)\) is only reached if \(n \neq 1\).

\[
\begin{align*}
\text{collatzStep} & \quad : \quad \text{N} \to \text{ListF} \, \text{N} \, \text{N} \\
\text{collatzStep} \, 1 & \quad = \quad \text{nil} \\
\text{collatzStep} \, n & \quad \text{with} \quad n \, \text{divMod} \, 2 \\
\text{... | result} \, q \, zero \, _ & \quad = \quad \text{cons} \, n \, q \\
\text{... | } _ & \quad = \quad \text{cons} \, n \, (1 + 3 \, * \, n)
\end{align*}
\]

\[
\begin{align*}
\text{collatzSequence} & \quad : \quad \text{N} \to \text{Colist} \, \text{N} \\
\text{collatzSequence} & \quad = \quad \text{unfold} \, \text{collatzStep}
\end{align*}
\]

\(^3\) It is conjectured that (except for \(n = 0\), which creates an infinite sequence of 0s), the resulting sequence is always finite. But as of today, this conjecture has resisted all proof attempts.
The \textit{collatzSequence} is obtained as the output of an automaton with transition function \textit{collatzStep}, which directly implements the rules given before.

### 3.2 Coalgebras in General

We work in the category of types \( A : \text{Set} \) and functions \( f : A \to B \). Assume a functor \( F \), whose functoriality is witnessed by \( \text{map}F \), in Agda written as

\[
F : \text{Set} \to \text{Set} \\
\text{map}F : \forall \{A B\} (f : A \to B) \to (F A \to F B)
\]

Of course, \( \text{map}F \) has to fulfill the functor laws to qualify as a functoriality witness, namely \( \text{map}F \text{id} = \text{id} \) and \( \text{map}F (f \circ g) = \text{map}F f \circ \text{map}F g \).

An \( F \)-coalgebra consists of a pair \((S, t)\) of a type \( S \) of states and a transition function \( t \) from a state \( s : S \) to \( t.s : FS \) which typically may be some input or output with a (collection of) successor state(s).

\[
S : \text{Set} \\
t : S \to FS
\]

The (weakly) terminal \( F \)-coalgebra \( \nu F \) or the coinductive type obtained as the greatest fixed point of \( F \) is represented using a coinductive record type in Agda:

```
record \( \nu F \) : \text{Set} where
  \force : F \( \nu F \)
```

Here, Agda requires \( F \) to be strictly positive. Projection \( \\force : \nu F \to F \nu F \) is the eliminator of the coalgebra \( \nu F \). It defines the observations one can make on \( \nu F \). Weak terminality is witnessed by the function \( \text{unfold}F t : S \to \nu F \) for any coalgebra \((S, t)\) which makes the following diagram commute:

\[
\begin{array}{ccc}
S & \xrightarrow{t} & FS \\
\downarrow \text{unfold}F \downarrow & & \downarrow \text{map}F (\text{unfold}F) \\
\nu F & \xrightarrow{\\force} & F \nu F
\end{array}
\]

Commutation means that the equation of morphisms

\[
\\force \circ \text{unfold}F t = \text{map}F (\text{unfold}F t) \circ t
\]
holds. In Agda, we can implement unfoldF by taking the pointwise version of equation (1) as the definition of unfoldF.

\[
\text{unfoldF : } \forall \{S\} \ (t : S \to F S) \to (S \to \nu F) \\
\text{force (unfoldF } t \ s = \text{mapF (unfoldF } t \ s)
\]

Taking the above equation as a rewrite rule preserves strong normalization of rewriting in Agda, as unfoldF is only reduced under projection force and thus not its recursive occurrence on the right hand side of this definition. However, Agda’s termination checker (Abel & Altenkirch, 2002; Altenkirch & Danielsson, 2012) does not see that at this point, so we override its verdict by screaming TERMINATING! To the defense of Agda’s termination checker we have to say that a specific implementation of mapF for \( B = \nu F \) of the form \( \text{mapF } f \ x = \text{force } (f \ \text{something}) \) would lead to the non-terminating reduction rule \( \text{force (unfoldF } t \ s \to \text{force (unfoldF } t \ \text{something}) \). However, such an implementation of mapF is ruled out by its polymorphic type. Indeed, unfoldF passes a type-based termination check using sized types (Abel & Pientka, 2013), which we present in Section 6.

4 Interactive Programs in Agda

4.1 Interaction interfaces

Interaction of a program with, e.g., an operating system (OS), can be conceived as a sequence of commands (elements of Command), given by the program to the OS, for each of which the OS sends back a response (elements of Response). The type \((R \ c)\) of the response is dependent on the command \((c : \text{Command})\) that was given; thus, in Agda we model Response as a type family of kind \(\text{Command} \to \text{Set}\). The set Command and the indexed set Response form an interface for the interaction (Hancock & Setzer, 2000a). In Agda, this is modeled as a record of sets, and its type IOInterface itself inhabits the next type level Set1 above Set. Note that IOLinterface : Set would require Set : Set, but the latter is inconsistent by Girard’s paradox (Girard, 1972; Hurkens, 1995).

\[
\text{record IOInterface : Set1 where} \\
\text{Command : Set} \\
\text{Response : } (c : \text{Command}) \to \text{Set}
\]

---

Digression: In System F with products and (impredicative) existential types, the weakly terminal coalgebra \(\nu F\) is definable (Matthes, 2002) requiring only the monotonicity witness mapF:

\[
\nu F = \exists S. (S \to FS) \times S \\
\text{unfoldF } t = \lambda s. (t, s) \\
\text{force } = \lambda (t, s). \text{mapF (unfoldF } t \ s)
\]

In contrast to Agda, Matthes’ monotone coinductive types do not need strict positivity of F but only the monotonicity witness mapF. Whether this carries over to Agda’s predicative type theory needs to be explored. We do not rely on monotone coinductive types, but instead use sized coinductive types to justify the generic unfoldF.
As an example, we define an interface `ConsoleInterface` of simple console programs. It has only two commands:

```agda
data ConsoleCommand : Set where
  getLine : ConsoleCommand
  putStrLn : String → ConsoleCommand
```

The first command, `getLine`, has no arguments; `putStrLn` is invoked with one argument of type `String`.

```agda
ConsoleResponse : ConsoleCommand → Set
ConsoleResponse getLine = Maybe String
ConsoleResponse (putStrLn s) = Unit
```

Upon command `getLine`, the OS responds with a `Maybe String`, meaning `nothing` if the end of input has been reached, and `just s` when `String s` could be read from the console. Command `(putStrLn s)` is always answered with the trivial response `Unit`, which could be interpreted as `success`. Together, command and response types form a simple interaction interface:

```agda
ConsoleInterface : IOInterface
  Command ConsoleInterface = ConsoleCommand
  Response ConsoleInterface = ConsoleResponse
```

### 4.2 Interaction trees

From now on, we assume an arbitrary `IOInterface`

\[
  I = \text{record } \{ \text{Command} = C; \text{Response} = R \}
\]

Let \((IO I A)\) be the type of programs which interact with the interface \(I\) and which, in case of termination, return an element of type \(A\). The operations of \((IO I A)\) are given below. Note that `do` follows the notation of earlier papers (Hancock & Setzer, 2000a) and is different from Haskell’s `do notation`:

\[
  \begin{align*}
    \text{do} & : \forall \{A\} \ (c : C) \ (f : R c \rightarrow IO I A) \rightarrow IO I A \\
    \text{return} & : \forall \{A\} \ (a : A) \rightarrow IO I A \\
    _\gg=_ & : \forall \{A B\} \ (m : IO I A) \ (k : A \rightarrow IO I B) \rightarrow IO I B
  \end{align*}
\]

The first operation, used in the form `do c λr → fr`, allows to issue a command `c`, and continue with `fr` after receiving the response `r : Rc`. Note Agda’s precedence for `λ`: We do not have to parenthesize a trailing lambda-abstraction, i.e., do not need to write `do c (λr → fr)`. 
The other two operations are desirable so that \((\text{IO} I)\) is a monad, i.e., interactive programs can return a result or bind the result \(a : A\) of an interactive computation \(m\) and continue as another interactive program \((ka)\) via \((m \gg= \lambda a \to ka)\). One can also show that \((\text{IO} I)\) fulfils the standard monad laws up to bisimulation.

In principle, an interactive program can issue infinitely many commands. Consider for instance, the program \texttt{cat} which echoes any input through the standard output:

\[
\texttt{cat} : \text{IO ConsoleInterface Unit}
\]

\[
\texttt{cat} = \text{do getLine} \lambda\{\text{nothing} \to \text{return unit} ; (\text{just line}) \to \\
\text{do (putStrLn line)} \lambda_\_ \to \\
\text{cat} \}
\]

In this code snippet, the pattern matching \(\lambda\) expression

\[
\lambda\{\text{nothing} \to \text{return unit} ; (\text{just line}) \to \ldots\}
\]

denotes a function which makes a case distinction on whether the argument is \texttt{nothing} or \texttt{(just line)}.

The \texttt{cat} program issues the command \texttt{getLine} and terminates when it receives as response \texttt{nothing}, because the end of input has been reached. When it receives \texttt{(just line)}, it issues the command \texttt{(putStrLn line)} and starts over. Potentially, it runs infinitely long. Correspondingly, the \texttt{IO}-tree needs to unfold infinitely deep. Thus, we model \texttt{IO} as a coinductive type (Setzer, 2006):

\[
\text{record IO I A : Set where}
\text{constructor delay}
\text{force : IO'} I A
\]

\[
data IO' I A : Set where
\text{do'} : (c : \text{Command I}) (f : \text{Response I c} \to IO I A) \to IO' I A
\text{return'} : (a : A) \to IO' I A
\]

The declaration \texttt{constructor delay} is a just convenience which defines a lazy constructor for \texttt{IO}, behaving like the following function:

\[
\text{delay'} : \forall \{I A\} \to IO' I A \to IO I A
\text{force (delay'} x) = x
\]

In particular, we cannot match on coinductive constructors (in the same way as we cannot match on defined functions).

With a little \texttt{force}, we define \texttt{do} and \texttt{return} in \texttt{IO} from \texttt{do'} and \texttt{return'} in \texttt{IO'} by copattern matching:

\[
\text{do} : \forall\{A\} (c : C) (f : R c \to IO I A) \to IO I A
\text{force (do c f)} = \text{do'} c f
\]
return : \forall A \ (a : A) \rightarrow IO A
force (return \ a) = return' \ a

The monadic bind operation is definable by corecursion, making IO \ I a monad for each
interface \ I, in the form of Kleisli triple (IO \ I, return, _ >>= _):

_ >>= _ : \forall \{A B\} \ (m : IO I A) \ (k : A \rightarrow IO I B) \rightarrow IO I B
force (m >>= k) with force m
... | do' c f = do' \ c \ \lambda x \rightarrow f \ x >>= k
... | return' \ a = force (k \ a)

The recursive call to (f x >>= k) is justified, as one use of force has been consumed in
comparison to the left hand side (force (m >>= k)), and there are only applications of
the constructor do' to the right hand side. Therefore, the right hand side requires more
applications of force before we need to make a recursive call.

However, the cat program is not strongly normalizing in its present form, since we can
unfold its definition recursively arbitrary many times. We need to redefine it using copattern
matching, so that at least one application of force is required before having the recursive
call. Furthermore, to get it through the termination checker, we need to replace do by do',
so that the termination checkers sees that the recursive call is guarded by constructors:

cat : IO ConsoleInterface Unit
force cat =
do' \ (getLine) \ \lambda \ {\ nothing \rightarrow return \ unit ; (just \ line) \rightarrow delay \ (
\ do' \ (putStrLn \ line) \ \lambda \ _ \ \rightarrow
\ cat \ )}

In the latter version, the recursive call to cat in the function body cannot be further
rewritten, as only (force cat) reduces. Compare this to the previous version where cat
alone already expands, leading to divergence under full reduction.

4.3 Running interactive programs

To run an IO-computation, which unfolds into a potentially infinite command-response
tree, we translate it into a NativeIO monad, which executes the commands. From the
perspective of Agda, the NativeIO monad is only axiomatically given by nativeReturn and
native>>=. If, further, we have a function tr : (c : C) \rightarrow NativeIO (Rc) which translates
the commands c of a specific interface C into NativeIO-computations of the appropriate
response type Rc, we can apply translateIO recursively.
This function is properly `NON_TERMINATING`, as the translated IO-tree might be infinite. However, this will lead to an infinitely running NativeIO-program, which is the intention. In the above, we used the right-triangle operator \(_\triangleright\_\) representing a flipped function application, as well as anonymous pattern matching in \(\lambda\)-expressions, where the cases are separated by ";".

\[
\_\triangleright\_ : \forall \{A B : \text{Set}\} \rightarrow A \rightarrow (A \rightarrow B) \rightarrow B
\]

\(a \triangleright f = f \ a\)

An example program (using an obvious function `translateIOConsole` translating console commands into native ones) is as follows:

```haskell
main : NativeIO Unit
main = translateIOConsole cat
```

Note that `(translateIOConsole cat)` is an element of `NativeIOUnit` and therefore already an executable program. One can think of `translateIOConsole` as a compiler or an interpreter. To some extent we get something which is in between. If the function `tr` is concretely given, the Haskell compiler can inline it and optimize the resulting instance of `translateIO`. Therefore, what we get is more than interpretation. However, `translateIO` does not optimize the given IO-program; therefore, we get less than compilation.

Programs in Agda are translated into Haskell programs using the MAlonzo compiler (Benke, 2007; Agda Wiki, 2011), which are then compiled into executable code. Data types and functions for processing native IO in Agda, including the type `NativeIO` itself, are represented in Agda as postulated types and functions. We use the `COMPILED` directive of Agda in order to associate corresponding Haskell types and functions with the postulated ones. Especially, `NativeIO` is associated with the Haskell type `IO`. MAlonzo will then translate those postulated types and functions into the corresponding Haskell ones. Operations on `NativeIO` are therefore translated into corresponding Haskell operations on `IO`.

One can consider `translateIO` as part of the compilation process. Therefore, programs in Agda can be developed without using `NON_TERMINATING` programs. The use of `NON_TERMINATING` appears only as an intermediate step during the compilation process.
5 Objects in Agda

As explained in the introduction, the idea of objects in dependent type theory (Setzer, 2006) is that they are server-side interactive programs: an object waits for method calls, then in response to them, returns an answer and changes its state. Changing the state is represented by returning an object with the modified state. Therefore, the interface of an object is given by a set of methods (parametrized over the method arguments) and a set of responses for each method. In Agda, this is written as

\[
\text{record } \text{Interface} : \text{Set} \text{ where}
\]
\[
\text{Method} : \text{Set}
\]
\[
\text{Result} : (m : \text{Method}) \rightarrow \text{Set}
\]

Note that \text{Interface} and \text{IOInterface} are the same except for the names of the eliminators (or observations). A (simple) object for interface \(I\) is a coalgebra that has one eliminator \text{objectMethod}. For each method of \(I\), \text{objectMethod} returns an element of the response type and the new object after the method invocation:

\[
\text{record } \text{Object } (I : \text{Interface}) : \text{Set} \text{ where}
\]
\[
\text{objectMethod} : (m : \text{Method } I) \rightarrow \text{Result } I m \times \text{Object } I
\]

An IO object is like a simple object, but the method returns IO applied to the result type of a simple object. In other words, the method returns an IO program for a given IO interface \(I_{io}\), which, if terminating, returns a result of the same type as the corresponding simple object.

\[
\text{record } \text{IOObject } (I_{io} : \text{IOInterface}) (I : \text{Interface}) : \text{Set} \text{ where}
\]
\[
\text{method} : (m : \text{Method } I) \rightarrow \text{IO } I_{io} (\text{Result } I m \times \text{IOObject } I_{io} I)
\]

A class with interface \(I\) and instance variables of type \(A_1, \ldots, A_n\) corresponds to a function defined coinductively as follows:

\[
f : A_1 \rightarrow \cdots \rightarrow A_n \rightarrow \text{Object } I
\]
\[
\text{objectMethod} (f a_1 \cdots a_n) (m b_1 \cdots b_m) = (\text{result} , f a'_1 \cdots a'_n)
\]

\(f\) is the default constructor for this class which creates an object with the instance variables set to its arguments. The object \((f a_1 \cdots a_n)\) constructed using \(f\) is given by determining the result \(\text{result}\) of the method call upon invoking its methods, and by determining the updated object. The values \(a'_1 \cdots a'_n\) are the content of the instance variables after invoking the method, and the updated object is given by applying the default constructor \(f\) to these values.

A constructor for an IO object is defined in the same way as for simple objects, except that on the right-hand side, we have an IO program that returns a value upon termination.

\[5\] This data structure is also known as the type of containers (Abbott et al., 2003).
An example is a simple cell of elements of type $A$. It has two methods: *get* and *(put $a$)* depending on $a : A$. Method *get* is intended to return the content of the cell, and has the return type $A$, and *(put $a$)* sets the cell content to $a$ and returns an element of the one element type *Unit*, which corresponds to *void* in Java, meaning that no information is returned. The interface in Java is given in Figure 1.

```java
interface Cell<A> {
    void put (A s);
    A get () ;
}
```

Fig. 1. Cell interface in Java

In Agda, the cell interface is coded as follows:

```agda
data CellMethod A : Set where
    get : CellMethod A
    put : A → CellMethod A

CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put _) = Unit

cellJ : (A : Set) → Interface
Method (cellJ A) = CellMethod A
Result (cellJ A) m = CellResult m
```

The cell class is of type *IOObject*, which has the previously defined *ConsoleInterface* as an *IObject* and the interface of a cell, w.r.t. *String*, as object interface.

```agda
CellC : Set
CellC = IOObject ConsoleInterface (cellJ String)
```

A basic implementation of the cell interface in Java is displayed in Figure 2; the methods log on standard output what is happening—for the sole purpose of demonstrating the IO interface.

In Agda, simple cell objects are constructed by *simpleCell*, which implements the methods.
class SimpleCell<A> implements Cell<A> {

    A content;

    SimpleCell (A s) { content = s; }

    public void put (A s) {
        System.out.println("putting(" + s + ")");
        content = s;
    }

    public A get () {
        System.out.println("getting(" + content + ")");
        return content;
    }

    public static void program () {
        SimpleCell<String> c = new SimpleCell<String>("Start");
        String s = System.console().readLine();
        if (s == null) return; else {
            c.put(s);
            s = c.get();
            System.out.println(s);
            program();
        }
    }

    public static void main (String[] args) {
        program();
    }
}

Fig. 2. Simple cell implementation in Java

simpleCell : (s : String) → CellC
force (method (simpleCell s) get) =
    do′ (putStrLn ("getting (" ++ s ++ ")")) λ_ →
    delay (return' (s , simpleCell s))
force (method (simpleCell s) (put x)) =
    do′ (putStrLn ("putting (" ++ x ++ "")")) λ_ →
    delay (return' (unit , simpleCell x))

A test program using simpleCell is defined as follows in Agda. It is very similar to the original Java program, presenting an almost line-to-line translation. The main difference is that in Agda, we have no mutable state; hence, we rely on continuation-passing style with explicit state threading.
{-# TERMINATING #-}

program : IOConsole Unit
force program =
  let c₁ = simpleCell "Start" in
  do' getLine λ{ nothing → return unit; (just s) → }
  method c₁ (put s) ≫= λ{ (_ , c₂) → }
  method c₂ get ≫= λ{ (s' , _) → }
  do (putStrLn s') λ_ →
  program }}

main : NativeIO Unit
main = translateIOConsole program

The pragma {-# TERMINATING #-} declares program as terminating, overriding the answer from the termination checker. The termination checker says no because on the right hand side of the coinductive definition there is an occurrence of a defined function _≫=._ whereas guarded recursion allows only constructors.

In the next section, we will revisit this example using sized typing, and see that with sized types it passes the termination check.

6 Sized Coinductive Types

In this section, we show how to use sized types to overcome major limitations of the termination checker and enable the user to write modular IO-programs.

Sized types have been used for type-based productivity checking of corecursive programs (Hughes et al., 1996; Barthe et al., 2004; Sacchini, 2013; Abel & Pientka, 2013). Sect. 3 of Igried & Setzer (2016) contains a brief explanation of sized types for coinductive types in Agda. For coinductive types like IO, we should rather speak of depth than of size. The depth is how often one can safely apply force, and the depth of a fully defined coinductive object is ∞. So the depth determines how deep we can expect an element by using force. During the (co)recursive definition of an object, we want to speak of depths less than infinity, to verify that on the way to the recursive calls, the depth has increased by at least one. This ensures that the depth grows for each unfolding of recursion, becoming ∞ in the limit.

First, let us define a sized version of the generic weakly terminal coalgebra vF from Sect. 3. We can then fulfill our promise and justify the generic coiteration operation unfoldF from the monotonicity witness mapF.

---

6 The term Size is more suitable for inductive types which are inhabited by trees. There, the size tracked in the type is an upper bound on the height of the tree, or how often one has to apply the constructors in order to obtain that tree. In recursive calls, the height should go down, guaranteeing termination. Note that for infinitely branching trees, the height might be transfinite, so semantically sizes correspond to ordinals rather than to natural numbers. For the use with coinductive types, sizes up to ω, which we call ∞ in our syntax, suffice.
record $vF (i : \text{Size}) : \text{Set}$ where
  constructor delay
  force : $\forall (j : \text{Size}< i) \rightarrow F (vF j)$

The quantification over $j : \text{Size}< i$ is reminiscent of the approximation of the greatest fixpoint by deflationary iteration (Sprenger & Dam, 2003; Abel, 2012; Abel & Pientka, 2013). The approximant $vF$ is defined by induction on ordinal $i$ as follows:

$$vF = \bigcap_{j<i} F (vF j)$$

The fact that $vF$ is monotonically decreasing in $i$ follows directly from the use of intersection $\bigcap_{j<i}$ and is independent of the monotonicity of $F$. Agda still asks for strict positivity of $F$, which anyway holds for the common coinductive types. Furthermore, the monotonicity of $F$ gives us the isomorphisms $v^{i+1}F = F (vF)$ and $v\infty F = F (v\infty F)$, mediated by $force$ and $delay$.

The coiterator $unfoldF$ can likewise be defined by induction on $i$, again by copattern matching:

$$unfoldF : \forall \{S\} (t : S \rightarrow F S) \rightarrow \forall i \rightarrow (S \rightarrow vF i)$$

$$force (unfoldF t i s) j = \text{mapF} (unfoldF t j) (t s)$$

The type of $force$ guarantees $j < i$, thus, the recursive call ($unfoldF t j$) is justified. It gives us a function of type $S \rightarrow vF j$ which we map over the application $(t s) : F S$ to obtain the right hand side of the required type $(F (vF j))$. Note how the type of $\text{mapF}$ ensures that a result having the required depth $j$ is returned. In particular, $\text{mapF}$ cannot involve uses of $force$, which would necessarily tamper with the depth annotation of $vF$.

In the sized version of IO, applying $force$ to an IO-tree yields a function that expects a size $j < i$ and then yields an IO'-node, which can be either a $do'$ or a $return'$. The latter is a leaf, and the former a node consisting of a command $c$ and a (Response $c$)-indexed collection $f$ of subtrees of that depth.

record IO (I(io) : IOInterface) (i : Size) (A : Set) : Set where
  constructor delay
  force : $\{j : \text{Size}< i\} \rightarrow IO' I_{io} j A$

data IO' (I(io) : IOInterface) (i : Size) (A : Set) : Set where
  do' : $\{c : \text{Command} I_{io}\} (f : \text{Response} I_{io} c \rightarrow IO I_{io} i A) \rightarrow IO' I_{io} i A$
  return' : $\{a : A\} \rightarrow IO' I_{io} i A$

Again, this sized coinductive type is justified by deflationary iteration $vF = \bigcap_{j<i} F (vF j)$. In this case, the $i$th approximant $vF$ of the greatest fixed point of $F$ would be $(IO I_{io} i A)$ for

$7$ $force (delay t) = t$ holds definitionally in Agda; $delay (force t) \equiv t$ holds up to bisimilarity.
some fixed $I_{io}$ and $A$. The type transformation $F$ would be $IO'$ in dependence of $(IO_{io} i A)$. We can make the correspondence obvious by using nested recursion instead of mutual recursion:

```agda
data F (X : Set) : Set where  
do' : (c : Command $I_{io}$) (f : Response $I_{io} c \rightarrow X$) \rightarrow F X  
return' : (a : A) \rightarrow F X
```

record $vF$ (i : Size) : Set where  
constructor delay  
force : \{ j : Size < i \} \rightarrow F ($vF$ j)
```

Sizes in types allow us to track the guardedness level of expressions independent of their exact formulation. In particular, we can express the guardedness level of a function applied to arguments in terms of the guardedness level of the arguments, rather than having to assume that the function application is unguarded. With the same implementations as for the unsized versions, we obtain the following sized typings for $\text{do}$, $\text{return}$, and $\_ \Rightarrow=\_$. 

$$
\text{do} : \forall \{ i A \} (c : C) (f : R c \rightarrow IO_{io} i A) \rightarrow IO_{io} i A
$$

$$
\text{return} : \forall \{ i A \} (a : A) \rightarrow IO_{io} i A
$$

$$
\_ \Rightarrow=\_ : \forall \{ i A B \} (m : IO_{io} i A) (k : A \rightarrow IO_{io} i B) \rightarrow IO_{io} i B
$$

The typings of $\text{do}$ and $\_ \Rightarrow=\_$ express that these functions are guardedness-preserving, meaning that the output is (at least) as guarded as the least guarded input. The type of $\text{return}$ simply expresses that we can assume any guardedness for $(\text{return} a)$. With subtyping, an equivalent type would be $\forall \{ i A \} (a : A) \rightarrow IO_{io} \infty A$, using the covariance $IO_{io} \infty A \leq IO_{io} i A$ of the coinductive type $IO$ in its size argument $i \leq \infty$.

To understand why the above typing is valid for $\_ \Rightarrow=\_$, we cast another glance at its implementation. We have made the sizes explicit to see what is going on; however, they can be inserted by Agda automatically. Unfortunately, to supply implicit arguments to an infix operator like $\_ \Rightarrow=\_$, we have to fall back to prefix notation:

```agda
force (\_ \Rightarrow=\_ \{ i \} m k) \{ j \} with force m \{ j \} 
... | do' c f r = do' c \lambda r \rightarrow \_ \Rightarrow=\_ \{ j \} (f r) k
... | return' \{ a \} = force (k a) \{ j \}
```

The call $\_ \Rightarrow=\_ \{ i \} m k$ constitutes an IO-tree of depth $i$ which is defined by the effect of its only elimination form $\text{force}$. Assuming we force it, obtaining a size $j < i$, we are obliged to produce an IO'-node of size $j$. We do this by forcing the first given tree, $m$, of depth $i$, by virtue of our size $j < i$. 8 We proceed by case-distinction on the resulting IO'-node. If

8 At this point, it is important to note that, if we had no size $j < i$, we could not force it, or at least not discriminate on the results of forcing it. In particular, if $i = 0$, then there is no size $< i$. However, when we have successfully forced $m \Rightarrow= k$, meaning that the latter actually evaluated to a delayed node, we know its depth is not 0, and thus there exists a size $j < i$. 
it is \((\texttt{do}'c.f)\), we execute command \(c\) and, after binding the response to \(r\), continue with a recursive call \((fr)\gg\gg k\) at depth \(j\), which is strictly smaller than the depth we started with. Thus, the recursive call is justified. If it is \((\texttt{return}'a)\), we continue with \(\text{IO}\text{-tree} (ka)\) of size \(i\), which we have to \texttt{force} to produce the desired \(\text{IO}'\text{-node}\) of size \(j\).

For an \texttt{IOObject}, the notion of depth is how often we can apply one of its \texttt{methods}. The result of applying a method to an \texttt{IOObject} of depth \(i\) is an unbounded \(\text{IO}\text{-tree} (\text{depth} \infty)\). Its leaves contain the result of the method call and an \texttt{IOObject} of depth \(j < i\) resembling the new state of this object after the method call (and the \texttt{IO}\text{-actions}).

\begin{verbatim}
record IOObject (I io : IOInterface) (I : Interface) (i : Size) : Set where
  method : \forall \{j : \text{Size} < i\} \ (m : \text{Method} I) \\
    \to IO I io \infty (\text{Result} I m \times IOObject I io I j)

Sized types already allow us to write the \texttt{simpleCell} constructor slightly more elegantly, using the defined \texttt{return} instead of the combination of \texttt{delay} and \texttt{return}'\texttt{.} Putting the recursive call to \texttt{simpleCell} under the function \texttt{return} is possible due to the polymorphic typing of \texttt{return} : \(A \to \text{IO} I io \approx A\) which we use with type \(A = \text{String} \times \text{CellC} j\).

CellC : \(i : \text{Size}\) \to Set
CellC = IOObject ConsoleInterface (cellJ String)

simpleCell : \(\forall \{i\} \ (s : \text{String}) \to \text{CellC} i\)
force (method (simpleCell \{i\} s) \{j\} get) =
  \(\texttt{do}'\texttt{(putStrLn}} ("\text{getting} (" ++ s ++ ")") \lambda_ \to \texttt{return (s , simpleCell \{j\} s})\)
force (method (simpleCell \_) \{put s\}) =
  \(\texttt{do}'\texttt{(putStrLn}} ("\text{putting} (" ++ s ++ ")") \lambda_ \to \texttt{return (unit , simpleCell s)})\)

The program using \texttt{simpleCell} from Sect. 5 now passes the termination check without modification to its definition. Only its type needs to be refined to exhibit the depth \(i\) that will grow with each unfolding of the recursion.

program : \(\forall \{i\} \to \text{IO} \text{ConsoleInterface} i \text{Unit}\)
force program =
  let \(c_1 = \text{simpleCell} \text{"Start" in}\)
    \(\texttt{do}' \texttt{getLine} \lambda\{ \text{nothing} \to \text{return unit}; (\texttt{just} s) \to \}
    \texttt{method} c_1 \texttt{(put s)} \gg\gg = \lambda\{ (\_) , c_2 \to \}
    \texttt{method} c_2 \texttt{get} \gg\gg = \lambda\{ (s' , c_3) \to \}
    \texttt{do} \texttt{(putStrLn s')} \lambda_ \to \texttt{program })\}

Both \texttt{do} and \(\gg\gg\) preserve the guardedness of the recursive call to \texttt{program}, and this is communicated through the type system.
7 Interface Extension and Delegation

So far we have shown the implementation in Agda for a single object. In this section we will show the facets of having several objects and we implement reuse mechanisms based on delegation.

For the purpose of illustration, we introduce the CounterCell class. It extends the functionality of a SimpleCell and counts the number of times an element is stored and retrieved. Further, it includes a method stats to print these statistics. Figure 3 depicts the extended interface in Java.

```
interface StatsCell<A> extends Cell<A> {
    void stats();
}
```

Fig. 3. StatsCell interface in Java

In Agda, CounterMethod extends the method definition of a SimpleCell, where super lifts a CellMethod of SimpleCell; further, a constructor for the stats method is added:

```
data CounterMethod A : Set where
    super : (m : CellMethod A) → CounterMethod A
    stats : CounterMethod A
```

Instead of embedding the superclass interface CellMethod into CounterMethod, we could have reused get and put as constructors for CounterMethod, as Agda supports constructor overloading. However, embedding with super gives us benefits later. We can still get nice names for the inherited methods (c indicates a CellMethod) by using Agda’s pattern synonym facility:

```
pattern getC = super get
pattern putc x = super (put x)
```

The full object Interface in Agda is given by statsCell, in which the result types for put and get refer to SimpleCell and Unit represents void.

```
statsCell : (A : Set) → Interface
Method (statsCell A) = CounterMethod A
Result (statsCell A) (super m) = Result (cellJ A) m
Result (statsCell A) stats = Unit
```

Figure 4 shows the CounterCell in Java that is equivalent to our implementation in Agda. Notably, we restrict the implementation to delegation as reuse mechanism as we cannot fully express the subtype relationship between CounterCell and SimpleCell. In particular, the Agda code explicitly states that put and get are defined in the interface of SimpleCell; if we moved the methods to a super class of SimpleCell, we have to adapt our code. In Java,
Interactive Programming in Agda – Objects and Graphical User Interfaces

we can override any method without the need to specify in which particular superclass the method is defined in.

class CounterCell<A> implements StatsCell<A> {
    Cell<A> cell;
    int ngets, nputs;

    CounterCell (Cell<A> c, int g, int p) {
        cell = c;
        ngets = g;
        nputs = p;
    }

    public A get() {
        ngets++;
        return cell.get();
    }

    public void put (A s) {
        nputs++;
        cell.put(s);
    }

    public void stats() {
        System.out.println("Counted 
            + ngets + " calls to get and 
            + nputs + " calls to put.");
    }

    public static void program (String arg) {
        CounterCell<String> c = new CounterCell(new SimpleCell("Start"), 0, 0);
        String s = c.get();
        System.out.println(s);
        c.put(arg);
        s = c.get();
        System.out.println(s);
        c.put("Over!");
        c.stats();
        return;
    }

    public static void main (String[] args) {
        program ("Hello");
    }
}

Fig. 4. CounterCell implementation in Java

In Agda, the class \texttt{CounterC} is defined as a console object
CounterC : (i : Size) → Set
CounterC = IOObject ConsoleInterface (statsCellI String)

The constructor counterCell specifies the functionality of the CounterCell class. The local
state includes an object of class CounterC (the class of a SimpleCell) and two natural
numbers for the get and put statistics. Each method may issue IO commands or call
methods of other objects; get\(^c\) and put\(^c\) delegate to the respective methods in SimpleCell
and return an object with the increased counter variable, whereas stats issues printing of
the statistics as an IO command.

counterCell : ∀ {i} (c : CellC i) (ngets nputs : N) → CounterC i

method (counterCell c ngets nputs) get\(^c\) =
method c get > > = λ { (s , c' ) →
return (s , counterCell c' (1 + ngets) nputs) }

method (counterCell c ngets nputs) (put\(^c\) x) =
method c (put x) > > = λ { ( , c' ) →
return (unit , counterCell c' ngets (1 + nputs)) }

method (counterCell c ngets nputs) stats =
do (putStrLn ("Counted " ++ show ngets ++ " calls to get and " ++ show nputs ++ " calls to put.")) λ _ →
return (unit , counterCell c ngets nputs)

Finally, the test program is a one-to-one translation from the Java original. This time, it is
not recursive, so we do not have to worry about termination.

program : String → IO ConsoleInterface ≈ Unit
program arg =
let c0 = counterCell (simpleCell "Start") 0 0 in
method c0 get\(^c\) > > = λ { (s , c1 ) →
do (putStrLn s)
method c1 (put\(^c\) arg) > > = λ { ( , c2 ) →
method c2 get\(^c\) > > = λ { (s' , c3 ) →
do (putStrLn s')
method c3 (put\(^c\) "Over!") > > = λ { ( , c4 ) →
method c4 stats > > = λ { ( , c5 ) →
return unit }))))

main : NativeIO Unit
main = translateIO translateIOConsoleLocal (program "Hello")
Interactive Programming in Agda – Objects and Graphical User Interfaces

8 State-Dependent Objects and IO

8.1 State-Dependent Interfaces

We motivate stateful object interfaces with the implementation of a stack. A stack has two operations: push places an object on the stack, and pop removes the top object and returns it. Consider a stack interface in Java:

```java
public interface Stack<E> {
    void push(E e);
    /** @throws EmptyStackException if the stack is empty **/ E pop() throws java.util.EmptyStackException;
}
```

A stack underflow happens when the `pop` method is called on an empty stack. In the Java Development Kit (JDK), the `pop` method throws a runtime exception, which the programmer is advised but not forced to catch.

In Agda, a safer version of a stack class can be defined, where the type system ensures that a pop operation may only be performed on a non-empty stack. The interface depends on the state of the stack, i.e., the number of elements that are on the stack:

\[ \text{StackState}^s = \mathbb{N} \]

A state-dependent object interface in Agda\(^9\) is given by a value of the following record type (superscript \(^s\) indicates the state-dependency of the interface).

```agda
record Interface\(^s\) : Set₁ where
  State\(^s\) : Set
  Method\(^s\) : (s : State\(^s\)) → Set
  Result\(^s\) : (s : State\(^s\)) → (m : Method\(^s\) s) → Set
  next\(^s\) : (s : State\(^s\)) → (m : Method\(^s\) s) → (r : Result\(^s\) s m) → State\(^s\)
```

The set of methods depends on the state of the object, while the result depends on the state and the invoked method. The `next\(^s\)` function determines the successive state after the result of the method invocation has been computed.

To model state-dependent methods, `StackMethod\(^s\)` needs to be indexed by the size of the stack. The `pop` method is only available when the size is non-zero, i.e., of the form `suc n` (successor of some natural number `n`). In Agda, this is realized by an indexed data type, aka inductive family (Dybjer, 1994).

```agda
data StackMethod\(^s\) (A : Set) : (n : StackState\(^s\)) → Set where
  push : ∀ {n} → A → StackMethod\(^s\) A n
  pop : ∀ {n} → StackMethod\(^s\) A (suc n)
```

\(^9\) Also known as indexed container (Altenkirch & Morris, 2009).
Pushing to a stack has no return value (Unit), while the result of popping from a stack of As is an element of type A.

\[
\text{StackResult}^\text{a} : (A : \text{Set}) \rightarrow (s : \text{StackState}^\text{a}) \rightarrow \text{StackMethod}^\text{a} A s \rightarrow \text{Set}
\]

\[
\text{StackResult}^\text{a} A \_ \_ \text{push} \_ = \text{Unit}
\]

\[
\text{StackResult}^\text{a} A \_ \_ \text{pop} \_ = A
\]

The next state after a push operation is a stack with an increased size (i.e., state (suc n)), while pop leads to a decreased size.

\[
\text{stackNext}^\text{a} : \forall A n (m : \text{StackMethod}^\text{a} A n) (r : \text{StackResult}^\text{a} A n m) \rightarrow \text{StackState}^\text{a}
\]

\[
\text{stackNext}^\text{a} \_ n (\text{push} \_ \_ \_) = \text{suc} n
\]

\[
\text{stackNext}^\text{a} \_ (\text{suc} n) \_ \text{pop} \_ = n
\]

The previous definitions allow us to assemble the state-dependent interface for stack objects:

\[
\text{StackInterface}^\text{a} : (A : \text{Set}) \rightarrow \text{Interface}^\text{a}
\]

\[
\text{State}^\text{a} (\text{StackInterface}^\text{a} A) = \text{StackState}^\text{a}
\]

\[
\text{Method}^\text{a} (\text{StackInterface}^\text{a} A) = \text{StackMethod}^\text{a} A
\]

\[
\text{Result}^\text{a} (\text{StackInterface}^\text{a} A) = \text{StackResult}^\text{a} A
\]

\[
\text{next}^\text{a} (\text{StackInterface}^\text{a} A) = \text{stackNext}^\text{a} A
\]

### 8.2 State-Dependent Objects

A state-dependent object for interface I is a coalgebra which has one eliminator \text{objectMethod} which for each method of I returns an element of the response type and the adapted object:

\[
\text{record Object}^\text{a} (I : \text{Interface}^\text{a}) (s : \text{State}^\text{a} I) : \text{Set} \text{ where}
\]

\[
\text{objectMethod} : (m : \text{Method}^\text{a} I s) \rightarrow \Sigma[r \in \text{Result}^\text{a} I s m] \text{Object}^\text{a} I (\text{next}^\text{a} I s m r)
\]

Since the type of the returned object depends, via next\textsuperscript{a}, on the returned result r, we need to type the returned pair via a \(\Sigma\)-type, defined in Agda’s standard library. Here \(\Sigma[x \in A] B\) denotes \(\Sigma A (\lambda x \rightarrow B)\), where \(\Sigma A C\) is the dependent product type defined as a record with fields \(\text{proj} : A\) and \(\text{proj} : C \text{ proj}\).\(^{10}\)

\(^{10}\) Note that Object\textsuperscript{a} is given as a \(\Pi \Sigma\)-types rather than \(\Sigma \Pi\)-types. In general, polynomial functors can be reduced to \(\Sigma \Pi\)-types (see e.g. Setzer (2016)). The coalgebras corresponding to \(\Sigma \Pi\)-functors are Petersson-Synek trees (Petersson & Synek, 1989), which are trees with nodes indexed over some set I, and each node having a label and a branching degree (where the set of labels, the branching degree, and the index set of the subtrees depend on the index of the root). The theory of indexed containers (Hancock et al., 2013) shows that indexed coalgebras of polynomial functors can be reduced to Petersson-Synek trees. Coalgebras given by \(\Pi \Sigma\)-types will be essentially Petersson-
The state-dependent version of an IO object is:

\[
\text{record IOObject} 
\quad (I : \text{IOInterface}) 
\quad (s : \text{State}\ I) 
\quad : \text{Set}
\]

where

\[
\text{method} 
\quad (m : \text{Method}\ I s) 
\quad \rightarrow 
\quad \text{IO}\ I \circ \text{IOObject} I\ io\ \in \Sigma \left[ r \in \text{Result}\ I s m \right] \text{IOObject} I\ io\ \left(\text{next}\ I s m r\right)
\]

IOObject is a straightforward adaption to state-dependency of IOObject from Sect. 5. The IO version of a stack object could additionally log its activity on an output channel. However, in the following we restrict it to the non-IO version for clarity of exposition.

The simplest implementation of a stack object is just a wrapper of its data, a stack implemented as a vector \((\text{Vec} A n)\) of elements in type \(A\), where \(n\) is the current stack size.

\[
\text{stack} 
\quad : \forall\{A\}\{n : \text{N}\} 
\quad (as : \text{Vec} A n) 
\quad \rightarrow 
\quad \text{Object}\ A\ n
\]

In the case of method \(\text{pop}\), in principle, we have two cases for the content on the stack: First, the stack is non-empty, i.e., of the form \(a :: as\) where \(a\) is the top element and \(as\) is the rest. This case is handled by the second clause. The other case, the stack being empty, i.e., of the form \([],\) is ruled out by the dependent typing: method \(\text{pop}\) expects \(n\) to be a successor, but \([\] : \text{Vec} A 0\) enforces \(n = 0\). This allows Agda to conclude that this case is impossible, and no clause has to be written for it. In contrast with the Java version, no exception handling is needed.

Objects that may flexibly depend on runtime values may not only be suitable for ensuring runtime invariants, but may also help model extensions of object-oriented programming; for instance, method dispatch may depend on another dimension. Consider context-oriented programming \((\text{Hirschfeld et al., 2008})\), where the behavior of an object depends on a given execution context that can be activated dynamically at runtime.

### 8.2.1 Example of Use of Safe Stack

We consider an example of the use of safe stacks, where type theoretic rules prevent the use of \(\text{pop}\) on empty stacks.

A stack machine for evaluating the Fibonacci numbers iteratively using a safe stack serves as an illustration. This is essentially the result of computing the recursive definition of the Fibonacci numbers (which is of course inefficient) using a stack. This definition can easily be generalised to other recursive functions. The presented example is an adaption of Sect. 5.1.4. of \(\text{Abelson et al. (1996)}\).
The stack machine consists of a state, a number \( n \) : \( \mathbb{N} \), and a stack of size \( n \). The state is either an expression \((\text{fib } m)\) to be evaluated or a value \((\text{val } k)\) to be returned. The elements of the stack are expressions with a hole \( \bullet \), into which \( k \) is to be inserted, once the stack above it has been emptied, and the state has become a value \((\text{val } k)\). These elements are of the form \((\bullet + \text{fib } m)\), which means that \((\text{fib } m)\) has to be added to the result \( k \), or \( k' + \bullet \), which means that the result \( k \) has to be added to \( k' \).

\[
\text{data FibState : Set where}
\]
\[
\text{fib : } \mathbb{N} \to \text{FibState}
\]
\[
\text{val : } \mathbb{N} \to \text{FibState}
\]

\[
\text{data FibStackEl : Set where}
\]
\[
\_ + \bullet : \mathbb{N} \to \text{FibStackEl}
\]
\[
\bullet + \text{fib}_n : \mathbb{N} \to \text{FibStackEl}
\]

\[
\text{FibStack} : \mathbb{N} \to \text{Set}
\]
\[
\text{FibStack} = \text{Object}^* (\text{StackInterface}^* \text{FibStackEl})
\]

\[
\text{FibStackmachine} : \text{Set}
\]
\[
\text{FibStackmachine} = \Sigma\ n \in \mathbb{N} \ (\text{FibState} \times \text{FibStack } n)
\]

The function \text{reduce} carries out a one-step reduction, returning either a new stack machine or the value computed, i.e. an element of the disjoint union of the two sets. If the state is \((\text{val } k)\), then this expression is used to reduce the top element on the stack. If the state is \((\text{fib } m)\), then the machine is supposed to compute \((\text{fib } m)\). In case of \( m = m' + 2 \) we have \((\text{fib } (m' + 1))\) as the next state, which when evaluated will be inserted into the whole of the element \((\bullet + \text{fib } m')\) pushed onto the stack, computing \(\text{fib } (m' + 1) + \text{fib } m'\). Note that we never pop from the stack when it is empty.

\[
\text{reduce} : \text{FibStackmachine} \to \text{FibStackmachine} \uplus \mathbb{N}
\]
\[
\text{reduce} \ (n, \text{fib } 0, \text{stack}) = \text{inj}_1 \ (n, \text{val } 1, \text{stack})
\]
\[
\text{reduce} \ (n, \text{fib } 1, \text{stack}) = \text{inj}_1 \ (n, \text{val } 1, \text{stack})
\]
\[
\text{reduce} \ (n, \text{fib } (\text{suc } (\text{suc } m)), \text{stack}) =
\]
\[
\text{objectMethod} \ \text{stack} \ (\text{push } (\bullet + \text{fib } m)) \triangleright \lambda \ \{ \_ , \text{stack}_1 \} \to
\]
\[
\text{inj}_1 \ (\text{suc } n, \text{fib } (\text{suc } m), \text{stack}_1)
\]
\[
\text{reduce} \ (0, \text{val } k, \text{stack}) = \text{inj}_2 \ k
\]
\[
\text{reduce} \ (\text{suc } n, \text{val } k, \text{stack}) =
\]
\[
\text{objectMethod} \ \text{stack} \ \text{pop} \triangleright \lambda \ \{ \ k' + \bullet , \text{stack}_1 \} \to
\]
\[
\text{inj}_1 \ (\text{n } , \text{val } (k' + k), \text{stack}_1)
\]
\[
\text{objectMethod} \ \text{stack}_1 \ (\text{push } (k + \bullet)) \triangleright \lambda \ \{ \_ , \text{stack}_2 \} \to
\]
\[
\text{inj}_1 \ (\text{suc } n, \text{fib } m, \text{stack}_2)
\]

Note that we use the previously defined right-triangle operator \text{_ |> _} which can be used to make a method call and —depending on the result—continue with a succeeding
operation. The function `computeFibRec` repeatedly applies `reduce` until it returns a result. We know it is `TERMINATING`. But, since we did not calculate how often we should iterate this operation, we have to override the termination checker.

```
{-# TERMINATING #-}
computeFibRec : FibStackmachine → N
computeFibRec s with reduce s
... | inj₁ s' = computeFibRec s'
... | inj₂ k = k
```

`fibUsingStack` computes the Fibonacci function:

```
fibUsingStack : N → N
fibUsingStack m = computeFibRec (0 , fib m , stack [])
```

### 8.3 Reasoning About Stateful Objects

#### 8.3.1 Bisimilarity

Henceforth, we assume an arbitrary `I : Interfaceᵃ` and use `O` for the type of objects of this interface. Assume

\[
I = \text{record } \{ \text{State}ᵃ = S; \text{Method}ᵃ = M; \text{Result}ᵃ = R; \text{next}ᵃ = \text{next} \}
\]

\[
O = \text{Object}ᵃ \ I
\]

In Agda the equality used in type checking is definitional equality, which is a decidable equality based on equality of normal forms up to $\alpha, \eta$-equality. It is not extensional. For instance, functions are equal if they have the same normal form, not if they return equal values for equal arguments. The standard generic propositional equality in Agda is Martin-Löf’s intensional equality type. One can define extensional propositional equality types, but the preservation of such equalities by functions needs to be proved for each instance needed.

The natural extensional equality on coalgebras is bisimilarity, which means that two elements of coalgebras are \textit{bisimilar} if all eliminators return equal or bisimilar results for equal arguments. Since the result type of an eliminator might refer to the coalgebra, this results in a recursive definition. Because the coalgebra is defined coinductively, it is natural to define the bisimilarity coinductively as well. Essentially, this means that two elements of a coalgebra are bisimilar, if, after repeatedly applying eliminators until one obtains an element of a type which was defined before the coalgebra was introduced, one obtains equal results. Adapted to objects, this means that two objects are \textit{bisimilar} if they yield the same responses if subjected to the same method calls, which is a recursive definition to be understood coinductively.
To express bisimilarity in Agda, let us first define a relation \( \Sigma R \) on dependent pairs \((a, b), (a', b') \in \Sigma AB\) that holds iff the first components \(a, a' \in A\) are identical and the second components \(b, b' \in B\) are related by \(R a : (b b' : B a) \rightarrow \text{Set}\).

\[
\text{data } \Sigma R \{A : \text{Set}\} \{B : A \rightarrow \text{Set}\} \{R : \forall \{a\} (b b' : B a) \rightarrow \text{Set}\} : (p p' : \Sigma[\ a \in A \] B a) \rightarrow \text{Set}
\]

where
\[
eq \Sigma : \forall \{a\}\{b b' : B a\} \rightarrow R b b' \rightarrow \Sigma R (a , b) (a', b')
\]

We can establish \(\Sigma R (a, b) (a, b')\) using constructor \(\text{eq}\Sigma\), provided we have a proof of \((R b b')\). This enables us to define the bisimilarity relation coinductively in a very similar way to how we have defined objects.

\[
\text{record } _\cong \{s : S\} \{o o' : O s\} : \text{Set where}
\]

\[
\text{bisimMethod} : (m : M s) \rightarrow \Sigma R (_\cong_) (\text{objectMethod } o m) (\text{objectMethod } o' m)
\]

A bisimilarity derivation \(o \cong o'\) for two objects \(o, o' \in Os\) at the same state \(s\) is an infinite proof tree which we can, by \(\text{bisimMethod}\), query for its node sitting on branch \(m : M s\) for a valid method call \(m\). This node will consist of an \(\text{eq}\Sigma\) constructor certifying the identity of responses and holding a subtree for the equality of the objects after the method invocation.

Reflexivity of bisimilarity is shown corecursively; the proof, as the statement, is rather trivial.

\[
\text{refl}_\cong : \forall \{s\} \{o : O s\} \rightarrow o \cong o
\]

\[
\text{bisimMethod} (\text{refl}_\cong o) m = \text{let } (r , o') = \text{objectMethod } o m
\]

\[
in \text{ eq\Sigma } (\text{refl}_\cong o')
\]

To show that \(o\) is bisimilar to itself, we subject it to an arbitrary method call \(m\). Trivially, there is only one result \(r\), which is equal to itself. By the coinduction hypothesis, the new object \(o'\) is bisimilar to itself, thus, \(\text{eq}\Sigma\) is sufficient to establish bisimilarity.

### 8.3.2 Verifying stack laws

In this section, we show that two stack laws hold for our implementation of a stack by a vector. Both hold in Agda by computation, so reflexivity of bisimilarity is sufficient to prove them.

The first law states that for an arbitrary stack \(st\) constructed from a vector \(v\) of elements of type \(E\), if we first \textbf{push} an arbitrary element \(e\) and then \textbf{pop} from the stack, we get back \(e\) and the original stack.

\(\Sigma R\) is an example of an inductive family, which are special cases of inductive-recursive definitions. See Dybjer & Setzer (2003) for a model of inductive-recursive definitions.
Interactive Programming in Agda – Objects and Graphical User Interfaces

pop-after-push : \{n\} \{v : Vec E n\} \{e : E\} →
let st = stack v
  (_, st₁) = objectMethod st (push e)
  (e₂ , st₂) = objectMethod st₁ pop
in (e ≡ e₂) × (st ≡ st₂)

pop-after-push = refl , refl

In Agda, the proof is trivial by expansion of the definition of our \texttt{stack} implementation:
first, \texttt{st₁} computes to \texttt{stack (e :: v)}, then the pair \((e₂ , st₂)\) computes to \((e , \texttt{stack v})\), and both goals hold by reflexivity.

The second law concerns the opposite order of these operations. If we first \texttt{pop} and element from \texttt{stack st} constructed from the non-empty vector \(e :: v\), and then \texttt{push} the popped element, we end up with the same \texttt{stack st}.

push-after-pop : \{n\} \{v : Vec E n\} \{e : E\} →
let st = stack (e :: v)
  (e₁ , st₁) = objectMethod st pop
  (_, st₂) = objectMethod st₁ (push e₁)
in st ≡ st₂

push-after-pop = refl

Again, this lemma is proven by computation.

8.3.3 Bisimilarity of different stack implementations

Alternatively to a vector, we can store the stack contents in a finite map implemented
naively as a pair of a number \(n : \mathbb{N}\), which denotes the stack size, and a function \(f : \mathbb{N} \rightarrow E\),
which gives direct access to the stack elements, with \(f 0\) standing for the top element and
\(f (n − 1)\) for the bottom element. The value of \(f k\) for \(k ≥ n\) is irrelevant. We can transform
such a finite map into a vector through the function \((\texttt{tabulate } n f)\), which computes the
vector \(f 0 :: f 1 :: \cdots :: f (n − 1) :: []\) and will be used to relate the finite maps and vectors later.

\[
\text{tabulate} : \forall (n : \mathbb{N}) (f : \mathbb{N} \rightarrow E) \rightarrow \text{Vec } E \ n
\]
\[
\text{tabulate } 0 f = []
\]
\[
\text{tabulate } (\text{succ } n) f = f 0 :: \text{tabulate } n (f \circ \text{succ})
\]

The object \texttt{stackF n f} implements a stack represented by the finite map \(n , f\). Pushing a
new element \(e\) onto the stack will result in increasing the stack size to \(\text{succ } n\) and changing
the function \(f\) to a new function \(f'\) such that top position \(0\) maps to the new element \(e\) and
Andreas Abel, Stephan Adelsberger, and Anton Setzer

position \( m + 1 \) maps to \((f m)\). Basically, we have shifted the old stack content to make space for the new element \( e \) in position 0.\(^{12}\)

\[
\text{stackF} : \forall (n : \mathbb{N}) (f : \mathbb{N} \to E) \to \text{Object}^a (\text{StackInterface}^a E) n
\]

\[
\text{objectMethod} (\text{stackF} n f) (\text{push} e) = _0, \text{stackF} (\text{suc} n) \lambda
\]

\[
\begin{array}{c}
\{ 0 \to e \\
\{ \text{suc} m \to f m \}
\end{array}
\]

\[
\text{objectMethod} (\text{stackF} (\text{suc} n) f) \text{pop} = f 0, \text{stackF} n (f \circ \text{suc})
\]

Popping from the stack returns the top element \( f 0 \) and changes the stack size from \((\text{suc} n)\) to \(n\) and the representing function from \(f\) to \(f \circ \text{suc}\).

Given a finite map \((n, f)\) which \textit{tabulates} to a vector \(v\), we obtain bisimilar stack objects \((\text{stackF} n f)\) and \((\text{stack} v)\). After we push a new element \(e\) we can invoke the coinduction hypotheses on the new stack objects provided that their data is still in correspondence, \((\text{tabulate} (\text{suc} n) f' \equiv (e :: v))\). By definition of \text{tabulate} the heads of these vectors are both \(e\), and the equality of their tails is the assumption \(p\).

\[
\text{impl-bisim} : \forall \{n f\} v (p : \text{tabulate} n f \equiv v) \to \text{stackF} n f \equiv \text{stack} v
\]

\[
\text{bisimMethod} (\text{impl-bisim} v p) (\text{push} e) = \text{eqΣ} (\text{impl-bisim} (e :: v) (\text{cong} (_ :: _ e) p))
\]

\[
\text{bisimMethod} (\text{impl-bisim} (e :: v) p) \text{pop} \text{rewrite cong head} p = \text{eqΣ} (\text{impl-bisim} v (\text{cong} \text{tail} p))
\]

Here \((\text{cong head} p)\) has type \(f 0 \equiv e\), where \(f\) is the implicit argument. The syntax \text{rewrite cong head} p makes an implicit case distinction on \((\text{cong head} p)\), which in this example equates \(f 0\) with \(e\).\(^{13}\)

When popping from a non-empty stack whose vector representation is \(e :: v\), we first have to show the equality of the result component, \(f 0 \equiv e\). This equation is obtained from \(p : \text{tabulate} (\text{suc} n) f \equiv (e :: v)\) by applying \text{head} on both sides. After rewriting with this equation, we can proceed with \text{eqΣ} and apply the coinduction hypothesis with \text{tabulate} (\text{suc} n) (f \circ \text{suc}) \equiv v, which we get from \(p\) by applying \text{tail} on both sides.

---

\(^{12}\) One of the referees suggested considering a different implementation, where one appends elements at the end (at \(f n\)) rather than at the beginning (\(f 0\)). Popping would then be the result of merely changing the \(n\)-value. The problem is that pushing is much more complicated, since we cannot define it via pattern matching, but would need an if-then-else statement on whether the argument is equal to \(n\). This is not a problem for defining the function – however, proofs referring to if-then-else statements are much more complicated than proofs referring to pattern matching definitions. Therefore, our solution is more suitable for proving properties.

\(^{13}\) See Agda (2016) on how to reduce the rewrite-construct to the with-construct. The with-construct was introduced in McBride & McKinna (2004).
8.4 State-Dependent IO

State-dependent interactive programs are defined in a similar way as state-dependent objects, except for replacing Method\(^\text{a}\) by Command\(^\text{a}\) and Result\(^\text{a}\) by Response\(^\text{a}\). Later, we will use state dependent IO in a situation where the components have different type levels (\(\text{Set}\ vs \text{Set}_1\)). We, therefore, define the operations polymorphically in the finite type levels \(\alpha, \sigma, \gamma, \rho\), which from now we consider fixed but arbitrary. Levels have the lowest element lzero, successor operation lsuc and the maximum operation \(\sqcup\). \(^{14}\)

```agda
record IOInterface\(^\alpha\) : Set (lsuc (\(\alpha \sqcup \gamma \sqcup \rho\))) where
  State\(^\alpha\) : Set \sigma
  Command\(^\alpha\) : State\(^\alpha\) → Set \gamma
  Response\(^\alpha\) : (s : State\(^\alpha\)) → Command\(^\alpha\) s → Set \rho
  next\(^\alpha\) : (s : State\(^\alpha\)) → (c : Command\(^\alpha\) s) → Response\(^\alpha\) s c → State\(^\alpha\)
```

State-dependent IO programs are defined in a similar way as state-dependent Objects (here \(S = \text{State}^i, C = \text{Command}^i, R = \text{Response}^i, \text{next} = \text{next}^i\)):

```agda
record IO\(^i\) (i : Size) (A : S → Set \(\alpha\)) (s : S) : Set (lsuc (\(\alpha \sqcup \gamma \sqcup \rho\))) where
  constructor delay
  force\(^i\) : \{j : Size< i\} → IO\(^j\) j A s

data IO\(^i\)' (i : Size) (A : S → Set \(\alpha\)) (s : S) : (lsuc (\(\alpha \sqcup \gamma \sqcup \rho\))) where
  do\(^i\)' : \{s : S\} → (c : C s) → (f : (r : R s c) → IO\(^i\) s c r) → IO\(^i\)' i A s
  return\(^i\)' : \{s : S\} → (a : A s) → IO\(^i\)' i A s

return\(^i\) : \forall \{i\} \{A : S → Set \(\alpha\)\} \{s : S\} (a : A s) → IO\(^i\) i A s
force\(^i\) (return\(^i\) a) = return\(^i\)' a

do\(^i\) : \forall \{i\} \{A : S → Set \(\alpha\)\} \{s : S\} (c : C s) (f : (r : R s c) → IO\(^i\) s c r) → IO\(^i\) i A s
force\(^i\) (do\(^i\) c f) = do\(^i\)' c f
```

Translation into NativeIO is as before, however the type level \(\rho\) of Response\(^a\) has to be lzero. Furthermore, the result type needs to be independent of \(s\) and in Set:

\(^{14}\) Note that Set \(\alpha\) has type Set (lsuc \(\alpha\)) and (\(\alpha : \text{Level}\) → Set \(\alpha\) has type Set\(\omega\), which is a universe above any Set \(\alpha\). Universe Set\(\omega\) only exists internally in Agda as the type of level-polymorphic universes, it cannot be written by the user. It is needed in type theoretic rules which require to associate a type for any \(A\) occurring in a typing judgement \(a : A\).
Andreas Abel, Stephan Adelsberger, and Anton Setzer

\[ \text{translateIO} : \forall \{ A : \text{Set} \} \{ s : S \} \]
\[ \to (\text{translateLocal} : (s : S) \to (c : C s) \to \text{NativeIO} (R s c)) \]
\[ \to \text{IO}^s I \equiv (\lambda s \to A) s \]
\[ \to \text{NativeIO} A \]

9 A Drawing Program in Agda

In this section we will introduce a graphics library in Agda and implement a proof-of-concept drawing program with it. The library is using Hudak’s SOE Haskell library (Hudak, 2016). The GUI interface in the Agda library has commands for creating, changing, and closing GUI components, and for checking for GUI events such as pressed keys (together with the character pressed) or mouse movements (together with the new point). The library will refer to data types representing GUI-related data such as a type Window of windows. All these commands and types will be translated to Haskell functions and types using the SOE library.

```agda
data GraphicsCommands : Set where
  getWindowEvent : Window \to GraphicsCommands
  openWindow : String \to Maybe Point \to N \to N \to RedrawMode \to Maybe Word32 \to GraphicsCommands
  closeWindow : Window \to GraphicsCommands
  drawInWindow : Window \to Graphic \to GraphicsCommands

GraphicsResponses : GraphicsCommands \to Set
GraphicsResponses (getWindowEvent _) = Event
GraphicsResponses (openWindow _ _ _ _ _ _) = Window
GraphicsResponses (closeWindow _) = Unit
GraphicsResponses (drawInWindow _ _) = Unit

GraphicsInterface : IOInterface
Command GraphicsInterface = GraphicsCommands
Response GraphicsInterface = GraphicsResponses

IOGraphics : Size \to Set \to Set
IOGraphics i = IO GraphicsInterface i
```

Graphics commands are translated into native IO commands by a function translateNative, which replaces each command by a native function.
translateNative : (c : GraphicsCommands) → NativeIO (GraphicsResponses c)

We define now a simple drawing program, which opens a window and draws a trace of where the mouse moves. After having started, the state of the program is given by the last point up to which the drawing has already been carried out. After the first mouse movement event at point p, the drawing consists of a single point at position p. Initially there is no such point. So we define the state as

State = Maybe Point

The loop of the program checks for any window event, which are handled by winEvtHandler. If key 'x', representing a request to terminate the program, was pressed, the program closes the window and terminates. If, after we have started (state (just p_1)), a mouse movement event with point p_2 occurs, a line is drawn from p_1 to p_2, and the state is updated to (just p_2). If the same mouse movement event occurs in the initial state nothing, no line is drawn, but as before the state is updated to (just p_2). In all other cases, winEvtHandler calls the loop function without changing the state.

mutual

loop : ∀ {i} → Window → State → IOGraphics i Unit
force (loop w s) = do' (getWindowEvent w) λ e →
                      winEvtHandler w s e

winEvtHandler : ∀ {i} → Window → State → Event → IOGraphics i Unit
winEvtHandler w s (Key c t) = if charEquality c 'x' then (do (closeWindow w) return)
                                else loop w s
winEvtHandler w s (MouseMove p_2) = s ⊕ λ
                                     { nothing → loop w (just p_2)
                                       ; (just p_1) → do (drawInWindow w (line p_1 p_2)) λ →
                                         loop w (just p_2) }
winEvtHandler w s _ = loop w s

The main program opens a window and then runs the loop. This program is then translated into a native IO program:

program : ∀ {i} → IOGraphics i Unit
program =
  do (openWindow "Drawing Prog" nothing 1000 1000 nativeDrawGraphic nothing) λ win →
    loop win nothing

translateIOGraphics : IOGraphics ∞ Unit → NativeIO Unit
translateIOGraphics = translateO translateNative
10 A Graphical User Interface using an Object

10.1 Graphical User Interfaces with Event Handlers

So far our interactive programs were client-side programs: the program issues commands and receives responses. In the drawing program in section 9 we ran a loop which was checking for any events that had occurred and modified the program state accordingly. When dealing with more complex graphical user interfaces this becomes inefficient. A better way is to use event listeners.

In object-oriented programming languages such as Java, when creating a graphical user interface, one uses commands which create GUI elements such as frames, buttons and text fields, and commands for placing them usually within previously created GUI elements. For instance, one can place a button within a frame.

These GUI elements are associated with events, which are usually triggered by user interaction. For example, once we have created a button, a button click event is created, which is activated whenever the button is pressed. Moreover, there are events triggered by the user interface itself, such as the paint event that signals that a window’s contents needs to be repainted. Events are handled by event listeners or event handlers. An event handler is an interactive program that is executed whenever the event is triggered and is provided with parameters accordingly. For instance, when a mouse click event is triggered, one obtains the coordinates of the location of the mouse click. An event handler also has other parameters which are implicit, such as the device context. When the event is triggered, the event handler is applied to these arguments.

In object-oriented programming such as Java, the event handlers are usually invoked as methods of several objects. This allows communication between the event handlers. In 10.2, we will introduce an example of a spaceship controlled by a button. The coordinates of the spaceship are changed when a button is pressed. The paint event handler then uses these coordinates to draw the spaceship at a different location.

10.2 wxHaskell

In this section we will translate our IO programs into native IO programs, which then translate into Haskell programs by making use of the Haskell library wxHaskell (Leijen, 2004; Haskell Wiki, 2016). This library is suitable for creating GUls since it has good support for server-side programs based on action handlers. Here “server-side” refers to the notion put forth by Hancock & Setzer (2005); Setzer & Hancock (2004). The wxHaskell library offers bindings for wxWidgets, and an object-oriented (C++) widget toolkit to build GUls. For each method in C++ there is a wrapper function in C with a pointer to a struct representing an object. The Haskell library binds to the C functions. As the C++ methods assume access to a mutable state, wxHaskell makes use of mutable variables. Our examples use mutable variables based on Concurrent Haskell (Peyton Jones et al., 1996). In our

main : NativeIO Unit
main = nativeRunGraphics (translateIOGraphics program)
Interactive Programming in Agda – Objects and Graphical User Interfaces

Agda code, we do not focus on modeling the inheritance relationship between widgets that is present in the C++ library. In wxHaskell, inheritance relationships are modeled as phantom types; however, as it relies on unsafe object casts, it is only an approximation that does not fully represent subtyping of object-oriented programming languages (see the related work of phantom types in section 11).

wxHaskell provides some basic data types such as the device context DC, frame Frame and button Button. Additionally, it provides functions for creating and placing GUI elements. GUI elements have properties, using syntax such as

frame [text := "Frame Title"]

for creating a frame with the title “Frame Title”. Event handlers are associated with GUI elements by using syntax such as

set myframe [on paint := prog]

which sets the onpaint method (in underlying C++ terms) for frame myframe to program prog, where prog is an element of IO () in Haskell. In order to share information between event handlers, mutable variables are used. As multiple events may occur in parallel, we use variables based on Concurrent Haskell (Peyton Jones et al., 1996):

A mutable location MVar a is either empty or contains a value. There are commands for creating a mutable location, putting a value into the location, and taking a value out of the location:

newMVar :: a -> IO (MVar a)
putMVar :: MVar a -> a -> IO ()
takeMVar :: MVar a -> IO a

A thread putting a variable blocks until the variable is empty, and then puts a value into that location. If it is taking a variable, it blocks until the variable is non-empty, and then reads the value, leaving the location empty. The dispatch function in the next section utilizes Haskell’s MVar semantics to implement thread-safe communication. The Agda Var type corresponds to the Haskell MVar type and, e.g., nativePutVar is a wrapper for putMVar in Haskell.

### 10.3 A Library for Object-Based GUIs in Agda

We will handle variables by forming a list of variables. Since a variable depends on its type—an element of Set—a list of variables is an element of the next type level Set₁ above Set.

data VarList : Set₁ where
  []   : VarList
  addVar : (A : Set) → Var A → VarList → VarList

We form the product of the set of variables in a VarList. In our example below, we have only one variable of type A. In order to obtain it as product A instead of A × Unit, we add a special case for the singleton list:
prod : VarList → Set
prod [] = Unit
prod (addVar A v []) = A
prod (addVar A v l) = A × prod l

The function takeVar reads in sequence all the variables, empties them, and returns the product. If a variable is empty, it waits until it is non-empty, before taking it. The function putVar writes all the variables, leaving them non-empty. If a variable is non-empty, it waits until it is empty, before putting the value.

takeVar : (l : VarList) → NativeIO (prod l)
takeVar [] = nativeReturn unit
takeVar (addVar A v []) = nativeTakeVar {A} v
takeVar (addVar A v (addVar B v' l)) =
  nativeTakeVar {A} v native >>= λ a →
  takeVar (addVar B v' l) native >>= λ rest →
  nativeReturn (a, rest)

putVar : (l : VarList) → prod l → NativeIO Unit
putVar [] _ = nativeReturn unit
putVar (addVar A v []) a = nativePutVar {A} v a
putVar (addVar A v (addVar B v' l)) (a, rest) =
  nativePutVar {A} v a native >>= λ _ →
  putVar (addVar B v' l) rest

We have two levels of IO interfaces: the level 1 interface GuiLev1Interface is used for creating and modifying GUI elements without making use of event handlers. It does not, however, allow the use of variables. We omit its definition, which is similar to the one given in Sect. 9.

The main program uses the level 2 interface, which extends the level 1 interface and has commands for adding event handlers that refer to programs written for the level 1 interface. This means that it negatively refers to the set of all level 1 IO programs. In order for this to be possible, the set of level 1 programs needs to be defined (and therefore the level 1 interface be finished) before we can define the level 2 interface. If we allowed the level 2 interface to refer to itself we would get an inconsistent type theory (essentially, we would need the principle Set : Set). Therefore, we could not use Agda for verification.

Because of this, we separate level 1 and level 2 interfaces: the level 1 interface has no event handler. The level 2 interface extends the level 1 interface with the possibility of adding event handlers, which refer to level 1 programs. We call them “level 1” and “level 2”, because level 2 programs can refer to the collection of all level 1 programs.

Event handlers are expected to be executed as independent threads, possibly in parallel. In order to communicate between them, we add to the level 2 interface the ability to create
and use variables that represent the shared state between the event handlers. Event handlers access the shared variables, modify them and update the shared variables.

A first approximation for the type of an event handler referring to variable list \( l \) is

\[
eventHandler : \text{prod } l \rightarrow \text{IO GuiLev1Interface } (\text{prod } l)
\]

When translated into a native IO program, the event handler will read the state of all variables, obtaining value \( a : \text{prod } l \). Then it will execute program \((eventHandler \ a)\) which, when terminating, returns an element \( a' : \text{prod } l \) which will then be written back to the variables.

Some modifications are needed: one is that \( eventHandler \) has two kinds of additional parameters: (1) some are to be executed when it is first created. Let the types of those parameters be \( B_1, \ldots, B_n \). (2) Furthermore, we have some parameters which are used each time \( eventHandler \) is activated. Let their types be \( C_1, \ldots, C_n \). The reason for the other modification is that one event handler might trigger events which other event handlers then handle. For this to work, one might need to update the variables before this trigger event is activated, so that the other handlers triggered make use of the updated state. The solution is to have a list of event handlers instead of having just one event handler. The event handlers in such a list will be executed in sequence. After each event handler in this list has been executed, the variables are updated. As a consequence, event handlers from other threads from now on will make use of the updated state. Therefore, we can update the state in one event handler of the list, and trigger an event in a later event handler of the list. A handler that refers to the revised state will handle the triggered event. Using these considerations, we obtain that the type of an event handler is as follows:

\[
eventHandler : B_1 \rightarrow \cdots B_n \rightarrow \text{List } (\text{prod } l \rightarrow C_1 \rightarrow \cdots C_n \rightarrow \text{IO GuiLev1Interface } (\text{prod } l))
\]

The level 2 interface \( \text{GuiLev2Interface} \) will be a state-dependent IO interface. The state of \( \text{GuiLev2Interface} \) is the list of variables obtained up to now, i.e. \( \text{VarList} : \text{Set}_1 \):

\[
\text{GuiLev2State} : \text{Set}_1
\]

\[
\text{GuiLev2State} = \text{VarList}
\]

The level 2 interface has as commands level 1 commands, a command for creating a variable, and commands for adding a button handler, and an onPaint handler. The type of event handlers is as discussed before. The type of event handlers will refer to the variables created up to now; therefore, the commands for setting an event handler will depend on this state. Since the type of variables is an element of \( \text{Set}_1 \), the type of commands will be an element of \( \text{Set}_1 \).

\[
data \text{GuiLev2Command } (s : \text{GuiLev2State}) : \text{Set}_1 \text{ where}
\]

\[
\text{level1C} : \text{GuiLev1Command} \rightarrow \text{GuiLev2Command } s
\]

\[
\text{createVar} : \{A : \text{Set}\} \rightarrow A \rightarrow \text{GuiLev2Command } s
\]

\[
\text{setButtonHandler} : \text{Button}
\]

\[
\Rightarrow \text{List } (\text{prod } s \rightarrow \text{IO GuiLev1Interface } \infty (\text{prod } s))
\]

\[
\Rightarrow \text{GuiLev2Command } s
\]

\]
Responses for level 1 commands are the corresponding level 1 responses. The response for the create variable command is the variable which was created. For all other commands the response is empty (an element of Unit). The type of responses is an element of Set:

\[
\text{GuiLev2Response} : (s : \text{GuiLev2State}) \rightarrow \text{GuiLev2Command} s \rightarrow \text{Set}
\]

\[
\text{GuiLev2Response} _{(\text{level1C} c)} = \text{GuiLev1Response} c
\]

\[
\text{GuiLev2Response} _{(\text{createVar} \{A\} a)} = \text{Var} A
\]

\[
\text{GuiLev2Response} _{} = \text{Unit}
\]

When creating a new variable, the return type will be a new variable; adding the new variable to the list of variables then updates this state. Otherwise the state will remain unchanged. Here, we have an example of a state-dependent interface where the next state not only depends on the command executed, but also on the response returned.

\[
\text{GuiLev2Next} : (s : \text{GuiLev2State}) \rightarrow (c : \text{GuiLev2Command} s) \rightarrow \text{GuiLev2Response} s c \rightarrow \text{GuiLev2State}
\]

\[
\text{GuiLev2Next} s (\text{createVar} \{A\} a) \var = \text{addVar} A \var s
\]

\[
\text{GuiLev2Next} s _{} = s
\]

Combining the above we obtain the resulting interface, which is an element of the second type level Set₂:

\[
\text{GuiLev2Interface} : \text{IOInterface}^2
\]

\[
\text{State}^2 \quad \text{GuiLev2Interface} = \text{GuiLev2State}
\]

\[
\text{Command}^2 \quad \text{GuiLev2Interface} = \text{GuiLev2Command}
\]

\[
\text{Response}^2 \quad \text{GuiLev2Interface} = \text{GuiLev2Response}
\]

\[
\text{next}^2 \quad \text{GuiLev2Interface} = \text{GuiLev2Next}
\]

When translating an event handler, which refers to variables \(l\), into \text{NativeIO}, we obtain a list of functions of type

\[
f : \text{prod} l \rightarrow \text{NativeIO} (\text{prod} l)
\]

The function \text{dispatch} will translate each of these functions into an element of \text{NativeIO}, which takes the variables, obtains a value \(a\), executes \(f\), and then writes back the variable.

\[
\text{dispatch} : (l : \text{VarList}) \rightarrow (\text{prod} l \rightarrow \text{NativeIO} (\text{prod} l)) \rightarrow \text{NativeIO Unit}
\]

\[
\text{dispatch} l f = \text{takeVar} l \text{native} >>= \lambda a \rightarrow
\]

\[
f a \text{native} >>= \lambda a_1 \rightarrow
\]

\[
\text{putVar} l a_1
\]
Dispatch will be used for writing event handlers which are possibly executed in parallel. Any dispatched handler of the form \((\text{dispatch } l f)\) will empty the variables initially. No other dispatched handler then starts, because it waits until the variables are non-empty. When the first dispatched handler has finished, it writes the variables, allowing other dispatched handlers (which run in parallel) to start. Therefore, the execution of dispatched handlers of different threads is mutually exclusive. This is necessary since any intermediate changes of the state are not shared between threads.

The dispatching of a list of such functions is obtained by dispatching each individual function in sequence. Therefore, updates to the variables in one element of the list are shared to all other event handlers before executing the next element of the list. Since the variables are then non-empty, other threads accessing the variables at this point might interrupt execution and change the variables. Therefore, reading the variables again after having written them is necessary, since they may have changed.

In the example given below in Subsect. 10.4 we will make use of having a list of event handlers. When moving the spaceship, we will first update the coordinate of the spaceship, which changes the variable containing the coordinate. Then we will call the repaint function, which needs to make use of the updated coordinates.

\[
\text{dispatchList} : (l : \text{VarList}) \rightarrow \text{List} (\text{prod } l \rightarrow \text{NativeIO} (\text{prod } l)) \rightarrow \text{NativeIO} \text{ Unit}
\]

\[
\text{dispatchList} l [] = \text{nativeReturn} \text{ unit}
\]

\[
\text{dispatchList} l (p :: \text{rest}) = \text{dispatch} l p \text{ native} >>= \lambda _ \rightarrow \\
\text{dispatchList} l \text{ rest}
\]

We define \(\text{translateLev1Local} : (c : \text{GuiLev1Command}) \rightarrow \text{NativeIO} (\text{GuiLev1Response} c)\) similarly to as we did in Sect. 9. The translation of level 2 commands makes use of the dispatch function. Since the event handlers are lists of functions, we need to apply the level 1 translation to each of the elements of this list by using the operation \(\text{map}\).

\[
\text{translateLev2Local} : (s : \text{GuiLev2State})
\rightarrow (c : \text{GuiLev2Command} s)
\rightarrow \text{NativeIO} (\text{GuiLev2Response} s c)
\]

\[
\text{translateLev2Local} s (\text{level1C} c) = \text{translateLev1Local} c
\]

\[
\text{translateLev2Local} s (\text{createVar} \{A\} a) = \text{nativeNewVar} \{A\} a
\]

\[
\text{translateLev2Local} s (\text{setButtonHandler} bt \text{ proglist}) = \\
\text{nativeSetButtonHandler} bt
\quad (\text{dispatchList} s (\text{map} (\lambda \text{ prog} \rightarrow \text{translateLev1} \circ \text{ prog}) \text{ proglist}))
\]

\[
\text{translateLev2Local} s (\text{setOnPaint} \text{ fra} \text{ proglist}) = \\
\text{nativeSetOnPaint} \text{ fra} (\lambda \text{ dc rect} \rightarrow \text{dispatchList} s
\quad (\text{map} (\lambda \text{ prog aa} \rightarrow \text{translateLev1} (\text{ prog aa dc rect})) \text{ proglist}))
\]

\[
\text{translateLev2} : \forall \{A \} \rightarrow \text{IO}^A \text{GuiLev2Interface} \Rightarrow (\lambda _ \rightarrow \text{A}) s \rightarrow \text{NativeIO} A
\]

\[
\text{translateLev2} = \text{translateIO}^A \text{ translateLev2Local}
\]
Note that the translation of \((\text{setButtonHandler } bt \text{ proglist})\) uses \texttt{nativeSetButtonHandler} which creates a new thread running a handler. The handler waits for a button event. If the button event happens the handler code is executed.

10.4 Example: A GUI controlling a Space Ship in Agda

We are going to introduce a program displaying a small spaceship controlled by buttons in Agda. This example is based on the Haskell program of the asteroids game (Leijen, 2004, 2015). We will demonstrate only one button in this paper, which moves the spaceship to the right by a fixed amount. We will define three versions, which differ by the type of shared variables. These versions correspond to different methodologies of writing event handlers. The first one uses the data type of integers \(\mathbb{Z}\) as its shared state. It represents the x-coordinate of the spaceship. The second one uses an object for storing the shared state. Here, we wrap \(\mathbb{Z}\) into a cell object. More advanced examples would make use of more complex objects. Finally, the third one follows the common approach in object-oriented programming, namely to define the event handlers as methods of a common object.

All versions will define three event handling functions: \texttt{onPaint}, which handles the onpaint event for drawing the spaceship; \texttt{moveSpaceShip}, which is the first part of the button handler, which updates the state so that next time the spaceship is drawn its coordinates have changed; and \texttt{callRepaint}, which triggers a repaint event. The button will be handled by the two handlers \texttt{moveSpaceShip} and \texttt{callRepaint} in sequence. When the button event is triggered, first \texttt{moveSpaceShip} moves the spaceship by updating and sharing the state of the spaceship with new updated coordinates. Then the \texttt{callRepaint} handler will trigger a repaint event which triggers the paint function to repaint the spaceship with the new coordinates.

It turns out that in all three versions the types of the event handling functions are — except for the type of the shared variable — the same. Furthermore, the definitions of the main program are identical. We will therefore define it at the end.

In the first version, the event handlers will read the x-coordinate, an element of \(\mathbb{Z}\), and return the updated coordinate. Here, \(+_\mathbb{Z}\) is the constructor for \(\mathbb{Z}\) embedding \(\mathbb{N}\) into \(\mathbb{Z}\). We define the type of the shared variable and its initial value:

\[
\text{VarType} = \mathbb{Z} \\
\text{varInit} : \text{VarType} \\
\text{varInit} = (+ 150)
\]

The event handling functions are as follows:

\[
\text{onPaint} : \forall \{i\} \rightarrow \text{VarType} \rightarrow \text{DC} \rightarrow \text{Rect} \rightarrow \text{IO GuiLev1Interface} \ i \ \text{VarType} \\
\text{onPaint} z \ dc \ rect = \text{do (drawBitmap dc ship (} z , (+ 150)) \ true) \ \lambda \ _ \rightarrow \text{return z}
\]

\[
\text{moveSpaceShip} : \forall \{i\} \rightarrow \text{Frame} \rightarrow \text{VarType} \rightarrow \text{IO GuiLev1Interface} \ i \ \text{VarType} \\
\text{moveSpaceShip} \ fra \ z = \text{return (} z + (+ 20))
\]
callRepaint : \forall \{i\} \to Frame \to VarType \to IO GuiLev1Interface i \VarType
callRepaint fra z = do (repaint fra) \lambda _\to return z

In the second version we define the variable via an object. Here, we will take the example of a simple cell, containing an integer with constructor \texttt{cellZC}.

\textbf{VarType} = Object (cellZ)

\texttt{cellZC} : (z : \mathbb{Z}) \to VarType

\texttt{objectMethod} (cellZC z) \texttt{get} = \langle z , \texttt{cellZC} z \rangle

\texttt{objectMethod} (cellZC z) \texttt{(put z')} = \langle \texttt{unit} , \texttt{cellZC} z' \rangle

\texttt{varInit} : \VarType
\texttt{varInit} = \texttt{cellZC} (+ 150)

The event handlers are defined as before, but now they call methods of the simple cell object for getting and setting the coordinate. We omit their types since these are identical for all 3 versions of this program

\texttt{onPaint c dc rect} =
\hspace{1em} let \langle z , c_1 \rangle = \texttt{objectMethod c get} in
\hspace{3em} do (drawBitmap dc ship \langle z , (+ 150) \rangle \texttt{true}) \\lambda _\to
\hspace{3em} return \texttt{c_1}

\texttt{moveSpaceShip fra c} =
\hspace{1em} let \langle z , c_1 \rangle = \texttt{objectMethod c get}
\hspace{3em} \langle _ , c_2 \rangle = \texttt{objectMethod c_1 (put (z + (+ 20)))}
\hspace{3em} in return \texttt{c_2}

\texttt{callRepaint} fra \texttt{c} = \texttt{do (repaint} \texttt{fra}) \\lambda _\to \texttt{return} \texttt{c}

The third version makes use of an object, which has methods \texttt{onPaintM}, \texttt{moveSpaceShipM}, \texttt{callRepaintM} corresponding to the first 3 event handling functions.

data GraphicServerMethod : Set where
\hspace{1em} \texttt{onPaintM} : DC \to Rect \to GraphicServerMethod
\hspace{1em} \texttt{moveSpaceShipM} : Frame \to GraphicServerMethod
\hspace{1em} \texttt{callRepaintM} : Frame \to GraphicServerMethod

GraphicServerResult : GraphicServerMethod \to Set
GraphicServerResult \_ = Unit
GraphicServerInterface : Interface
Method GraphicServerInterface = GraphicServerMethod
Result GraphicServerInterface = GraphicServerResult

GraphicServerObject : \forall \{i\} \rightarrow Set
GraphicServerObject \{i\} = IOObject GuiLev1Interface GraphicServerInterface \{i\}

graphicServerObject : \forall \{i\} \rightarrow \mathbb{Z} \rightarrow GraphicServerObject \{i\}
method (graphicServerObject z) (onPaintM dc rect) =
  do (drawBitmap dc \\
     ship (z, (+ 150)) true) \lambda \_ \rightarrow
  return (unit , graphicServerObject z)
method (graphicServerObject z) (moveSpaceShipM fra) =
  return (unit , graphicServerObject (z + (+ 20)))
method (graphicServerObject z) (callRepaintM fra) =
  do (repaint fra) \lambda \_ \rightarrow
  return (unit , graphicServerObject z)

VarType = GraphicServerObject \{\infty\}

varInit : VarType
varInit = graphicServerObject (+ 150)

The event handlers will now simply call the methods of the shared object. The methods’ result type is \(\text{IO}(\text{Unit} \times \text{GraphicServerObject})\), namely the product of the response type Unit of the methods and of the type of the updated object, whereas the result of the event handlers needs to be \(\text{IO GraphicServerObject}\). Therefore, we apply \(\text{mapIO proj}_2\) to the results of those methods. Here, \(\text{mapIO}\) is a function which takes as arguments an \(f : A \rightarrow B\) and an element of \(\text{IO A}\) and maps it to \(\text{IO B}\) by applying \(f\) to its return values.

\[
\begin{align*}
onPaint \ obj dc rect &= \text{mapIO proj}_2 \ (\text{method obj (onPaintM dc rect)}) \\
movespaceShip \ fra obj &= \text{mapIO proj}_2 \ (\text{method obj (moveSpaceShipM fra)}) \\
callRepaint \ fra obj &= \text{mapIO proj}_2 \ (\text{method obj (callRepaintM fra)})
\end{align*}
\]

The main program, which is identical for all three versions, does the following: it creates a frame and a button, adds the button to the frame, creates a variable of type VarType initialized by varInit and sets the button handler and the onPaint handler to the event handlers defined. The program is then translated into a NativeIO program:

\[
\begin{align*}
\text{program : } \forall \{i\} \rightarrow \text{IO}^x \text{GuiLev2Interface } i \ (\lambda \_ \rightarrow \text{Unit}) \ [ ] \\
\text{program} = \text{do}^x \ (\text{level1C makeFrame}) \\
& \quad \text{do}^x \ (\text{level1C (makeButton fra)}) \\
& \quad \text{do}^x \ (\text{level1C (addButton fra bt)})
\end{align*}
\]
do\(\ast\) (createVar varInit) \(\lambda\_\rightarrow\)
do\(\ast\) (setButtonHandler bt (moveSpaceShip fra :: [callRepaint fra])) \(\lambda\_\rightarrow\)
do\(\ast\) (setOnPaint fra [onPaint])
return\(\ast\)

main : NativeIO Unit
main = start (translateLev2 program)

11 Related Work

Typestate-oriented programming (Garcia et al., 2014) is an extension of object-oriented programming (Strom & Yemini, 1986). It models state-dependent interfaces and object behaviour in imperative object-oriented programming. The states are given by a finite number of type states. Executing a method may change the state of an object. Although typestate-oriented programming can express the full range of object-oriented programming including aliases, it lacks a notion of dependent states that can be statically verified. Thus, the approach may catch only some errors statically, while still resorting to runtime checks or assertions (Garcia et al., 2014) to cover all errors. Furthermore, objects with an infinite number of states (such as our stack example with the state being the number of elements on the stack) are out of the scope of typestate-oriented programming and other approaches to typestate.

Abadi and Cardelli (1996) introduce the \(\zeta\)-calculus, which is similar to the \(\lambda\)-calculus, but for objects. There is a special second order quantifier called Self quantifier \(\zeta(X)\phi(X) := \mu Y. \exists X :<: Y. \phi(X)\). This allows to type objects and classes which make self-referential calls. Dependent types are not studied in their approach.

Coinduction in type theory. In the context of Nuprl’s extensional type theory, simple coinductive types (Mendler et al., 1986) such as streams have been considered as greatest fixed-points of functors, using, in modern terminology, the following introduction rule:

\[
\Gamma, n : \mathbb{N} \vdash e : F^n(\top) \\
\Gamma \vdash e : vF
\]

In talking about the finite approximations \(F^n(\top)\) of the coinductive type \(vF\), it resembles sized types. However, in extensional type theory type checking is undecidable. Corecursive definitions have to be justified by proof, here by induction on the natural number \(n\), whereas in Agda’s sized types are built into the core language. One could, of course, say that Agda’s sized types give the information needed to create such proofs.

Coquand (1994) introduces coinductive types via constructors as non-wellfounded trees—in contrast to the coalgebraic approach to define them via their destructors (Hagino, 1989; Setzer, 2012; Abel et al., 2013). Coquand’s work contains the definition of productivity of corecursive definitions and the guarded-by-constructors criterion to ensure productivity. This also extends to proofs as “guarded induction principle”, but has limited expressivity, which is overcome by sized types as described in this article.
Coinductive types have been added to Coq’s Calculus of Inductive Constructions following Coquand’s proposal (Giménez, 1996). In Giménez’s thesis, it was already noted that dependent pattern matching on coinductive data breaks subject reduction. Giménez also suggested a type-based productivity check (Giménez, 1998) with similar proposals occurring at around the same time (Hughes et al., 1996; Amadio & Coupet-Grimal, 1998). Since then, sized types have seen thorough theoretical exploration (Barthe et al., 2004; Blanqui, 2004; Barthe et al., 2008; Abel, 2008, 2007; Sacchini, 2013) and several prototypical implementations (Barthe et al., 2005; Abel, 2010).

Component-based programming Hancock and Hyvernart (2006) and Granström (2012) (see also the component-based programming language IPL (Granström, 2016)) have suggested the use of interactive programs in component-based programming. A component is a combination of a server-side and a client-side program: it receives a request from the server and then interacts with the client-side until it has computed a response, which is then returned to the server-side. After the request ends, the component waits for the next server request. In this sense, an IOObject is a component having the object interface as a server-side interface and the IO-interface as a client-side interface. CounterCell (Sect. 7) can be considered as a component which communicates with a CellC object on its client-side.

Isabelle has many advantages since it integrates powerful automated theorem provers, especially Sledgehammer. Its built-in equality for coalgebras is already bisimilarity, making proofs much easier. However, it lacks dependent types. Strict positivity is more restrictive than in Agda which allows inductive-recursive (Dybjer & Setzer, 2003) and inductive-inductive definitions (Nordvall Forsberg & Setzer, 2010), which only make sense using dependent types. Lochbihler and Züst (2014) demonstrated how to use Isabelle as a functional programming language. Their type of interactive programs makes use of a type similar to our IO monad. Because of the lack of dependent types, this type has only one command with one type of arguments, and one result type. That could easily be generalised to finitely many methods, but not to the full generality in this paper. Blanchette et al. (2015) introduce friendly functions which are allowed on the right-hand side of corecursive definitions. They play a similar rôle to that of size preserving functions in our settings. However, size preserving functions seem to be more general.

Software Transactional Memory. The STM monad (Harris et al., 2008; Hackage, 2016) allows to combine a series of actions such as writing and reading variables into one transaction. If such a transaction is interrupted, the transaction is rolled back to the state it was before it was executed. IO actions are not allowed inside such transactions. For this reason, the STM monad is not suitable for our approach, and we use manual locking via MVar s instead.

Functional Reactive Programming (FRP) is another approach for writing interactive programs in functional programming languages. The idea is that input and output are given by input and output streams, and one has operations for creating new streams from existing ones. The elements of the input streams change as the input changes, which is then reflected in the elements of the streams defined from it, including the output streams. Therefore, the
output reacts in response to the input. In connection with dependent types, FRP has been studied from the foundational perspective (Sculthorpe & Nilsson, 2009) and for verified programming (Jeffrey, 2013).

**Phantom Types for Modeling Inheritance Relationships** wxHaskell offers bindings to the C++ GUI-library wxWidgets. The Haskell bindings model inheritance relationships (e.g., between widget classes in C++) as phantom types. However, wxHaskell cannot fully represent subtyping of object-oriented programming languages, as it relies on unsafe object casts. Phantom types are types with an additional type parameter which is not used by its constructors. For instance, we can state

```agda
data isPerson x
data isStudent x
data isPhDStudent x
```

If we had existential quantifiers over types, one could define

```agda
Person = ∃x.isPerson x
Student = ∃x.isPerson (isStudent x)
PhDStudent = ∃x.isPerson (isStudent (isPhDStudent x))
```

and then obtain: if \(a : \text{Student}\) then \(a : \text{Person}\) and if \(a : \text{PhDStudent}\) then \(a : \text{Student}\) and \(a : \text{Person}\).

However, Haskell does not have existential quantifiers, so instead one defines

```agda
Person = isPerson ()
Student = isPerson (isStudent ())
PhDStudent = isPerson (isStudent (isPhDStudent ()))
```

Now, an element of Student is no longer an element of Person but we can define an upcasting function

```agda
upcast : Student → Person
```

As we can equally define downcast : Person → Student, the definition is unsafe. Furthermore, Student and Person are type synonyms, so they do not really have different constructors or (as objects) methods. One can distinguish them by having operations such as

```agda
studentNumber : Student → \mathbb{N}
```

which is a postulated function and gets its implementation only from the corresponding C code. In this sense, this use of phantom types is unsafe, meaning we do not really have a type hierarchy but are using potentially unsafe casts which are not type-checked.

**Algebraic effects and Idris.** In the dependently typed programming language Idris, Brady has created an effects library based on algebraic effects (Brady, 2014). Algebraic effects were introduced in Bauer & Pretnar (2012, 2015). Effects can be considered as a version of state-dependent IO.

The type \(\text{Effect}\) of effects is a predicate on the sets \(\text{Result}\), incoming \(\text{InResource}\), and outcoming resources \(\text{OutResource} : \text{Result} → \text{Set}\). Written in Agda syntax, this reads as follows:
Effect : Set
Effect = (Result : Set) → (InResource : Set) → (OutResource : Result → Set) → Set

This can be considered as a state-dependent interface: the states are Set, the commands for a state \( s \) are the effects for which the result component is \( s \), the responses are the Result component of the effect, and the next state is determined by the OutResource component:

\[
\text{effectToIOInterface}^s : \text{Effect} \rightarrow \text{IOInterface}^s \\
\text{State}^s (\text{effectToIOInterface}^s \ eff) = \text{Set} \\
\text{Command}^s (\text{effectToIOInterface}^s \ eff) \ s = \\
\Sigma [\text{Result} \in \text{Set}] [\Sigma [\text{outR} \in (\text{Result} \rightarrow \text{Set})] (\text{eff Result s outR})] \\
\text{Response}^s (\text{effectToIOInterface}^s \ eff) \ s (\text{result}, \text{outR}, \text{op}) = \text{result} \\
\text{next}^s (\text{effectToIOInterface}^s \ eff) \ s (\text{result}, \text{outR}, \text{op}) = \text{outR}
\]

In order to handle several effects in parallel, Brady introduces the type \( \text{EFFECT} \), which consists of a state and a state-dependent interface, which can be simplified to

\[
\text{EFFECT} = \text{Set} \times \text{Effect}
\]

Then, he defines a second level of state-dependent interfaces \( \text{Eff} \), which, as before, are state-dependent interfaces, but with \( \text{(List EFFECT)} \) as state. This type is not a closed data type but open for new commands to be registered, similar to IO in Haskell.

Furthermore, Brady introduces handlers, which are defined by referring to the predicate based data type \( \text{Effect} \). If we replace this type by a set interface with the components \( \text{State}^s \), \( C \), \( R \), and \( \text{next} \), we obtain the following type of a handler, which depends on an operation \( M : \text{Set} \rightarrow \text{Set} \):

\[
(A : \text{Set}) \rightarrow (s : \text{State}^s) \rightarrow (c : C s) \rightarrow (f : (r : R s c) \rightarrow \text{next} \ s \ c \ r \rightarrow MA) \rightarrow MA
\]

Using a handler, an IO program for the corresponding interface with return type \( A \) can be evaluated to an element of \( MA \) essentially by evaluating the handler for each effect. This allows, for instance, to write effectful programs having as effects an exception with return type \( A \), and evaluate them to an element of \( \text{Maybe} \ A \).

Brady introduces some very elegant syntax for defining and programming with effects. As in Bauer & Pretnar (2015), he allows expressions of normal data types to be formed from effectful programs (Brady uses a ! notation). This means that Idris code looks very similar to ML code where we have terms with side effects. However, this requires strict evaluation and that the order of evaluation is fixed.

12 Conclusion

We have seen how to introduce interactive programs and objects in Agda. We demonstrated how to program with them, including introducing graphical user interfaces with action listeners. We have seen the importance of state-dependent interactive programs and objects.
One true example of a state-dependent interactive program was the creation of variables, where the new state depends not only on the issued command but also on the response given by the real world, namely the variable which was created. The example in Sect. 10 solved a problem in Agda: The original implementation in Haskell is rather low-level and requires the direct modification of variables. Our program solves this issue by using a shared object which can be accessed by the action listeners while they are executed. This is very close to the way this is actually implemented in standard object-oriented languages.

Our approach is a first step towards introducing object-orientation into dependent type theory. However, object-orientation consists of much more than simple objects. We have not shown how to define objects calling each other recursively; some work is already available in the third author’s work (Setzer, 2006). The problem is to find a definition in such a way that it passes the termination checker – a method calling itself immediately would result in black hole recursion. We have introduced a first step towards inheritance, namely to extend an object by additional methods reusing the original method implementations. However, future work is required to develop a methodology for overwriting existing methods. Proper inheritance would require a more expressive form of subtyping as it is currently implemented in Agda. The most challenging problem at this moment seems to be how to define objects dynamically on the heap. This would need some notion of pointers.

We hope that this article is a step towards having a programming language which has both dependent types and object-orientation. This would allow to combine both of these advanced programming paradigms, and to create a language in which programming is considerably easier and safer.

Acknowledgments. The first author acknowledges support from Vetenskapsrådet (Swedish Research Council) through project 621-2014-4864/E0486401 Termination Certification for Dependently-Typed Programs and Proofs via Refinement Types. The third author acknowledges support by EPSRC grant EP/G033374/1 Theory and Applications of Induction Recursion; CORCON FP7 Marie Curie International Research Project, PIRSES-GA-2013-612638; and COMPUTAL FP7 Marie Curie International Research Project, PIRSES-GA-2011-294962. First and third author were further supported by CA COST Action CA15123 European research network on types for programming and verification (EUTYPES).

Bibliography


Girard, Jean-Yves. (1972). Interprétation fonctionnelle et élimination des coupures dans l’arithmétique d’ordre supérieur. Thèse de Doctorat d’État, Université de Paris VII.


Andreas Abel, Stephan Adelsberger, and Anton Setzer


