
 

 

Making and Acting on
Predictions in
StarCraft: Brood War

Bachelor of Science Thesis in Computer Science and Engineering

Henrik Alburg

Filip Brynfors

Florian Minges

Björn Persson Mattsson

Jakob Svensson

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden, June 2014



The Authors grant to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet. The Authors warrant that they are the authors to the Work, and
warrant that the Work does not contain text, pictures or other material that violates copyright
law.

The Authors shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Authors
have signed a copyright agreement with a third party regarding the Work, the Authors warrant
hereby that they have obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Making and Acting on Predictions in StarCraft: Brood War

Henrik Alburg
Filip Brynfors
Florian Minges
Björn Persson Mattsson
Jakob Svensson

c© Henrik Alburg, June 2014
c© Filip Brynfors, June 2014
c© Florian Minges, June 2014
c© Björn Persson Mattsson, June 2014
c© Jakob Svensson, June 2014

Examiner: Jan Skansholm

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden June 2014



Abstract

Making predictions and strategic decisions is not just a problem in real life, but also in the com-
plex environments of most real-time strategy games. Due to the lack of complete information,
such games can be used as testbeds for AI research in this area. This thesis presents how an AI
agent, in the game StarCraft, can make use of a Bayesian network to predict the state of the
opposing player’s technology tree. It is also shown how the predictions can be used to assist the
AI agent in making strategic decisions. Bayesian networks are used for the predictions, and the
agent’s army composition is generated dynamically based on the predictions and the observed
opponent units. The agent is tested against StarCraft’s built-in AI. The results show that it is
possible to accurately predict the state of the opponent’s technology tree, and that the predic-
tions have a positive effect on the AI agent’s win rate.

Sammandrag

Att göra förutsägelser och fatta strategiska beslut är inte bara ett problem i vardagliga situ-
ationer, utan ocks̊a i de komplexa miljöer som finns i m̊anga realtidsstrategispel. P̊a grund
av aspekter som exempelvis inkomplett information kan s̊adana spel användas som testmiljö
för AI-forskning inom komplexa system. Denna kandidatrapport presenterar hur en AI-agent i
spelet StarCraft kan använda Bayesiska nätverk för att förutsäga motst̊andarens teknologiträd.
Rapporten redogör ocks̊a för hur förutsägelser kan användas som underlag för beslutsfattande.
Bayesiska nätverk används för förutsägelser, och AI-agentens armé anpassas dynamiskt baserat
p̊a förutsägelserna och de observationer som görs av motst̊andaren. Agenten testas mot den
inbyggda AI som finns i StarCraft. Resultaten visar att det är möjligt att noggrannt förutsäga
motst̊andarens teknologiträd och att dessa förutsägelser positivt p̊averkar matchernas utg̊ang när
de används i beslutsfattandet.





Acknowledgements

“There are only two types of people, those who can extrapolate from incomplete data.”
- Unknown

We would like to thank our supervisor Andreas Abel for his support throughout the project.
We would also like to thank the department of Language and Communication at Chalmers Uni-
versity of Technology for their continuous effort to improve our writing, as well as Astrid Hylén
and Pär Persson Mattsson for their valuable feedback on the report.

The Authors, Gothenburg 2014-06-05



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Scope of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fundamentals of StarCraft 4
2.1 Real-time strategy games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 StarCraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 AI development in StarCraft 9
3.1 Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Case-based reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 AI research in RTS games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Existing StarCraft AI agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 The design of UAlbertaBot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Method 16
4.1 Modifications of UAlbertaBot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Implementing predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Implementing strategic decision-making . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Build Order Bot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Tests 23
5.1 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Opening strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Army composition generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 The attack-defend state uncertainty factor . . . . . . . . . . . . . . . . . . . . . . 29

6 Results and discussion 31
6.1 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Opening strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Army composition generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4 The attack-defend state uncertainty factor . . . . . . . . . . . . . . . . . . . . . . 33
6.5 Possible sources of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.6 Problems during implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Conclusion 37

References 38

Appendices 41

A Tools 41

B StarCraft maps used for testing 43

C Unit counters 44

D Opening build orders 46

E Prediction results 48



1 Introduction

Artificial Intelligence (AI) has reached the level where computers are able to beat top human
players in games such as Chess. In 1997, the supercomputer Deep Blue beat the reigning world
champion Garry Kasparov in a six-game match of Chess [1]. In order to win, Deep Blue made
use of a problem solving technique called brute-force which systematically checks all possible
solutions and picks the best one. However, solving problems by using brute-force is often impos-
sible for intelligent agents in real-life situations due to the complex environments in which they
act. The number of solutions to evaluate is simply too large even for most modern computers,
and with increasingly complex environments the number grows even larger [2]. As a result, the
situation might have changed before the AI is able to find the optimal, but no longer valid,
solution. Further, complete information is not available in many real-life situations. A chess
player will know for certain where the pieces are on the board, but the driver of a car can never
be sure if there is an obstacle behind a house corner or not.

An AI designed to tackle more complex problems, such as those encountered in real life, must
be able to handle incomplete knowledge. At the same time it must also use techniques that
quickly generate functioning solutions before the situation has changed. In order to handle these
requirements, many AI agents strive to find a near-optimal solution, one that is good enough for
its purpose, instead of trying to find the absolute optimal solution.

When investigating different algorithms and methods for letting AI agents interact in complex
environments, it is useful to have a platform where it is possible to test the different techniques.
As an alternative to developing specialised simulators, some researchers look at modern games
as a possible arena for testing the AI agents [3]. Games put players in situations where they
need to make advanced decisions, often quickly and while dealing with limited resources.

One genre of game that focuses on long-term strategic planning while still forcing the player
to constantly make short-term decisions is Real-Time Strategy (RTS). In RTS games, events
happen continuously, as opposed to most board games which are turn-based. One such game,
StarCraft: Brood War, is used in this project. The RTS genre and StarCraft is explained more
thoroughly in section 2.1 and 2.2.

1.1 Background

The behaviours of AI agents are heavily affected by the architecture with which they are built.
Some agents make use of scripts; lists of commands that are executed sequentially. Scripting is a
method that is commonly used in the game industry since scripts are understandable, predictable,
and easy to implement and extend [4]. However, scripts are static and are thus often easy for
players to exploit. Other agents are modelled by finite state machines, where the behaviour is
defined by predefined states which the agent can transition between (see Figure 1). Finite state
machines are practical to use in cases where the behaviour is well-defined [5, 6]. However, they
are also static in the sense that a finite state machine is only transitioning between predefined
states. Yet another method is machine learning, the science of getting computers to act with-
out being explicitly programmed. By applying machine learning, developers try to give the AI
agent an instrument to learn from experience. One example is case-based reasoning, a technique
which will be discussed more in detail in section 3.2. Many previous works have explored the
implementation of case-based reasoning in RTS games, but very few have managed to create a
successful AI agent executing the behaviour [7, 8].

1



Figure 1. Example of a finite state machine. Graphics adapted from Martinez [9].

One problem in many RTS games is also that the AI agents cheat in one way or another. The
goal of most game companies is to earn money by selling games, and it is often both easier and
cheaper to tune the difficulty of the AI by letting it cheat in a controlled manner, rather than to
spend development time on creating an AI that plays the game on the same terms as a human.
The native AI in StarCraft, for example, has complete knowledge of the map and always knows
where the player’s units and buildings are situated [10]. During the recent years, many major
game titles have also focused more on multiplayer modes, rather than a single-player mode [11].
In doing so, the players get matched against other humans instead of playing against AI agents.
This has resulted in even less emphasis, from the game companies, on AI development. Although
the commercial development of AI for RTS games has stagnated, it is a very active area of aca-
demical research [12].

According to a survey made on real-time strategy game AI research, some of the greatest chal-
lenges that an AI agent must be able to handle are [12]:

• Resource management - The gathering of resources, as well as determining what the
resources should be invested in.

• Decision-making under uncertainty - An RTS game is a game of incomplete infor-
mation; first of all because it is only partially observable, and secondly, because it is not
possible to know for certain what the opponent is planning.

• Spatial and temporal reasoning - Spatial reasoning is a key regarding the placement of
armies and buildings, since terrain may be used to optimise the chances of success. Tem-
poral reasoning is necessary in order to know when to invest in e.g. building construction
or upgrades, since the effect of these decisions are not experienced in the short term.

• Opponent modelling and learning - The ability of finding ways to exploit the oppo-
nent, as well as detecting when the opponent is exploiting oneself. Learning also includes

2



becoming better before, during or after a game.

• Real-time planning - The complex nature of RTS games and the large number of possible
states means that standard planning algorithms cannot be directly applied to the problem.

Challenges like these can often be divided into three levels of abstraction: high-level strategical
problems such as decision-making, planning and learning; mid-level tactical problems such as
spatial reasoning; and low-level problems such as resource and unit management [12]. The focus
of this project lies on the highest level of abstraction, strategy. In particular the challenges of
making decisions under uncertainty, and learning and adapting to opponents.

1.2 Purpose

The purpose of this project is to develop an AI agent capable of playing the game StarCraft:
Brood War. The project has two main goals:

1. The AI agent should be able to make accurate predictions of what the opponent is doing,
based on observations of the opponent.

2. The AI agent should adapt its strategy based on predictions and observations of the oppo-
nent.

1.3 Scope of the project

As the goal of this project focuses on developing an AI able to make predictions and adapt to
the opponent, an already existing AI agent will be used as a code base. By doing so, we focus
on reaching the goal instead of spending time on developing basic but necessary functionalities
like resource gathering and combat management. A more detailed description of the agent that
we used as a base can be found in section 3.5.

There are three playable races in StarCraft, and in order to not let the scope of the project
grow too large, the AI agent will only play as one of them; Protoss. This is because many of the
gameplay mechanics and strategies differ between the races, and constructing an agent able to
handle all three races would require more time than is available in this project.

3



2 Fundamentals of StarCraft

This section presents a description of real-time strategy games and some of the properties that
make them good testing environments for AI development. Additionally, the specific environment
used in this project, StarCraft, is explained in order for the reader to understand the critical
concepts discussed in later parts of the report.

2.1 Real-time strategy games

Real-time strategy games are games where the player controls units, manages resources and fi-
nally creates an army to defeat his opponent [13]. As the genre name might suggest, these games
are played in real time and decisions have to be made quickly since the state of the game changes
continually. Every single decision may have lasting impact, and it is therefore important to make
correct decisions from the start.

The different buildings, units, and technologies in RTS games can be seen as nodes in a tree-like
graph. Buildings will often unlock more advanced buildings, which in turn allows the player to
create stronger units, or units with unique abilities. There are also different kinds of technolo-
gies, or upgrades, that can give units special abilities, or just make them stronger or faster. As
the game progresses more buildings will be unlocked and it will be possible to create a larger
variety of units and buildings. Since this resembles the mathematical data structure called tree,
it commonly goes under the name technology tree, or just tech tree (see Figure 2).

The worlds of RTS games are often partially observable, meaning that a player will only have
vision in the near vicinity around his buildings and units. This obfuscation is called fog of war
and brings uncertainty and an additional level of strategy into the games. Fog of war opens up
for the possibility of surprising the opponent, by e.g. secretly preparing an army and attacking
him.

RTS games are very complex, as they have a practically infinite search space. There can be
millions of possible ways to reach a game state, such as a victory condition. The time is vir-
tually continuous and every action affects the environment, further increasing the complexity.
In addition, RTS games often have some element of probability causing the world to appear
non-deterministic.

2.2 StarCraft

One of the most popular RTS games is StarCraft, and with the expansion pack Brood War the
game has grown even more in popularity. Since its release in 1998, over 11 million copies have
been sold worldwide [14]. In StarCraft the players can choose to play as each of three unique,
but very well-balanced, races [15]. Since each race requires different types of strategies, the game
has been versatile enough to become a well-received televised e-sport, and this is one of the
primary reasons for the success of StarCraft. In South Korea, where competitive leagues and
tournaments with prize money are being held, professional players are even able to make a living
out of playing StarCraft [16].

What differentiated StarCraft from other RTS games at the time of its release was its different
races [17]. The three races are called Protoss, Terran, and Zerg and though they are mechanically
alike, they are played with different play styles. Zerg is a race of insect-like aliens, where units

4



Figure 2. The building dependencies of the Protoss race form a tech tree. The Nexus, Pylon and
Assimilator can be constructed at any time, while all other buildings have prerequisites.

are cheap and produced in masses. Protoss is another alien race that instead relies on advanced
technology and fewer, but more powerful, units. Terran is the human race and has a play style
that is something of a mix between the two other races; they combine infantry units with pow-
erful tanks and starships in order to create strong defences. Even though the play styles of the
races differ, the game is still considered very balanced.

Below is a list of important StarCraft concepts that might be needed in order to understand
the report:

• Races - The three races are called Protoss, Terran and Zerg. They may also be referred
to as P, T and Z.

• Matchup - A matchup is a certain race versus another, for example Protoss vs Terran
(PvT). This makes a total of 6 different matchups; PvP, PvT, PvZ, TvT, TvZ and ZvZ.

• Resources - There are two types of resources in StarCraft; minerals and vespene gas.
Resources are gathered by workers from mineral patches and vespene geysers, respectively.
They take the role of money and are used to pay for units, buildings, and upgrades.

5



• Workers - Workers are a certain type of unit that are able to harvest resources and build
buildings. Every race has one unit type that is a worker. Protoss has the unit Probe,
Terran has the unit SCV and Zerg has the unit Drone.

• Base building - The base building is the building every race starts with. It is able to
create workers and retrieve the resources which the workers have harvested.

• Base - A base is a location where the base buildings are usually placed. There are commonly
eight mineral patches in a half circle called the mineral line and one vespene geyser close
to a base.

• Expand - When a player is expanding it means that he is about to occupy a new base. A
new base building will be created as close to the mineral patches as possible.

• Supply - Supply is needed to be able to create army units. Every unit has a supply cost,
ranging from 1 to 6, and in order to create larger armies the amount of available supply
must be increased. In order to increase the supply limit, certain supply-providing buildings
or units (each race has a different supply provider) have to be built.

• Scout - To scout is to try to see what the opponent is doing. It is often associated
with exploring the enemy’s base in order to observe what types of buildings the opponent
possesses.

• Spell - A special ability which can be used on units, either friendly or hostile, or be cast
on the ground.

• Spell-caster - A unit which is able to cast spells.

• Tech tree - What buildings unlocks new buildings is often represented by a tree, which is
referred to as the tech tree (see Figure 2).

• Technology - A technology is an added behaviour to a unit, such as a spell.

• Upgrades - An upgrade changes a property of a unit, such as making it faster, giving it
greater shooting range or making its attack stronger.

• Tech - To tech is to unlock new units or buildings. This is often done by constructing
buildings that unlocks new buildings or army units.

• Build Order - A build order is a sequence of buildings and units which should be built.

• Opening - Openings are build orders which are used in the beginning of the game before
a player starts adapting to the opponent. They are often decided before the game starts.

• Native AI - The built-in AI that is shipped with the game.

• Pylon - A Pylon is a Protoss building which is required in order to construct other build-
ings. Each Protoss building (except from the base building and Pylons) needs power and
must be close to a Pylon for it to function.

The objective of each game is to destroy all of the opponent’s buildings. In order to create the
stronger and better army, a player will need to take several things into consideration, starting
from the very first second. A player starts with four workers and a base building (see Figure
3). Workers gather minerals which are essential to create more workers, new buildings and army
units. At this point a player often follows predefined build orders, setting the tempo of the game.

6



Figure 3. The starting state of StarCraft: Brood War while playing as Protoss.

Resource management is one of the key concepts of every StarCraft game. Generally, resources
can be invested in three areas; economy, tech and army units. A player might use the resources to
create more workers so as to get more resources in the future, or he might invest in an army over-
whelming the opponent before he can set up a proper defence. The third option is to construct
buildings allowing the player to research some special technology or to create a special army
unit, defeating the opponent with units that are stronger. These are the three main factors that
must be balanced in a strategic manner, in order to put oneself in a good position to win the game.

A large amount of workers is the imperative for a strong economy and if a player can keep
a better economy than the opposing player, he will generally win in the later parts of the game.
Each base location will eventually run out of minerals, which means that the player has to expand
to new base locations in order to keep a steady flow of mineral income throughout the game.
Another reason to expand is if a player needs large amounts of gas, since the gas income from
one base is quite low.

Although workers’ responsibilities are to gather resources and construct buildings, they do have
attacking capabilities. However, they are easily killed by army units. Thus, investing in an army
early while the opponent focuses on creating worker units for his economy to thrive could result

7



in an annihilation of the enemy, leading to an early victory. If it is not successful, the attackers’
economy will be behind and winning later in the game will be much more difficult.

If the economies of the two players are roughly the same, the more strategic aspect comes
from the choice of technology buildings. Different technologies or army units are often weak or
strong against other technologies or units. This means that it is crucial to focus on acquiring
the technologies or units that are strong against what the opponent is getting. Often when a
player follows a build order, the build order will end with the player unlocking some special tech.
If the opponent can predict what that special tech is, it is possible to prepare a counter for it.
By predicting and preparing for what the opponent is doing, a player can thus gain an advantage.

In the end, all these things need to be taken into consideration for every move a player does.
There is no perfect strategy because the different paths in the tech tree are all well-balanced, and
on top of that, a player can play more economically than his opponent to get an extra advantage.
To win a game a player must therefore know what his opponent is going to do, using either
predictions or assumptions, and react accordingly.

Of course, there is more to StarCraft than just making the correct strategic decisions. As-
pects such as controlling the army, both individual units and larger army groups, are often a
critical part of the game. Although these facets might not have a direct impact on the concepts of
strategy and prediction, it is important to understand that a lot is happening in the background,
which might alter the overall result.

8



3 AI development in StarCraft

This section discusses AI development in Starcraft and RTS games. The two AI techniques
Bayesian networks and case-based reasoning are introduced, and some academic research papers
exploring them are presented. These papers have been important for the direction of the project
and also gives an understanding to what has been done in this particular field. In addition, we
present some of the most successful and well-known agents from the competitive StarCraft AI
scene. These were chosen, first of all for what they can add to the project, but also to give the
reader an idea of how AI agents can function in StarCraft. Lastly, UAlbertaBot, the agent which
was chosen as a base for our agent, is described in further detail.

3.1 Bayesian networks

A Bayesian network is a statistical model that makes use of Bayesian probability to represent
dependencies between random variables. The network is a directed acyclic graph, where each
node represents one of the variables. An edge from one node to another represents a direct depen-
dency between the corresponding two variables, and knowledge about the state of one variable
may propagate through the network to affect the knowledge about other dependent variables [18].
This is because each node has an underlying conditional probability table which, given the state
of all dependent variables, specifies a probability distribution of the variable’s value. Data for the
tables can be gathered either by expert knowledge or observations [19]. By using data from ob-
servations, it is possible to generate a probability distribution that represents the actual situation.

An example of a small Bayesian network is depicted in Figure 4. In this example, the nodes
’Sprinkler’, ’Rain’ and ’Grass wet’ are the three random variables. Without any information
regarding the state of ’Grass wet’, it is hard to accurately answer whether it has rained or not.
However, if it is known that the grass is wet, the probability of ’Rain’ changes. By using Bayesian
networks to model directly dependent random variables, it is possible to use known information
about some variables to gain more accurate probabilities about others.

Figure 4. An example of a very simple Bayesian network. Wet grass depends on whether the
sprinkler is active and whether it has rained. Rain also influences whether the sprinkler is active.
These variables depend on each other and can be modelled using a Bayesian network.

3.2 Case-based reasoning

Case-based Reasoning (CBR) is an approach to problem-solving that does not rely on massive
calculations, making it scale well into complex domains. Instead, CBR utilises experience, or
specific knowledge from previously solved problems, in order to create solutions for new ones
[20]. New problems are first matched against previously encountered, similar, problems called
cases. The cases are stored in a case base which contains all experienced cases, and when a new
problem is encountered and solved it is added to the case base. The idea originates from how
humans reason when they encounter a new problem. An auto mechanic, for example, might

9



use case-based reasoning when repairing a car, by recalling how he restored a car with a similar
problem in the past.

The problem-solving method CBR is divided into four processes called retrieve, reuse, revise
and retain as illustrated in Figure 5. When a new problem is to be solved, one or more previ-
ously encountered cases similar to the new problem are retrieved. The solution of the previous
case is then reused as a proposed solution for the new problem. The proposed solution is revised
by testing the solution on the problem and evaluating the result. If the proposed solution failed,
it is altered with the help of general knowledge about the problem domain. Lastly, useful infor-
mation from the experience is retained for future reuse by updating the case base with a new
case, or by modifying existing cases.

Figure 5. The case-based reasoning cycle. Graphics adapted from Aamodt and Plaza [20].

3.3 AI research in RTS games

Both Bayesian networks and case-based reasoning (explained in sections 3.1 and 3.2) have been
used in various research projects. Below are summaries of the research papers that were the most
inspiring and provided us with useful insights.

Synnaeve et al. used a Bayesian model to predict which opening their opponent was using
[21]. Their technique could be used for build orders in general, but the focus was on the open-
ings. Data mining was applied to a large set of replays, labelled with the different openings. Ten
percent of every matchup were excluded from the data mining, and used as a cross-validation
set. Synnaeve et al. reached good results with this method.

10



A Bayesian network was used by Oen to predict what the opponent was doing [22]. The network
was updated between games and the results showed adaptation in the network, and that the
network handled incomplete information better over time. The main conclusion was that the
network did its job, though the agent itself did not use the information as well as intended.

The Čertický brothers showed how case-based reasoning can be used to create an army com-
position that is able to counter the opponent’s army [23]. Their cases were composed of the
opponent’s army composition, upgrades and technology, while their solutions consisted of the
player’s unit composition, upgrades and technology. They created a database containing their
cases and solutions, using a simple similarity function that compared the cases with their obser-
vations. The researchers noted the importance of scouting in order to adapt quickly, since the
game is constantly changing.

Eriksson and Tornes showed how case-based reasoning may be used for the whole gameplay
[7]. With a huge database of cases, they read the state of the game and picked the closest
matching case. The cases were generated from almost 1000 replays, resulting in approximately
23 000 cases. They are able to show that CBR could be used with good performance and a large
database, using an appropriate similarity function. However, their agent did not perform very
well against the native AI. This is mostly because the functionality for executing the plans given
through CBR was fairly limited.

Kasper van Mens discusses both the advantages and difficulties of using case-based reasoning
in an RTS environment [24]. The difficulties of adaptation and evaluation in RTS games are
pointed out; there are so many aspects to take into consideration, and it is hard to afterwards
determine which of them went wrong. The report also reasons about automatically creating a
case base instead of manually annotating replays.

These reports have applied both CBR and Bayesian networks with good results. However, when
implementing the techniques in an agent and actually playing the game, the results have been
far worse. This is probably related to the focus areas of the projects, which often have been to
explore the techniques rather than to create good agents.

3.4 Existing StarCraft AI agents

While Blizzard Entertainment has not provided an official way of letting a program interact with
the StarCraft gameplay, the free and open source C++ library named Brood War API (BWAPI)
allows for precisely that. BWAPI gives programmers the exact same view of the game as a player
in-game, meaning not all information is available and units can be given commands. This opens
up for the possibility to write independent AI programs that interact with and plays StarCraft
in a way similar to humans.

Since BWAPI’s creation in 2009, AI development in StarCraft has gained popularity and several
AI agents have been created. Some of these have been implemented as actual competitive agents
while others have been used to test different AI techniques. There are also tournaments for these
AI agents to compete in. The most notable is the AIIDE StarCraft AI Competition, which has
been run since 2010 [12]. From 2011, only open-source agents are allowed to compete in the
AIIDE tournament, and this has helped both newcomers and other competitors to develop their
AI agents as it is possible to use another agent as a code base.

11



The majority of today’s most successful AI agents use predefined strategies. Although they
might choose between some strategies in a dynamic and smart way, the strategies themselves
are still hard-coded. The agents apply different AI techniques, but these are seldom used for
strategy. Instead they are used for areas such as combat and production, gameplay facets with
more short-term goals. The agents are of course designed to beat each other, but not necessarily
outsmart one another, and this makes strategy less of a priority. Below, we present some of the
most well-known agents, most of which are affiliated with universities from around the world.

Skynet

Skynet [25] is one of the best StarCraft agents, and by far the best one that is not affiliated with a
university [12, 26]. Like many other AI agents it plays Protoss. Skynet’s strategies (hard-coded
build orders) are flagged as either ‘aggressive’ or ‘defensive’, which makes it possible for the
army to know whether it should attack or defend. It does not use any combat simulator, and in-
stead relies on comparing the players’ army supply and size to determine if it should attack or not.

Skynet has several openings that it chooses from. It is chosen depending on the result against
the given player on the given map, trying out the different build orders before sticking with the
winning ones. Skynet is able to tweak the hard coded build orders a bit by using prioritisation
for resources, where e.g. upgrades all have a priority value.

What makes Skynet so successful is its good use of the Protoss units. It has very good con-
trol of both early-game units and more powerful units with abilities, available in the later stages
of the game. This makes Skynet strong throughout the game. However, the agent has a hard
time when it encounters a type of unit called Dark Templar. The Dark Templar is cloaked, and in
order to attack it, one requires a detector unit to make the Dark Templar visible. This weakness
indicates that Skynet have problems adapting to the opponent.

AIUR

AIUR [27] is an acronym that stands for Artificial Intelligence Using Randomness, and Aiur also
happens to be the name of the Protoss homeworld. The agent tries to use randomness in order
to not become predictable. It starts off by randomly choosing one of five moods, where the mood
will determine the strategy. It also randomises different facets in these strategies but they are not
dependent on what the opponent has done during the current game. The strategy used during a
game is chosen at random, but the more successful strategies have a higher probability of being
selected. This is similar to the behaviours of other agents, though Aiur’s choice includes more
randomness.

Berkeley Overmind

Some credit should be given to the winner of the first official StarCraft AI tournament; Over-
mind [28], created by University of California, Berkeley. Overmind always used the same strategy,
which was to get a flying unit called Mutalisk and produce as many of it as possible. A Mutalisk
is able to attack both ground and air units making it an exceptional choice if one had to pick
only one unit to use. It is also fairly easy to control, since a flying unit does not take the terrain
into account when moving, nor are they able to collide with each another.

Mutalisks are, however, not available in the early parts of the game. This forces Overmind

12



to defend itself using other units until the Mutalisks are available. The agent tries to defend
itself with Zerglings, cheap melee units, and static defence buildings while saving up its resources
so as to get the Mutalisks as quickly as possible. Overmind loses most of its matches in the early
stages of the game. However, when the agent is able to start creating Mutalisks, the games are
often in Overmind’s favour.

Overmind’s Mutalisks uses artificial potential fields for the movement, meaning that they create
attractive and repulsive forces on targets and threats. This, along with a battle simulation where
Overmind can calculate its own and the enemy’s losses, made it perform well. The Mutalisks
were able to take out key targets while still keeping themselves alive, harassing the opponent
almost constantly.

Although Overmind has a very special strategy, it does not compete in tournaments any more.
The main reason for this is the early rushes used by other agents. They often overwhelm Over-
mind before the Mutalisks are finished and since some other agents collect data on which open-
ings are successful, they soon use rushing strategies every game, making it almost impossible for
Overmind to create the Mutalisks.

UAlbertaBot

UAlbertaBot [29] was developed by David Churchill, a Ph.D. student at the University of Al-
berta, and the agent emerged as the winner in the 4th annual AIIDE StarCraft AI Competition
[26]. UAlbertaBot has a modular design that makes it easy to modify parts of the AI, and thanks
to this, UAlbertaBot is also used as the code base for a game programming course in which the
students create their own AI agents [30]. The agent’s default tournament behaviour is to rush
the opponent as early as possible and win the match before the opponent becomes a threat. This
behaviour is possible since UAlbertaBot uses a combat simulator to determine whether a battle
will be won or lost, and the AI will only attack when the agent is certain that it will win the
battle. In addition, the agent makes use of a module that, given a production goal, searches for
a build order that reaches that goal.

Regarding the strategic decisions, UAlbertaBot is not very dynamic. The agent scouts the
opponent early on to find its enemy position, and as soon as the first military unit is trained
UAlbertaBot starts attacking. By constantly building more units and expanding to new bases
when needed, the agent can reinforce its attack until the opponent is destroyed. In the few
cases where the opponent survives this early rush and starts attacking back, it is difficult for
UAlbertaBot to handle the situation. Since UAlbertaBot is optimised to win the game as early
as possible, its management of early-game units is very good while the management of the more
advanced late-game units is unoptimised. The AI has the lowest average game time of all the
competitive bots, mostly because of the early rushes and its effectiveness in combat [26].

3.5 The design of UAlbertaBot

As can be seen in section 3.4, there are many agents with varying quality, both regarding game-
play and design. In order to base this project upon an existing agent, it must have a design
which makes it possible to modify the strategic behaviour. After considering several agents,
UAlbertaBot was chosen because of its modular and extensible design, as well as its documen-
tation. Therefore, the structure of this agent is explained more in detail.

13



UAlbertaBot makes use of a sequencing design pattern called game loop. Every frame, a number
of different classes are updated by calling their update methods. A class diagram of the different
classes can be seen in Figure 6. This design makes it easy to add rule-based behaviour in the
appropriate update method of any given class.

Figure 6. Class diagram of UAlbertaBot.

The structure is built around the two concepts micro and macro. Micro is the control of units;
everything from telling the army to attack, to sending the first scouting unit. The main loop
calls a class called CombatCommander, which main purpose is to assign all non-worker units to
attacking, defending or scouting tasks. Each unit is assigned to managers which handle more
specific actions, such as attacking, moving, and positioning the unit. Some of the unit managers
found in UAlbertaBot are ScoutManager, RangedManager and MeleeManager. These managers
have a rule-based behaviour that will execute any order coming from CombatCommander, and
delegate the orders to the appropriate units.

The other concept, macro, includes everything from handling the collection of minerals, to fol-
lowing build orders and placing buildings at appropriate places. The main classes that handle
macro are called WorkerManager, ProductionManager and BuildingManager. The WorkerMan-
ager makes sure that all workers are allocated to tasks, such as constructing buildings, mining
minerals, or harvesting gas. The ProductionManager supervises the build order and delegates
the creation of items from the build order to the appropriate classes, and is also responsible for
finding a new build order once the old one is finished. The BuildingManager handles building-
related tasks, such as placing buildings without blocking paths.

Two managers are not called in the main update loop; InformationManager and StrategyMan-
ager. Both of them are global, which means that every other manager might access them or take
orders from them. InformationManager saves necessary data that the other managers might
need, mostly data related to enemy units and bases. The StrategyManager’s primary task is to
generate build-order goals, and to some extent also decide if it is time to attack.

In the start of a game, UAlbertaBot uses one of three predefined build orders. These are early-

14



game oriented and are inspired by build orders of professional players. UAlbertaBot chooses
build orders based on how effective they have previously been against the specific opponent [31].
After the initial build order, the agent continues with a goal-driven behaviour that determines
what units to make. This leads to a very simple behaviour where UAlbertaBot creates the same
types of units, given by the goal, over and over again.

The module that UAlbertaBot uses to search for build orders is called BuildOrderSearch (BOS).
BOS takes a starting state as input, and then uses a heuristic depth-first search algorithm on
the starting state until a state that fulfils the goal is found [32]. The algorithm is an anytime
algorithm and can therefore be halted at any time to return the best solution found so far, or
to continue the search at a later time. This allows BOS to search for longer durations without
interrupting the game. The search is efficient for smaller build goals, but takes increasingly more
processing power when several unique unit types are involved.

The combat simulator used by UAlbertaBot is an external project called Sparcraft [33]. Spar-
craft is a scaled-down combat simulator which is built to be very fast. Given any situation,
the simulator returns either ’success’ or ’defeat’, making it very easy to determine when to at-
tack and when to fall back. Unfortunately, the simulator excludes some units, such as the very
important spell-caster units. The reason for this exclusion is that these types of units are not
controlled with the regular attack command, but rather with spells. This sometimes results in
bad predictions, where a defeat will be predicted for a battle which could have been won.

UAlbertaBot uses its own pathfinding for units instead of relying on the pathfinding provided
by the game engine. This, along with the rule-based unit micromanagement that UAlbertaBot
uses for all its units, often outmaneuvers the opponent. These techniques work well for the units
normally used by UAlbertaBot, but they do not work well for all unit types. This makes the
behaviour undefined for more advanced units.

15



4 Method

This section describes how we created our agent. We start by presenting how UAlbertaBot was
modified to fit with the project’s needs, and continue with the new modules for predictions and
decision-making. Lastly, we introduce a separate agent used for testing. The tools that were
used during the project are briefly described in Appendix A.

4.1 Modifications of UAlbertaBot

When creating our own agent, we based it on UAlbertaBot, and named it Odin after the wisest
of the Norse gods. Although UAlbertaBot already was a complete bot and had many desired
features, there were several parts of the agent which needed to be modified in order for it to work
with our goals.

As one of the goals of the project was to adapt the strategy based on what the enemy does,
Odin needed to be able to manage a large variety of units, not just the few early-game units that
UAlbertaBot handles well. To solve this issue, separate manager classes were added for the spell-
casting unit High Templar as well as for the scouting unit Observer. The High Templar manager
is responsible for letting High Templars use the spell Psionic Storm, summoning lightning bolts
that deal damage to all units in a small area, in a controllable manner. Friendly units should
be unharmed while still dealing as much damage as possible to enemy units. The objectives
of using Observers are to reveal cloaked enemy units and to scout the enemy. To achieve this,
the manager for Observers handles the Observers in a manner where one always travels around
to scout the enemy bases. The remaining Observers try to locate and follow the enemy army,
exposing any invisible units in it.

Special behaviour for Reavers and Carriers was defined within the generic manager for ranged
units. These two units must be handled in an exceptional way because they deploy the ”sub-
units” Scarabs and Interceptors in order to attack. The special behaviour includes positioning
and attacking, as well as building the Scarabs and Interceptors. The default behaviour for ranged
units is used for the rest of the Reavers’ and Carriers’ behaviour. In addition, the way in which a
worker scouts the enemy base in the beginning of a game was changed slightly, so that it explores
more of the enemy base before going to harass the enemy worker units.

On a higher level, the way in which strategies are chosen was also changed. Several open-
ings were added to the collection of openings used by Odin in the beginning of a game, and are
now optimised against specific races instead of players. The opening build orders used by Odin
are listed below, and a detailed description of them can be found in Appendix D.

• Zealot Rush - A build order optimised to get out an early Zealot attack to win the game
before the opponent has time to react. This is the default opening used by UAlbertaBot
in competitions and the only one not specifically created for Odin.

• Gateway Fast Expand - An opening designed to be both economical and aggressive, by
allowing the player to quickly expand to a new base while still having some military safety.

• Nexus First - A very greedy build order giving a player economical advantage but making
the player vulnerable to early rushes.

16



• Arbiter - A build order with the goal of getting out Arbiters and a small army of Zealots
to catch the opponent off guard with cloaked army units.

• Forge Fast Expand - An economic opening that still allows for some safety against most
early rushes. Being called the “Bisu Build” after one of the best Protoss players of all time,
it is mostly used against Zerg opponents.

• Two Gate Observer - A build with the goal of giving the player the possibility to scout
the enemy or see cloaked units.

• Two Gate DT - A build that punishes players who have not teched for detectors, by
quickly attacking the enemy with two cloaked Dark Templars.

• Gate Core Expand - A build order that, instead of focusing on the economy, opens up
for quickly teching to more advanced units and buildings.

• Two Base Carrier - A build with the goal of getting out Carriers, a very powerful Protoss
unit, as quickly as possible. This opening is easily countered if spotted early.

The set of predefined build order goals was removed to make place for a special goal which
adapts to the enemy situation, called Army Composition Generator in this project. This goal
is explained further in section 4.3. The adapting goal tended to be larger than predefined ones,
resulting in performance issues with the search algorithm for build orders. Because of this issue,
the behaviour was also changed so that the goal did not have to be re-searched every time one
of the agent’s buildings or workers were destroyed. The original behaviour sometimes caused too
frequent searches, with the result that no search had the time to return a build order.

The manner in which the algorithm is used was also changed. The algorithm now starts search-
ing for a build order as usual, but if it takes too long time to find one, it moves units that the
agent is already able to create directly to the build queue. If this does not help, the size of the
goal is reduced before trying to search again. If the same search has timed out in this way three
times, it is restarted with a completely new goal. At the same time, construction of Probes and
Dragoons are started from each Nexus and Gateway respectively. This is done in order to not
just stay idle while the new search is being carried out.

Checks for deadlocks were also added in order to avoid the production getting stuck for too
long. Such deadlocks can happen when the BuildingPlacer is unable to find a place for a build-
ing. If the building is a prerequisite for the next item in the build queue, the production becomes
stuck. To prevent this from happening, Odin checks if there is a problem finding a place for a
building every 240th frame, and if so, a Pylon is added to the top of the build queue. Since the
problem of finding a place for a building mostly happens when there are too few Pylons, building
a new Pylon often solves the problem.

In order to further react to the situation, a system with an attack state and a defend state
was created. The state which Odin is in depends on several parameters, including the economy,
the army strength, and the defending capabilities of both the enemy and Odin. The behaviour

17



of Odin depends on the state he is in and is described further in section 4.3.

A feature that UAlbertaBot lacked completely was the ability to analyse replays. Thus, a module
for gathering data from replays was created. The collected data is saved to a file at the end of
each replay, making it possible to use it in other parts of Odin. How the data is used is described
further in section 4.2.

4.2 Implementing predictions

Predicting the opponent’s current and future behaviour is, in StarCraft, a problem of incomplete
information. Most likely, a player will not know everything about the enemy, and this makes
it impossible to accurately model the opponent only from what can be observed. Under the
assumption that the player does not know for sure what the opponent will do, a precise prediction
of the opponent’s future state is impossible as well. By using a probabilistic model it is possible
to model this uncertainty in a better way, and therefore it was decided that we use Bayesian
networks for the task. A description of Bayesian networks can be found in section 3.1.

Design and usage of the Bayesian networks

The tech trees of the races were used as templates for the Bayesian networks, and since there
are three races the result was three Bayesian networks. Each network had the basic structure
of the corresponding race’s tech tree (see Figure 2), with a few alterations. The networks were
comprised by nodes of not only the buildings, but also the units and a node representing the
game time (see Figure 7). The purpose of this network design is to calculate the probability that
the opponent is in possession of a specific building or unit, given the observations that have been
made so far and the amount of game time that has passed. Because there are three different
networks, one for each race, the correct network must be loaded at the start of the game. In the
cases where the opponent’s race is Random, the network cannot be loaded until the enemy has
been found and its race is determined.

In order to not make the network too complex each building and unit node has two possible
values; ’absent’ or ’present’. If a unit or building has been observed, the corresponding node’s
value should be set to ’present’. The node modelling the game time is called TimePeriod, and
has 25 possible values. The time in StarCraft is measured in frames, and when the game is played
in normal speed, one second is 24 frames. The first value, ’period01’, represents that the time
is in the interval 0-999 frames, the second value, ’period02’, represents that it is in the interval
1000-1999 frames, and so on. The last value, ’period25’, is a special case and represents that
the game time is over 24 000 frames. The game time is an important factor in predicting what
the opponent might be doing, since more advanced units are unlocked as the time goes on. The
probabilities for late-game units to be present should therefore be low during the early parts of
the game, to later increase.

The Bayesian network is used by setting the value of the TimePeriod node, and setting the
nodes for all observed enemy units to the value ’present’. After the network has been updated
with this information, the likelihood of the enemy possessing a unit or building is the probability
that the value of the corresponding node has the value ’present’. In order to get as accurate val-
ues as possible, the network should be filled with up-to-date information about what buildings
and units the enemy owns, and this means that scouting the enemy for information is important.

18



Figure 7. The Bayesian network used for the Protoss race.

Implementing the networks

The implementation of the Bayesian networks was done in several steps. In the first step, a pro-
gram called GeNIe was used (a description of GeNIe can be found in section A) to graphically
design the networks. Since GeNIe stores the Bayesian networks as XML files, it is easy for the
AI agent to parse the information in the networks during runtime.

Initially, the Bayesian networks contained no data, so the second step consisted of collecting
the data that was to be used in the networks. This was accomplished by performing data mining
on StarCraft replays. Two sets of replays were used; replays from matches played by human
professional players, and replays from matches played by the native AI. The human replays were
downloaded from an e-sports community site called TeamLiquid [34], well known for their team
of professional StarCraft players, while the native AI replays were recorded during the develop-
ment of Odin. Odin was configured to collect and store data whenever it runs a replay, and was
set to the task of gathering data from the replays. The data consisted of the units and buildings
that had been constructed before each time period had ended. Since Odin exclusively plays as
Protoss, only replays where one of the players played as Protoss were used, and the collected
data only concerned the opposing player. That is, no Protoss data were gathered from PvT or
PvZ matches. Of the 442 human professional replays that were used, 64 were PvP, 228 were
PvT and 198 were PvZ. Of the 387 native AI replays that were used, 196 were PvP, 114 were
PvT and 77 were PvZ. The collected data were converted to probabilities and loaded into the
Bayesian networks by using GeNIe.

In order to let the AI agent use the Bayesian networks, they had to be loaded and updated
at runtime. This was achieved by using a general purpose C++ library called Dlib, which pro-

19



vided support for reading, writing and updating Bayesian networks [35]. However, Dlib does not
have support for reading the xml files generated by GeNIe, and a parser had to be created. Once
the parser was done the Bayesian networks could be used by the AI agent.

4.3 Implementing strategic decision-making

Only having well-estimated information does not improve the behaviour of the agent in any
manner, unless it is used appropriately. Thus, from the previously gathered and predicted data,
strategical decisions have to be made in order to gain advantages over the opponent and ulti-
mately to win the game.

Army composition generator

In order to be able to create an army that counters the opponent’s army, decisions regarding
what units to create must be made. For this purpose, the Army Composition Generator (ACG)
was created. As the enemy situation is not fully known, the ACG puts together an estimation
of the enemy’s army by looking at the units that actually have been observed, as well as the
units which the enemy likely has. Predictions of the latter are made using the Bayesian networks.

In order to make the ACG easy to tweak and optimise, two constants were introduced. The
first constant, the unitThreshold, is a value that the prediction of a unit must exceed, before the
ACG considers the unit. The second constant, the unitStartValue, is the weight with which a
predicted unit is counted in the ACG. A weight of 1 would mean that the prediction is worth
the same as an observation, and a weight of 0.1 would mean that the prediction is weighted as
10 % of an observation.

The estimated list of units in the enemy army is then used to generate a list of units that
counters the enemy army. The counters are predefined, and a list of all counters used by Odin
can be found in Appendix C. Each unit has two different counters, one which is cheap and easy
to tech for, and one more expensive and farther into the tech tree. The end result of the ACG
is then used to create a build order goal that holds units that counter the enemy army. The
expensive counter unit is only added into the goal if it is teched for already, in any other case,
the cheap counter unit is added. However, if the economy allows for it, then the prerequisites
needed for the expensive unit is added to the goal to prepare for the future.

Attack and defend states

An attack state and a defend state was added for Odin to further react to the situation on a
higher level. Odin’s behaviour changes depending on which state he is in. When in the attack
state, Odin builds units according to the army composition generator and attacks the enemy
continuously. However, when in the defend state, Odin prepares for the enemy to attack by
placing units within its own base. In addition to building units according to the ACG as in the
attack state, Odin also builds Photon Cannons to defend the base.

Which state Odin is in depends on the army, defence and economic potentials of the two play-
ers. Each of these potentials are calculated from several factors, such as how far into the tech
tree the player has reached, the size of the army, the number of buildings that can produce
army units, the number of defensive buildings and the number of expansions that the player
has. Whenever the army potential of the enemy is greater than Odin’s army potential, Odin en-
ters the defend state in order to survive until the army is powerful enough to deal with the enemy.

20



In order to account for possibly missing or outdated information, an uncertainty factor is used
to modify the enemy’s army potential. This factor is simply a value that the opponent’s poten-
tial value is multiplied by, before comparing it with Odin’s potential value. The usage of this
uncertainty factor affects Odin’s performance, in that the agent plays more aggressively with
lower values of the uncertainty factor, and more defensively with greater values. A value of 1
makes Odin estimate the enemy’s army potential to be precisely what has been observed (thus
not modifying the potential at all), a value less than 1 would make Odin underestimate the
opponent, and a value greater than 1 forces Odin to overestimate the opponent’s army potential.

Case-based reasoning used for decision-making

To handle the decision-making of the agent, we intended to use case-based reasoning. The prob-
lem to solve was determining what the agent should do in the different situations that might
appear during a game of StarCraft. A case was to be defined as a tuple containing the different
army, economy, and defence potential values, as well as the player’s and the opponent’s army
compositions. In this approach, a solution would be a sequence of actions of what Odin should do
when encountering a situation, and the CBR would be responsible for generating this sequence.
Depending on whether Odin is in the attack or the defend state, the solution should reach differ-
ent goals. The goal of the attack state is for example to attack the opponent, and so the solution
should specify how the attack is to be carried out.

However, this way of handling decisions was not implemented in Odin. The reason behind
this is mainly the way in which UAlbertaBot is designed. UAlbertaBot is constantly executing
update methods throughout the game, and it acts based on the current state of the game and
the different events that occur. This design makes it difficult to implement the actions that were
to be sequentially executed, without completely redesigning the agent. Creating a completely
new structure for Odin would then undo all the benefits of using an existing agent as a start,
and would thus take too much time to fit in the scope of this project.

4.4 Build Order Bot

To test if Odin successfully fulfilled the project goal, a test environment was set up. A test
environment that is capable of this needs to have the property of reproducibility, meaning that it
must be possible to reproduce the same conditions and presets in order to verify any results. A
key to accomplish this is to use the same map and the same opponent every time. The problem
with this approach is that a good AI agent needs to be unpredictable, while a test environment
needs a predictable one. To solve this problem a Build Order Bot (BOB) was created.

BOB is a modified version of UAlbertaBot which can follow a set of attack orders. An attack
order consists of a time represented by number of frames, a set of unit types and the amount
of every unit type that should be sent (see Figure 8). When BOB has an attack order, it will
not attack with any units until both the required number of units of each type is available and
the timing is right. When BOB has no attack orders left it sends units in a continuous flow to
attack the enemy. This feature lets BOB reproduce similar behaviour in multiple games, while
UAlbertaBot and other AI agents often can have more varying attack timings. BOB is based
on UAlbertaBot, meaning that the underlying mechanics of Odin and BOB are equivalent. This
property is also very important when testing the performance of Odin, since the two bots will
control the army in the same way.

21



Figure 8. An example of two attack orders; one where 4 units of type 6 (Dragoons) should attack
the enemy after 8000 frames, and one where 5 units of type 6 and 3 units of type 22 (Dark Templars)
should attack after 13 000 frames.

To further promote reproducibility, BOB also relies on longer predefined opening strategies. In-
stead of just covering the opening, they actually cover most of the game. To avoid the build
order from changing to something else when critical units dies, and thus altering the game play,
BOB tries to rebuild all critical units as soon as they are destroyed. By this it can potentially
continue to play in the same way every game, despite how the opponent may interrupt it. It also
mitigates the problems that may arise when searching for Build Orders with UAlbertaBot, as
described earlier in this report.

22



5 Tests

In this section we explain how the goals of the project were tested and we describe the test
results. There are separate tests and results for the prediction and strategic parts. All tests are
done using real StarCraft games, the maps used can be found in Appendix B. To determine when
a match is over, tournament rules were used; a player has won if all of the opponent’s buildings
are destroyed, but if the time has gone past 86 400 frames (one hour) the in-game score is used
to determine the winner [36]. AI agents may also not slow down the game by spending too much
time per frame on calculations. The games were played on the fastest possible speed meaning
that a single game would take between 4 minutes up to the hour. Most games were played under
supervision.

5.1 Predictions

To test the accuracy of the predictions Odin can make with the help of its Bayesian networks, 39
games were played against the native AI agent. The native AI agent’s race was set to be chosen
at random, which resulted in 16 games against Terran, 13 against Zerg and 10 against Protoss.
The predictions of the Bayesian networks were logged every 1000 frames until frame 25 000. No
data after frame 25 000 was logged, since the network only contains 25 time periods (as described
in section 4.2). The games were saved as replays, allowing for the logged data from the network
to be compared to the actual game state. Because the network deals with probabilities, it is also
necessary to define a threshold for what counts as a correct prediction. An initial threshold was
set to 75 %. A prediction of the state of a node in the Bayesian network is thus only considered
accurate if the prediction determines the node’s correct value with a certainty of 75 % or more.
The obtained results are plotted in Figure 9, 10, 11, 12. The exact data can be found in Appendix
E.

Figure 9 shows the prediction accuracy of nodes for the current time period. We also tested if
we could use our Bayesian network to predict what kinds of units were present in future time
periods. This was accomplished by setting the time period node to a value ahead in time and
logging the Bayesian network throughout the game. This was done for up to 6 time periods
ahead. While not all results are included in the graph, a comparison of prediction accuracy for
the current time period, 3 time periods ahead, and 6 time periods ahead can be seen in Figure
10. The results shown are a generic summary of predictions in StarCraft, where the prediction
accuracies against the different races were weighted equally.

Since the native AI does not play in the same way as professional StarCraft players, we also
set up a similar test using data from the native AI. In the test, we first trained the Bayesian
networks with 387 replays of Odin playing against the native AI, before using the networks to
predict the technology tree of the native AI in actual games. The prediction accuracy was higher
in this test, as can be seen in Figure 11 and Figure 12. From the graphs it can be concluded that
prediction accuracy declines during the games first 15 000 or so frames and rise slightly after
that. It is also evident that a network that is trained against the native AI performs better than
one that is trained against replays of professional players, when they are both validated against
the native AI. From Figure 11 we can also conclude that both Terran and Zerg yield prediction
accuracies over 80 %, with the latter one staying at over 90 % for most of the time, whilst Protoss
prediction accuracies even drop down to under 70 %. Overall, the prediction accuracy of the
network that is trained against the native AI is above 80 % and performs almost as good when
it is predicting the current time period compared to a time period as far as 6000 frames ahead.

23



Figure 9. Percentage of correct predictions for the three different races in StarCraft. The data in
the Bayesian networks is gathered from replays of professional StarCraft players, but the predictions
were tried out on the native StarCraft AI.

Figure 10. Percentage of correct predictions for the current time period, 3 time periods into the
future, and 6 time periods into the future. The data in the Bayesian networks is gathered from
replays of professional StarCraft players, but the predictions were tried out on the native StarCraft
AI.

24



Figure 11. Percentage of correct predictions for the three different races in StarCraft. The data
in the Bayesian networks is gathered from replays of the native StarCraft AI, and the predictions
were tried out on the same AI.

Figure 12. Percentage of correct predictions for the current time period, 3 time periods into the
future, and 6 time periods into the future. The data in the Bayesian networks is gathered from
replays of the native StarCraft AI, and the predictions were tried out on the same AI.

25



5.2 Opening strategies

The testing of opening adaptation was done by letting Odin play against the different races and
noting the results. For all three races, the native AI was used as an opponent. In addition,
another set of tests was done against BOB. However, due to BOB’s inability to play as Zerg,
the tests against BOB only included Protoss and Terran. Descriptions of the openings that were
used can be found in section 4.1.

The tests were divided into two parts for each opponent, where games were played and the
results were noted for each part. The reason for this setup was to first let Odin try out the
different openings in the first part, and then observe which openings Odin continues to choose in
the second part. This way, it is possible to determine if Odin manages to maximise his win rate
by using successful openings more than unsuccessful ones. 15 games were played in each part,
giving a total of 30 games against each opponent.

Table 1. The number of wins and losses after different openings while playing against the native
Zerg AI in StarCraft.

Part 1 Part 2

Openings vs Zerg Wins Losses Wins Losses

Zealot Rush 3 0 2 0

Gateway Fast Expand 3 0 2 0

Nexus First 3 0 2 0

Forge Fast Expand 2 0 3 0

Two Gate Observer 2 0 3 0

Arbiter 2 0 3 0

As can be seen in Table 1, Odin won all the games against the native Zerg AI. Since the perfor-
mance of an opening is measured in the number of won and lost games, Odin used all openings
equally much.

When Odin played against the native Terran AI (see Table 2), the results looked quite differ-
ent compared to the results against Zerg. During the first part of the test, only two openings
managed to win all the games in which they were used; Zealot Rush and Gate Core Expand.
The Zealot Rush opening seems to have lost a game quite early in the second part of the test,
and Gate Core Expand was the only opening to not lose any game at all. Therefore, Gate Core
Expand was used the most. Some of the other openings were also tried during the second part,
since the algorithm for choosing opening takes into account how many times an opening has been
used.

In the test against the native Protoss AI, as shown in Table 3, the two openings Arbiter and
Gate Core Expand did not work very well, and so resulted in one loss each during the first part
of the test. As the other openings were more successful, these two were never used during the
second part of the test.

26



Table 2. The number of wins and losses after different openings while playing against the native
Terran AI in StarCraft

Part 1 Part 2

Openings vs Terran Wins Losses Wins Losses

Gateway Fast Expand 0 1 0 0

Nexus First 1 1 1 1

Zealot Rush 4 0 1 1

Gate Core Expand 3 0 10 0

Arbiter 2 1 0 1

Two Gate Observer 0 1 0 0

Two Base Carrier 0 1 0 0

Table 3. The number of wins and losses after different openings while playing against the native
Protoss AI in StarCraft. The number in parentheses denotes whether the results come from the
first or second part of the test.

Part 1 Part 2

Openings vs Protoss Wins Losses Wins Losses

Zealot Rush 2 1 3 0

Two Gate DT 2 1 3 0

Two Gate Observer 2 1 2 0

Arbiter 0 1 0 0

Gateway Fast Expand 2 0 3 1

Nexus First 1 1 3 0

Gate Core Expand 0 1 0 0

Odin had an easier time against BOB playing as Protoss (see Table 4). In the first part of the
test, only two openings, Arbiter and Nexus First, resulted in losses. These two were never used
in the second part of the test. Only one opening resulted in a loss in the second part. The
build order that BOB used for these tests was Dragoon With Range, which is a build order that
focuses on producing many Dragoons (see Appendix D for the detailed build order).

However, the tests against BOB playing as Terran provided very different results, as can be seen
in Table 5. In the first part of the tests, only two openings, Nexus First and Two Gate Observer,
managed to result in victory. Later in the second part, the first use of Nexus First resulted in a
loss, causing Two Gate Observer to be played for the majority of the remaining games. During
these tests, BOB was using the Marine Medic Push build order, which is optimised to quickly
produce large amounts of Marines and Medics (see Appendix D for the detailed build order).

As can be seen in Table 6 the results from the random native AI gave results very similar to the

27



Table 4. The number of wins and losses after different openings while playing against BOB (as
Protoss). The number in parentheses denotes whether the results come from the first or second
part of the test.

Part 1 Part 2

Openings vs BOB (Protoss) Wins Losses Wins Losses

Zealot Rush 3 0 3 0

Two Gate DT 3 0 2 1

Two Gate Observer 2 0 3 0

Arbiter 0 1 0 0

Gateway Fast Expand 2 0 3 0

Nexus First 1 1 0 0

Gate Core Expand 2 0 3 0

Table 5. The number of wins and losses after different openings while playing against BOB (as
Terran). The number in parentheses denotes whether the results come from the first or second part
of the test.

Part 1 Part 2

Openings vs BOB (Terran) Wins Losses Wins Losses

Gateway Fast Expand 0 2 0 0

Nexus First 1 2 0 1

Zealot Rush 0 2 0 0

Gate Core Expand 0 2 0 0

Arbiter 0 2 0 0

Two Gate Observer 2 1 8 5

Two Base Carrier 0 1 0 1

Table 6. The number of wins and losses after different openings while playing against the native
AI using random races. The number in parentheses denotes whether the results come from the first
or second part of the test.

Part 1 Part 2

Openings vs Random Wins Losses Wins Losses

Zealot Rush 3 0 4 0

Gateway Fast Expand 2 1 0 0

Nexus First 3 0 4 0

Gate Core Expand 3 0 4 0

Forge Fast Expand 3 0 3 0

28



three other native AI tests. The only opening that lost was Gateway Fast Expand. Even though
it had a good win rate, it was never used in the second part of the test as the rest never resulted
in losses.

5.3 Army composition generator

The purpose of testing the army composition generator is to understand its effect on Odin’s overall
performance, and especially how the predictions might change the outcome of games. The ACG
has two constants which are tweaked in order to adapt its behaviour. The two constant are called
unitThreshold and unitStartValue which can be read about in Section 4.3. These constants are
varied in order to understand the importance of predictions when using the ACG. We also let
Odin use Bayesian networks that predicted what the opponent would have two time periods (1
minute and 36 seconds) into the future. This was done in order to observe if Odin would win
more matches by adapting to the opponent’s future unit composition.

Table 7. Results from using different sets of parameters in the army composition generator (ACG).
The parameters are listed in the following order: (predictionThreshold, unitStartValue).

ACG Parameters Wins Losses Win rate

Default values (0.6, 0.1) 29 1 96.7 %

No predictions (0.99, 0.01) 24 6 80.0 %

Overuse predictions (0.3, 0.3) 26 4 86.7 %

Network 2 time periods ahead (0.6, 0.1) 28 2 93.3 %

Total 107 13 89.2 %

The test was conducted by letting Odin play against the random native AI, the results can be
seen in Table 7. Overall, Odin had an 89.2 % win rate against StarCraft’s native AI. With the
default values Odin accomplished to win 29 out of 30 games and without predictions Odin was
able to win 24 out of 30 games.

5.4 The attack-defend state uncertainty factor

As explained in section 4.3, Odin compares the two players’ army potentials in order to deter-
mine whether the attack or defend state should be active. This comparison also involves an
uncertainty factor and by varying the value of this factor, it is possible to optimise the win/loss
ratio of the AI agent.

This test was performed by letting Odin play against the random native AI. For each of the
tested values of the uncertainty factor, 30 games were played. Before each value was tested the
knowledge about which opening resulted in most victories was reset, since the choice of opening
is optimised over time. The results can be seen in Table 8, and the plotted data can be seen in
Figure 13.

29



Table 8. The win rates obtained from tests where the uncertainty factor was varied. A lower value
of the uncertainty factor results in the Odin playing more aggressively, while a greater value results
in the agent playing more defensively. Each value was tested by letting Odin play 30 games against
the random native AI.

Uncertainty factor Wins Losses Win rate

1.0 28 2 93.3 %

1.25 28 2 93.3 %

1.5 27 3 90.0 %

1.75 25 5 83.3 %

2.0 22 8 73.3 %

Figure 13. The win rate data from Table 8 plotted against the uncertainty factor.

30



6 Results and discussion

In this section we evaluate and discuss the results, as well as the possible error sources for the
test data. We also present some of the problems that we encountered during the implementa-
tion. Lastly, we discuss the project’s place in the field of research, and present possible future
improvements of the project.

6.1 Predictions

The initial plan was to use BWAPI to examine replays of professional StarCraft players’ games.
Predictions would be made with the fog of war enabled. Then disabling the fog of war would
allow us to evaluate the results of the predictions. However, this was not possible as BWAPI
is not able handle the individual players’ fog of war during replays, and it was impossible to
determine which player triggered each event. Thus it was decided to test our predictions against
the native AI.

As is shown in Figures 9, 10, 11, and 12; once the Bayesian networks were trained with games
from the native AI, their predictions against it became more accurate. This is hardly surprising
as the networks were both trained and validated against the native AI. If they instead had been
validated against professional players, the results would probably not have been as accurate. We
can observe that the native AI only uses a very limited set of strategies, which also might explain
the high prediction accuracies. If we had trained and validated the Bayesian networks against
professional players, the prediction accuracy would probably have been slightly worse. This is
mainly because professional players tend to use a larger variety of strategies. If there is a larger
number of strategies, but they are similar to each other, it becomes harder to accurately predict
which strategy is used.

It is also possible to observe that the accuracy of the predictions barely went down at all when
we tried to predict the game state of some time periods ahead. While this is more surprising,
it can be explained with the fact that most players’ usage of the technology tree follows almost
the same order and only deviates slightly. This further strengthens the assumption that the
technology tree can be used to accurately predict the enemy’s overall strategy.

Overall we could see a decline in the accuracy of our predictions over time, which increased
again in the later game stages. This seems only natural, as predictions rely heavily on the scout-
ing efforts. As the game progresses, it becomes harder to gather information about the enemy
since the enemy army often guards its base. Without information it is harder to predict the state
of the opponent’s technology tree, and the accuracy drops. The further the game progresses, the
more likely it is for battles to occur, in which more information about the opponent might be
gained. The further the game goes, the more likely it is for the technology tree of the opponent
to expand to its fullest. So despite using different openings, the tech tree will most likely start
to resemble a generic one, the longer the game progresses.

6.2 Opening strategies

There are several factors that affect whether Odin wins a game with a certain opening or not.
For example, Odin controls some unit types better than others, so the types of units that are
used by the opening is a factor. There is also some randomness involved, since Odin does not
know what opening strategy the enemy will use. The most determinant factor is probably how

31



well the opening prepares for the rest of the game. This could be done, either by making a big
army to get the advantage of an early attack, or by building up a strong economy. It is also
important to note that the opening only specifies what Odin should do in the beginning of the
game, and the result may be determined by an event in a later stage of the game, unrelated to
the choice of opening.

The opening Gate Core Expand outperformed all the other openings against the native Ter-
ran AI. It was the only opening that won all its games, and was therefore used much more than
any other opening. The reason that this opening performed best could be due to it being the
shortest opening. This gives Odin an early opportunity to use the army composition generator
to train units that can counter the enemy units, instead of being forced to follow a static opening
build order. The opening also builds up a good economy, which gives Odin the resources to tech
to the units it needs as fast as possible.

The results against BOB as Protoss and native AI as Zerg, Protoss and Random were quite
similar. There was no opening that was significantly better than any other since Odin won al-
most all matches. This lead to a little or no change in which openings were used.

When testing Odin against BOB as Terran, the result was not very good since Odin had a
win rate of only 37 %. The main reason for this was that BOB, as explained in section 5.2,
uses the Marine Medic Push build order. Medics are support units, which rather than directly
attacking enemies, heals friendly units. As Odin micromanages each unit to target what is
most dangerous, the Medics are seldom targeted first, and they are thus able to heal the nearby
Marines as soon as they are damaged. This makes it hard for Odin to defeat an enemy army
which includes Medics.

The Two Gate Observer opening resulted in victory in 10 out of the 16 times it was used.
This was, however, not because the Observer unit is a good counter for the Marine-Medic army.
It was rather because BOB never built any unit capable of detecting invisible units such as Ob-
servers. In most of the games where this opening was used, BOB did manage to destroy Odin’s
starting base. Despite that, in most of the cases Odin had some buildings located far from the
main base, keeping Odin from losing the game. Additionally, BOB’s army chased the invisible
Observer without being able to attack it due to the lack of detection. All this resulted with Odin
winning the games by simple having a higher in-game score when the time limit defined by the
tournament rules was reached.

6.3 Army composition generator

The most notable results in Figure 7 are when the predictions are either overused, or not used at
all. These two cases both resulted in lower win rates. The other two test cases, ’Default values’
and ’Network 2 time periods ahead’, generated slightly different results. This difference may,
however, have been caused by pure chance.

Evaluating the army composition by only looking at the win rate might not be the best way
to evaluate. Even so, it is possible to observe that the ACG affects the outcome of games. This
is especially evident in the test cases where no predictions are used at all, since Odin then de-
pends on directly observing enemy units in order to know what the enemy has. When an opening
is finished, Odin is usually able to predict what units the opponent has even though no direct
observations have been made. However, when the predictions are not used, it is not as easy for

32



Odin to adapt, as indicated by the results.

Even though using predictions is a significant part of achieving a high win rate, it is also im-
portant to not overuse them. This can be seen in the test case ’Overuse predictions’, where the
results are worse than for the default ACG parameters. The reason for these poor results is likely
that Odin tries to build counters for everything at once, and so does not manage to concentrate
on what the enemy actually has. Odin often tries to counter units that do not exist, probably
because of the low threshold value.

Both the tests where the predictions were changed gave significantly worse results than the
default ACG parameters. When using a Bayesian network that predicted two time periods into
the future, the results were not significantly worse. Instead, the difference was so small that it
is not possible to safely say whether ’Default values’ or ’Network 2 time periods ahead’ is better
or not.

All in all, the ACG is important and changing the parameters has a significant effect on the
test results. Predictions are an important part of the ACG, though they should not be overused.

6.4 The attack-defend state uncertainty factor

In order to understand the following discussion, one must first recall from section 4.3 that a low
value of the uncertainty factor causes Odin to enter the attack state more frequently, while a
higher value causes the agent to spend more time in the defend state. It should also be stated
that an uncertainty factor below 1 was not used since it would indicate that the opponent has
less units than observed.

As can be seen in Table 8 and Figure 13, Odin won fewer matches as the uncertainty factor
increased in value. This was likely because the attack state more or less is the aggressive be-
haviuor inherited from UAlbertaBot, while the defend state was implemented in the later parts
of our project. This has caused the defend state to not be optimised to the same extent as the
attack state, a fact that might have contributed to the declining win rate as the uncertainty
factor increased. Another possible explanation is that a StarCraft player rarely wins a match
only by defending. In order to win, a player must attack the opponent, and when Odin attacks
the opponent more seldom it affects the win rate.

6.5 Possible sources of errors

It is important to note that no test can be perfect, and there are some possible sources of errors
that might have affected the test results. These sources of errors are either so small that they
were not taken into consideration, or they were simply not thought of when the tests were con-
structed. The possible sources of errors are presented and explained below. Of course, there is a
possibility that there are other sources of errors as well that we have not thought of.

The different tests were performed on different computers, and each had a different architec-
ture and clock rate. As the tournament rules limit the amount of time each frame can take, a
higher clock rate allows for more calculations per time frame and may gain an advantage over
computers with lower clock rates. However, Odin seldom reaches this limit, and the clock rates
were therefore not taken into consideration.

33



When the data mining was done on StarCraft’s native AI, the games were played against ran-
domly chosen races. One might imagine that this would result in the three races being chosen
approximately the same number of times, but this was not the case. Instead, the result was very
close to 50 % Protoss, 30 % Terran, and 20 % Zerg games. This led us to believe that StarCraft
did not choose randomly between the three races, but instead between ten different strategies,
where Protoss used five strategies, Terran used three and Zerg used two. This would mean that
the results against the random native AI are biased towards Protoss. Unfortunately, we have not
gathered any hard data to support this hypothesis.

Another possible source of error could be that relatively few games, about 30 per test, were
played during the testing. If more games had been played, the results would likely be more
accurate. Letting the agent play games during the tests is however a very time-consuming task,
and there was simply not enough time to play a larger number of games.

6.6 Problems during implementation

While developing the usage of predictions, we discussed what we wanted Odin to predict. At one
point, the goal was that the agent should be able to predict the number of units the opponent
has, as well as the probability of a unit or building being available. However, using the same
Bayesian networks for predicting all this would have caused the networks to become too com-
plex to be efficiently used. Because of this, we decided that the networks should not be able to
determine the number of units the opponent has.

During the project we also had some problems regarding the BuildingPlacer included in UAl-
bertaBot. It often had problems finding valid positions for new buildings, the search algorithm
needed so much time that it slowed the game down. The results of previous searches are not
remembered, and this means that an invalid position is examined every time the algorithm is
run. These problems often causes the game to slow down in the later parts of long matches.

Sometimes Odin’s army refuses to search for more enemies after the enemy main base is de-
stroyed. This is caused by a bug in the InformationManager, which fails to update the informa-
tion about a Terran building type called add-ons. An add-on is an addition to a conventional
Terran building. In the StarCraft engine, an add-on belongs to a player if it is attached to a
building belonging to the player. However, if the add-on is not attached to any building, it
becomes neutral and no longer belongs to any player. The InformationManager seems to only
update the knowledge of enemy buildings if they belong to the enemy. This means that the
InformationManager believes that a hostile add-on is still alive, if the add-on is neutral when
it is destroyed. Sometimes, Odin therefore gets stuck in the enemy base, trying to destroy the
already destroyed building. This behaviour often delays the victory by quite a lot of time.

The module in UAlbertaBot that takes the most time to run is the BuildOrderSearch. When
more unit types than UAlbertaBot’s default types were added and used, the module did not
work very well any more. Firstly, the program started to crash when new unit types were added,
because they were not defined in a list used by the BuildOrderSearch. Secondly, the module did
not scale very well. It needed too much time in order to find a build order for the goal provided
by the ACG. Sometimes, it did not even manage to reach any goal at all, with the result that
the agent spent a lot of time doing nothing. Therefore, the way in which the BuildOrderSearch
was used had to be changed. In section 4.1, some of the changes are described. The changes
improved the performance of Odin greatly. Another problem that also occurred from time to

34



time was that the BuildOrderSearch simply did not run at all. We never understood why this
happened, and so have not been able to come up with a solution for this. If we could redo the
project with the knowledge we now have, we would have replaced the BuildOrderSearch module.

We would also plan the project in another, more detailed, way. Unfortunately, we realised too
late that our plan to use case-based reasoning would be hard to implement using the program
structure from UAlbertaBot, with rule-based behaviour and an update-loop design. If we had
done more detailed research before starting the implementation, it might have been possible to
realise the difficulties of making the agent perform a sequence of actions, as we had first planned.
Of course, it is easy to be afterwise, but this also highlights the importance of doing research
and planning before starting to implement the agent. That said, it would have been hard to
anticipate the problems and bugs we came across during the implementation.

6.7 Contributions

This project touches on a subject where not much research has been done. As stated in ’A
Survey of Real-Time Strategy Game AI Research and Competition in StarCraft’ [12], high-
level decision-making is an open field. Decisions are based on information, and just as humans
understand information, it is important that computers also understand the information before
making decisions. This project aims to give the agent as good information as possible as a base
for its decisions, and an approach to decision-making is shown.

6.8 Future work

There are numerous ways in which it is possible to improve Odin in the future. One example is to
make more advanced predictions, not only of the enemy tech tree, but also of his army size and
attack timings. One can assume that this would in turn incite for more sophisticated scouting,
since predictions rely heavily on what is observed. Also, the correlation between scouting and
prediction accuracy was not examined in this project, but would probably be very interesting to
investigate.

The ACG could be improved to learn which units are cost-effective against certain units, in-
stead of relying on the predefined counters used by Odin. This would lead to a more dynamic
behaviour where Odin would adapt even more over time. There are several machine-learning
techniques that could be applied to do this, one of them being case-based reasoning.

Some future work might also include fixing the problems we found in the behaviours Odin in-
herited from UAlbertaBot. One obvious example is the micromanagement of units. The only
units whose micromanagement is currently optimised are Zealots and Dragoons, since these are
the two units primarily used by UAlbertaBot. The management of units such as High Templars,
Reavers, Carriers, Observers, and many more can likely be significantly improved.

The combat simulator used by Odin in order to predict the outcomes of small battles can also
be refined. The original version used in UAlbertaBot does not take spell-casters into account,
resulting in inaccurate predictions of battles that involve units such as Medics, High Templars,
or Reavers. The version used by Odin is only slightly changed, in that it treats High Templars,
Reavers and Carriers in the same way as Dragoons. Modifying the combat simulator to correctly
represent spell-casters should lead to better combat predictions, and therefore also improved
behaviour by the AI agent.

35



For some, it might be hard to see exactly how other areas might benefit from game AI re-
search, but the explored techniques can be applied to many everyday real-world situations. They
can be used in a variety of ways to highlight correlation and causes in large data sets, and can
thus be applied to most fields. One area where it could work very well is risk analysis. Insurance
companies must weigh the risk against the profit when insuring people, in order to negotiate a
reasonable fee. Additionally, companies in the finance sector, that handle considerable amounts
of money, need to be aware of all possible risks to minimise losses. One might also argue that
Bayesian networks are usable while examining the large data sets that are generated on the
Internet. In particular in social media, there is a growing need to analyse user data.

36



7 Conclusion

The results suggest that Odin, after observing the opponent during gameplay, is able to accu-
rately predict the state of the enemy’s tech tree. It is also shown that these predictions can be
used for the decision-making process by using the army composition generator, and that they
have a positive effect on the outcome of games. Odin is better at adapting its unit composition
when predictions are done, which is shown by the higher win rate against the native AI.

Predictions give the AI agent the intuitive feeling that most human players have about their
opponents. Without actually observing what technology the opponent has acquired, Odin is able
to estimate how far the enemy has progressed in the tech tree and what units or buildings the
opponent might be expected to have. Achieving this in an environment as complex as StarCraft
indicates that it is possible to perform similar tasks in other, complex, environments as well. It
would also be applicable to real-world problems where an AI agent has to make decisions based
on incomplete information.

37



References

[1] IBM, “Deep Blue,” http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/,
2012, [Online; accessed 2014-04-26].

[2] D. Churchill and M. Buro, “Incorporating Search Algorithms into RTS Game Agents,” 2012.

[3] M. Buro and T. M. Furtak, “RTS Games and Real–Time AI Research,” 2004.

[4] P. Spronck, M. Ponsen, and E. Postma, “Adaptive game ai with dynamic scripting,” in
Machine Learning. Kluwer, 2006, pp. 217–248.

[5] ai-junkie, “State-Driven Game Agent Design,” http://www.ai-junkie.com/architecture/
state driven/tut state1.html, 2004, [Online; accessed 2014-05-08].

[6] A. J. Champandard, “10 Reasons the Age of Finite State Machines is Over,” http:
//aigamedev.com/open/article/fsm-age-is-over/, 2007, [Online; accessed 2014-05-10].

[7] J. Eriksson and D. Ø. Tornes, “Learning to play Starcraft with Case-based Reasoning -
Investigating issues in large-scale case-based planning,” Master thesis, Norwegian University
of Science and Technology, June 2012.

[8] B. G. Weber and S. Ontañón, “Using automated replay annotation for case-based planning in
games,”http://users.soe.ucsc.edu/˜bweber/pubs/iccbr-cg.pdf, 2010, [Online; accessed 2014-
05-09].

[9] I. Martinez, “Villagers Finite State Machine ,” http://martidore.blogspot.se/2013/02/
villagers-finite-state-machine.html, 2013, [Online; accessed 2014-06-03].

[10] “StarCraft - Does the AI cheat?” http://gaming.stackexchange.com/questions/5544/
does-the-ai-cheat, 2010, [Online; accessed 2014-05-09].

[11] B. Schwab, AI game engine programming. Cengage Learning, 2009.

[12] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss, “A Survey
of Real-Time Strategy Game AI Research and Competition in StarCraft,” 2013.

[13] M. Buro, “Real-time strategy games: A new ai research challenge,” 2003.

[14] Edge-online, “Blizzard Confirms One “Frontline Release” for ’09,” http://www.edge-online.
com/news/blizzard-confirms-one-frontline-release-09/#null, 2008, [Online; accessed 2014-
05-08].

[15] T. Chick, “Starcraft,” http://www.ign.com/articles/2000/06/03/starcraft-2, 2000, [Online;
accessed 2014-04-28].

[16] e-Sports Earnings, “StarCraft: Brood War,” http://www.esportsearnings.com/games/
152-starcraft-brood-war/list events, 2014, [Online; accessed 2014-05-08].

[17] Blue Screen of Awesome, “The Hunt — Best RTS: StarCraft,” http://bluescreenofawesome.
com/2012/05/18/the-hunt-best-rts-starcraft/, 2012, [Online; accessed 2014-05-12].

[18] B. Das, “Representing uncertainties using bayesian networks,” DTIC Document, Tech. Rep.,
1999.

38

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://www.ai-junkie.com/architecture/state_driven/tut_state1.html
http://www.ai-junkie.com/architecture/state_driven/tut_state1.html
http://aigamedev.com/open/article/fsm-age-is-over/
http://aigamedev.com/open/article/fsm-age-is-over/
http://users.soe.ucsc.edu/~bweber/pubs/iccbr-cg.pdf
http://martidore.blogspot.se/2013/02/villagers-finite-state-machine.html
http://martidore.blogspot.se/2013/02/villagers-finite-state-machine.html
http://gaming.stackexchange.com/questions/5544/does-the-ai-cheat
http://gaming.stackexchange.com/questions/5544/does-the-ai-cheat
http://www.edge-online.com/news/blizzard-confirms-one-frontline-release-09/#null
http://www.edge-online.com/news/blizzard-confirms-one-frontline-release-09/#null
http://www.ign.com/articles/2000/06/03/starcraft-2
http://www.esportsearnings.com/games/152-starcraft-brood-war/list_events
http://www.esportsearnings.com/games/152-starcraft-brood-war/list_events
http://bluescreenofawesome.com/2012/05/18/the-hunt-best-rts-starcraft/
http://bluescreenofawesome.com/2012/05/18/the-hunt-best-rts-starcraft/


[19] V. Pavlovic, J. M. Rehg, T.-J. Cham, and K. P. Murphy, “A dynamic bayesian network
approach to figure tracking using learned dynamic models,” in Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Conference on, vol. 1. IEEE, 1999, pp.
94–101.

[20] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, methodological vari-
ations, and system approaches,” AI communications, vol. 7, no. 1, pp. 39–59, 1994.

[21] G. Synnaeve and P. Bessière, “A Bayesian model for opening prediction in RTS games with
application to StarCraft,” 2011.

[22] R. E. Oen, “ASPIRE Adaptive strategy prediction in a RTS environment,” Master thesis,
The University of Bergen, June 2012.

[23] M. Certicky and M. Certicky, “Case-Based Reasoning for Army Compositions in Real-
Time Strategy Games,” http://agents.fel.cvut.cz/˜certicky//files/publications/scyr2013.
pdf, 2013, [Online; accessed 2014-05-08].

[24] K. van Mens, “Strategic reasoning in complex domains - A comparative survey on scientific
AI techniques to improve real-time strategy game AI,” Bachelor thesis, Universiteit Utrecht,
May 2012.

[25] A. Smith, “Skynet,” https://code.google.com/p/skynetbot/, 2014, [Online; accessed 2014-
05-09].

[26] D. Churchill, “2013 AIIDE StarCraft AI Competition Report,” http://webdocs.cs.ualberta.
ca/˜cdavid/starcraftaicomp/report2013.shtml, 2013, [Online; accessed 2014-05-08].

[27] F. Richoux, “aiurproject,” https://code.google.com/p/aiurproject/, 2014, [Online; accessed
2014-05-09].

[28] D. Klein, “The Berkeley Overmind Project,” http://overmind.cs.berkeley.edu/, 2014, [On-
line; accessed 2014-05-09].

[29] D. Churchill, “UAlbertaBot,” https://code.google.com/p/ualbertabot/, 2014, [Online; ac-
cessed 2014-05-09].

[30] M. Buro, “CMPUT 350 Advanced Game Programming,” https://skatgame.net/mburo/
courses/350/, 2013, [Online; accessed 2014-05-08].

[31] D. Churchill, “Artificial Intelligence - UAlbertaBot,” https://code.google.com/p/
ualbertabot/wiki/ArtificialIntelligence, 2014, [Online; accessed 2014-05-09].

[32] D. Churchill and M. Buro, “Build Order Optimization in StarCraft,” 2011.

[33] ——, “Portfolio greedy search and simulation for large-scale combat in starcraft,” in Com-
putational Intelligence in Games (CIG), 2013 IEEE Conference on. IEEE, 2013, pp. 1–8.

[34] teamliquid.net, “Team Liquid,” http://www.teamliquid.net/, 2014, [Online; accessed 2014-
05-12].

[35] dlib.net, “Dlib C++ Library,” http://dlib.net/, 2014, [Online; accessed 2014-05-09].

[36] 2014 StarCraft AI Competition, “Rules,” http://webdocs.cs.ualberta.ca/˜cdavid/
starcraftaicomp/rules.shtml, 2014, [Online; accessed 2014-05-18].

39

http://agents.fel.cvut.cz/~certicky//files/publications/scyr2013.pdf
http://agents.fel.cvut.cz/~certicky//files/publications/scyr2013.pdf
https://code.google.com/p/skynetbot/
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml
https://code.google.com/p/aiurproject/
http://overmind.cs.berkeley.edu/
https://code.google.com/p/ualbertabot/
https://skatgame.net/mburo/courses/350/
https://skatgame.net/mburo/courses/350/
https://code.google.com/p/ualbertabot/wiki/ArtificialIntelligence
https://code.google.com/p/ualbertabot/wiki/ArtificialIntelligence
http://www.teamliquid.net/
http://dlib.net/
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/rules.shtml
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/rules.shtml


[37] langpop.com, “Programming Language Popularity,” http://langpop.com/, 2013, [Online;
accessed 2014-05-09].

[38] K. Schwaber and J. Sutherland, The Scrum Guide, Scrum.org, 2013.

40

http://langpop.com/


Appendices

A Tools

During the project, several tools and libraries were used in order to get a structured way of
working with the project as well as to be able to create an AI agent. This chapter gives an
insight into those tools and why they were chosen.

BWAPI

BWAPI is an acronym for the Brood War API. It was used since it is, by far, the easiest way to
implement an AI agent for StarCraft: Brood War. BWAPI is written in C++ and interacts with
StarCraft by injecting code into the game process. When compiling an AI agent with BWAPI,
the end result is a dll file, and the game is started via a program called ChaosLauncher that
injects the created dll into the StarCraft process.

C++

C++ was used as a programming language for the project because it is recommended to use
with BWAPI. C++ is widely used around the world and has influenced other common languages
such as Java and C# [37]. C++ is very common in game development because of its both low
level and high level features meaning it is both a powerful, simple and clear language.

Visual Studio

BWAPI is built using the integrated development environment Visual Studio. Since Visual
Studio is the recommended programming environment for developing AI agents using BWAPI,
this project was also developed and compiled within Visual Studio.

GeNIe

In order to be able to work with a graphical representation of the Bayesian network, a de-
velopment environment called GeNIe (an acronym for Graphical Network Interface) was used.
However, for the agent to be able to use the network during runtime, the network created from
GeNIe was parsed and then loaded into the general purpose library Dlib.

Dlib

Dlib is a cross platform open source software library written in C++. It is a collection of
independent software components, which can deal with a lot of different tasks. Features include
networking, threading, different data structures, Bayesian networks and more. Dlib was used for
the Bayesian network functionality.

Scrum

The project was managed using a modified version of the agile software development framework
called Scrum. In Scrum, the team is known as the Scrum Team and consists of a Product
Owner, the Development Team and a Scrum Master [38]. The Product Owner is responsible
for managing the Product Backlog, a list of tasks that need to be done. The Development

41



Team does the work to get the product closer to release at the end of each sprint. The Scrum
Master is responsible for ensuring that the Scrum process is understood and enacted by the team.

The Scrum process is mainly composed of Sprints. A Sprint consists of Sprint Planning, Daily
Scrums, the development work, the Sprint Review and the Sprint Retrospective. The Sprint
Planning is where the work to be performed during the Sprint is planned. The plan is created by
the whole Scrum Team. Daily Scrums are short daily meetings which are limited to a maximum
of 15 minutes. They are used to synchronise the team and create a plan for the next 24 hours.
A Sprint Review is held at the end of a Sprint in order to inspect the work that has been done.
The Product Backlog might also be updated if needed. During the Sprint Review, the team
members discuss what should be done next. After the Sprint Review, but before the next Sprint
Planning, an event called Sprint Retrospective is held. The purpose of this event is to give the
team an opportunity to review itself and create a plan for how to improve during the next Sprint.

Weekly Scrum meetings were held in order to decide what should be done during the follow-
ing week. However, unlike the standard Scrum version, no Daily Scrum meetings were held since
the group members would mostly work from home by themselves, likely at different times of the
day. As an aid for the Scrum documentation and administrative tasks, the online service Pivotal
Tracker was used.

Pivotal Tracker

Pivotal Tracker is a software for agile project management and collaboration. It is a web-based
service where stories can be created that defines what needs to be done. Everyone in the team
can see these stories and anyone can mark a story as ’started’ to show the rest of the team that
the story is being worked on. Pivotal Tracker was used to keep track on who was working on
what and to be able to see what was needed to be done.

Git

The version control system Git was used for the project. Git is a widely used source code
management system initially designed by Linus Torvalds for the development of the Linux kernel.
The source code of the project is hosted on Github, a free web-based code hosting service for
open-source projects. The source code of our project can be found at https://github.com/

Plankton555/Odin.

42

https://github.com/Plankton555/Odin
https://github.com/Plankton555/Odin


B StarCraft maps used for testing

The following table contains the StarCraft maps that were used for testing. Map size denotes
the maximum number of players that can play on the map.

Map name Map size

Benzene 2

Neo Moon Glaive 3

Tau Cross 3

Circuit Breaker 4

Empire of the Sun 4

Fighting Spirit 4

Icarus 4

Jade 4

La Mancha 1.1 4

Python 4

Roadrunner 4

Total nr of maps 11

43



C Unit counters

The following three tables contain the units used by Odin in order to counter the opponent’s units.

Protoss units Cheap counter Expensive counter

Zealot Dragoon High Templar

Dragoon Dragoon High Templar

Dark Templar Photon Cannon Observer

High Templar Reaver Dark Templar

Archon Reaver Carrier

Dark Archon Dragoon Reaver

Reaver Dark Templar Carrier

Scout Dragoon Corsair

Corsair Dragoon -

Arbiter Observer High Templar

Carrier Dragoon Corsair

Observer Photon Cannon Observer

Shuttle Photon Cannon Dragoon

Terran units Cheap counter Expensive counter

Marine Zealot Dragoon

Firebat Dragoon High Templar

Medic Zealot Reaver

Ghost Photon Cannon Observer

Vulture Dragoon Carrier

Spider Mine Zealot Observer

Siege Tank Tank Mode Zealot Dark Templar

Siege Tank Siege Mode Zealot Carrier

Goliath Zealot Reaver

Wraith Dragoon Observer

Dropship Photon Cannon Corsair

Science Vessel Dragoon Scout

Battlecruiser Dragoon Scout

Valkyrie Dragoon Scout

44



Zerg units Cheap counter Expensive counter

Zergling Zealot Reaver

Hydralisk Zealot Dragoon

Lurker Observer High Templar

Ultralisk Dragoon Carrier

Defiler Photon Cannon Reaver

Overlord Dragoon -

Mutalisk Corsair High Templar

Scourge Dragoon Scout

Queen Dragoon Reaver

Guardian Corsair High Templar

Devourer Dragoon High Templar

45



D Opening build orders

The opening build orders are stored as sequences of numbers, where each number represent a
specific unit, building, or upgrade. Below is a dictionary of which units the different numbers
represent.

Id Protoss Name Terran Name

0 Probe SCV

1 Pylon Supply Depot

2 Nexus Command Center

3 Gateway Barracks

4 Zealot Refinery

5 Cybernetics Core Marine

6 Dragoon Academy

7 Assimilator Stim Packs

8 Singularity Charge Medic

9 Forge -

10 Photon Cannon -

11 High Templar -

12 Citadel of Adun -

13 Templar Archives -

14 Robotics Facility -

15 Robotics Support Bay -

16 Observatory -

17 Stargate -

18 Scout -

19 Arbiter Tribunal -

20 Arbiter -

21 Shield Battery -

22 Dark Templar -

23 Shuttle -

24 Reaver -

25 Observer -

26 Corsair -

27 Fleet Beacon -

28 Carrier -

29 Leg Enhancements -

30 Psionic Storm -

46



The table below contains the different opening build orders that are used by Odin.

Opening name Build order

Zealot Rush 0 0 0 0 1 0 3 3 0 0 4 1 4 4 0 4 4 0 1 4 3 0 1 0 4 0 4 4 4 4 1 0 4 4 4

Gateway Fast Expand 0 0 0 0 1 0 0 3 0 0 1 0 4 0 0 0 0 2 0 7 0 0 1 5

Nexus First 0 0 0 0 1 0 0 0 0 0 2 0 3 0 7 0 0 5 3 4 0 0 1 6 6 8 0 0 1

Arbiter

0 0 0 0 1 0 3 3 0 0 4 1 4 4 7 0 5 1 0 12 0 13 1 0 17 0 4 0 19 1 0 0

20 17 3 3 3 1 4 4 4 4 1 0 4 0 20 1 0 4 0 20 4 4 4 4 0 1 4 1 20 4 1 4

4 4 0 4 20 0 4

Forge Fast Expand 0 0 0 0 1 0 0 0 0 2 0 9 0 0 1 0 0 3 0 10 0 0 7 0 0 0 5

Two Gate Observer 0 0 0 0 1 0 0 3 0 0 7 0 0 5 0 0 1 0 0 8 6 0 0 1 6 0 14 6 3 6 1 16 25

Two Gate DT
0 0 0 0 1 0 0 3 0 0 7 0 4 0 0 1 0 0 5 0 4 0 0 1 0 6 0 12 0 6 3 1 13 0

4 4 0 1 22 22 0 9 0 1 2

Gate Core Expand 0 0 0 0 1 0 0 3 0 0 7 0 0 5 0 1 0 0 6 2

Two Base Carrier
0 0 0 0 1 0 0 0 0 0 2 0 3 0 7 0 0 5 4 0 7 0 3 1 6 6 8 0 0 1 0 0 14 0 0

17 0 0 27 0 0 17 28 28 3 3 3

The table below contains the opening build orders that are used by BOB.

Opening name Race Build order

Dragoon With Range Protoss
0 0 0 0 1 0 0 3 0 0 7 0 0 5 0 1 0 0 0 8 6 0 0 1 6 0 6 3 3 3 6

1 6 6 6 6 1

Marine Medic Push Terran

0 0 0 0 0 1 0 0 3 0 0 3 0 5 1 0 5 4 5 0 0 5 0 6 1 5 5 0 3 3 5

5 8 1 5 5 0 8 5 5 0 8 1 0 5 5 0 8 5 0 1 5 0 5 8 5 0 1 5 5 8 0

5 8 5 1 5 0 5 8 5 0 5 5 1 8 5 0 5 8 5 0 5 1 8 1 5 5 5 5 5 5 5

47



E Prediction results

The table below shows the prediction accuracy of the Bayesian network for the different races.
The columns that are marked as ”Pro” used a network that was trained against professional
players replays, while the other columns used a network that was trained against the native AI
of StarCraft. Since the games were played against Random, the networks could not be loaded
until the first encounter and thus some of the entries in the table are empty.

Time period Protoss Pro Protoss Terran Pro Terran Zerg Pro Zerg

1

2 100,00 % 96,15 %

3 95,24 % 97,62 % 95,34 % 98,92 % 95,05 % 96,15 %

4 91,33 % 94,47 % 96,77 % 98,14 % 86,71 % 95,60 %

5 85,71 % 88,87 % 88,10 % 96,77 % 87,28 % 87,93 %

6 86,79 % 85,71 % 82,66 % 96,47 % 89,05 % 89,83 %

7 87,14 % 87,27 % 76,41 % 93,47 % 85,50 % 88,09 %

8 87,86 % 83,23 % 70,16 % 99,77 % 90,53 % 79,90 %

9 83,57 % 80,75 % 70,56 % 99,70 % 84,94 % 86,60 %

10 76,79 % 77,41 % 69,96 % 96,55 % 83,22 % 92,68 %

11 67,50 % 76,67 % 68,55 % 95,72 % 83,92 % 93,18 %

12 66,27 % 75,51 % 68,55 % 91,82 % 83,22 % 94,43 %

13 64,29 % 74,40 % 71,17 % 90,70 % 77,27 % 94,69 %

14 66,33 % 76,60 % 71,71 % 89,00 % 78,08 % 93,24 %

15 66,84 % 76,88 % 72,90 % 84,83 % 78,85 % 93,87 %

16 70,24 % 75,92 % 68,10 % 84,60 % 70,51 % 94,46 %

17 66,67 % 72,62 % 69,35 % 84,14 % 70,19 % 94,81 %

18 69,64 % 67,69 % 71,89 % 86,53 % 70,19 % 98,72 %

19 73,81 % 67,86 % 78,23 % 87,96 % 69,23 % 95,43 %

20 75,60 % 70,59 % 74,19 % 89,33 % 69,23 % 99,23 %

21 75,60 % 72,99 % 77,42 % 95,31 % 65,38 % 94,78 %

22 76,79 % 75,71 % 79,57 % 88,39 % 66,67 % 93,59 %

23 74,40 % 79,08 % 79,57 % 80,97 % 62,82 % 92,95 %

24 79,29 % 79,85 % 79,57 % 80,32 % 62,82 % 93,71 %

25 72,14 % 77,47 % 84,95 % 75,27 % 59,62 % 93,27 %

48



The table below shows the prediction accuracy of a network trained with professional players
replays and validated against the native AI. The validation was done in 49 games (25 against
Protoss, 12 against Terran and 12 against Zerg), where the prediction accuracies against the
three races were weighted equally.

Time period Current time period 3 time periods ahead 6 time periods ahead

1

2

3 96,43 %

4 92,81 %

5 88,98 %

6 87,76 % 85,71 %

7 84,15 % 84,27 %

8 80,49 % 80,83 %

9 78,51 % 74,96 % 82,14 %

10 75,81 % 69,94 % 70,13 %

11 70,68 % 65,62 % 65,99 %

12 70,86 % 68,45 % 64,86 %

13 69,31 % 68,56 % 63,66 %

14 69,10 % 68,62 % 64,91 %

15 68,13 % 67,72 % 65,75 %

16 64,53 % 62,93 % 61,95 %

17 64,29 % 62,84 % 62,24 %

18 66,08 % 64,24 % 62,86 %

19 66,61 % 65,02 % 62,03 %

20 70,88 % 69,70 % 65,35 %

21 71,60 % 71,31 % 67,37 %

22 74,32 % 73,49 % 71,17 %

23 74,21 % 71,71 % 69,98 %

24 74,39 % 71,34 % 69,50 %

25 77,56 % 76,07 % 75,09 %

49



The table below shows the prediction accuracy when using a network trained against the na-
tive AI. 120 games (46 against Protoss, 43 against Terran and 31 against Zerg) of Odin playing
against the native AI were analysed. Prediction accuracies against the three races are weighted
equally.

Time period Current time period 3 time periods ahead 6 time periods ahead

1

2

3 97,95 %

4 96,13 %

5 91,31 %

6 90,90 % 90,23 %

7 89,78 % 89,21 %

8 88,25 % 87,70 %

9 89,45 % 89,26 % 89,42 %

10 89,06 % 88,81 % 87,26 %

11 88,75 % 88,86 % 88,63 %

12 87,45 % 87,26 % 87,07 %

13 86,75 % 86,41 % 86,17 %

14 86,57 % 85,63 % 85,26 %

15 85,12 % 83,22 % 83,20 %

16 85,29 % 83,02 % 82,79 %

17 83,93 % 80,93 % 80,22 %

18 85,11 % 82,74 % 79,93 %

19 83,99 % 82,30 % 78,74 %

20 87,18 % 85,42 % 81,95 %

21 87,71 % 86,03 % 83,50 %

22 85,99 % 83,77 % 82,90 %

23 85,02 % 84,17 % 83,57 %

24 85,11 % 82,50 % 82,40 %

25 81,82 % 80,76 % 79,91 %

50


	Introduction
	Background
	Purpose
	Scope of the project

	Fundamentals of StarCraft
	Real-time strategy games
	StarCraft

	AI development in StarCraft
	Bayesian networks
	Case-based reasoning
	AI research in RTS games
	Existing StarCraft AI agents
	The design of UAlbertaBot

	Method
	Modifications of UAlbertaBot
	Implementing predictions
	Implementing strategic decision-making
	Build Order Bot

	Tests
	Predictions
	Opening strategies
	Army composition generator
	The attack-defend state uncertainty factor

	Results and discussion
	Predictions
	Opening strategies
	Army composition generator
	The attack-defend state uncertainty factor
	Possible sources of errors
	Problems during implementation
	Contributions
	Future work

	Conclusion
	References
	Appendices
	Tools
	StarCraft maps used for testing
	Unit counters
	Opening build orders
	Prediction results

