On Proof-Relevant Relations and Evidence-Aware Programming

Andreas Abel1

1Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

TCS Oberseminar
Ludwig-Maximilians-Universität München
11 January 2019
Proof-relevance and evidence manipulation

- Curry-Howard-Isomorphism (CHI):
 - propositions-as-types
 - proofs-as-programs
- Dependently-typed programming languages implement the CHI: e.g. Agda, Coq, Idris, Lean
- Allows maintenance and processing of evidence.
- For practical impact, we need a also programming culture; c.f. GoF, *Design Patterns: Elements of Reusable Object-Oriented Software*.
List membership

- Membership $a \in as$ inductively definable:

\[
\begin{align*}
\text{zero} & \quad a \in (a :: as) \\
\text{suc} & \quad a \in as \\
\text{suc (suc zero)} & \quad a \in (b :: as)
\end{align*}
\]

- Proofs of $a \in as$ are indices of a in as (unary natural numbers).
- Two different derivations of $3 \in (3 :: 7 :: 3 :: [])$, correspond to the occurrences of 3:

\[
\begin{align*}
\text{zero} & : 3 \in (3 :: 7 :: 3 :: []) \\
\text{suc (suc zero)} & : 3 \in (3 :: 7 :: 3 :: [])
\end{align*}
\]
Sublists

- Inductive sublist relation \(as \subseteq bs \):

 \[
 \begin{align*}
 \text{skip} & \quad \frac{as \subseteq bs}{as \subseteq (b :: bs)} \\
 \text{keep} & \quad \frac{as \subseteq bs}{(a :: as) \subseteq (a :: bs)} \\
 \text{done} & \quad \frac{}{[]} \subseteq []
 \end{align*}
 \]

- A proof of \(as \subseteq bs \) describes which elements of \(bs \) should be dropped (skip) to arrive at \(as \).

 \[
 \begin{align*}
 \text{skip (keep done)} & : (a :: []) \subseteq (a :: a :: []) \\
 \text{keep (skip done)} & : (a :: []) \subseteq (a :: a :: [])
 \end{align*}
 \]

- \(\subseteq \) is a category.

 \[
 \begin{align*}
 \text{id} & \quad : \quad as \subseteq as \quad \text{reflexivity} \\
 \bigcirc \quad & \quad : \quad (as \subseteq bs) \rightarrow (bs \subseteq cs) \rightarrow (as \subseteq cs) \quad \text{transitivity}
 \end{align*}
 \]

- Single extension

 \[
 \text{sgw} \quad : \quad as \subseteq (a :: as)
 \]
Membership in sublists

- Membership is inherited from sublists:

\[
\text{reindex} : (as \subseteq bs) \rightarrow (a \in as) \rightarrow (a \in bs)
\]

adjusts the index of \(a\) in \(as\) to point to the corresponding \(a\) in \(bs\).

- Trivium: \text{reindex} is a functor from \(_ \subseteq _\) to \((a \in _) \rightarrow (a \in _)\).
- In category speak: \text{reindex} is a presheaf on \(\subseteq^{op}\).
Types, sets, propositions, singletons

- Our meta-language is (Martin-Löf) type theory: $a \in as$ and $as \subseteq bs$ are types, their proofs are inhabitants.
- Following Vladimir Voevodsky†, types are stratified by their h-level into singletons (0), propositions (1), sets (2), groupoids (3),
 1. A type with a unique inhabitant is a singleton ("contractible").
 2. A type with at most one inhabitant is a proposition. In other words, a type with contractible equality is a proposition.
 3. A type with propositional equality is a set.
 4. A type with a set equality is a groupoid.
- A type is of h-level $n + 1$ if its equality is of h-level n.
- $as \subseteq as$ is a singleton; so is $a \in (a :: [])$.
- $as \subseteq []$ is a proposition; so is $a \in (b :: [])$.
- In general $a \in as$ and $as \subseteq bs$ are sets.
Natural deduction

- Inference rules of intuitionistic implicational logic $\Gamma \vdash A$:

 \[
 \begin{array}{ccc}
 \text{var} & \frac{A \in \Gamma}{\Gamma \vdash A} \\
 \text{app} & \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B} \\
 \text{abs} & \frac{(A :: \Gamma) \vdash B}{\Gamma \vdash A \Rightarrow B}
 \end{array}
 \]

- Derivations of $\Gamma \vdash A$ are simply-typed lambda-terms with variables represented by de Bruijn indices $x : (A \in \Gamma)$.

 \[
 \begin{align*}
 t &:= \text{app} (\text{var} \text{ zero}) (\text{var} \text{ (suc zero)}) : (A \Rightarrow B :: A :: [] \vdash B) \\
 \text{abs} (\text{abs} t) & : ([] \vdash A \Rightarrow (A \Rightarrow B) \Rightarrow B) \\
 \text{abs} (\text{abs} (\text{var} \text{ (suc zero)))) & : A \Rightarrow (A \Rightarrow A) \\
 \text{abs} (\text{abs} (\text{var} \text{ zero})) & : A \Rightarrow (A \Rightarrow A)
 \end{align*}
 \]
Weakening

- Inferences stay valid under additional hypotheses (monotonicity):

\[
\text{weak} : (\Gamma \subseteq \Delta) \rightarrow (\Gamma \vdash A) \rightarrow (\Delta \vdash A)
\]

adjust indices of hypotheses \(\text{var}\)

- \text{weak} is a functor from \(\subseteq\) to \((\vdash A)\) → \((\vdash A)\).
List. All: true on every element

- **All P as**: Predicate P holds on all elements of list as.

\[
\begin{align*}
\text{[]} & \quad \text{All } P \text{ []} \\
(- :: -) & \quad P a \quad \text{All } P \text{ as} \\
\text{All } P \text{ (a :: as)}
\end{align*}
\]

- Proofs of **All P as** are decorations of each list element a with further data of type $P a$.
- Soundness is retrieval of this data, completeness tabulation:

 \[
 \begin{align*}
 \text{lookup} & : \text{All } P \text{ as} \to a \in as \to P a \\
 \text{tabulate} & : (\forall a. \ a \in as \to P a) \to \text{All } P \text{ as}
 \end{align*}
 \]

- Universal truth is passed down to sublists:

 \[
 \begin{align*}
 \text{select} & : as \subseteq bs \to \text{All } P \text{ bs} \to \text{All } P \text{ as}
 \end{align*}
 \]
Substitution

- Inhabitants of $\text{All } (\Gamma \vdash _) \Delta$ are
 - proofs that all formulas in Δ are derivable from hypotheses Γ
 - substitutions from Δ to Γ

- Parallel substitution

 $$\text{subst} : \text{All } (\Gamma \vdash _) \Delta \to \Delta \vdash A \to \Gamma \vdash A$$

 replaces hypotheses $A \in \Delta$ by derivations of $\Gamma \vdash A$.

- $\text{Subst } \Gamma \Delta := \text{All } (\Gamma \vdash _) \Delta$ is a category:

 $$\text{id} : \text{Subst } \Gamma \Gamma$$
 $$\text{comp} : \text{Subst } \Gamma \Delta \to \text{Subst } \Delta \Phi \to \text{Subst } \Gamma \Phi$$

- Singleton substitution

 $$\text{sg} : \Gamma \vdash A \to \text{Subst } \Gamma (A :: \Gamma)$$
Term equality and normal forms

- For \(t, t' : (\Gamma \vdash A) \) define \(\beta\eta \)-equality \(t =_{\beta\eta} t' \) as the least congruence over

\[
\begin{align*}
\beta & \quad t : (A :: \Gamma \vdash B) \quad u : \Gamma \vdash A \\
\text{app (abs } t \text{) } u =_{\beta\eta} \text{ subst (sg } u \text{) } t \\
\end{align*}
\]

\[
\eta \quad t : (\Gamma \vdash A \Rightarrow B) \\
\text{abs (app (weak sgw } t \text{) (var zero))}
\]

- \(\beta\eta \)-normality \(\text{Nf } t \) and neutrality \(\text{Ne } t \) (where \(o \) base formula):

\[
\begin{align*}
\text{var } x : A \in \Gamma \\
\text{Ne (var } x \text{)} \\
\text{app } t & \quad \text{Nf } u \\
\text{Ne (app } t \text{ u) } \\
\text{ne } t & \quad t : (\Gamma \vdash o) \\
\text{Nf } t & \quad \text{abs } t \\
\text{Nf (abs } t \text{) } \\
\end{align*}
\]
Normalization

- Having a normal/neutral form:

 \[\text{NF } t = \exists t' =_{\beta\eta} t. \text{Nf } t' \]
 \[\text{NE } t = \exists t' =_{\beta\eta} t. \text{Ne } t' \]

- Interpretation of formulas as types:

 \[\langle A \rangle_{\Gamma} : \Gamma \vdash A \to \text{Type} \]
 \[\langle o \rangle_{\Gamma} t = \text{NE } t \]
 \[\langle A \Rightarrow B \rangle_{\Gamma} t = \forall \Delta (w : \Gamma \subseteq \Delta)(u : \Delta \vdash A) \]
 \[\rightarrow \langle A \rangle_{\Delta} u \]
 \[\rightarrow \langle B \rangle_{\Delta} (\text{app (weak } w t) u) \]

- Soundness and completeness (combine to normalization):

 sound : (t : \Gamma \vdash A)(\sigma : \text{Subst } \Delta \Gamma) \rightarrow \langle \Gamma \rangle_{\Delta} \sigma \rightarrow \langle A \rangle_{\Delta} (\text{subst } \sigma t)

 complete : \langle A \rangle_{\Gamma} t \rightarrow \text{NF } t
Formal languages

- A context-free grammar (CFG) be given by
 - terminals \(a, b, c, \ldots \) (words \(u, v, w, \ldots \))
 - non-terminals \(X, Y, Z, \ldots \)
 - sentential forms \(\alpha, \beta \), e.g. \(XabY \)
 - rules \(r \) given by a type family \(_ ::= _ \). We write \(r : (X ::= \alpha) \) if \(X \rightarrow \alpha \) is a rule of the CFG.

- Word membership \(w \in \alpha \):

 \[
 \begin{align*}
 \text{red} & \quad X ::= \alpha \quad \text{w} \in \alpha \\
 & \quad \frac{}{w \in X}

 \varepsilon & \quad \text{tm} \quad w \in \beta \\
 & \quad \frac{}{\varepsilon \in \varepsilon} \\
 & \quad \frac{}{aw \in a\beta}

 nt & \quad \frac{u \in X \quad v \in \beta}{uv \in X\beta}

 \end{align*}
 \]

- Proofs of \(w \in \alpha \) are parse trees.
Earley parser

- **Judgement** \(u.X \rightsquigarrow v.\beta \)

\[
\begin{align*}
\text{init} & \quad \varepsilon.S \rightsquigarrow \varepsilon.S \\
\text{predict} & \quad u.X \rightsquigarrow v.Y\beta \\
\text{scan} & \quad u.X \rightsquigarrow v.a\beta \\
\text{combine} & \quad uv.Y \rightsquigarrow \varepsilon.\alpha \\
\end{align*}
\]

- To parse \(w \in S \) derive \(\varepsilon.S \rightsquigarrow w.\varepsilon \).
- **Soundness**: If \(u.X \rightsquigarrow v.\beta \) and \(w \in \beta \) then \(vw \in X \).
- **Completeness**: If \(u.X \rightsquigarrow v.\alpha\beta \) and \(w \in \alpha \) then \(u.X \rightsquigarrow vw.\beta \).
Conclusion

- Many CHI design patterns to discover!
- Current trend: revisit parsing theory from a type-theoretic perspective.
- Edwin Brady: bootstrapping Blodwen in Idris.
- Large project: bootstrap Agda.