Fixed Points of Type Constructors and Primitive Recursion

Andreas Abel

joint work with Ralph Matthes

CSL'04 Karpacz, Karkonoski National Park, Poland September 21, 2004

Work supported by: GKLI (DFG), TYPES & APPSEM-II (EU), CoVer (SSF)

Regular Data Types

• Regular data types in Haskell:

```
data Nat = Zero | Succ Nat
data List a = Nil | Cons a (List a)
```

• Least fixed points of type transformers of kind $* \rightarrow *$:

$$\begin{array}{lll} \mathsf{NatF} & : & * \to * \\ \mathsf{NatF} & := & \lambda X.\,1 + X \\ \\ \mathsf{Nat} & : & * \\ \mathsf{Nat} & := & \mu\,\mathsf{NatF} \end{array}$$

• Works also for List, since parameter a can be abstracted.

$$\begin{array}{lll} \text{List} & : & * \to * \\ \\ \text{List} & := & \lambda A. \; \mu(\lambda X. \, 1 + A \times X) \end{array}$$

Nested Datatypes

• Non-regular or nested datatype: non-empty triangles.

• Parameter (resp., element type) grows in recursion.

$$egin{array}{c|c|c} A & E & E & E \ A & E & E \ A & E \ A & A \end{array}$$

• Fixed point of a type *constructor* of kind $(* \to *) \to (* \to *)$ (rank-2 type).

Programming with Nested Datatypes . . .

- ... requires *polymorphic* recursion.
- Example: cutting the top row off a trapezium.

```
cut :: Tri(e,a) -> Tri a

cut (Sg (e,a) ) = Sg a

cut (Cons (e,a) r) = Cons a (cut r)
```

- ullet In the recursive call, the argument r has type Tri(e,(e,a)).
- Does the recursive definition of cut have a solution? (Yes.)
- Instance of a *terminating* programming scheme.

• Description:

- top-down pass: recursive decent into datastructure,adjusting parameters for the . . .
- ... bottom-up pass: composing the result
- herein: each node treated generically, no access to current position or whole data structure
- Example: Nat.add, List.map, List.foldr
- Properties: termination, computational laws (fusion).
- Drawback: Result is always built from scratch, hence predecessor functions like Nat.pred, List.tail have linear
 time complexity.

• Primitive recursive functions: e.g., Nat.factorial or redecoration (Uustalu/Vene, 2002)

```
redec :: (List a -> b) -> List a -> List b
redec f Nil = Nil
redec f (Cons a as) = Cons (f (Cons a as)) (redec f as)
```

- Like iteration, but access to immediate sublist as itself, not just to the result of redec for as.
- Hence, access to current position l = (Cons a as) on r.h.s.

- Iteration for rank-1 (= regular) data types can be simulated by $\beta\text{-reduction}$ in System F (= $\lambda2).$
- Primitive recursion can be simulated in an extension Fix (= $\lambda 2U$) of System F by positive fixed point (=retract) types. (Geuvers 1992)

$$Rec \longrightarrow Fix$$

• Relabelling the diagonal of a triangular matrix: The new diagonal element is computed from its subtriangle by the *redecoration rule* f :: Tri a -> b.

```
redec :: (Tri a -> b) -> Tri a -> Tri b
redec f t@(Sg a ) = Sg (f t)
redec f t@(Cons a r) = Cons (f t) (redec (lift f) r)
```

• Herein, we need to lift the redecoration rule to a trapezium.

```
lift :: (Tri a -> b) -> Tri (e,a) -> (e,b)
lift f t = (aux t, f (cut t))
  where aux (Sg (e,a) ) = e
      aux (Cons (e,a) r) = e
```

The Programming Schemes for Higher Ranks

- Iteration for rank-n data types can be simulated in System F^ω . (TYPES 02, FoSSaCS 03, for thcoming TCS)
- New result: primitive recursion can be simulated in Fix^{ω} .

$$\mathsf{It}^\omega \longrightarrow \mathsf{F}^\omega$$

$$Rec^{\omega} \longrightarrow Fix^{\omega}$$

- Fix^{ω} : System F^{ω} with fixed points of positive type constructors.
- Difficulty: What is positivity for higher ranks?
- Solution: Distinguish co-/contra-/invariant type constructors by polarity annotation in their kind (Steffen 1998).

System Fix^{ω} : Syntax

Polarities p ::= + covariant | - contravariant

o invariant

Kinds $\kappa ::= * | p\kappa \to \kappa'$

Constructors $A, B, F, G ::= X \mid \lambda X^{p\kappa} \cdot F \mid F G \mid A \to B \mid \forall X^{\kappa} \cdot A \mid \text{fix } F$

Objects (terms) r, s, t ::= $x \mid \lambda x.t \mid rs$

Contexts $\Delta ::= \diamond | \Delta, x : A | \Delta, X^{p\kappa}$

• Impredicative encodings (non-strictly positive):

• Self-composition of monotone $X: +* \to *$ is monotone in X:

$$\lambda X^{+(+*\to *)} \lambda A^{+*} \cdot X (X A) : +(+*\to *) \to (+*\to *)$$

• But: self-composition of arbitrary $X: \circ * \to *$ is not monotone in X:

$$\not\vdash \lambda X^{+(\circ * \to *)} \lambda A^{\circ *} . X (X A) : +(\circ * \to *) \to (\circ * \to *)$$

• Function space and quantification:

$$\frac{-\Delta \vdash A : * \quad \Delta \vdash B : *}{\Delta \vdash A \to B : *} \qquad \frac{\Delta, X^{\circ \kappa} \vdash A : *}{\Delta \vdash \forall X^{\kappa}. A : *}$$

- $-\Delta$ inverts all polarities in Δ .
- Positive fixed points:

$$\frac{\Delta \vdash F : +\kappa \to \kappa}{\Delta \vdash \operatorname{fix} F : \kappa}$$

• Variables:

$$\frac{X^{p\kappa} \in \Delta \qquad p \in \{+, \circ\}}{\Delta \vdash X : \kappa} \qquad \frac{\Delta, X^{p\kappa} \vdash F : \kappa'}{\Delta \vdash \lambda X^{p\kappa} \cdot F : p\kappa \to \kappa'}$$

• Application of *covariant* constructor:

$$\frac{\Delta \vdash F : +\kappa \to \kappa' \qquad \Delta \vdash G : \kappa}{\Delta \vdash F \, G : \kappa'}$$

• Application of *contravariant* constructor:

$$\frac{\Delta \vdash F : -\kappa \to \kappa' \qquad -\Delta \vdash G : \kappa}{\Delta \vdash F \, G : \kappa'}$$

• Application of *invariant* constructor:

$$\frac{\Delta \vdash F : \circ \kappa \to \kappa' \qquad \circ \Delta \vdash G : \kappa}{\Delta \vdash F \, G : \kappa'}$$

 $\circ \Delta$ erases all assumptions with positive or negative polarity from Δ .

• Fixed-point axiom.

$$\frac{\Delta \vdash F : +\kappa \to \kappa}{\Delta \vdash \operatorname{fix} F = F \left(\operatorname{fix} F\right) : \kappa}$$

• Computation: β -axiom.

$$\frac{\Delta, X^{p\kappa} \vdash F : \kappa' \qquad p\Delta \vdash G : \kappa}{\Delta \vdash (\lambda X^{p\kappa}. F) G = [G/X]F : \kappa'}$$

• Extensionality: η -axiom.

$$\frac{\Delta \vdash F : p\kappa \to \kappa'}{\Delta \vdash \lambda X^{p\kappa} . F \, X = F : \kappa'} \, \, X \not\in \mathsf{FV}(F)$$

- Congruences for all type constructors.
- Symmetry and transitivity. (Reflexivity admissible.)

System Fix^{ω} : Typing and Reduction

- Typing rules of simply typed lambda-calculus,
- plus quantification,

$$\frac{\Delta, X^{\circ \kappa} \vdash t : A}{\Delta \vdash t : \forall X^{\kappa}. A} \qquad \frac{\Delta \vdash t : \forall X^{\kappa}. A \quad \circ \Delta \vdash F : \kappa}{\Delta \vdash t : [F/X]A}$$

• and type equality (includes fixed point (un)folding).

$$\frac{\Delta \vdash t : A \quad \Delta \vdash A = B : *}{\Delta \vdash t : B}$$

• Reduction: just β .

System Fix^{ω} : Strong Normalization

- Construct a model of untyped strongly normalizing terms.
- Types are interpreted as saturated set of SN terms, constructors as operators on these sets:

- Positive constructors are interpreted as monotone operators.
- Soundness: If t : A then $t \in [\![A]\!]$.
- ullet Entails that t cannot be reduced infinitely.

Mendler-Style Primitive Recursion

- Natural transformation $F \subseteq \vec{\kappa} \to * G := \forall \vec{X}^{\vec{\kappa}} \cdot F \vec{X} \to G \vec{X}$.
- Formation

$$\mu^{\kappa}:(\kappa\to\kappa)\to\kappa$$

• Introduction

$$\mathsf{in}^{\kappa}: F(\mu^{\kappa}F) \subseteq^{\kappa} \mu^{\kappa}F$$

• Elimination

$$\frac{s: \forall X^\kappa.\,(X\subseteq^\kappa\mu^\kappa F) \to (X\subseteq^\kappa G) \to (F\,X\subseteq^\kappa G)}{\mathsf{MRec}^\kappa\,s: \mu^\kappa F\subseteq^\kappa G}$$

• Reduction

$$\mathsf{MRec}\, s\, (\mathsf{in}\, t) \longrightarrow_{\beta} s\, \mathsf{id}\, (\mathsf{MRec}\, s)\, t$$

• μ^{κ} , in^{κ} , and MRec^{κ} can be *defined* in Fix^{ω} ; the reduction rule is simulated.

On "Conventional" Primitive Recursion

- ullet Conventional primitive recursion relies on monotonicity of type generating functor F.
- For rank 1: $mon F := \forall A \forall B. (A \rightarrow B) \rightarrow (FA \rightarrow FB).$
- For higher ranks: several formulations of monotonicity.
- Basic monotonicity: $\mathsf{mon} F := \forall A^\kappa \forall B^\kappa. \, (A \subseteq^\kappa B) \to (F \, A \subseteq^\kappa F \, B).$
- But: $\lambda X.X \circ X$ not basic monotone.
- Hence no primitive recursion principle for truly nested datatypes like

```
data Bush a = Nil | Cons a (Bush (Bush a))
```

• Other notions of monotonicity: FoSSaCS 2003, TCS 200?.

Conclusion

Results:

- First formulation (!?) of primitive recursion for nested data types.
- First formulation (!?) of positive recursive types for higher ranks.
- Embedding of primitive recursion into fixed-point types (Geuvers 1992) works also for higher ranks.

Further work: conventional primitive recursion

Related Work

- Nested datatypes: Okasaki 1996, Hinze 1998, Bird/Paterson 1999, Altenkirch/Reus 1999
- Polarized higher-order subtyping: Steffen 1998, Duggan/Compagnoni 1998

Let $U = \bigcup_{\kappa} SAT^{\kappa}$. For valuation $\theta \in TyVar \rightharpoonup U$, define $\llbracket - \rrbracket_{\theta} \in Constr \rightharpoonup U$:

$$\begin{split} \llbracket X \rrbracket_{\theta} &:= \ \theta(X) \\ \llbracket \lambda X^{p\kappa}.F \rrbracket_{\theta} &:= \ \begin{cases} \mathcal{F} & \text{if } \mathcal{F} \in \mathsf{SAT}^{\kappa} \stackrel{p}{\longrightarrow} \mathsf{SAT}^{\kappa'} \text{ for some } \kappa' \\ & \text{undef. else} \end{cases} \\ & \text{where } \mathcal{F}(\mathcal{G} \in \mathsf{SAT}^{\kappa}) := \llbracket F \rrbracket_{\theta[X \mapsto \mathcal{G}]} \\ \llbracket FG \rrbracket_{\theta} &:= \ \llbracket F \rrbracket_{\theta}(\llbracket G \rrbracket_{\theta}) \\ \llbracket \text{fix } F \rrbracket_{\theta} &:= \ \begin{cases} \mathsf{Ifp} \, \mathcal{F} & \text{if } \mathcal{F} \in \mathsf{SAT}^{\kappa} \stackrel{+}{\longrightarrow} \mathsf{SAT}^{\kappa} \text{ for some } \kappa \\ & \text{undef. else} \end{cases} \end{split}$$

where $\mathcal{F} := \llbracket F \rrbracket_{\theta}$

Properties of Semantics

- Extend interpretation to contexts Δ .
- Let $\theta \in \mathsf{SAT}^\Delta$ (each variable mapped to semantical operator of correct kind).
- If $\Delta \vdash F : \kappa$ then $\llbracket F \rrbracket_{\theta} \in \mathsf{SAT}^{\kappa}$ (welldefinedness).
- If $\Delta \vdash F = F' : \kappa$ then $\llbracket F \rrbracket_{\theta} = \llbracket F' \rrbracket_{\theta}$ (soundness of equality).