Strong Normalization for Equi-(Co-)Inductive Types

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Typed Lambda Calculi and Applications, TLCA’07
27 June 2007
Paris, France

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 1/21



Introduction

@ Type-based termination: Each well-typed program terminates.

@ Applications:

o Type-theoretic theorem provers
o Dependently-typed programming!?

@ Mixed inductive/coinductive types and mixed recursive/corecursive
programs.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 2/21



Example: Stream Processors

@ Modelling I/O in purely functional languages.

@ SP a b contains codes for stream processors,

@ i.e., functions from streams over a to streams over b.
data SP a b where

get :: (a —> SP a b) —> SP a b
put :: b —> SP a b -> SP a b
map :: (a -> b) -> SP a b

map £ = get (\ a -> put (f a) (map f))
@ Similar in FUDGETS library (GUI in Haskell).
@ Theoretical treatment: Ghani, Hancock, Pattinson (ENTCS 2006).

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 3/21



Stream Processors as
Mixed Inductive/Coinductive Type

@ Haskell type:

data SP a b where
get :: (a —> SP a b) —> SP a b
put :: b —> SP a b -> SP a b

@ Productivity: only finitely many gets before each put.

@ Model sp by a least fixed-point nested (inductive type) inside a
greatest fixed-point (coinductive type).

SPAB:=vXuY.(Bx X)+(A—Y)

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 4/21



Executing Stream Processors

@ Stream eating: Execute sp-code.

eat :: SP a b -> [a] -> [b]
eat (get f) (a:as) = eat (f a) as
eat (put b t) as = Db : eat t as

@ s eat total?
@ 1stcall to eat not guarded-by-constructor.

@ This work: a type system ensuring totality.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 5/21



Inductive Types

@ Least fixed-points ;.F of monotone type constructors F.
@ E.g. ListA=puFwith FX=1+AxX.
@ Iso-inductive types: Explicit folding and unfolding.
F(uF) 2 uF M F (uF)
nil = inoinl : 1 — ListA
cons := inoinr : AxListA— ListA

@ Equi-inductive types: Implicit (deep) folding via type equality.

F(uF) = nF
nil = inl
cons := inr

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 6/21



Motivation for Equi-Style

@ In normalization proofs, mostly iso-types are chosen (Altenkirch
[93—-99], Barthe et al.[01-06], Geuvers [92], Giménez, Matthes
[98], Mendler [87-91]; CIC).

@ Notable exceptions: Parigot [92], Raffalli [93—-94].

@ Iso-types can be trivially simulated by equi-types, normalization
results can be inherited.

@ Equi-types in iso-types only by translation of typing derivations.

@ Normalization for equi-types not implied by norm. for iso-types.

@ Loss of structure on terms requires compensating structures on
types.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 7/21



Inductive Types: Construction From Below

@ Least fixed-points can be reached by ordinal iteration:
WO F o= 0
pett'F = F(u*F)
pr o F o= Uscrn®F

@ Size expressionsa:=:|0|a+ 1| occ.
@ Sized inductive types 1.2F.
@ Laws: 3, n, and

co+1 = o©
pdFE = F(u@F).
@ List?A contains list of length < a.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 8/21



Recursion

@ General recursion (partial):

f-A—-CFt:A—=C
fix(AMf.t): A— C

@ Recursion on size (total):

f.W'F—-Crt:wt'F—-C
fix (Mf.t) : u*F — C

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 9/21



Sized Coinductive Types

@ Greatest fixed-points »>°F of monotone F.

@ Approximation from above.

@ E.g. Stream? A = @)\ X. A x X contains streams of depth > a.
@ Corecursion on depth (total):

f:'FEt: vt F
fix” (\f.t) : v>°F

@ E.g., repeatx = fix"(\y.(x,y)).

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 10/21



Terminating Reduction for Recursion

@ Naive reduction fixs — s (fix"s) diverges.
@ Lazy (weak head) values v ::= (r,s) | --- | Axt | fix"s | fix”s.
@ Only expand recursive functions applied to a value.

fix*sv — s(fix"'s) v

@ Shallow evaluation contexts e(_) |-+ | _s|fix¥s_.

= fst
@ Deep evaluation contexts E(_) = e{(...en(_)) forn > 0.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 11/21



Termination Reduction for Corecursion

@ Only expand corecursive objects whose value is demanded.

e(fix”s) — e(s (fix"s))

@ Non-confluence. Critical pair: s = AzAx.x and
fix"s (fix” s)

— T

s (fixs) (fix" s) fix"s (s (fix” s))
(/\x.x)l(fix” s) fix“sl(/\xx)
fix%’ s s (fIX“Sl) (Axx)
"

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 12/21



Breaking the Symmetry

@ Do not unfold corecursive arguments of recursive functions.

e(fix”s) — e(s (fix”s)) e() # fix's' _

@ Confluence regained.
@ Strong normalization provable.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 13/21



Proving Strong Normalization

@ S set of strongly normalizing terms.
@ Safe (weak head) reduction, preserves s.n. in both directions.

E((A\xt)s) > E([s/x]t) if s € SN
E(fix'sv) > E(s(fix"s)v)
E(e(fix"s)) > E(e(s(fix"s))) ife( ) #fix"s _

reflexivity, transitivity

o N ={te S|t E(x)} setof neutral terms.

@ A saturated, A € SAT, if V' C A C S and A is closed under safe
reduction and expansion.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 14/21



Soundness of Recursion

Semantical recursion rule:

Vi.s € (W F —C) — wt'F —C
fixts e poF — C

Show r € p“F implies fix"s r € C by induction on ordinal «.

@ Case a = 0. Then ;°F = N and r € N implies fix"sr e N C C.
@ Casea=d'+1andrrv.

e fix's € u® F — C by induction hypothesis.

o s(fix''s) € u®*1F — C by assumption.

o fix"sr>s(fix"s)v e C.

@ Case « limit. By induction hypothesis.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 15/21



Soundness of Corecursion

Semantical corecursion rule:

Vi.s € V'F — vtV F
fix"s e v F

By induction on «.
@ Case a = 0. Then ,°F = S and s € S implies fix"s € S.

@ Casea =o' +1.

e fix’s € v F by induction hypothesis.
e s(fix”s) € v *1F by assumption.
e How to prove fix"s € v +1F2?

Idea: make this additional closure property on saturated sets.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 16/21



Guarded Saturated Sets

@ Consider closure property

s (fix”s) € A implies fix"s € A. (1)

@ Unsound for A/: must not contain values!
@ Otherwise fix"s e N' — N fails.

@ Solution: define a subclass of guarded saturated sets closed
under (1).

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 17/21



Checking Guardedness

e 1,A— B, Ax B, ...are guarded.
@ 0, 1°F are unguarded.

@ 4F is guarded if F1isora=0.
@ ;2F is guarded if FOis and a > 0.

@ Statically checkable through kinding system with two base kinds
*y (unguarded type) and *4 (Quarded type).

@ Guardedness is not emptiness: 1 — 0 is empty, but guarded.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 18/21



Stream Processors Revisited

@ SPAB :=v®XX.u®AY.(BxX)+ (A=)
@ Sized type (I) of constructors put := inl and get := inr.

SP'AB = UIAX.u®AY.(Bx X)+(A—Y)
put . BxSP'AB— SP'''AB
get . (A—SP"""AB) - SP"' AB

@ Unfolding coinduction: SP AB = u*\Y.(BxSPAB)+(A—Y)
@ Sized type (II).

SP,AB := w\Y.BxSPAB+(A—Y)
get . (A—SP,AB)—SP, {AB
put . BxSP,AB—SP,.{AB

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 19/21



Totality of Stream Eating

@ eat defined by an outer coiteration into streams
@ ...and an inner iteration over stream processors.
@ Expressed as a lexicographic induction over size.

eat : Vov). SP, A B — Stream A — Stream’ B

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 20/ 21



Conclusion

@ Present work solves #2.005 on the Abel List of Open Problems.
@ Further work: develop and verify guardedness calculus.

@ Acknowledgments:

@ Stream Processor example communicated to me by Thorsten
Altenkirch and Conor McBride.

o Guardedness idea arose during invitation to LORIA by Frédéric
Blanqui and Colin Riba.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA'07 21/21



