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Introduction

Theme: Liberate recursive definitions in Type Theory.
More convenient use of proof assistants.
Functional programming approach.
Interesting interplay between recursion/corecursion.
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Inductive Types

Least fixed-points µF of monotone type constructors F .
E.g. List A = µF with F X = 1 + A× X .
Iso-inductive types: Explicit folding and unfolding.

F (µF )
in→ µF out→ F (µF )

nil := in ◦ inl : 1 → List A
cons := in ◦ inr : A× List A → List A

Equi-inductive types: Implicit (deep) folding via type equality.

F (µF ) = µF

nil := inl
cons := inr
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Motivation

In normalization proofs, mostly iso-types are chosen (Altenkirch
[93–99], Barthe et al.[01–06], Geuvers [92], Giménez, Matthes
[98], Mendler [87-91]; CIC).
Notable exceptions: Parigot [92], Raffalli [93–94].
Iso-types can be trivially simulated by equi-types, normalization
results can be inherited.
Equi-types in iso-types only by translation of typing derivations.
Normalization for equi-types not implied by norm. for iso-types.
Loss of structure on terms requires compensating structures on
types.
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Inductive Types: Construction From Below

Least fixed-points can be reached by ordinal iteration:

µ0 F = ∅
µα+1 F = F (µα F )
µλ F =

⋃
α<λ µαF

Size expressions a ::= ı | 0 | a + 1 | ∞.
Sized inductive types µaF .
Laws: β, η, and

∞+ 1 = ∞
µa+1F = F (µaF ).

ListaA contains list of length < a.
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Recursion

General recursion (partial):

f : A → C ` t : A → C
fix (λf .t) : A → C

Recursion on size (total):

f : µıF → C ` t : µı+1F → C
fixµ (λf .t) : µ∞F → C
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Sized Coinductive Types

Greatest fixed-points ν∞F of monotone F .
Approximation from above.
E.g. Streama A = νaλX . A× X contains streams of depth ≥ a.
Corecursion on depth (total):

f : νıF ` t : νı+1F
fixν (λf .t) : ν∞F

E.g., repeat x = fixν(λy . (x , y)).
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Terminating Reduction for Recursion

Naive reduction fixµs −→ s (fixµs) diverges.
Lazy (weak head) values v ::= (r , s) | · · · | λxt | fixµs | fixνs.
Only expand recursive functions applied to a value.

fixµs v −→ s (fixµs) v

Shallow evaluation contexts e(_) := fst _ | · · · | _ s | fixµ s _.
Deep evaluation contexts E(_) = e1(. . . en(_)) for n ≥ 0.
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Termination Reduction for Corecursion

Only expand corecursive objects whose value is demanded.

e(fixνs) −→ e(s (fixνs))

Nonconfluence. Critical pair: s = λzλx .x and
fixµs (fixν s)

s (fixµs) (fixν s)

(λx .x) (fixν s)

fixν s

fixµs (s (fixν s))

fixµs (λxx)

s (fixµs) (λxx)

λxx
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Breaking the Symmetry

Do not unfold corecursive arguments of recursive functions.

e(fixνs) −→ e(s (fixνs)) e(_) 6= fixµs′ _

Confluence regained.
Strong normalization provable.
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Proving Strong Normalization

S set of strongly normalizing terms.
Safe (weak head) reduction, preserves s.n. in both directions.

E((λxt) s) B E([s/x ]t) if s ∈ SN
E(fixµs v) B E(s (fixµs) v)
E(e(fixνs)) B E(e(s (fixνs))) if e(_) 6= fixµ s′ _
. . .
reflexivity, transitivity

N = {t | t B E(x)} set of neutral terms.
A saturated, A ∈ SAT, if N ⊆ A ⊆ S and A is closed under safe
reduction and expansion.
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Soundness of Recursion

Semantical recursion rule:

∀ı.s ∈ (µıF → C) → µı+1F → C
fixµs ∈ µαF → C

Show r ∈ µαF implies fixµs r ∈ C by induction on ordinal α.
Case α = 0. Then µ0F = N and r ∈ N implies fixµs r ∈ N ⊆ C.
Case α = α′ + 1 and r B v .

fixµs ∈ µα′F → C by induction hypothesis.
s (fixµs) ∈ µα′+1F → C by assumption.
fixµs r B s (fixµs) v ∈ C.

Case α limit. By induction hypothesis.
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Soundness of Corecursion

Semantical corecursion rule:

∀ı.s ∈ νıF → νı+1F
fixνs ∈ ναF

By induction on α.
Case α = 0. Then ν0F = S and s ∈ S implies fixνs ∈ S.
Case α = α′ + 1.

fixνs ∈ να′F by induction hypothesis.
s (fixνs) ∈ να′+1F by assumption.
How to prove fixνs ∈ να′+1F??

Idea: make this additional closure property on saturated sets.
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Guarded Saturated Sets

Consider closure property

s (fixνs) ∈ A implies fixνs ∈ A. (1)

Unsound for N : must not contain values!
Otherwise fixµs ∈ N → N fails.
Solution: define a subclass of guarded saturated sets closed
under (1).
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Checking Guardedness

1, A → B, A× B, . . . are guarded.
0, µ0F are unguarded.
νaF is guarded if F 0 is or a = 0.
µaF is guarded if F 0 is and a = 0.
Statically checkable through kinding system with two base kinds
∗u (unguarded type) and ∗g (guarded type).
Guardedness is not emptyness: 1 → 0 is empty, but guarded.
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Conclusion

Present work closes gap in my PhD thesis.
Further work: develop and verify guardedness calculus.
Test guardedness restriction in practice.
Acknowledgments:

Guardedness idea arose during invitation to LORIA by
Frédéric Blanqui and Colin Riba.
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