
Strong Normalization for Equi-(Co-)Inductive Types

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Typed Lambda Calculi and Applications, TLCA’07
27 June 2007
Paris, France

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 1 / 21

Introduction

Type-based termination: Each well-typed program terminates.

Applications:

Type-theoretic theorem provers

Dependently-typed programming!?

Mixed inductive/coinductive types and mixed recursive/corecursive
programs.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 2 / 21

Example: Stream Processors

Modelling I/O in purely functional languages.
SP a b contains codes for stream processors,
i.e., functions from streams over a to streams over b.
data SP a b where
get :: (a -> SP a b) -> SP a b
put :: b -> SP a b -> SP a b

map :: (a -> b) -> SP a b
map f = get (\ a -> put (f a) (map f))

Similar in FUDGETS library (GUI in Haskell).
Theoretical treatment: Ghani, Hancock, Pattinson (ENTCS 2006).

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 3 / 21

Stream Processors as
Mixed Inductive/Coinductive Type

Haskell type:
data SP a b where
get :: (a -> SP a b) -> SP a b
put :: b -> SP a b -> SP a b

Productivity: only finitely many gets before each put.
Model SP by a least fixed-point nested (inductive type) inside a
greatest fixed-point (coinductive type).

SP A B := νXµY . (B × X) + (A → Y)

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 4 / 21

Executing Stream Processors

Stream eating: Execute SP-code.
eat :: SP a b -> [a] -> [b]
eat (get f) (a:as) = eat (f a) as
eat (put b t) as = b : eat t as

Is eat total?

1st call to eat not guarded-by-constructor.

This work: a type system ensuring totality.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 5 / 21

Inductive Types

Least fixed-points µF of monotone type constructors F .
E.g. List A = µF with F X = 1 + A× X .
Iso-inductive types: Explicit folding and unfolding.

F (µF)
in→ µF out→ F (µF)

nil := in ◦ inl : 1 → List A
cons := in ◦ inr : A× List A → List A

Equi-inductive types: Implicit (deep) folding via type equality.

F (µF) = µF

nil := inl
cons := inr

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 6 / 21

Motivation for Equi-Style

In normalization proofs, mostly iso-types are chosen (Altenkirch
[93–99], Barthe et al.[01–06], Geuvers [92], Giménez, Matthes
[98], Mendler [87-91]; CIC).
Notable exceptions: Parigot [92], Raffalli [93–94].
Iso-types can be trivially simulated by equi-types, normalization
results can be inherited.
Equi-types in iso-types only by translation of typing derivations.
Normalization for equi-types not implied by norm. for iso-types.
Loss of structure on terms requires compensating structures on
types.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 7 / 21

Inductive Types: Construction From Below

Least fixed-points can be reached by ordinal iteration:

µ0 F = ∅
µα+1 F = F (µα F)
µλ F =

⋃
α<λ µαF

Size expressions a ::= ı | 0 | a + 1 | ∞.
Sized inductive types µaF .
Laws: β, η, and

∞+ 1 = ∞
µa+1F = F (µaF).

ListaA contains list of length < a.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 8 / 21

Recursion

General recursion (partial):

f : A → C ` t : A → C
fix (λf .t) : A → C

Recursion on size (total):

f : µıF → C ` t : µı+1F → C
fixµ (λf .t) : µ∞F → C

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 9 / 21

Sized Coinductive Types

Greatest fixed-points ν∞F of monotone F .
Approximation from above.
E.g. Streama A = νaλX . A× X contains streams of depth ≥ a.
Corecursion on depth (total):

f : νıF ` t : νı+1F
fixν (λf .t) : ν∞F

E.g., repeat x = fixν(λy . (x , y)).

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 10 / 21

Terminating Reduction for Recursion

Naive reduction fixµs −→ s (fixµs) diverges.
Lazy (weak head) values v ::= (r , s) | · · · | λxt | fixµs | fixνs.
Only expand recursive functions applied to a value.

fixµs v −→ s (fixµs) v

Shallow evaluation contexts e(_) := fst _ | · · · | _ s | fixµ s _.
Deep evaluation contexts E(_) = e1(. . . en(_)) for n ≥ 0.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 11 / 21

Termination Reduction for Corecursion

Only expand corecursive objects whose value is demanded.

e(fixνs) −→ e(s (fixνs))

Non-confluence. Critical pair: s = λzλx .x and
fixµs (fixν s)

s (fixµs) (fixν s)

(λx .x) (fixν s)

fixν s

fixµs (s (fixν s))

fixµs (λxx)

s (fixµs) (λxx)

λxx

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 12 / 21

Breaking the Symmetry

Do not unfold corecursive arguments of recursive functions.

e(fixνs) −→ e(s (fixνs)) e(_) 6= fixµs′ _

Confluence regained.
Strong normalization provable.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 13 / 21

Proving Strong Normalization

S set of strongly normalizing terms.
Safe (weak head) reduction, preserves s.n. in both directions.

E((λxt) s) B E([s/x]t) if s ∈ SN
E(fixµs v) B E(s (fixµs) v)
E(e(fixνs)) B E(e(s (fixνs))) if e(_) 6= fixµ s′ _
. . .
reflexivity, transitivity

N = {t ∈ S | t B E(x)} set of neutral terms.
A saturated, A ∈ SAT, if N ⊆ A ⊆ S and A is closed under safe
reduction and expansion.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 14 / 21

Soundness of Recursion

Semantical recursion rule:

∀ı.s ∈ (µıF → C) → µı+1F → C
fixµs ∈ µαF → C

Show r ∈ µαF implies fixµs r ∈ C by induction on ordinal α.
Case α = 0. Then µ0F = N and r ∈ N implies fixµs r ∈ N ⊆ C.
Case α = α′ + 1 and r B v .

fixµs ∈ µα′F → C by induction hypothesis.
s (fixµs) ∈ µα′+1F → C by assumption.
fixµs r B s (fixµs) v ∈ C.

Case α limit. By induction hypothesis.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 15 / 21

Soundness of Corecursion

Semantical corecursion rule:

∀ı.s ∈ νıF → νı+1F
fixνs ∈ ναF

By induction on α.
Case α = 0. Then ν0F = S and s ∈ S implies fixνs ∈ S.
Case α = α′ + 1.

fixνs ∈ να′F by induction hypothesis.
s (fixνs) ∈ να′+1F by assumption.
How to prove fixνs ∈ να′+1F??

Idea: make this additional closure property on saturated sets.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 16 / 21

Guarded Saturated Sets

Consider closure property

s (fixνs) ∈ A implies fixνs ∈ A. (1)

Unsound for N : must not contain values!
Otherwise fixµs ∈ N → N fails.
Solution: define a subclass of guarded saturated sets closed
under (1).

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 17 / 21

Checking Guardedness

1, A → B, A× B, . . . are guarded.
0, µ0F are unguarded.
νaF is guarded if F 1 is or a = 0.
µaF is guarded if F 0 is and a > 0.
Statically checkable through kinding system with two base kinds
∗u (unguarded type) and ∗g (guarded type).
Guardedness is not emptiness: 1 → 0 is empty, but guarded.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 18 / 21

Stream Processors Revisited

SP A B := ν∞λX . µ∞λY . (B × X) + (A → Y)

Sized type (I) of constructors put := inl and get := inr.

SPı A B := νıλX . µ∞λY . (B × X) + (A → Y)

put : B × SPı A B → SPı+1 A B
get : (A → SPı+1 A B) → SPı+1 A B

Unfolding coinduction: SP A B = µ∞λY . (B × SP A B) + (A → Y)

Sized type (II).

SP A B := µλY . B × SP A B + (A → Y)

get : (A → SP A B) → SP+1 A B
put : B × SP∞ A B → SP+1 A B

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 19 / 21

Totality of Stream Eating

eat defined by an outer coiteration into streams
. . . and an inner iteration over stream processors.
Expressed as a lexicographic induction over size.

eat : ∀ı∀. SP A B → Stream A → Streamı B

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 20 / 21

Conclusion

Present work solves #2.005 on the Abel List of Open Problems.

Further work: develop and verify guardedness calculus.

Acknowledgments:

Stream Processor example communicated to me by Thorsten
Altenkirch and Conor McBride.

Guardedness idea arose during invitation to LORIA by Frédéric
Blanqui and Colin Riba.

Andreas Abel (LMU Munich) Normalization for Equi-Inductive Types TLCA’07 21 / 21

