Programming Language Technology
Putting Formal Languages to Work

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Finite Automata Theory and Formal Languages
TMV027/DIT321, LP4 2016
16 May 2016
This Lecture: a Taste of PLT

- A taste of an application of formal languages and automata
 Programming Language Technology
- Parsing, type-checking, interpretation, compilation
- DAT151 / DIT230
- Next edition: 2016/2017 LP2 (November-Jan)
Parsing

- latin / old french *pars* = part(s) (of speech)
- A *parser* for a formal language
 1. Takes input stream of characters
 2. Checks if input forms word of language
 3. Outputs typically one of:
 - Parse tree
 - Abstract syntax tree
 - Result of interpreting input (if it is a program)
Running Example: Calculator

- This lecture: write a parser for a calculator

\[
\text{Expr} ::= \text{Number} \mid \text{Expr} + \text{Expr} \mid \text{Expr} \ast \text{Expr} \mid (\ \text{Expr}\)
\]

- This grammar is ambiguous:
 1+2*3 could be parsed as product 1+2 * 3 or sum 1 + 2*3.

- Disambiguated grammar (left-associative):

\[
\begin{align*}
\text{Atom} & ::= \text{Number} \mid (\ \text{Expr}\) \\
\text{Product} & ::= \text{Atom} \mid \text{Product} \ast \text{Atom} \\
\text{Expr} & ::= \text{Product} \mid \text{Expr} + \text{Product}
\end{align*}
\]
We can write a parser directly, e.g. in Haskell.

\[
\text{parseNumber} :: \text{String} \rightarrow \text{Either Error (Integer, String)}
\]

Parses a number and returns the remaining input.

\[
\text{parseNumber} \ "345" \ = \ \text{Right} \ (345, \ "")
\]
\[
\text{parseNumber} \ "1 + 2" \ = \ \text{Right} \ (1, \ " + 2")
\]
\[
\text{parseNumber} \ "1\text{hello}" \ = \ \text{Right} \ (1, \ "\text{hello}\")
\]
\[
\text{parseNumber} \ "\text{hello}\" \ = \ \text{Left} \ \text{ExpectedNumber}
\]

Should skip whitespace.

\[
\text{parseNumber} \ " \ 345 \ " \ = \ \text{Right} \ (345, \ "\ ")
\]
Composing Parsers

- Parsers can be combined (google: *parser combinators*)

 \[
 \text{type } \text{Parser } a = \text{String } \rightarrow \text{Either } \text{Error } (a, \text{String}) \\
 \text{orP} :: \text{Parser } a \rightarrow \text{Parser } a \rightarrow \text{Parser } a \\
 \text{thenP} :: \text{Parser } a \rightarrow \text{Parser } b \rightarrow \text{Parser } (a, b)
 \]

- Can we represent grammar as parser directly!?

 \[
 \text{parseAtom} = \text{parseNumber} \ ‘orP‘ \\
 (\text{parseLParen} \ ‘thenP‘ \text{parseExpr} \ ‘thenP‘ \text{parseRParen})
 \]

- Parser combinators became popular with higher-order programming
 languages (Haskell, ML)

- However, there are some caveats ...
Problems of Parser Combinators

- Naive translation of grammar fails

 \[
 \text{parseExpr} = \text{parseProduct} \, \text{‘orP‘} \\
 \quad (\text{parseExpr} \, \text{‘thenP‘} \, \text{parsePlus} \, \text{‘thenP‘} \, \text{parseProduct})
 \]

 \text{parseExpr} \, \text{"hello"} \, \text{loops.}

- Need to write grammar in a form suitable for \textit{recursive-decent} aka \textit{LL} (Left-to-right Left-most-derivation) parsing.

- Backtracking for alternative orP can be expensive. Parser might become exponential time.

- Let’s put our formal language theory to work for efficient parsing!
From Grammars to Parser Generators

- Parsing programming language is one of the foundations of IT
- Most programming languages adhere to a context-free grammar (CFG) suitable for efficient LR-parsing

Division of task:
1. ** Lexer:** transforms character string into token stream.
 - Discards whitespace and comments.
 - Recognizes numbers, string literals etc. via finite automata.

2. ** Parser:** processes token stream according to grammar.

Automation:
1. Lexers are generated from regular expressions.
2. Parsers are generated from CFGs.
Lexical Analyzers

- **Lexer** is short for *lexical analyzer*.
- Big finite automaton with output: In accepting states, a token (depending on the state) is output.
- Typical form: $A = (A_1 + \cdots + A_n)^*$
- Each automaton A_i has a specific output, e.g.:
 - A_1 recognizes whitespace, produces no output.
 - A_2 recognizes numbers, outputs the number.
 - A_3 recognizes $($, outputs token LParen.
 - \ldots
Alex: a Lexer Generator for Haskell

- https://www.haskell.org/alex/
- .x file maps regular expressions to output actions.
 - $\text{white}+ ; \quad \text{-- no action}
 - $\text{@number} \{ \ \ s \rightarrow \text{Number (read } s) \} \}
 - $\text{@nulls} \{ \ \ s \rightarrow \text{error } ("\text{invalid number } " ++ s) \} \}
 - "+" \{ \ \ s \rightarrow \text{Plus } \}
 - "*" \{ \ \ s \rightarrow \text{Times } \}
 - "(" \{ \ \ s \rightarrow \text{LParen } \}
 - ")" \{ \ \ s \rightarrow \text{RParen } \}

- Abbreviations (macros) for REs can be given:
 - $\text{$\text{digit} = 0-9}$
 - $\text{$\text{digit1} = 1-9}$
 - $\text{@number = 0 | $\text{digit1} ($\text{digit } \ast)}$
 - @nulls = 0 (0 +)
Example tokens (Haskell code)

data Token
 = Number Integer
 | Plus
 | Times
 | LParen
 | RParen
LR Parsers

- LR = Left-to-right Rightmost-derivation.
- Efficient bottom-up parsing using stack.
- Two actions:
 1. Shift: put input token onto stack.
 2. Reduce: replace topmost stack symbol by non-terminal, according to a grammar rule.
- Decision whether to shift or to reduce is taken by a finite automaton running over the stack contents.
- States of this FA are the parser states.
Run of a LR-Parser

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
<th>Action Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+2*3</td>
<td>shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+2*3</td>
<td>reduce</td>
<td>Atom ::= Number</td>
</tr>
<tr>
<td>A</td>
<td>+2*3</td>
<td>reduce</td>
<td>Product ::= Atom</td>
</tr>
<tr>
<td>P</td>
<td>+2*3</td>
<td>reduce</td>
<td>Expr ::= Product</td>
</tr>
<tr>
<td>E</td>
<td>+2*3</td>
<td>shift(2)</td>
<td></td>
</tr>
<tr>
<td>E+2</td>
<td>*3</td>
<td>reduce</td>
<td>Atom ::= Number</td>
</tr>
<tr>
<td>E+A</td>
<td>*3</td>
<td>reduce</td>
<td>Product ::= Atom</td>
</tr>
<tr>
<td>E+P</td>
<td>*3</td>
<td>shift(2)</td>
<td></td>
</tr>
<tr>
<td>E+P*3</td>
<td></td>
<td>reduce</td>
<td>Atom ::= Number</td>
</tr>
<tr>
<td>E+P*A</td>
<td></td>
<td>reduce</td>
<td>Product ::= Product * Atom</td>
</tr>
<tr>
<td>E+P</td>
<td></td>
<td>reduce</td>
<td>Expr ::= Expr + Product</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>accept</td>
<td></td>
</tr>
</tbody>
</table>
Happy: A Parser Generator for Haskell

- https://www.haskell.org/happy/
- .y-file contains token definitions and grammar with actions

```
Expr   : Product       { $1 }
   | Expr '++' Product   { $1 + $3 }

Product : Atom         { $1 }
   | Product '*' Atom    { $1 * $3 }

Atom   : num           { $1 }
   | '( Expr ')'        { $2 }
```

- Haskell code inside the { braces }.
- n refers to value of nth item in rule.
- This parser directly computes the value of the parsed expression.
Connect tokens accepted by Happy parser to the ones produced by the Alex lexer.

```haskell
%tokentype { Token }
%token
  '+' { Plus }
  '*' { Times }
  '(' { LParen }
  ')' { RParen }
num { Number $$ }  -- $$ holds the value of the token
```
BNFC: A BNF Compiler

- Usually, a parser should output the abstract syntax tree (AST).
- Calculating its value can be done in a second pass (interpretation).
- .cf file contains BNF-grammar with rule names.
- BNFC produces input for several lexer/parser generators from the same grammar.
- The generated parsers produce ASTs.
- BNFC also produces pretty-printers and visitors for these ASTs.
- Supported languages include: C, C++, Haskell, Java.
Conclusions

- Suggested exercises:
 - Implement the calculator in your favorite programming language using its lexer and parser generators.
 - Extend the calculator by subtraction, division, etc.
 - Extend the lexer towards single-line and block comments.
 - Extend the calculator by variables and let-bindings.
 - Implement the calculator using BNFC.