Programming Language Technology
Putting Formal Languages to Work

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Finite Automata Theory and Formal Languages
TMV027/DIT321, LP4 2016
16 May 2016

Andreas Abel (GU) Programming Language Technology DIT321 2016 1/17

This Lecture: a Taste of PLT

A taste of an application of formal languages and automata

Programming Language Technology

Parsing, type-checking, interpretation, compilation
DAT151 / DIT230
Next edition: 2016/2017 LP2 (November-Jan)

Andreas Abel (GU) Programming Language Technology DIT321 2016 2/17

Parsing

@ latin / old french pars = part(s) (of speech)
@ A parser for a formal language

@ Takes input stream of characters
@ Checks if input forms word of language
© Outputs typically one of:
o Parse tree
o Abstract syntax tree
o Result of interpreting input (if it is a program)

Andreas Abel (GU) Programming Language Technology DIT321 2016 3/17

Running Example: Calculator

@ This lecture: write a parser for a calculator
Expr ::= Number | Expr + Expr | Expr * Expr | (Expr)

@ This grammar is ambiguous:
1+2*3 could be parsed as product 1+2 * 3 or sum 1 + 2%3.

e Disambiguated grammar (left-associative):
Atom ::= Number | (Expr)
Product ::= Atom | Product * Atom
Expr = Product | Expr + Product

Andreas Abel (GU) Programming Language Technology DIT321 2016 4 /17

Implementing Parsers

@ We can write a parser directly, e.g. in Haskell.
parseNumber :: String -> Either Error (Integer, String)
@ Parses a number and returns the remaining input.
Right (345, "")
Right (1, " + 2")
Right (1, "hello")
Left ExpectedNumber

parseNumber "345"

parseNumber "1 + 2"
parseNumber "lhello"
parseNumber "hello"

@ Should skip whitespace.

parseNumber " 345 " = Right (345, " ")

Andreas Abel (GU) Programming Language Technology DIT321 2016 5/17

Composing Parsers

@ Parsers can be combined (google: parser combinators)

type Parser a = String -> Either Error (a, String)
orP :: Parser a -> Parser a -> Parser a
thenP :: Parser a -> Parser b -> Parser (a, b)

@ Can we represent grammar as parser directly!?

parseAtom = parseNumber ‘orP‘
(parseLParen ‘thenP‘ parseExpr ‘thenP‘ parseRParen)

@ Parser combinators became popular with higher-order programming
languages (Haskell, ML)

@ However, there are some caveats ...

Andreas Abel (GU) Programming Language Technology DIT321 2016 6 /17

Problems of Parser Combinators

@ Naive translation of grammar fails

parseExpr = parseProduct ‘orP°¢
(parseExpr ‘thenP‘ parsePlus ‘thenP‘ parseProduct)

parseExpr "hello" loops.

@ Need to write grammar in a form suitable for recursive-decent aka LL
(Left-to-right Left-most-derivation) parsing.

@ Backtracking for alternative orP can be expensive.
Parser might become exponential time.

@ Let's put our formal language theory to work for efficient parsing!

Andreas Abel (GU) Programming Language Technology DIT321 2016 7 /17

From Grammars to Parser Generators

Parsing programming language is one of the foundations of IT

Most programming languages adhere to a context-free grammar
(CFG) suitable for efficient LR-parsing

@ Division of task:

@ Lexer: transforms character string into token stream.

@ Discards whitespace and comments.
@ Recognizes numbers, string literals etc. via finite automata.

@ Parser: processes token stream according to grammar.
Automation:

© Lexers are generated from regular expressions.
@ Parsers are generated from CFGs.

Andreas Abel (GU) Programming Language Technology DIT321 2016 8 /17

Lexical Analyzers

Lexer is short for lexical analyzer.

Big finite automaton with output: In accepting states, a token
(depending on the state) is output.

Typical form: A= (A1 +---+ Ap)*
@ Each automaton A; has a specific output, e.g.:

A; recognizes whitespace, produces no output.
A, recognizes numbers, outputs the number.
As recognizes (, outputs token LParen.

Andreas Abel (GU) Programming Language Technology DIT321 2016 9 /17

Alex: a Lexer Generator for Haskell

@ https://www.haskell.org/alex/
o .x file maps regular expressions to output actions.

$white+ ; —— no
@number { \ s —>
OGnulls {\s —>
" {\s >
! {\s >
e {\s >
" {\s >
@ Abbreviations (
$digit = 0-9
$digitl = 1-9
@number = 0 |
@nulls =0 (0 +)

Andreas Abel (GU)

action

Number (read s) }

error ("invalid number " ++ s) }
Plus }

Times }

LParen }

RParen }

macros) for REs can be given:

$digitl ($digit *)

Programming Language Technology DIT321 2016

10 / 17

https://www.haskell.org/alex/

Example tokens (Haskell code)

data Token
= Number Integer
| Plus

| Times

| LParen

| RParen

Andreas Abel (GU) Programming Language Technology DIT321 2016 11 /17

LR Parsers
o LR = Left-to-right Rightmost-derivation.
o Efficient bottom-up parsing using stack.
@ Two actions:

@ Shift: put input token onto stack.
@ Reduce: replace topmost stack symbol by non-terminal, according to a
grammar rule.

@ Decision whether to shift or to reduce is taken by a finite automaton
running over the stack contents.

@ States of this FA are the parser states.

Andreas Abel (GU) Programming Language Technology DIT321 2016 12 /17

Stack Input

1+2%3
1 +2%3
A +2%3
P +2%3
E +2%3
E+2 *3
E+A *3
E+P *3
E+P%*3
E+P*A
E+P
E

Andreas Abel (GU)

Run of a LR-Parser

Action

shift

reduce Atom
reduce Product
reduce Expr
shift(2)

reduce Atom
reduce Product
shift(2)

reduce Atom
reduce Product
reduce Expr
accept

Programming Language Technology

Product * Atom
Expr + Product

DIT321 2016

13 /17

Happy: A Parser Generator for Haskell

@ https://www.haskell.org/happy/
o .y-file contains token definitions and grammar with actions

Expr : Product {$1}
| Expr ’+’ Product { $1 + $3 %}

Product : Atom { %11}
| Product ’*’ Atom { $1 * $3 }

Atom : num { $1
| >’ Expr ’)° { $2
@ Haskell code inside the { braces }.

o

@ $n refers to value of nth item in rule.

@ This parser directly computes the value of the parsed expression.

Andreas Abel (GU) Programming Language Technology DIT321 2016 14 /17

https://www.haskell.org/happy/

Happy: Token definitions

@ Connect tokens accepted by Happy parser to the ones produced by
the Alex lexer.

Jtokentype { Token }
/%token
’+> { Plus }
’x? { Times }
>(’> { LParen }
>)? { RParen }
num { Number $$ } -- $$ holds the value of the token

Andreas Abel (GU) Programming Language Technology DIT321 2016 15 / 17

|
BNFC: A BNF Compiler

@ Usually, a parser should output the abstract syntax tree (AST).

o Calculating its value can be done in a second pass (interpretation).

o BNFC http://bnfc.digitalgrammars.com/ gives additional
convenience.

o .cf file contains BNF-grammar with rule names.

@ BNFC produces input for several lexer/parser generators from the
same grammar.

@ The generated parsers produce ASTs.

@ BNFC also produces pretty-printers and visitors for these ASTs.

@ Supported languages include: C, C++, Haskell, Java.

Andreas Abel (GU) Programming Language Technology DIT321 2016 16 / 17

http://bnfc.digitalgrammars.com/

Conclusions
@ Suggested exercises:
@ Implement the calculator in your favorite programming language using
its lexer and parser generators.
@ Extend the calculator by subtraction, division, etc.
@ Extend the lexer towards single-line and block comments.
@ Extend the calculator by variables and let-bindings.
@ Implement the calculator using BNFC.

Andreas Abel (GU) Programming Language Technology DIT321 2016 17 / 17

