
Normalization in Lambda-Calculus

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Mini-Course
McGill University, Montreal, Canada

4 and 6 December 2012

Andreas Abel (LMU) Normalization McGill 1 / 1

Untyped Lambda-Calculus

Untyped Lambda-Calculus

Λ-terms and contexts:

r , s, t, u, v ::= x | λxt | t u
C ::= [] | λxC | C u | t C

β-Contraction:
(λxt) u 7→ t[u/x]

Full β-reduction: allow reduction in each subterm.

t 7→ t ′

C [t] −→ C [t ′]

Multi-step reduction:

−→+ transitive closure of −→
−→∗ reflexive-transitive closure of −→

Andreas Abel (LMU) Normalization McGill 2 / 1

Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Normalization

Definition (Normal)

t is normal if it has no reduct, t 6−→.

Definition (Weak normalization)

t is weakly normalizing (has a normal form) if t −→∗ v 6−→.

Definition (Strong normalization, classically)

t is strongly normalizing if there exists no infinite reduction sequence
t −→ t1 −→ t2 −→

Definition (Strong normalization, constructively, inductively)

t is strongly normalizing if all of its reducts are strongly normalizing.

{t ′ | t −→ t ′} ⊆ sn

t ∈ sn
Andreas Abel (LMU) Normalization McGill 3 / 1

Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Strong normalization, constructively

(t −→) ⊆ sn

t ∈ sn

Intuitively: Each path in the reduction tree of t is finite.

. . .

t11

OO <<

t12 . . . t31 t41 t42

OO <<

. . .

t1

OO == 66

t2 t3

OO

t4

OO ==

. . .

t

OO 66 44 22 22

We say: the reduction tree is well-founded.
Leaves are normal forms.

Andreas Abel (LMU) Normalization McGill 4 / 1

Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Examples

Ex: Any strongly normalizing Λ-term is weakly normalizing.

Let Ω = (λx . x x) (λx . x x), K = λxλy . x , I = λx . x .

Ω −→ Ω −→ Ω −→ . . .

Ω admits an infinite reduction sequence (Ω 6∈ sn).

Ω −→ t iff t = Ω.

Ω diverges/has no normal form.

K I Ω is weakly, but not strongly normalizing.

I . . .

I K I Ω

OO ;;

K I Ω

OO 99

Andreas Abel (LMU) Normalization McGill 5 / 1

Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Proving properties of sn

Theorem (Subterm)

Any subterm of a strongly normalizing term is strongly normalizing itself.

(Does not hold for weak normalization, see K I Ω.)

Classical proof: Let t = C [s] ∈ sn. Assume there is an infinite
reduction sequence s −→ s1 −→ s2 −→ Then, there is also an
infinite sequence C [s] −→ C [s1] −→ Contradiction. So, s ∈ sn.

Constructive proof: Consider the reduction tree T of t = C [s]. We
construct the reduction tree S of s by deleting all nodes (with
subtrees) of T which are not of the form C [s ′]. Since T was
well-founded, so is S .

Andreas Abel (LMU) Normalization McGill 6 / 1

Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Noetherian/wellfounded induction

Inductive definition of sn:

∀t ′. t −→ t ′ =⇒ t ′ ∈ sn

t ∈ sn

Definition (Noetherian/wellfounded induction)

To prove ∀t ∈ sn. P(t), we have the induction hypothesis

∀t ′. t −→ t ′ =⇒ P(t ′).

Meaning: to prove P(t) we can use P(t ′) for all reducts t ′ of t.

Intuition: if there are no infinite reduction sequences, we can view reducts
as smaller.

Andreas Abel (LMU) Normalization McGill 7 / 1

Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Proving properties of sn by wellfounded induction

Theorem (Subterm)

Any subterm of a strongly normalizing term is strongly normalizing itself.
C [s] ∈ sn =⇒ s ∈ sn.

Proof: By well-founded induction on t ∈ sn, we show
P(t) := (∀u. t = C [u] =⇒ u ∈ sn). Assume t = C [s]. To show
s ∈ sn it is sufficient to show s ′ ∈ sn for an arbitrary s ′ with s −→ s ′.
Since t = C [s] −→ C [s ′] we have by induction hypothesis P(C [s ′]).
Choosing u = s ′, with C [s ′] = C [s ′], we get s ′ ∈ sn.

Andreas Abel (LMU) Normalization McGill 8 / 1

Untyped Lambda-Calculus Finitary Inductive Characterizations

Inductive Characterization of Normal Forms

Neutral (atomic) terms by rules:

x ⇓
r ⇓ s ⇑

r s ⇓

Normal terms by rules:
r ⇓
r ⇑

t ⇑
λxt ⇑

Normal: t ⇑ iff t 6−→.

Neutral: t ⇓ iff t 6−→ and t not a lambda-abstraction.

Andreas Abel (LMU) Normalization McGill 9 / 1

Untyped Lambda-Calculus Finitary Inductive Characterizations

Closure Properties of sn

If t[s/x] ∈ sn, then t ∈ sn.
Neutral terms (implications, written as rules):

x ∈ sn

r ∈ sn r = x ~s s ∈ sn

r s ∈ sn

λs and weak head redexes:

t ∈ sn

λxt ∈ sn

s ∈ sn s1, ..., sn ∈ sn t[s/x] s1 ... sn ∈ sn

(λxt) s s1 ... sn ∈ sn

Eliminating the ellipsis ...:

u ∈ sn

(λxt)u −→sn t[u/x]

t −→sn t ′

t u −→sn t ′ u

r −→sn r ′ r ′ ∈ sn

r ∈ sn

Andreas Abel (LMU) Normalization McGill 10 / 1

Untyped Lambda-Calculus Finitary Inductive Characterizations

Closure under Strong Head Expansion
Theorem

If r −→sn r ′ and r ′ ∈ sn then r ∈ sn and r not a λ.

Proof.

By induction on r −→sn r ′.
u ∈ sn

(λxt)u −→sn t[u/x]

Have t[u/x] ∈ sn. Side induction on (1) t ∈ sn and (2) u ∈ sn. Show
(λxt)u −→ s implies s ∈ sn. Case s = (λxt ′)u covered by (1), (λxt)u′ by
(2), t[u/x] by assumption.

t −→sn t ′

t u −→sn t ′ u

By ind. hyp., t ∈ sn and t not a λ. Side induction on (1) t ∈ sn and (2)
u ∈ sn. Show t u −→ s implies s ∈ sn. Cases (1) s = t ′′ u and (2) s = t u′

covered accordingly.
Andreas Abel (LMU) Normalization McGill 11 / 1

Untyped Lambda-Calculus Finitary Inductive Characterizations

Inductive Characterization of Strongly Normalizing Terms

Strongly normalizing neutral terms:

x ∈ SNe

r ∈ SNe s ∈ SN

r s ∈ SNe

Strongly normalizing terms:

r ∈ SNe

r ∈ SN

t ∈ SN

λxt ∈ SN

t −→SN t ′ t ′ ∈ SN

t ∈ SN

Strong head reduction:

u ∈ SN

(λxt)u −→SN t[u/x]

t −→SN t ′

t u −→SN t ′ u

Andreas Abel (LMU) Normalization McGill 12 / 1

Untyped Lambda-Calculus Finitary Inductive Characterizations

Soundness of SN

Theorem (Soundness of SN)

1 If t ∈ SN then t ∈ sn.

2 If t ∈ SNe then t ∈ sn and t = x ~s.

3 If t −→SN t ′ then t −→sn t ′.

Proof.

By induction on the derivation, using the closure properties of sn.

Andreas Abel (LMU) Normalization McGill 13 / 1

Untyped Lambda-Calculus Finitary Inductive Characterizations

Completeness of SN

Theorem (Completeness of SN)

1 If t = x ~s ∈ sn then x ~s ∈ SNe.

2 If t = (λxr)s ~s ∈ sn then t −→SN r [s/x]~s.

3 If t ∈ sn then t ∈ SN.

Proof.

By lexicographic induction on the height of the reduction tree of t and the
height of t.

Andreas Abel (LMU) Normalization McGill 14 / 1

Simple Types

Simply-Typed Lambda-Calculus

Type assignment to untyped terms:

(x :A) ∈ Γ

Γ ` x : A

Γ ` r : A→ B Γ ` s : A

Γ ` r s : B

Γ, x :A ` t : B

Γ ` λxt : A→ B

Application difficult: r , s ∈ SN 6=⇒ r s ∈ SN.

Proof of strong normalization, outline:

Γ ` t : C

�� induction on types

Γ ` t ⇑ C

�� type erasure

t ∈ SN

Andreas Abel (LMU) Normalization McGill 15 / 1

Simple Types

Typed SN

Typed version of SNe.

(x :A) ∈ Γ

Γ ` x ⇓ A

Γ ` r ⇓ A→ B Γ ` s ⇑ A

Γ ` r s ⇓ B

Typed version of SN.

Γ ` t ⇓ C

Γ ` t ⇑ C

Γ, x :A ` t ⇑ B

Γ ` λxt ⇑ A→ B

Γ ` r −→ r ′ ⇑ C Γ ` r ′ ⇑ C

Γ ` r ⇑ C

Typed version of −→SN.

Γ, x :A ` t : B Γ ` s ⇑ A

Γ ` (λxt)s −→ t[s/x] ⇑ B

Γ ` r −→ r ′ ⇑ A→ B Γ ` s : A

Γ ` r s −→ r ′ s ⇑ B

Andreas Abel (LMU) Normalization McGill 16 / 1

Simple Types

Closure of typed SN under application

Theorem

If Γ ` r ⇑ A→ B and Γ ` s ⇑ A then Γ ` r s ⇑ B.

Interesting case:

Γ, x :A ` t ⇑ B

Γ ` λxt ⇑ A→ B
Γ ` s ⇑ A

To show Γ ` (λxt)s ⇑ B we need Γ ` t[s/x] ⇑ B.

Follows from closure under substitution.

Substitution could be tricky if t = x u: then t[s/x] = su.

Need again application thm., but type of u is smaller then type A of x .

Andreas Abel (LMU) Normalization McGill 17 / 1

Simple Types

Typed SN is closed under substitution

Lemma (Substitution)

Let Γ ` s ⇑ A.

1 If Γ, x :A, Γ′ ` r ⇓ C then either Γ, Γ′ ` r [s/x] ⇓ C or
Γ, Γ′ ` r [s/x] ⇑ C and C is smaller than A.

2 If Γ, x :A, Γ′ ` r ⇑ C then Γ, Γ′ ` r [s/x] ⇑ C.

3 If Γ, x :A, Γ′ ` r −→ r ′ ⇑ C then Γ, Γ′ ` r [s/x] −→ r ′[s/x] ⇑ C.

Proof.

Simultaneously by main induction on A and side induction on the
derivation.

Andreas Abel (LMU) Normalization McGill 18 / 1

Simple Types

Strong normalization for simple types

Theorem

If Γ ` t : C then t ∈ SN.

Proof.

Prove Γ ` t ⇑ C by induction on the type derivation, using closure under
application. Then, erase to t ∈ SN.

Further details and Twelf formalization: [Abel, LFM 2004].
Related: hereditary substitutions [Watkins et al., 2002].

Andreas Abel (LMU) Normalization McGill 19 / 1

Intersection Types

Intersection Types

Γ ` t : A Γ ` t : B

Γ ` t : A ∩ B

Γ ` r : A ∩ B

Γ ` r : A

Γ ` r : A ∩ B

Γ ` r : B

STL with intersection types is strongly normalizing.

Any strongly normalizing term can be typed with intersections.

t ∈ SN ⇐⇒ ∃Γ,A. Γ ` t : A

Example: λx . x x : (A ∩ (A→ B))→ B.

Andreas Abel (LMU) Normalization McGill 20 / 1

Intersection Types

SN for intersection types

Add rules for ∩-elimination to ⇓:

Γ ` r ⇓ A ∩ B

Γ ` r ⇓ A

Γ ` r ⇓ A ∩ B

Γ ` r ⇓ B

Add rules for ∩-introduction to ⇑:

Γ ` t ⇑ A Γ ` t ⇑ B

Γ ` t ⇑ A ∩ B

Lemma (Closure under ∩-elimination)

If Γ ` t ⇑ A ∩ B then Γ ` t ⇑ A and Γ ` t ⇑ B [Abel, HOR 2007].

Andreas Abel (LMU) Normalization McGill 21 / 1

Intersection Types

Completeness of Intersection Types for SN

Lemma (Anti-substitution)

Let Γ ` s : A0. If Γ ` t[s/x] : C then Γ, x :A ` t : C and Γ ` s : A for
some A.

For instance y : N→ A ` y 0 : A and y : B ` y [y 0/x] : B. Have
y : B ∩ (N→ A) ` y 0 : A and y : B ∩ (N→ A), x : A ` y : B. Thus,
y : B ∩ (N→ A) ` (λxy)(y 0) : B (subject expansion).

Theorem

1 If r ∈ SNe then Γ ` r : X for some Γ and type variable X .

2 If t ∈ SN then Γ ` t : A for some Γ, A.

3 If t −→SN t ′ and Γ′ ` t ′ : C then Γ ` t : C for some Γ.

Andreas Abel (LMU) Normalization McGill 22 / 1

	Untyped Lambda-Calculus
	Infinitary Definition of Strong Normalization
	Finitary Inductive Characterizations

	Simple Types
	Intersection Types

