Fixed Points of Type Constructors
and Primitive Recursion

Andreas Abel

joint work with Ralph Matthes

CSL’04
Karpacz, Karkonoski National Park, Poland
September 21, 2004

Work supported by: GKLI (DFG), TYPES & APPSEM-II (EU), CoVer (SSF)

Regular Data Types

e Regular data types in Haskell:

data Nat = Zero | Succ Nat
data List a = Nil | Cons a (List a)

e Least fixed points of type transformers of kind x — x:

NatF
NatF :=

Nat :
Nat =

X — X

AX. 1+ X

*
1 NatF

e Works also for List, since parameter a can be abstracted.

List * — ¥

List := AA pu(AX.1+Ax X)

Nested Datatypes

e Non-regular or nested datatype: non-empty triangles.
data Tri a = Sg a | Cons a (Tri (e,a))

e Parameter (resp., element type) grows in recursion.

AlF|E | F
A|F | FE
Al E

A

e Fixed point of a type constructor of kind (x — %) — (% — %)
(rank-2 type).

TriF (% — %) — * — Tri @ % — %

TriF = AMXMA. A+ AX X (E x A) Tri = uTriF

Programming with Nested Datatypes ...

e ... requires polymorphic recursion.

e Example: cutting the top row off a trapezium.

cut :: Tri(e,a) -> Tri a

cut (Sg (e,a)) = Sg a

cut (Cons (e,a) r) Cons a (cut r)

e In the recursive call, the argument r has type Tri(e, (e,a)).
e Does the recursive definition of cut have a solution? (Yes.)

e Instance of a terminating programming scheme.

Programming Scheme: [teration

e Description:

— top-down pass: recursive decent into datastructure,

adjusting parameters for the ...
— ... bottom-up pass: composing the result

— herein: each node treated generically, no access to current
position or whole data structure
e Example: Nat.add, List.map, List.foldr
e Properties: termination, computational laws (fusion).

e Drawback: Result is always built from scratch, hence
predecessor functions like Nat.pred, List.tail have linear

time complexity.

Programming Scheme: Primitive Recursion

e Primitive recursive functions: e.g., Nat.factorial or
redecoration (Uustalu/Vene, 2002)

redec :: (List a -> b) -> List a -> List b
redec £ Nil = Nil

redec f (Cons a as) = Cons (f (Cons a as)) (redec f as)

e Like iteration, but access to immediate sublist as itself, not
just to the result of redec for as.

e Hence, access to current position 1 = (Cons a as) on r.h.s.

The Programming Schemes for Rank 1

e Iteration for rank-1 (= regular) datatypes can be simulated by
B-reduction in System F (= A2).

e Primitive recursion can be simulated in an extension Fix (=
A2U) of System F by positive fixed point (=retract) types.
(Geuvers 1992)

It—F

Rec —— Fix

e Primitive recursion cannot be simulated by (-reduction in
System F. (Sptawski/Urzyczyn 1999)

Prim. Rec. for Rank 2: Triangle Redecoration

e Relabelling the diagonal of a triangular matrix: The new
diagonal element is computed from its subtriangle by the

redecoration rule £ :: Tri a -> b.

redec :: (Tri a ->b) -=> Tri a -> Tri b
redec £ t@(Sg a) =8g (f t)
redec f t@(Cons a r) = Cons (f t) (redec (1ift f) r)

e Herein, we need to lift the redecoration rule to a trapezium.

1ift :: (Tri a -> b) -> Tri (e,a) -> (e,b)
lift f t = (aux t, £ (cut t))
where aux (Sg (e,a)) = e

aux (Cons (e,a) r)

I
®

The Programming Schemes for Higher Ranks

e Iteration for rank-n datatypes can be simulated in System F%.
(TYPES 02, FoSSaCS 03, forthcoming TCS)

e New result: primitive recursion can be simulated in Fix™.

[t ——— F¥

Rec” —— Fix”

e Fix”: System F“ with fixed points of positive type constructors.

e Difficulty: What is positivity for higher ranks?

e Solution: Distinguish co-/contra-/invariant type constructors
by polarity annotation in their kind (Steffen 1998).

System Fix*: Syntax

Polarities D =+ covariant
| - contravariant
| o invariant
Kinds K = k| pk — K
Constructors AB,F,G == X|AXPF|FG|A— B|VX"A|fixF
Objects (terms) r,s,t = x| Axt|rs
Contexts A = o | Ajx:A| A XPR

10

System Fix*: Examples

e Impredicative encodings (non-strictly positive):

X +k — 4% — *

X = AXTANYT™™WZ (X ->Y >2)—> 7

+ +k — 4% — *

+ = AXTANY ™YW X —-2)—- (Y —>2)—Z

e Self-composition of monotone X : +* — * is monotone in X:

AXTEHE=R) g+ X (X A) : +(+* — %) — (+*x — %)

e But: self-composition of arbitrary X : ox — * is not monotone
in X:

FAXFTE =9 A% X (X A) :+ +(ox — %) — (0% — %)

11

System Fix*: Kinding

e Function space and quantification:

—AFA: % AFB:x A, X" EFA:x
AFA— B:x AFVXEA: %

—A inverts all polarities in A.

e Positive fixed points:

AFF:4+Kx — K
AFfixEF : k

e Variables:

XPP e A pe{+,o A, XPE - F g

AFX:k AFAMNXPEF :pk — K

12

System Fix*: Kinding of Application

e Application of covariant constructor:

AFF:4+r— K AFG:k
AFFG: K

e Application of contravariant constructor:

AFF:—k — K —AFG:k
AFFG: K

e Application of invariant constructor:

AFF:ok — K oAFG: kK
A+ FG: K

oA erases all assumptions with positive or negative polarity
from A.

13

System Fix“: Equality

e Fixed-point axiom.

AFF:4+Kk— K
AFfix F=F(fix F):k

e Computation: #-axiom.

A, XPEEF K pAFG: kK
AF (AXPEF)G =|G/X]F : K

e [xtensionality: n-axiom.

AFF:prk— K
AFAXPRFX =F 1/

X ¢ FV(F)

e Congruences for all type constructors.

e Symmetry and transitivity. (Reflexivity admissible.)

14

System Fix*: Typing and Reduction

e Typing rules of simply typed lambda-calculus,

e plus quantification,

A X"Ft: A AFt: VX" A oAFF :k
AFt: VX~ A AFt:|[F/X]A

e and type equality (includes fixed point (un)folding).

AFt: A AFA=B:x
AFt:B

e Reduction: just (.

15

System Fix*: Strong Normalization

e Construct a model of untyped strongly normalizing terms.

e Types are interpreted as saturated set of SN terms,

constructors as operators on these sets:

A x — [A] € SAT
F:+k— K — [F] € SAT" =, SAT"

e Positive constructors are interpreted as monotone operators.
e Soundness: If £ : A then t € [A].

e Entails that ¢ cannot be reduced infinitely.

16

Mendler-Style Primitive Recursion

e Natural transformation F CF=* G := VXEFX - GX.

e Formation

p i (k—K)— K

e Introduction
in": F(u"F) C" u"F

e Elimination
s: VX" (X C* u*"F) - (X C*"G) — (FX CFQG)
MRec" s : uvF Cr G

e Reduction
MRecs (int) —3 sid (MRec s) ¢

e 1", in", and MRec" can be defined in Fix™; the reduction rule is

simulated.

17

On “Conventional” Primitive Recursion

e Conventional primitive recursion relies on monotonicity of type

generating functor F.
e For rank 1: monF :=VAVB.(A — B) — (FFA— F B).
e For higher ranks: several formulations of monotonicity.

e Basic monotonicity:
monF :=VA"VB". (AC" B) — (FFAC" F B).

e But: A\X.X o X not basic monotone.

e Hence no primitive recursion principle for truly nested

datatypes like
data Bush a = Nil | Cons a (Bush (Bush a))

e Other notions of monotonicity: FoSSaCS 2003, TCS 2007,

18

Conclusion

Results:

e First formulation (!7) of primitive recursion for nested data
types.

e First formulation (!7) of positive recursive types for higher

ranks.

e Embedding of primitive recursion into fixed-point types

(Geuvers 1992) works also for higher ranks.

Further work: conventional primitive recursion

19

Related Work

e Nested datatypes: Okasaki 1996, Hinze 1998, Bird /Paterson
1999, Altenkirch/Reus 1999

e Polarized higher-order subtyping: Steffen 1998,
Duggan/Compagnoni 1998

20

Appendix: Semantics of Constructors

Let U=, SAT". For valuation 6 € TyVar — U, define
[-], € Constr — U:

[XTy

[AXP* F],

[F Gl

[fix F',

a(X)

F if F e SAT" -2 SAT" for some «’
undef. else

where F(G € SAT") := [Fllgx, g

[F(1G16)

fp £ if F € SAT® — SAT” for some &
undef. else

where F := [F,

21

Properties of Semantics

e Extend interpretation to contexts A.

o Let § € SATA (each variable mapped to semantical operator of
correct kind).

o If A F: k then [F], € SAT" (welldefinedness).
o f AF F=F':k then [F], = [F'], (soundness of equality).

22

