Programming Language Technology
Putting Formal Languages to Work

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Finite Automata Theory and Formal Languages
TMV027/DIT321, LP4 2017
11 May 2017
This Lecture: a Taste of PLT

- Lecture material: http://www.cse.chalmers.se/~abela/
- A taste of an application of formal languages and automata
 Programming Language Technology
- Parsing, type-checking, interpretation, compilation
- DAT151 / DIT231
- Next edition: 2017/2018 LP2 (November-Jan)
Task: Implement Calculator With Variables

$ Calc
1+2
==> 3
1+2*3+4*5
==> 27
x where x = 1
==> 1
(x*y where x=2) where y=3
==> 6
x where x = y where y=42
==> 42
x where x = x
==> Calc: undefined variable x
Calculator Master Plan

- Read string from stdin.
- Parse input.
- Calculate result.
- Print result to stdout.
- Start over.
Parsing

- latin / old french *pars* = part(s) (of speech)

- A parser for a formal language
 1. takes input stream of characters
 2. checks if input forms word of language
 3. outputs typically one of:
 - Yes/no (*accepting* parser).
 - Parse tree.
 - Abstract syntax tree.
 - Result of interpreting input (e.g. for our calculator).

- You already encountered accepting parsers: automata, CYK.
Recognizing a sentence in two phases:
Marce, veni!

Lexical analysis (2): recognize lexical structure: words, punctuation.
Marce, veni!

The lexical analysis returns a token stream.
Name(Marce) Comma Word(veni) Bang

Grammatical analysis (2): recognize grammatical structure.

```
SimpleCommand
  Vocative(Marcus)
  Infinitive(venire)
```
Formal Language Parsing

- Formal word:
 \(\text{wher} + 1 \times 2 \text{where } \text{wher} = (42) \)

- Lexical analysis:
 \(\text{wher} + 1 \times 2 \text{where } \text{wher} = (42) \)

 \(\text{Ident(wher) Plus Number(1) Times Number(2) Where Ident(wher) Equals LParen Number(42) RParen} \)

- Grammatical analysis:
 \(\text{Local(wher,Num(42),Plus(Var(wher),Times(Num(1),Num(2))))} \)
Calculator Grammar

- **Naive Grammar**

 \[
 \text{Expr} ::= \text{Ident} | \text{Number} | (\text{Expr}) \\
 \quad | \text{Expr} \times \text{Expr} | \text{Expr} + \text{Expr} \\
 \quad | \text{Expr} \text{ where } \text{Ident} = \text{Expr}
 \]

- This grammar is ambiguous:

 1+2*3 could be parsed as product 1+2 \times 3 or sum 1 + 2*3.

- **Disambiguated grammar:**

 \[
 \text{Atom} ::= \text{Ident} | \text{Number} | (\text{Expr}) \\
 \text{Product} ::= \text{Atom} | \text{Product} \times \text{Atom} \\
 \text{Sum} ::= \text{Product} | \text{Sum} + \text{Product} \\
 \text{Expr} ::= \text{Sum} | \text{Sum} \text{ where } \text{Ident} = \text{Expr}
 \]
From Grammars to Parser Generators

- Most programming languages adhere to a context-free grammar (CFG) suitable for efficient LR-parsing

Division of labor:

1. **Lexer**: transforms character string into token stream.
 - Discards whitespace and comments.
 - Recognizes numbers, string literals etc. via finite automata.

2. **Parser**: processes token stream according to grammar.

Automation:

1. Lexers are generated from regular expressions.
2. Parsers are generated from CFGs.
Lexical Analyzers

- **Lexer** is short for *lexical analyzer*.
- Big finite automaton with output: In accepting states, a token (depending on the state) is output.
- **Typical form:** \(A = (A_1 + A_2 + \cdots + A_n)^* \)
- Each automaton \(A_i \) has a specific output, e.g.:
 - \(A_1 \) recognizes whitespace, produces no output.
 - \(A_2 \) recognizes numbers, outputs the number.
 - \(A_3 \) recognizes \((\), outputs token \(\text{LParen} \).
 - \(\ldots \)
- Longest match takes priority, then first match. E.g.:
 - whereas: **Identifier** RE has longer match than **keyword where**
 - where: Matches both **identifier** and **keyword**
Alex: a Lexer Generator for Haskell

.x file maps regular expressions to output actions.

- $white+ ; -- no action
- "where" { \ s -> Where }
- @ident { \ s -> Ident s }
- @number { \ s -> Number (read s) }
- "+" { \ s -> Plus }
- "*" { \ s -> Times }
- "(" { \ s -> LParen }
- ")" { \ s -> RParen }
- "=" { \ s -> Equals }

Abbreviations (macros) for REs:

- $digit = 0-9 @number = 0 | $digit1 ($digit *)
- $digit1 = 1-9 @ident = $lower +
- $lower = a-z
Example Tokens (Haskell code)

```haskell
data Token
    = Ident String     -- E.g. x
    | Number Integer   -- E.g. 123
    | Plus             -- +
    | Times            -- *
    | LParen           -- ( 
    | RParen           -- )
    | Equals           -- =
    | Where            -- where
```
LR Parsers

- LR = Left-to-right Rightmost-derivation.
- Efficient $O(n)$ bottom-up parsing using stack. (CYK: $O(n^3)$)
- Actions:
 1. **Shift**: put input token onto stack.
 2. **Reduce**: replace topmost stack symbols by a non-terminal, according to a grammar rule.
- Decision whether to **shift** or to **reduce** is taken by a finite automaton running over the stack contents.
- States of this FA are the **parser states**.
Run of a LR-Parser

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+2*3</td>
<td>shift</td>
<td>1+2*3</td>
</tr>
<tr>
<td>1</td>
<td>reduce</td>
<td>Atom</td>
</tr>
<tr>
<td>A</td>
<td>reduce</td>
<td>Product</td>
</tr>
<tr>
<td>P</td>
<td>reduce</td>
<td>Sum</td>
</tr>
<tr>
<td>S</td>
<td>shift(2)</td>
<td>2*3</td>
</tr>
<tr>
<td>S+2</td>
<td>*3</td>
<td>reduce</td>
</tr>
<tr>
<td>S+A</td>
<td>*3</td>
<td>reduce</td>
</tr>
<tr>
<td>S+P</td>
<td>*3</td>
<td>reduce</td>
</tr>
<tr>
<td>S+P*3</td>
<td></td>
<td>reduce</td>
</tr>
<tr>
<td>S+P*A</td>
<td></td>
<td>reduce</td>
</tr>
<tr>
<td>S+P</td>
<td></td>
<td>reduce</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>reduce</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>accept</td>
</tr>
</tbody>
</table>

1 + 2*3 := Number

Product ::= Atom

Sum ::= Product

Product ::= Product * Atom

Sum ::= Sum + Product

Expr ::= Sum
Happy: A Parser Generator for Haskell

- https://www.haskell.org/happy/
- .y-file contains token definitions and *grammar with actions*

```haskell
Sum  : Product { $1 }
| Sum '+' Product { plus $1 $3 }

Product : Atom { $1 }
| Product '*' Atom { times $1 $3 }

Atom  : num { number $1 }
| '(' Expr ')' { $2 }
```

- Haskell code inside the { braces }.
- n refers to value of nth item in rule.
- This parser directly computes the value of the parsed expression.
Happy: Token definitions

- Connect tokens accepted by Happy parser to the ones produced by the Alex lexer.

```plaintext
%tokentype { Token } 
%token
  '+', { Plus }
  '*', { Times }
  '(', { LParen }
  ')', { RParen }
  '=', { Equals }
  'where', { Where }
  num { Number $$ } -- $$ holds the value of the token
  id { Ident $$ }
```
BNFC: A BNF Compiler

- Usually, a parser should output the abstract syntax tree (AST).
- Calculating its value can be done in a second pass (interpretation).
- .cf file contains BNF-grammar with rule names.
- BNFC produces input for several lexer/parser generators from the same grammar.
- The generated parsers produce ASTs.
- BNFC also produces pretty-printers and visitors for these ASTs.
- Supported languages include: C, C++, Haskell, Java.
Conclusions

- Suggested exercises:
 - Implement the calculator in your favorite programming language using its lexer and parser generators.
 - Extend the calculator by subtraction, division, etc.
 - Extend the lexer towards single-line and block comments.
 - Implement the calculator using BNFC.
Implementing Parsers

- We can write a parser directly, e.g. in Haskell.

\[
\text{parseNumber} :: \text{String} \rightarrow \text{Either} \text{ Error} (\text{Integer}, \text{String})
\]

- Parses a number and returns the remaining input.

\[
\begin{align*}
\text{parseNumber} \ "345" &= \text{Right} (345, \ "") \\
\text{parseNumber} \ "1 + 2" &= \text{Right} (1, \ " + 2") \\
\text{parseNumber} \ "1hello" &= \text{Right} (1, \ "hello") \\
\text{parseNumber} \ "hello" &= \text{Left} \text{ ExpectedNumber}
\end{align*}
\]

- Should skip whitespace.

\[
\text{parseNumber} \ "\ 345 \ " = \text{Right} (345, \ "\ ")
\]
Composing Parsers

- Parsers can be combined (google: *parser combinators*)

  ```haskell
type Parser a = String -> Either Error (a, String)
  orP :: Parser a -> Parser a -> Parser a
  thenP :: Parser a -> Parser b -> Parser (a, b)
  ```

- Can we represent grammar as parser directly!?
  ```haskell
  parseAtom = parseNumber 'orP'
    (parseLParen 'thenP' parseExpr 'thenP' parseRParen)
  ```

- Parser combinators became popular with higher-order programming languages (Haskell, ML)

- However, there are some caveats . . .
Problems of Parser Combinators

- Naive translation of grammar fails

 \[
 \text{parseExpr} = \text{parseProduct} \ 'orP' \\
 (\text{parseExpr} \ 'thenP' \ \text{parsePlus} \ 'thenP' \ \text{parseProduct})
 \]

 parseExpr "hello" loops.

- Need to write grammar in a form suitable for \textit{recursive-decent} aka \textit{LL} (Left-to-right-left-most-derivation) parsing.

- Backtracking for alternative \texttt{orP} can be expensive. Parser might become exponential time.

- Let’s put our formal language theory to work for efficient parsing!