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Abstract

In the simply-typed lambda-calculus, a hereditary substitution replaces a free variable
in a normal form r by another normal form s of type a, removing freshly created
redexes on the fly. It can be defined by lexicographic induction on a and r, thus,
giving rise to a structurally recursive normalizer for the simply-typed lambda-calculus.
We generalize this scheme to simultaneous substitutions, preserving its simple
termination argument. We further implement hereditary simultaneous substitutions
in a functional programming language with sized heterogeneous inductive types, Fωb,
arriving at an interpreter whose termination can be tracked by the type system of its
host programming language.

Keywords: Sized Types, Heterogeneous Types, Nested Types, Interpreter, Normalization, De Bruijn Terms

1. INTRODUCTION

Inductive types T can be expressed as the least solution of the recursive equation F X = X for
some suitable monotone type function F ; we write T = µF and say that T is the least fixed-point
of F . The least fixed point can be obtained in two ways: from above, using the theorem of Knaster
and Tarski, and from below using transfinite iteration. Defining

µ0 F = empty
µα+1 F = F (µαF )
µλ F =

⋃
α<λ µαF,

the least fixed-point of F is reached for some ordinal γ and we have F (µγF ) = µγF . The
construction of an inductive type from below is convenient if we want to define a function f : T → C
over an inductive type; we can reason by transfinite induction that f is well-defined. This is
especially the case if f is structurally recursive, i. e., refers in recursive calls only to smaller
elements of the inductive type. Consider f = fix s being the fixed point of a functional s, i. e.,
fix s = s (fix s). Such functions can be introduced by the rule

s ∈ (µαF → C) → (µα+1F → C) for all α < β

fix s ∈ µβF → C
.

The rule can be justified by transfinite induction up to β. Base case: Since µ0F is empty,
fix s ∈ µ0F → C trivially. For the step case, assume fix s ∈ µαF → C. By the premise of the
rule, s (fix s) ∈ µα+1F → C, and by the fix-point equation, fix s ∈ µα+1F → C. Finally, for the limit
case, assume fix s ∈ µαF → C for all α < λ and assume t ∈ µλF . By definition of iteration at a
limit, t ∈ µαF for some α < λ, hence fix s t ∈ C. Since t was arbitrary, fix s ∈ µλF → C.

Up to now, we have considered the semantics of inductive types and the justification of semantical
functions. Mendler [22] first observed that by turning these semantical concepts into syntax,2 one
1Research supported by the coordination action TYPES (510996) and thematic network Applied Semantics II (IST-2001-
38957) of the European Union and the project Cover of the Swedish Foundation of Strategic Research (SSF).
2Another example where semantics has been successfully turned into syntax is the monad. Invented by Moggi as a tool
to reason about impure features, it has become a device to program imperatively in Haskell.
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gets a type system that accepts structurally recursive functions, hence, guarantees termination of
well-typed programs. This idea has been taken up by Hughes, Pareto, and Sabry [17], Giménez
[16], Amadio and Coupet-Grimal [9], Barthe et al. [10], Blanqui [14] and myself [1, 2]. My thesis [5]
describes Fω̂ , an extension of the higher-order polymorphic lambda-calculus Fω by sized inductive
types and structural recursion. A sized inductive type µaF is the syntactic equivalent of an iteration
stage µαF , only that a is now a syntactic ordinal expression and F is a syntactic type constructor
whose monotonicity is established syntactically.

In this article, we give a non-trivial example of a structurally recursive function whose termination
is automatically established using sized types: a β-normalizer for simply-typed λ-terms. The heart
of the normalizer are hereditary substitutions [25]: substitution of a normal form into another one,
potentially triggering new substitutions, until a normal form is returned. Surprisingly, this process
can be formulated by a lexicographic recursion on the type of the substituted value and the normal
form substituted into. Our contribution is a generalization to hereditary simultaneous substitutions,
necessary to handle de Bruijn-style λ-terms with static guarantee of well-scopedness. Such de
Bruijn terms can be represented using a data structure of heterogeneous type [8, 13]. In Fω̂ ,
heterogeneous types can be expressed by higher-kinded inductive types, i. e., type µaF where F
is an operator on type constructors instead of just types. As a result, we obtain an implementation
of a normalizer in Fω̂ whose termination and well-scopedness is ensured by type-checking in Fω̂ .

The remainder of this article is organized as follows. In Section 2, we briefly present system Fω̂ .
Then, we specify and verify hereditary substitutions and normalization for simply-typed λ-terms
in Section 3. In Section 4 we modify the specification to account for simultaneous hereditary
substitutions. An implementation in Fω̂ is provided in Section 5. We conclude by discussing related
and further work.

2. Fω̂ : A POLYMORPHIC λ-CALCULUS WITH SIZED TYPES

In this section, we briefly introduce the most important concepts of Fω̂ . We assume familiarity with
system Fω and inductive types.

Kinds. Kinds classify type constructors. In Fω, one has the kind ∗ of types and function kinds
κ → κ′ for type constructors. In Fω̂ we additionally have a kind ord for syntactic ordinals. And we
distinguish type constructors by their variance: they can be covariant (monotonic), contravariant
(antitonic), or mixed-variant (no monotonicity information).

κ ::= ∗ kind of types
| ord kind of ordinals

| κ
+→ κ′ kind of covariant type constructors

| κ
−→ κ′ kind of contravariant type constructors

| κ
◦→ κ′ kind of mixed-variant type constructors

Type constructors. Type constructors are expressions of a type-level λ-calculus, given by the
following grammar.

A,B, F, G ::= C | X | λX.F | F G

The constants C are drawn from a signature Σ (see Figure 1). We use +, ×, and → infix and
write ∀X : κ.A for ∀κ(λX.A). If clear from the context or inessential, we omit the kind annotation
κ in ∀X : κ.A and µκ. We also write the first argument to µκ—the size index—superscript. For
instance, µa(λX. 1 + A×X) denotes the lists of length < a containing elements of type A.

Constructors a : ord that denote ordinal expressions are essentially following the grammar

a, b ::= ı | ∞ | s a

where we use ı and  for variables of kind ord. (Of course, there are non-normal expressions like
(λX.∞)G : ord, or neutral expression such as X ~G : ord, but they do not matter for our purposes.)
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1 : ∗ unit type

+ : ∗ +→ ∗ +→ ∗ disjoint sum

× : ∗ +→ ∗ +→ ∗ cartesian product

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ ◦→ ∗) +→ ∗ quantification

µκ : ord
+→ (κ +→ κ) +→ κ inductive constructors

s : ord
+→ ord successor of ordinal

∞ : ord infinity ordinal

FIGURE 1: Signature Σ.

The ordinal expression ∞ denotes an ordinal large enough such that all inductive types have
reached their fixed-point, thus, we have

F (µ∞F ) = µ∞F.

The ordinal expression s a denotes the ordinal successor of a. We also write a + n as shorthand
for s (. . . (s a)) (n successors). In general, we have the type equation

µa+1F = F (µaF ).

for sized inductive types.

Subtyping. The sized inductive type µaF : ∗ contains data trees of height < a (this can be seen
from its semantics). Since the size index denotes an upper bound, we have a natural subtyping
relation

µaF ≤ µa+1F ≤ · · · ≤ µ∞F.

This relation is extended appropriately to all type constructors and to higher-order, taking the
variance information into account. (For more details, see the article about higher-order subtyping
in Fω̂ [4].)

Programs (terms). Fω̂ is a purely functional language with categorical datatypes3 and recursion.
Programs are given by the following grammar.

e, f ::= x | λx.e | f e λ-calculus
| 〈〉 inhabitant of type 1

| 〈e1, e2〉 | fst e | snd e pairing and projections
| inl e | inr e | case e f1 f2 injections into disjoint sum, case distinction
| fix f recursion

The typing rules for the λ-calculus part are inherited from Curry-style system Fω. Unit type,
cartesian product and disjoint sum are introduced and eliminated using the respective terms given
in the grammar. Inductive types can be introduced and eliminated using the above type equations.
The outstanding feature of Fω̂ is the type-based recursion rule which has been semantically

3Categorical datatypes do not contain names, just structure. Constructors of data structures are derived from the program
primitives. This is in opposition to nominal languages where data constructors are themselves primitives (e. g., in Haskell).
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motivated in the introduction:

f : ∀ı :ord. (∀ ~X. µıF ~X → G ı) → ∀ ~X. µı+1F ~X → G (ı + 1) G : ord
+→ ∗ a : ord

fix f : ∀ ~X. µaF ~X → G a

In comparison with the semantic rule given in the introduction, we now allow polymorphic
recursion, and the result type G a may mention the ordinal index a, but only positively [10, 2, 14].
Note that the size index a in the conclusion can be arbitrary. (Alternatively, one could formulate
the rule with conclusion fix f : ∀ı∀ ~X. µıF ~X → G ı. This size-polymorphic function can then
instantiated to any size a.)

This has been a short introduction to Fω̂ , more details can be found in my thesis [5]. In the next
section, we start developing an interpreter for some object language, in our case, the simply-typed
λ-calculus, which we will later implement in our meta language, Fω̂ .

3. A TERMINATING NORMALIZER FOR SIMPLY-TYPED LAMBDA-TERMS

In this section, we formally define hereditary substitution for the simply-typed λ-calculus. We show
its termination, soundness, and completeness.

Types and terms. The following grammars introduce our object language, the simply-typed λ-
calculus. To distinguish it from our meta-language, Fω̂ , we use lower case letters for the types.

a, b, c ::= o | a → b simple types
r, s, t ::= x | λx :a.t | r s simply-typed terms
n ::= x | n s neutral terms (required in Section 3.3)
Γ ::= � | Γ, x :a typing contexts

Ordinary (capture-avoiding) substitution [s/x]t of s for x in t, the set FV(t) of free variables of
term t, and β-equality t =β t′ of terms t, t′ are defined as usual, as well as the typing judgement
Γ ` t : a. Let |a| ∈ N denote a measure on types with |b| < |b → c| and |c| ≤ |b → c| (e. g., size, or
order ).

3.1. Hereditary substitution

We define a 4-ary function [sa/x]t, called hereditary substitution, which returns a result r̂. A result
is either just a term r or a term annotated with a type, written ra. The intention is that if s and
t are β-normal and well-typed terms, then the result will also be β-normal (and well-typed). Our
definition is a simplification of Watkins et al.’s hereditary substitutions for terms of the logical
framework LF extended to linearity and concurrency [25]. Implicitly, hereditary substitutions are
present already in Joachimski and Matthes’ normalization proof for the simply-typed λ-calculus
[18].

Let us first introduce some overloaded notation on results r̂. The operation r̂ discards the type
annotation on the result if present, i. e., ra = r and r = r. This operation is to be applied implicitly
when the context demands it. For example, application of two results r̂ and ŝ implicitly discards
the type annotations: r̂ ŝ = r̂ ŝ. Similarly for abstraction: λx : a.r̂ = λx : a.r̂. Finally, reannotation
r̂a = (r̂)a puts a fresh type annotation a onto a result.

Using these notations, we can compactly define hereditary substitution:

[sa/x]x = sa

[sa/x]y = y if x 6= y
[sa/x](λy :b.r) = λy :b. [sa/x]r where y fresh for s, x

[sa/x](t u) = ([ûb/y]r′)c if t̂ = (λy :b′.r′)b→c

t̂ û otherwise

where t̂ = [sa/x]t
û = [sa/x]u
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Lemma 1 (Invariant) If [sa/x]t = rc then |c| ≤ |a|.

Proof. By induction on t. There are only two cases which return an annotated term:

• [sa/x]x = sa. Trivially |a| ≤ |a|.
• [sa/x](t u) = ([ûb/y]r′)c where [sa/x]t = (λy : b′.r′)b→c. By induction hypothesis, |b → c| ≤
|a|. This proves the invariant, since |c| ≤ |b → c| by definition of the measure | · |.

�

Lemma 2 (Termination and soundness) [sa/x]t =β [s/x]t for all a, s, x, t.

Proof. By lexicographic induction on (|a|, t). We consider the case of application, [sa/x](t u): By
induction hypothesis, t̂ = [sa/x]t and û = [sa/x]u are both defined. We consider the subcase
t̂ = (λy : b′.r′)b→c. Using the invariant, we infer |b| < |b → c| ≤ |a|. Hence, we can again
apply the induction hypothesis to infer that [ûb/y]r′ terminates, thus, by definition, also [sa/x](t u).
Soundness holds by the induction hypotheses, since (λy :b′.r′) û =β [û/y]r′. �

3.2. Full Normalization

We define a function [[t]] which β-normalizes term t, provided it is well-typed. Even if it is not
well-typed, the normalizer terminates and returns a term which is β-equal to the input.

[[x]] = x
[[λx :a.r]] = λx :a. [[r]]

[[r s]] = [[[s]]a/x]t if [[r]] = λx :a.t
[[r]] [[s]] otherwise

Lemma 3 (Termination and soundness) [[t]] =β t for all t.

Proof. By induction on t, using termination and soundness of hereditary substitution. �

Example 4 (Behavior of normalizer)

[[(λx :o → o.λy :b. x y) (λz :a.z)]] = λy :b.y

Hereditarily substituting (λz :a.z) at function type o → o for x into x y triggers another substitution
of y for z in z. However, if variable x is annotated with base type o only, this second substitution is
not invoked and we get a non-normal result:

[[(λx :o.λy :b. x y) (λz :a.z)]] = λy :b. (λz :a.z) y

Evaluation of terms that are diverging under β-reduction also stops, e.g.,

[[(λx :o. x x) (λx :o. x x)]] = (λx :o. x x) (λx :o. x x).

3.3. Completeness of the Normalizer

In the following we show that the normalizer actually computes normal forms for well-typed terms.

Typed normal forms. We introduce a judgement Γ ` t ⇓ a which expresses that t is a β-normal
form of type a in context Γ.

(x :a) ∈ Γ
Γ ` x ⇓ a

Γ ` n ⇓ a → b Γ ` s ⇓ a

Γ ` n s ⇓ b

Γ, x :a ` r ⇓ b

Γ ` λx :a.r ⇓ a → b

Note that in the second rule, the head n of the application n s is a neutral term, in particular, not
an abstraction.
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Lemma 5 (Completeness of hereditary substitution) Let Γ ` s ⇓ a and Γ, x : a ` t ⇓ c. Then
exists an r with the following properties: If t is neutral then either [sa/x]t = rc, or r is also neutral
and [sa/x]t = r. Otherwise, if t is not neutral, [sa/x]t = r. In all cases, Γ ` r ⇓ c.

Proof. By lexicographic induction on (|a|, t). We consider the interesting case t = n u:

Γ, x :a ` n ⇓ b → c Γ, x :a ` u ⇓ b

Γ, x :a ` n u ⇓ c

Let û = [sa/x]u. If [sa/x]n = r and r is neutral, then Γ ` r û : c follows easily by induction
hypothesis. Otherwise, [sa/x]n = rb→c. If r is neutral then we conclude as before, otherwise
r = λy :b.r′. By the invariant, |b| < |b → c| ≤ a, and we can apply the induction hypothesis to infer
Γ ` [ûb/y]r′ ⇓ c, which is by definition equivalent to Γ ` [sa/x](n u) ⇓ c. �

Theorem 6 (Completeness of the normalizer) If Γ ` t : a then Γ ` [[t]] ⇓ a.

Proof. By induction on t, using the previous lemma in case of a β-redex. �

4. ADAPTATION TO SIMULTANEOUS SUBSTITUTIONS

Our aim is to implement the normalizer of the last section for a representation of terms using de
Bruijn indices. Following Altenkirch and Reus [8] and Bird and Paterson [13], untyped λ-terms
over the set of free variables A can be implemented by a nested datatype Tm A with the three
constructors:

var : ∀A.A → Tm A
abs : ∀A.Tm (1 + A) → Tm A
app : ∀A.Tm A → Tm A → Tm A

The second constructor, abs, expects a term with one more free variable (1 + A) and binds this
variable such that the result will only have free variables in A.

In this representation of de Bruijn terms, which statically ensures well-scoping, substitution [s/x]t
for a single variable x is not directly implementable. Instead, one has to define the simultaneous
substitution tρ for all free variables in t: If t has type Tm A and ρ has type A → Tm B, the result tρ
of the substitution has type Tm B.4

Hereditary simultaneous substitution. A valuation ρ is a function from variables to results r̂.
Let the update ρ[x 7→ r̂] of valuation ρ in x by result r̂ be defined as usual:

ρ[x 7→ r̂](x) = r̂
ρ[x 7→ r̂](y) = ρ(y) if x 6= y

The singleton valuation which maps x to r̂ and all other variables to themselves shall be denoted
by (x 7→ r̂). A single substitution [s/x]t can be implemented using the simultaneous substitution
t(x 7→ s) with a singleton valuation.

The hereditary simultaneous substitution t!ρ returns a result r̂ and is defined by the following
equations:

x!ρ = ρ(x)
(λy :b.r)!ρ = λy :b. (r!ρ[y 7→ y]) where y fresh for any ρ(x) with x ∈ FV(r) \ {y}

(t u)!ρ = (r′!(y 7→ ûb))c if t̂ = (λy :b′.r′)b→c

t̂ û otherwise

where t̂ = t!ρ
û = u!ρ

4The type constructor Tm forms a Kleisli triple with unit var and simultaneous substitution as the bind-operation [8].
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A closer look reveals that we use only three operations on valuations: lookup, ρ(x), lifting,
ρ[y 7→ y] for y fresh, and creation of a singleton valuation, (y 7→ ûb). In particular, if t!ρ is
invoked with a singleton valuation ρ, all recursive calls will also just involve a singleton valuation.
We could therefore restrict ourselves to singleton valuations. However, for termination, a weaker
requirement is sufficient:

In the following we consider only valuations ρ where ρ(x) = ra for only finitely many variables x.
For such valuations,

|ρ| := max{|a| | ρ(x) = ra}

is a well-defined measure, |ρ| ∈ N. Trivially, |(y 7→ sa)| = |a| for a singleton valuation.

Hereditary simultaneous substitutions always terminate, and the respective proof for hereditary
singleton substitutions can be adopted:

Lemma 7 (Invariant) If t!ρ = rc, then |c| ≤ |ρ|.

Proof. By induction on t. �

Lemma 8 (Termination and soundness of hereditary simultaneous substitutions)
For all terms r and valuations ρ such that |ρ| exists, we have r!ρ =β rρ.

Proof. By lexicographic induction on (|ρ|, r). In case r = t u and t̂ = t!ρ = (λy :b′.r′)b→c, use the
invariant to establish |(y 7→ ûb)| = |b| < |b → c| ≤ |ρ| and apply the induction hypothesis. �

By setting [sa/x]t := t!(x 7→ sa) we can reuse the code for the normalization function [[r]] from the
last section.

5. IMPLEMENTATION USING SIZED HETEROGENEOUS TYPES

In this section, we implement hereditary substitutions in Fω̂ . As a result, we will get a normalizer
whose termination is certified by the type system of Fω̂ .

Simple types over a single base type o can be defined as follows in Fω̂ :

Ty : ord
+→ ∗

Ty := λı. µı
∗λX. 1 + X ×X

o : ∀ı. Tyı+1

o := inl 〈〉

arr : ∀ı. Tyı → Tyı → Tyı+1

arr := λaλb. inr 〈a, b〉

The size index ı in Tyı implements a measure on simple types. The requirements |b| < |arr b c| and
|c| ≤ |arr b x| hold since b, c : Tyı implies arr b c : Tyı+1. But note that the only kind of measure that
can be captured by the type system of Fω̂ is the structural one.

We can express the sized type constructor Tm for de Bruijn terms by a least fixed point of kind
∗ +→ ∗.

Tm : ord
+→ ∗ +→ ∗

Tm := λı. µı
∗+→∗λXλA. A + (X A×X A + Ty∞ ×X (1 + A))

var : ∀ı∀A.A → Tmı+1 A
var := λx. inlx

app : ∀ı∀A.Tmı A → Tmı A → Tmı+1 A
app := λrλs. inr (inl 〈r, s〉)

abs : ∀ı∀A.Ty∞ → Tmı (1 + A) → Tmı+1 A
abs := λaλr. inr (inr 〈a, r〉)
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Note that the first argument to abs is the object-level type of the abstraction: abs a r represents
λx :a. r.

A whole article [6] has been devoted to functions defined by iteration over heterogeneous data
types such as Tm. Fω̂ can simulate all the systems discussed in that article, hence, all examples
in that article can be replayed in Fω̂ . Even more, in Fω̂ , some functions can be given more precise
typings, e. g., the functoriality/monotonicity witness of Tm:

map : ∀ı∀A∀B. (A → B) → TmıA → TmıB
map := λfλr. map′ r f

map′ : ∀ı∀A.TmıA → ∀B. (A → B) → TmıB
map′ := fix λmap′λtλf. match t with

var x 7→ var (f x)
app r s 7→ app (map′ r f) (map′ s f)
abs a r 7→ abs a (map′ r (lift f))

lift : ∀A∀B. (A → B) → (1 + A → 1 + B)
lift := λfλt.match t with

inl 〈〉 7→ inl 〈〉
inr x 7→ inr (f x)

Note our use of pattern matching over t distinguishing the defined constructors var, app, and abs.
Assuming the patterns resulting from expanding the constructors are non-overlapping, mutually
exclusive, and complete, this can be mechanically translated into case expressions. For the sake
of readability, we prefer pattern matching as syntactic sugar.

The call map f t renames all free variables in t according to f ; the structure of t remains
unchanged, which is partially reflected in the type of map: it expresses that the output term is
not higher than the input term.

The type of recursion in map′ is polymorphic:

C(ı) := ∀A.TmıA → ∀B. (A → B) → TmıB.

This is typical for functions over heterogeneous data types; in our example, since in the recursive
call map r (lift f) the argument r has type Tmı (1 + A), the variable A of the recursion type C(ı)
has to be instantiated to 1 + A.

The result of a hereditary substitution of a normal term into a neutral term is either a neutral term
r or a normal term r plus (its) type a, which we have written as ra. We encode these alternatives
in the type Resı A, where ı is an upper bound on the size of the type a and A is the set of free
variables that might occur in the result term r. We define two constructors: neRes r for the first
alternative, and nfRes r a for the second alternative.

Res : ord
+→ ∗ +→ ∗

Res := λıλA. Tm∞A× (1 + Tyı)

neRes : ∀ı. Tm∞A → Resı A
neRes := λr. 〈r, inl 〈〉〉

nfRes : ∀ı. Tm∞A → Tyı → Resı A
nfRes := λrλa. 〈r, inr a〉

The destructor tm just extracts the term component. The function weakRes lifts the free variables in
a result term by one.

tm : ∀ı∀A.ResıA → Tm∞A
tm := λ〈r, a〉. r

weakRes : ∀ı∀A.Resı A → Resı (1 + A)
weakRes := λ〈r, a〉. 〈map inr r, a〉
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Finally, we can mimic all term constructors on Res. They should all discard the type component, if
present. This is why the size index ı on the result of these operations is arbitrarily small:

varRes : ∀ı∀A.A → Resı A
varRes := λa. neRes (var a)

absRes : ∀ı∀A.Ty∞ → Res∞(1 + A) → ResıA
absRes := λaλr. neRes (abs a (tm r))

appRes : ∀A.Res∞A → Res∞A → Resı A
appRes := λtλu. neRes (app (tm t) (tm u))

We represent valuations ρ which map all variables in A to a result with variables in B by the sized
type Valı A B. The size index ı is an upper bound for |ρ|.

Val : ord
+→ ∗ −→ ∗ +→ ∗

Val := λıλAλB.A → ResıB

sgVal : ∀ı∀A.Tm∞A → Tyı → Valı (1 + A) A
sgVal := λsλaλmy . match my with

inl 〈〉 7→ nfRes s a
inr y 7→ varRes y

liftVal : ∀ı∀A∀B.Valı A B → Valı (1 + A) (1 + B)
liftVal := λρλmx . match mx with

inl 〈〉 7→ varRes (inl 〈〉)
inr x 7→ weakRes (ρ x)

The expression sgVal s a : Valı (1 + A) A corresponds to the singleton valuation (x 7→ sa); it
generates a valuation which maps the variable x in 1 to nfRes s a and the variables y in A to
neRes (var y). The extension ρ[y 7→ y] of a valuation ρ is implemented by liftVal ρ.

For implementing hereditary substitutions, we have to take into account the limitations of recursion
in Fω̂ . Lexicographic recursion on type and term, Tyı × Tm A, needs to be split up into an outer
recursion on Tyı and an inner recursion on Tm.

Thus, we define hereditary substitution [sa/x]r by a function subst a s r recursive in a. This outer
function calls an inner function simsubst r (sgVal a s) recursive in r, which performs hereditary
simultaneous substitutions in r, starting with the singleton valuation (x 7→ sa). In one case, the
inner function calls the outer function, albeit with a smaller type b. That b is in fact smaller than a
is tracked by the type system.

subst : ∀ı. Tyı → ∀A.Tm∞A → Tm∞(1 + A) → Tm∞A
subst := fix λsubstλaλsλt. tm (simsubst t (sgVal s a))

where simsubst : ∀. ∀A∀B.TmA → Valı+1 A B → Resı+1B
simsubst := fix λsimsubstλtλρ. match t with

var x 7→ ρ x
abs b r 7→ absRes b (simsubst r (liftVal ρ))
app t u 7→ let t̂ = simsubst t ρ

û = simsubst u ρ
in match t̂ with

nfRes (abs b′ r′) (arr b c) 7→ nfRes (subst b (tm û) r′) c
_ 7→ appRes t̂ û

The outer function is defined by induction on size ı; we have the following important types of bound
variables:

subst : Tyı → ∀A.Tm∞A → Tm∞(1 + A) → Tm∞A

a : Tyı+1
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This explains why in the type of the inner function, we have used size index ı + 1 to Val and Res.
The inner function is defined by induction on . It is important that liftVal does not touch the size
argument to Val. Also, absRes and appRes can return results Res with any size argument, thus, ı + 1
is fine. In the application ρ x, the size index on Val is returned as the size of Res. Finally, when we
match t̂ : Resı+1 B as the result of a recursive call to simsubst , the expression arr b c has sized type
Tyı+1, hence, b : Tyı, and the recursive call to subst is legal. Since c : Tyı ≤ Tyı+1 by subtyping,
the result nfRes (. . . ) c is well-typed.

The evaluator [[−]] can now be implemented straightforwardly. Its termination is guaranteed by
sized types!

6. RELATED WORK

Type-based termination and sized types. Mendler [23] first devised a typing rule for general
recursive programs that would single out the ones that are iterative—like fold for lists. Mendler’s
system was extended by Giménez [16] and Barthe et al. [10, 11] to account for course-of-value
recursion—covering functions like quicksort. I have explored how the type of a recursive function
may depend on the size index [1]—now functions like breadth-first traversal are recognized as
terminating by the type system. In my thesis [5], I cover also heterogeneous types like this article’s
Tm. Blanqui [14, 15] extended type-based termination to dependent types and rewriting.

Independently of these “type-theoretic” developments, Hughes, Pareto, and Sabry [17, 24] have
explored sized types for preventing crashes of functional programs. They arrived at a similar rule
for type-based terminating recursion.

De Bruijn representation by a heterogeneous type. Since the 1960s it is known that
simultaneous substitution can be viewed as the bind operation of a suitable monad [19, VI.4]
[20]. For terms with binders, the idea was taken up by Bird and Paterson [13] as a case study for
heterogeneous (nested, resp.) types in Haskell. Altenkirch and Reus [8] implement simultaneous
substitutions for de Bruijn terms in a more type-theoretic setting; they carry out the renaming—
performed in substitution under a binder—also by an invocation of substitution. Thus, termination
of substitution becomes more complicated; they justify it by a lexicographic argument. McBride
[21] stratifies this situation by exhibiting a common scheme which substitution and renaming
as special instances. This scheme is again structurally recursive. McBride considers the object
language of simply-typed terms in a dependently typed meta language; this way, he even
establishes that substitution and renaming are type-preserving.

Adams [7] has carried out metatheory of pure type systems using de Bruijn representations as
a heterogeneous type. He found that he had to pass from small-step statements, which speak
about a single variable, e.g., a single substitution, to big-step statements, that take all variables
into account at the same time, like simultaneous substitution. We can only confirm his findings.

Arithmetic normalization proofs and functions. Joachimski and Matthes [18] present strong
and weak normalization proofs of the simply-typed λ-calculus using a lexicographic induction
on types and derivations, similar to the one we have given in Section 3. They hand-extract
a general recursive normalization algorithm which may diverge on ill-typed input. Berghofer
[12] implemented the weak normalization proof in Isabelle and automatically extracted a
normalizer, being much more complicated and keeping some intermediate data structures. I have
implemented a similar proof in Twelf [3]. The termination checker of Twelf is capable to certify
termination of the normalization proof, if viewed as a recursive function.

Watkins et al. [25] define hereditary substitutions for terms of the logical framework LF, and its
extensions to linearity and concurrency. These substitutions are terminating by a lexicographic
induction on type and term—as in this article. Hereditary substitutions enable us to specify
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a framework which only treats canonical forms (β-normal η-long objects), thus, simplifying its
metatheory considerably.

7. CONCLUSION

We have presented Fω̂ , a pure polymorphic programming language with sized heterogeneous
inductive types and type-based termination. As a non-trivial example, we have implemented a
normalizer for simply-typed λ-terms in Fω̂ . The termination of the normalizer is statically ensured
in Fω̂ . Additionally, the normalizer is well-scoped, by virtue of an implementation of λ-terms using
a heterogeneous type.

One could go further and aim for a normalizer for statically well-typed λ-terms, “well-typed”
referring here to typing in the object language of simple types. McBride has done a first step
and implemented type-preserving renaming and substitution for the object language using a
dependently-typed meta language [21]. Pursuing this approach, one could modify the normalizer
such that it does not any more explicitly manipulate object-level types but considers only object-
level terms. The object-level types would be visible only in the meta-level typing of the normalizer.
The normalizer, viewed purely operationally, would have the possibility to diverge on ill-typed
terms, but the static well-typedness condition would guarantee its termination for all actual inputs.
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