Copatterns
Programming Infinite Objects by Observations

A. Abel1 B. Pientka2 D. Thibodeau2 A. Setzer3

1Department of Computer Science
Ludwig-Maximilians-University Munich, Germany

2School of Computer Science
McGill University, Montreal, Canada

3Computer Science
Swansea University, Wales, UK

Principles of Programming Languages
Roma, Italy
23 January 2013
Crash course “Programming in the Infinite”
Final Exam

Problem 1 (Duality):
Complete this table!

<table>
<thead>
<tr>
<th>finite</th>
<th>infinite</th>
</tr>
</thead>
<tbody>
<tr>
<td>algebra</td>
<td>coalgebra</td>
</tr>
<tr>
<td>inductive</td>
<td>coinductive</td>
</tr>
<tr>
<td>constructors</td>
<td>destructors</td>
</tr>
<tr>
<td>pattern matching</td>
<td></td>
</tr>
</tbody>
</table>
Crash course “Programming in the Infinite”
Final Exam

Problem 1 (Duality): Complete this table!

<table>
<thead>
<tr>
<th>finite</th>
<th>infinite</th>
</tr>
</thead>
<tbody>
<tr>
<td>algebra</td>
<td>coalgebra</td>
</tr>
<tr>
<td>inductive</td>
<td>coinductive</td>
</tr>
<tr>
<td>constructors</td>
<td>destructors</td>
</tr>
<tr>
<td>pattern matching</td>
<td></td>
</tr>
</tbody>
</table>
Approaches to Infinite Structures

1. Just functions. (Scheme, ML)
 - Delay implemented as dummy abstraction, force as dummy application.
 - Memoization needs imperative references.

2. Terminal coalgebras.
 - SymML [Hagino, 1987].
 - Charity [Cockett, 1990s]: Programming with morphism (pointfree).
 - Object-oriented programming: Objects react to messages.

3. Lists/trees of infinite depth.
 - Convenient: program just with pattern matching.
 - Coq: inductive/coinductive types both via constructors.

Which is best for dependent types?
What’s wrong with Coq’s CoInductive?

- Coq’s coinductive types are non-wellfounded data types.

 \[
 \text{CoInductive} \quad \text{Stream} : \text{Type} := \\
 \mid \text{cons} \ (\text{head} : \text{nat}) \ (\text{tail} : \text{Stream}).
 \]

- Reduction of cofixpoints only under match. Necessary for strong normalization.

 \[
 \begin{align*}
 \text{case} \ \text{cons} \ a \ s \ \text{of} \ \text{cons} \ x \ y \ \Rightarrow \ t &= t[a/x][s/y] \\
 \text{case} \ \text{cofix} \ f \ \text{of} \ \text{branches} &= \text{case} \ f \ (\text{cofix} \ f) \ \text{of} \ \text{branches}
 \end{align*}
 \]

- Leads to loss of subject reduction. [Gimenez, 1996; Oury, 2008]
Issue 1: Loss of Subject Reduction

Stream : Type
cons : \(\mathbb{N} \rightarrow \text{Stream} \rightarrow \text{Stream} \)

zeros : Stream
zeros = cofix (cons 0)

force : Stream \rightarrow \text{Stream}
force s = case s of cons x y \Rightarrow cons x y

eq : (s : \text{Stream}) \rightarrow s \equiv \text{force } s
eq s = case s of cons x y \Rightarrow \text{refl}

eq_{zeros} : \text{zeros } \equiv \text{cons 0 zeros}
eq_{zeros} = \text{eq zeros } \rightarrow \text{refl}
Analysis

Problematic: dependent matching on coinductive data.

\[
\Gamma \vdash s : \text{Stream} \quad \Gamma, x : \mathbb{N}, y : \text{Stream} \vdash t : C(\text{cons } x \ y)
\]

\[
\Gamma \vdash \text{case } s \text{ of } \text{cons } x \ y \Rightarrow t : C(s)
\]

[McBride, 2009]: Let’s see how things unfold.
Fibonacci sequence obeys recurrence:

\[
\begin{array}{cccccccc}
0 & 1 & 1 & 2 & 3 & 5 & 8 & \ldots \\
1 & 1 & 2 & 3 & 5 & 8 & 13 & \ldots \\
1 & 2 & 3 & 5 & 8 & 13 & 21 & \ldots \\
\end{array}
\]

Direct recursive definition:

\[
\text{fib} = \text{cons } 0 \ (\text{cons } 1 \ (\text{zipWith } (+_) \ \text{fib} \ (\text{tail fib})))
\]

\[
\text{fib} = \text{cons } 0 \ (\ F \ (\text{tail fib}))
\]

Diverges under Coq’s reduction strategy:

\[
\text{tail fib}
\]

\[
= F \ (\text{tail fib})
\]

\[
= F \ (F \ (\text{tail fib}))
\]

\[
= \ldots
\]
Solution: Paradigm shift

Understand coinduction not through construction, but through observations.

Our contribution:

- New definition scheme “by observation” with copatterns.
- Defining equations hold unconditionally.
- Subject reduction.
- Coverage.
- Strong normalization. (In progress.)
A function is a **black box**. We can **apply it** to an argument (experiment), and **observe** its result (behavior).

Application is the **defining principle** of functions [Granström’s dissertation 2009].

\[
f : A \to B \quad a : A
\]

\[
f \ a : B
\]

- \(\lambda\)-abstraction is derived, secondary to application.
- Typical semantic view of functions.
A coinductive object is a **black box**.

There is a finite set of experiments (**projections**) we can perform.

The object is determined by the observations we make.

Generalize (Agda) **records** to coinductive types.

```haskell
record Stream : Set where
  coinductive
  field
    head : ℕ
    tail : Stream
```

- **head** and **tail** are the experiments we can make on **Stream**.
- Objects of type **Stream** are defined by the results of these experiments.
Infinite Objects Defined by Observation

- **New syntax** for defining a cofixpoint.

  ```
  zeros : Stream
  head zeros = 0
  tail zeros = zeros
  ```

- Defining the “constructor”.

  ```
  cons : N → Stream → Stream
  head ((cons x) y) = x
  tail ((cons x) y) = y
  ```

- We call \((\text{head } _)\) and \((\text{tail } _)\) **projection copatterns**.
- And \((_ \ x)\) and \((_ \ y)\) **application copatterns**.
- A left-hand side \((\text{head } ((_ \ x) y))\) is a **composite copattern**.
Patterns and Copatterns

- **Patterns**
 \[p ::= \begin{array}{l}
 x \quad \text{Variable pattern} \\
 () \quad \text{Unit pattern} \\
 (p_1, p_2) \quad \text{Pair pattern} \\
 c \ p \quad \text{Constructor pattern}
 \end{array} \]

- **Copatterns**
 \[q ::= \begin{array}{l}
 \cdot \quad \text{Hole} \\
 q \ p \quad \text{Application copattern} \\
 d \ q \quad \text{Projection/destructor copattern}
 \end{array} \]

- **Definitions**
 \[q_1[f/\cdot] = t_1 \]
 \[\vdots \]
 \[q_n[f/\cdot] = t_n \]
Category-theoretic Perspective

- Functor F, coalgebra $s : A \to F(A)$.
- Terminal coalgebra force : $\nu F \to F(\nu F)$ (elimination).
- Coiteration $\text{coit}(s) : A \to \nu F$ constructs infinite objects.

![Diagram]

- Computation rule: Only unfold infinite object in elimination context.

$$\text{force}(\text{coit}(s)(a)) = F(\text{coit}(s))(s(a))$$
Instance: Stream

- With $F(X) = \mathbb{N} \times X$ we get the streams $\text{Stream} = \nu F$.
- With $s() = (0, ())$ we get $\text{zeros} = \text{coit}(s)()$.

\[
\begin{array}{c}
1 \xrightarrow{s} \mathbb{N} \times 1 \\
\downarrow \quad \downarrow \\
\text{coit}(s) \quad F(\text{coit}(s)) \quad \text{head, tail} \quad \downarrow \\
\text{Stream} \quad \rightarrow \quad \mathbb{N} \times \text{Stream}
\end{array}
\]

- Computation: $(\text{head}, \text{tail})(\text{coit}(s)()) = (0, \text{coit}(s)())$.
Fibonacci sequence obeys this recurrence:

\[
 \begin{array}{c}
 \text{zipWith } (_+_) \\
 \hline
 0 & 1 & 1 & 2 & 3 & 5 & 8 & \ldots \\
 1 & 2 & 3 & 5 & 8 & 13 & 21 & \ldots \\
 1 & 2 & 3 & 5 & 8 & 13 & 21 & \ldots \\
 \end{array}
\]

\[
 \text{(fib)} \gcd (\text{tail fib})
\]

This directly leads to a definition by copatterns:

\[
\begin{align*}
 \text{fib} & : \text{Stream } \mathbb{N} \\
 (\text{tail } (\text{tail fib})) &= \text{zipWith } (_+_) \text{ fib } (\text{tail fib}) \\
 (\text{head } (\text{tail fib})) &= 1 \\
 (\text{head fib}) &= 0
\end{align*}
\]

Strongly normalizing definition of \text{fib}!
Interactive Program Development

- Goal: cyclic stream of numbers.

 \[
 \text{cycleNats} \quad : \quad \mathbb{N} \rightarrow \text{Stream} \, \mathbb{N} \\
 \text{cycleNats} \, n \quad = \quad n, n - 1, \ldots, 1, 0, \, N, \, N - 1, \ldots, 1, 0, \ldots
 \]

- Fictuous interactive Agda session.

 \[
 \text{cycleNats} \quad : \quad \text{Nat} \rightarrow \text{Stream} \, \text{Nat} \\
 \text{cycleNats} \quad = \quad ?
 \]

- Split result (function).

 \[
 \text{cycleNats} \, x \quad = \quad ?
 \]

- Split result again (stream).

 \[
 \text{head} \, (\text{cycleNats} \, x) \quad = \quad ? \\
 \text{tail} \, (\text{cycleNats} \, x) \quad = \quad ?
 \]
Interactive Program Development

- Finish first clause:

 \[
 \text{head} \ (\text{cycleNats} \ x) = x \\
 \text{tail} \ (\text{cycleNats} \ x) = ?
 \]

- Split \(x \) in second clause.

 \[
 \text{head} \ (\text{cycleNats} \ x) = x \\
 \text{tail} \ (\text{cycleNats} \ 0) = ? \\
 \text{tail} \ (\text{cycleNats} \ (1 + x')) = ?
 \]

- Fill remaining right hand sides.

 \[
 \text{head} \ (\text{cycleNats} \ x) = x \\
 \text{tail} \ (\text{cycleNats} \ 0) = \text{cycleNats} \ N \\
 \text{tail} \ (\text{cycleNats} \ (1 + x')) = \text{cycleNats} \ x'
 \]
Coverage

- Coverage algorithm:
- Start with the trivial covering.
- Repeat
 - split a pattern variable
 until computed covering matches user-given patterns.
Copattern Coverage

- Coverage algorithm:
 - Start with the trivial covering. \((\text{Copattern} \cdot \text{“hole”})\)
 - Repeat
 - split result or
 - split a pattern variable
 until computed covering matches user-given patterns.
Deriving Covering Set of Clauses

<table>
<thead>
<tr>
<th>Role</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>($\vdash \cdot : \mathbb{N} \to \text{Stream}$)</td>
</tr>
<tr>
<td>split function</td>
<td>($x:\mathbb{N} \vdash \cdot \ x : \text{Stream}$)</td>
</tr>
<tr>
<td>split stream</td>
<td>($x:\mathbb{N} \vdash \text{head} (\cdot \ x) : \mathbb{N}$)</td>
</tr>
<tr>
<td></td>
<td>($x:\mathbb{N} \vdash \text{tail} (\cdot \ x) : \text{Stream}$)</td>
</tr>
<tr>
<td>split var.</td>
<td>($x:\mathbb{N} \vdash \text{head} (\cdot x) : \mathbb{N}$)</td>
</tr>
<tr>
<td></td>
<td>($\vdash \text{tail} (\cdot 0) : \text{Stream}$)</td>
</tr>
<tr>
<td></td>
<td>($x' : \mathbb{N} \vdash \text{tail} (\cdot (1 + x')) : \text{Stream}$)</td>
</tr>
</tbody>
</table>
Syntax

<table>
<thead>
<tr>
<th>Finite / Positive / Type Checking</th>
<th>Type Introduction</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuple</td>
<td>(A_1 \times A_2)</td>
<td>((t_1, t_2))</td>
</tr>
<tr>
<td>Data</td>
<td>(\mu, +)</td>
<td>(ct)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infinite / Negative / Type Inference</th>
<th>Type Copattern Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>(A_1 \to A_2)</td>
</tr>
<tr>
<td>Record</td>
<td>(\nu, &)</td>
</tr>
</tbody>
</table>
Results

- Subject reduction.
- Non-deterministic coverage algorithm.
- Progress: Any well-typed term that is not a value can be reduced.
- Thus, well-typed programs do not go wrong.
- Prototypic implementations: MiniAgda, Agda.
Suggestion to Haskellers

Use copattern syntax for newtypes!

```haskell
newtype State s a = State { runState :: s -> (a,s) }

instance Monad (State s) where

    runState (return a) s = (a,s)

    runState (m >>= k) s =
        let (a,s’) = runState m
        in  runState (k a) s’
```
Conclusions

Future work:
- MiniAgda: A productivity checker with sized types.
- TODO: Prove strong normalization.
- TODO: Integrate copatterns into Agda’s kernel.

Related Work:
- Cockett et al. (1990s): Charity.
Problem 1 (Duality): Complete this table!

<table>
<thead>
<tr>
<th>finite</th>
<th>infinite</th>
</tr>
</thead>
<tbody>
<tr>
<td>algebra</td>
<td>coalgebra</td>
</tr>
<tr>
<td>inductive</td>
<td>coinductive</td>
</tr>
<tr>
<td>constructors</td>
<td>destructors</td>
</tr>
<tr>
<td>pattern matching</td>
<td>copattern matching</td>
</tr>
</tbody>
</table>
Instance: Colists of Natural Numbers

- With $F(X) = 1 + \mathbb{N} \times X$ we get $\nu F = \text{Colist}(\mathbb{N})$.
- With $s(n : \mathbb{N}) = \text{inr}(n, n + 1)$ we get $\text{coit}(s)(n) = (n, n + 1, n + 2, \ldots)$.

\[
\begin{array}{c}
\mathbb{N} \xrightarrow{s} 1 + \mathbb{N} \times \mathbb{N} \\
\text{coit}(s) \downarrow \downarrow F(\text{coit}(s)) \\
\text{Colist}(\mathbb{N}) \xrightarrow{\text{force}} 1 + \mathbb{N} \times \text{Colist}(\mathbb{N})
\end{array}
\]
Colists in Agda

- Colists as record.

```agda
data Maybe A : Set where
  nothing : Maybe A
  just : A → Maybe A
```

```agda
record Colist A : Set where
  coinductive
  field
    force : Maybe (A × Colist A)
```

- Sequence of natural numbers.

```agda
nats : ℕ → ℕ
force (nats n) = just (n , nats (n + 1))
```
Coverage Rules

\[
A \triangleright\!
\begin{array}{c}
\tilde{Q}
\end{array}
\]
Typed copatterns \(\tilde{Q}\) cover elimination of type \(A\).

- **Result splitting:**

\[
A \triangleright\! (\vdash \cdot : A) \quad \begin{array}{l}
\ldots (\Delta \vdash q : B \rightarrow C) \\
\ldots (\Delta, x : B \vdash q \times : C)
\end{array}
\]

\[
\begin{array}{c}
\ldots (\Delta \vdash q : R) \\
\ldots (\Delta \vdash d q : R_d)_{d \in R}
\end{array}
\]

- **Variable splitting:**

\[
\begin{array}{l}
\ldots (\Delta, x : A_1 \times A_2 \vdash q[x] : C)
\end{array}
\]

\[
\begin{array}{l}
\ldots (\Delta, x_1:A_1, x_2:A_2 \vdash q[(x_1, x_2)] : C)
\end{array}
\]

\[
\begin{array}{l}
\ldots (\Delta, x:D \vdash q[x] : C)
\end{array}
\]

\[
\begin{array}{l}
\ldots (\Delta, x':D_c \vdash q[c x'] : C)_{c \in D}
\end{array}
\]
Type-theoretic background

Foundation: coalgebras (category theory) and focusing (polarized logic)

<table>
<thead>
<tr>
<th>polarity</th>
<th>positive</th>
<th>negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear types</td>
<td>$1, \oplus, \otimes, \mu$</td>
<td>$\rightarrow, &, \nu$</td>
</tr>
<tr>
<td>Agda types</td>
<td>data</td>
<td>definition by copatterns</td>
</tr>
<tr>
<td>extension</td>
<td>finite</td>
<td>infinite</td>
</tr>
<tr>
<td>introduction</td>
<td>constructors</td>
<td>message passing</td>
</tr>
<tr>
<td>elimination</td>
<td>pattern matching</td>
<td>coalgebra</td>
</tr>
<tr>
<td>categorical</td>
<td>algebra</td>
<td></td>
</tr>
</tbody>
</table>