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Untyped Lambda-Calculus

Untyped Lambda-Calculus

@ /\-terms and contexts:

r,s,tyu, v o= x| Axt|tu

C | \AC | Cu|tC

e [3-Contraction:
(Axt) u— tlu/x]

@ Full g-reduction: allow reduction in each subterm.
t—t
C[t] — C[t]
@ Multi-step reduction:
— transitive closure of —

—* reflexive-transitive closure of —
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Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Normalization

Definition (Normal)
t is normal if it has no reduct, t /—.

Definition (Weak normalization)

t is weakly normalizing (has a normal form) if t —* v /—.

Definition (Strong normalization, classically)

t is strongly normalizing if there exists no infinite reduction sequence
t— ) —th —> ...

Definition (Strong normalization, constructively, inductively)
t is strongly normalizing if all of its reducts are strongly normalizing.

{t/|t—t'} Csn
t €sn
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Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Strong normalization, constructively

(t — ) Cosn
t € sn
Intuitively: Each path in the reduction tree of t is finite.

P -

t117 o i i “
t1 tr t3 ty .

/

We say: the reduction tree is well-founded.
Leaves are normal forms.
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Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Examples

Ex: Any strongly normalizing A-term is weakly normalizing.
Let Q = (Ax. x x) (Ax.xx), K = Ax\y.x, | = Ax. x.
Q—Q—Q— ...

Q2 admits an infinite reduction sequence (€2 ¢ sn).

Q— tiff t = Q.

Q diverges/has no normal form.

K | Q is weakly, but not strongly normalizing.

Q

/ K
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Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Proving properties of sn

Theorem (Subterm)

Any subterm of a strongly normalizing term is strongly normalizing itself.

@ (Does not hold for weak normalization, see K | 2.)

o Classical proof: Let t = C[s| € sn. Assume there is an infinite
reduction sequence s — s; — s» — .... Then, there is also an
infinite sequence C[s] — C[s;] — .... Contradiction. So, s € sn.

e Constructive proof: Consider the reduction tree T of t = C[s]. We
construct the reduction tree S of s by deleting all nodes (with
subtrees) of T which are not of the form C[s']. Since T was
well-founded, so is S.
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Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Noetherian /wellfounded induction

Inductive definition of sn:

Vt'.t — t/ = t' €sn
t € sn

Definition (Noetherian/wellfounded induction)

To prove Vt € sn. P(t), we have the induction hypothesis

Vit —t' = P(t).

Meaning: to prove P(t) we can use P(t') for all reducts t' of t.

Intuition: if there are no infinite reduction sequences, we can view reducts

as smaller.
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Untyped Lambda-Calculus Infinitary Definition of Strong Normalization

Proving properties of sn by wellfounded induction

Theorem (Subterm)
Any subterm of a strongly normalizing term is strongly normalizing itself.
Cls] €sn = s e sn.

@ Proof: By well-founded induction on t € sn, we show
P(t):= (Vu.t = Clu] = u € sn). Assume t = C[s|. To show
s € sn it is sufficient to show s’ € sn for an arbitrary s’ with s — ',
Since t = C[s] — C[s’] we have by induction hypothesis P(C[s]).
Choosing u = s, with C[s'] = C[s'], we get s’ € sn.
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Untyped Lambda-Calculus Finitary Inductive Characterizations

Inductive Characterization of Normal Forms

e Neutral (atomic) terms by rules:

ol st
x | rsi
@ Normal terms by rules:
o tt
rA Axt 1)
o Normal: t ) iff t /—.
o Neutral: t |} iff t /= and t not a lambda-abstraction.
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Untyped Lambda-Calculus Finitary Inductive Characterizations

Closure Properties of sn

o If t[s/x] € sn, then t € sn.
o Neutral terms (implications, written as rules):
r €sn r=xs s€sn
X €sn rsesn

@ JAs and weak head redexes:

t €sn S €sn S1,...,S, € sn t[s/x]| si...sp € sn

AXt € sn (Axt)ssi...sp € sn
o Eliminating the ellipsis ...:
u € sn t —en t/ r—en ' r' € sn
(Axt)u —p tu/x] tu—se t'u r €sn
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Untyped Lambda-Calculus Finitary Inductive Characterizations

Closure under Strong Head Expansion
Theorem

If r —s<, ' and r' € sn then r € sn and r not a \.

Proof.

By induction on r —, r’.
u € sn

(Axt)u —sn tlu/x]

Have t[u/x]| € sn. Side induction on (1) ¢ € sn and (2) u € sn. Show
(Axt)u —> s implies s € sn. Case s = (Axt’)u covered by (1), (Axt)u" by
(2), t[u/x] by assumption.
o 6
tu —>sy t'u

By ind. hyp., t € sn and t not a A. Side induction on (1) t € sn and (2)
u € sn. Show tu — s implies s € sn. Cases (1) s =t" v and (2) s =t v/
covered accordingly. Ol
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Untyped Lambda-Calculus Finitary Inductive Characterizations

Inductive Characterization of Strongly Normalizing Terms

@ Strongly normalizing neutral terms:

r € SNe s €SN
x € SNe rs € SNe

@ Strongly normalizing terms:

r € SNe t € SN t —son t t' € SN
r € SN Axt € SN t € SN

@ Strong head reduction:

u e SN t —sn t/
(Axt)u —sn t{u/x] tu—sN t'u
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Untyped Lambda-Calculus Finitary Inductive Characterizations

Soundness of SN

Theorem (Soundness of SN)
Q@ I/ft €SN then t € sn.
Q I/ft € SNe thent €sn and t = xs.
Q Ift —gnt thent —, t'.

Proof.
By induction on the derivation, using the closure properties of sn. [
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Untyped Lambda-Calculus Finitary Inductive Characterizations

Completeness of SN

Theorem (Completeness of SN)
Q /ft = x5 € sn then x5 € SNe.
@ Ift = (Axr)ss € sn then t —sp r[s/x]s.
© I/ft esnthent e SN.

Proof.
By lexicographic induction on the height of the reduction tree of t and the
height of t. O

'
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Simply-Typed Lambda-Calculus

@ Type assignment to untyped terms:

(x:A) el r-r:A—=~B N=s:A Mx:Akt:B
NEx:A NFrs: B N=XAxt:A—= B

@ Application difficult: r,s € SN 4 rs & SN.
@ Proof of strong normalization, outline:

Fret:C
J/ induction on types
Fr=eq C
J/ type erasure
t e SN
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Typed SN

@ Typed version of SNe.

(x:A)el  TFrFrlA—>B TFsfA
FexUA F-rs{B

@ Typed version of SN.

FrFtyC TxAFtfB Thrr—rfC TFIHC
FrFtfC THFMAYA—B Ferg C

@ Typed version of —>gy.

MNx:Akt:B r-stA 'er—r1+A-B MEs:A
[+ (Axt)s — t[s/x] t B Fr-rs—r'sq{B
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Simple Types

Closure of typed SN under application

Theorem
Ifl FrfA— Bandl-s{t Athenl - rs1 B. J

@ Interesting case:

MMx:AFtH B
-t A— B

M-sqA

@ To show I = (Axt)s } B we need I F t[s/x] 1} B.

@ Follows from closure under substitution.

@ Substitution could be tricky if t = x u: then t[s/x]| = su.

@ Need again application thm., but type of v is smaller then type A of x.
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Simple Types

Typed SN is closed under substitution

Lemma (Substitution)
Let s q A.
Q IfT,x:AT" = r | C then either T,T" Fr[s/x] || C or
[, r[s/x] f C and C is smaller than A.
Q@ IfT,x:AT" Erf CthenT, " Fr[s/x] 1 C.
Q@ IfT,x:AT"+r— 1" CthenT " Fr[s/x] — r'[s/x] 1} C.

Proof.
Simultaneously by main induction on A and side induction on the
derivation. O
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Simple Types

Strong normalization for simple types

Theorem
IfT" =t: C then t € SN.

Proof.
Prove ' = t f C by induction on the type derivation, using closure under
application. Then, erase to t € SN. O

Further details and Twelf formalization: [Abel, LFM 2004].
Related: hereditary substitutions [Watkins et al., 2002].
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Intersection Types

F=t: A Fr~t:B Fr~r:ANB Fr~r:AnNB
Fr~t:AnB F=r: A F~r:B

@ STL with intersection types is strongly normalizing.

@ Any strongly normalizing term can be typed with intersections.
teSN <= dIA T Ft: A

e Example: Ax.xx: (AN (A— B)) — B.
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Intersection Types

SN for intersection types

@ Add rules for N-elimination to |}:

r-rlANB T FrlANB
FrFriA F-riB

@ Add rules for N-introduction to 1):

Fr-tfA T Ft)B

Fr-tnANB
Lemma (Closure under M-elimination)
IfT Ftf ANB thenT Ft{ AandTl +t1{ B [Abel, HOR 2007]. J
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Intersection Types

Completeness of Intersection Types for SN

Lemma (Anti-substitution)
LetT Fs:Ag. IfT Ft[s/x]:CthenT,x:Akt:Candl Fs: A for
some A.

For instance y :N— A+ y0:Aand y: B+ y[y0/x]|: B. Have
y:BN(N—=A)Fy0:Aandy:BN(N— A),x:AFy:B. Thus,
y: BN (N — A) F (Axy)(y0): B (subject expansion).

Theorem
©Q IfreSNethenl F r: X for some I and type variable X.

Q /ft &SN thenl ~t: A forsomel, A.
Q Ift —snt andl’ =t :C thenT -t : C for somel.
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