
Termination and Productivity Checking with
Continuous Types

Andreas Abel ?

Department of Computer Science, University of Munich
Oettingenstr. 67, 80538 München, Germany

abel@informatik.uni-muenchen.de

Abstract. We analyze the interpretation of inductive and coinductive
types as sets of strongly normalizing terms and isolate classes of types
with certain continuity properties. Our result enables us to relax some
side conditions on the shape of recursive definitions which are accepted
by the type-based termination calculus of Barthe, Frade, Giménez, Pinto
and Uustalu, thus enlarging its expressivity.

1 Introduction and Related Work

Interactive theorem provers like Coq [13], LEGO [20] and Twelf [18] support
proofs by induction on finite-depth (inductive) structures (like natural numbers,
lists, infinitely branching trees) and infinite-depth (coinductive) structures (like
streams, processes, trees with infinite paths) in the form of recursive programs.
However, these programs constitute valid proofs only if they denote total func-
tions. In the last decade, considerable effort has been put on the development
of means to define total functions in the type theories of the abovementioned
theorem provers.

The first solution was to restrict programs to specific recursion schemes like
iteration or primitive recursion (like natrec). Since these schemes come with
complicated reduction behavior, they were inconvenient to use and so the search
started how to incorporate the simpler general recursion (fix resp. letrec) known
from functional programming. Programs using fix are in general not terminating
(resp. productive, for the case of infinite structures), hence could denote partial
or undefined functions. Thus, the use of fix has to be restricted in some manner.

Static analysis of the program. The first approach is to check the code of a
recursive program to make sure some argument is decreasing in each recursive
call (cf. Abel and Altenkirch [1, 4], Pientka [19], Lee, Jones and Ben-Amram [14]).
For programs defining infinite objects like streams, the recursive calls need to
be guarded. Guardedness checks have been devised e.g. by Coquand [8], Telford
and Turner [22] and Giménez [9].
? Research supported by the Graduiertenkolleg Logik in der Informatik (PhD Program

Logic in Computer Science) of the Deutsche Forschungsgemeinschaft (DFG). The
author thanks Martin Hofmann and Ralph Matthes for helpful discussions.

pivot : int→ ∀Y ≈ int list . Y → Y × Y

pivot a []Y
1

= ([]Y
1
, []Y

1
)

pivot a (x :: xsY)Y
1

= let (lY, rY) = pivot a xs in

if a > x then ((x :: l)Y
1
, rY≤Y

1
) else (lY≤Y

1
, (x :: r)Y

1
)

qsapp : ∀Y ≈ int list . Y → int list→ int list

qsapp []Y
1

ys = ys

qsapp (x :: xsY)Y
1

ys = let (lY, rY) = pivot x xs in qsapp lY (x :: qsapp rY ys)

quicksort : int list→ int list

quicksort l = qsapp l []

Fig. 1. Example: Quick-sort.

For programs like quicksort (cf. Fig. 1, ignore type annotations for now), input
arguments are transformed via another function (here: pivot), before fed into the
recursive call. Hence, analyses need to infer the size relation between input and
output of a function, or at least detect non-size increasing functions like pivot.
Well-designed static analyses [19, 14, 15, 22] support some size checking for first-
order programs, but fail for higher-order programs. These analyses usually have
some other drawbacks: they are quite sophisticated and thus hard to comprehend
and to trust, and they are sensitive to little changes in the program code: a
program which passed a termination check might not pass any longer if a redex
is introduced (cf. discussion in Barthe et al. [7]). Furthermore, they all fail for
non-strictly positive datatypes.

Type-based analysis tries to address these problems by assigning a specific type
to a total program instead of analyzing the code: Types are preserved under
reduction and scale to higher-order functions and non-strictly positive data.
Type theory has a long tradition in the programming language and theorem
proving community and people are trained to understand typing rules. So a
type-based approach might be easier to comprehend and easier trusted.

The first type-based approach to termination is attributed to Mendler [16].
He used universally quantified type variables to restrict recursive calls. His ideas
have been further developed by many [6, 21]; we will only consider approaches
here which also detect non-size increasing functions.

Type-based termination in a nutshell. Inductive structures can be viewed as
trees and thus classified by their height. First-order data structures like lists
and binary trees have a finite height < ω which can be denoted by a natural
number. Proof theory deals also with higher-order data structures like infinitely
branching trees whose height can only be denoted by an infinite ordinal α ≥ ω
below the least uncountable ordinal Ω. The dual concept to height is definedness
or observability upto depth α and applies to coinductive structures.

2

In type-based termination, total functions are defined by induction on the
height/definedness of structures. Let ∇Xσ define a inductive (∇ ≡ µ) or coin-
ductive (∇ ≡ ν) datatype. Then ρ ≈ ∇Xσ denotes a subtype or approximation ρ
of ∇Xσ which contains elements below a certain height/definedness α. Following
Barthe et al. [7] we will refer to such elements as elements at stage α. Next, ρn

denotes the type of elements at stage α+ n. Types involving bounded quantifi-
cation ∀Y≈∇Xσ. τ(Y) can be instantiated at any approximation ρ ≈ ∇Xσ of a
datatype to obtain the type τ(ρ). Recursive functions of result type τ involving
∇Xσ are introduced by the rule

Y≈∇Xσ, g :τ(Y) `M : τ(Y 1)

fix∇g.M : ∀Y≈∇Xσ. τ(Y)
.

The premise incarnates the step case of induction, taking the function from stage
α to stage α+1. The base case α = 0 is handled by side conditions on the type τ
which ensures that τ at stage 0 is interpreted as the whole universe of programs.
This holds trivially for the class

τ(Y) ≡ Y → τ ′(Y) if ∇ = µ,
τ(Y) ≡ τ ′(Y)→ Y if ∇ = ν.

The fact that τ ′ may depend on Y enables the type system to tract stage de-
pendencies between input and output of a function like pivot : int → ∀Y ≈
int list. Y → Y ×Y . The type of pivot guarantees that the length of both output
lists is bounded by the length of the input list. This feature is very valuable for
defining Euclidian division, merge sort, the stream of Fibonacci numbers (see
below) etc.

For higher-order datatypes ∇Xσ we have to continue induction transfinitely
and also handle the limit case α = λ. More precisely, we have to show that if
the recursive program fix∇g.M inhabits τ at stages β < λ then it inhabits τ
also at the limit stage λ. For types in the special class above this is always the
case if τ ′(Y) is monotone in Y . But this is not a necessary condition and there
are interesting types which do not fall into the above class. E.g., let Stream =
νX.Nat×X denote streams of natural numbers, fold : ∀Y≈Stream.Nat×Y → Y 1

the injection into Stream and

sum : ∀Y≈Stream. Y → Y → Y
sum (x :: xs) (y :: ys) = x+ y :: sumxs ys

fib′ : ∀Y≈Stream.Nat× Y
fib′ = (0, 1 :: sum (fold fib′) (snd fib′))

from which we can obtain the stream of Fibonacci numbers fib = fold fib′. In the
type system of Barthe el al. [7], the type of fib′ is not accepted and it is not clear
how to define the Fibonacci stream in a similarly elegant way. As we will see in
Sect. 4, both definitions are perfectly legal in our system.

3

Approach Flavor Polym. Norm. Datatypes Stages Arithmetic Continuity
Xi [23] Church yes closed FO-µ < ω Presb., ∗/ —
Hughes/Pareto+ [12, 11, 17] Curry yes closed FO-µν ≤ ω Presb. yes
Barthe/Giménez+ [7] Curry no SN HO-µν < Ω +1 only no
this Curry no SN HO-µν < Ω +1 only yes

Table 1. Recent work on type-based termination.

Contribution. This work addresses the question: Which types are legal as the
result type τ of a recursive definition? We cannot give a final answer yet, but we
have identified a class of types exceeding Barthe el al. [7] which follow a regular
pattern. We analyzed the interpretation of types by sets of strongly normalizing
terms and found that τ needs to be continuous for corecursive and something
which we called paracontinuous for recursive definitions.

Hughes’ et al. [12] system accepts types τ which are ω-undershooting and pass
a bottom-check, but he worked in a domain theoretic denotational semantics with
only first-order datatypes and it is not clear yet whether all of his results carry
over when considering strong normalization and higher-order datatypes.

Table 1 compares some recent approaches to type-based termination. Xi [23]
aims at functional programming with a cbv-reduction semantics for closed terms
and first-order inductive datatypes, hence its sufficient for him to consider only
finite stages and he does not need to address the problem of limit stages and con-
tinuity. His stage expressions are most expressive and support full arithmetic, but
this makes type-checking semi-decidable if multiplication of stages is involved.
Hughes and Pareto aim at embedded functional programming with streams and
processes, they have treated the problem of continuity for ω-instantiation. Barthe
and Giménez aim at theorem proving and support higher-order datatypes needed
for proof theory. They show strong normalization, but do not investigate conti-
nuity, and here this works steps in.

Our calculus λfixµν might serve as the core of a total functional programming
language or an interactive proof assistant. Since it also handles non-strictly pos-
itive types, it could help to investigate programs with continuation types or
algorithms extracted from classical proofs via double-negation translation.

This article is organized as follows. In Sect. 2 we will present the untyped
term language with reduction semantics, and in Sect. 3 we will define types,
subtyping and type interpretation. Sect. 4 is devoted to continuous types and
Sect. 5 to co- and paracontinuous types. In Sect. 6 we will introduce the typing
rules and prove soundness.

2 Untyped Calculus

Figure 2 presents terms, evaluation contexts and reduction relations of λfixµν , a
core functional programming language with iso-recursive categorical datatypes,
(fold, unfold), recursion (fixµ) and corecursion (fixν). “fold” is the general con-
structor, sometimes called in; “unfold” the general destructor, also called out.

4

Terms M,N ∈ TM.

M,N ::=x | λx.M |M N | inlM | inrM | (caseM of inl x1 ⇒M1 | inr x2 ⇒M2)
| (M1,M2) | fstM | sndM | foldM | unfoldM | fixµg.M | fixνg.M

Evaluation contexts.

E[•] ::=• | E[•]M | unfoldE[•] | (caseE[•] of inl x1 ⇒M1 | inr x2 ⇒M2)
| fstE[•] | sndE[•] | (fixµg.M)E[•]

β-Reduction axioms: Lambda calculus with sums and products +

unfold (foldM) −→β M
(fixµg.M) (foldN) −→β ([fixµg.M/g]M)(foldN)
unfoldE[fixνg.M] −→β unfoldE[[fixνg.M/g]M]

Reduction relations.

−→β β-reduction
−→ one-step reduction: closure of −→β under all term constructors
−→+ transitive closure of −→
−→∗ reflexive-transitive closure of −→

Fig. 2. λfixµν : Terms, Evaluation Contexts and Reduction

Reduction axioms are standard, solely of interest are the rules for the fixed-
points: Recursive functions fixµ are only unfolded when applied to an argument
guarded by a fold and infinite objects fixν only under a unfold-destructor. These
restrictions are essential for establishing strong normalization. The reduction
relation −→, which results from closing −→β under all term constructors, is
confluent, which can be shown with the parallel-reduction method by Tait and
Martin-Löf.

The set of strongly normalizing terms SN is defined as the wellfounded part
of the set TM of terms wrt. the reduction relation −→. All variables x and all
subterms of strongly normalizing terms are strongly normalizing. Furthermore,
the set SN is closed under reduction.

Proofs of strong normalization typically involve some standardization argu-
ment. In our case we use weak head reduction; it is a reduction of the form
E[M1] −→ E[M2] where M1 −→β M2. Terms of the form E[x] are called neu-
tral. A set of terms P ⊆ TM is called saturated, written P ∈ SAT , if it contains
only strongly normalizing terms, all strongly normalizing neutral terms, and if
it is closed under weak head expansion. The saturation of a set P is defined as
the closure under the following rules:

M ∈ P

M ∈ P ∗
E[x] ∈ SN

E[x] ∈ P ∗
M ∈ SN M −→β M

′ E[M ′] ∈ P ∗

E[M] ∈ P ∗

The set SN is saturated, and so is the function space P → Q := {M | M N ∈
Q for all N ∈ P}, provided P,Q ∈ SAT .

5

Types (∇ ∈ {µ, ν}, n ∈ N).

ρ, σ, τ ::= X | σ → τ | σ + τ | σ × τ | ∇Xσ | Y n | ∀Y≈∇Xσ. τ

Contexts. Γ ::= · | Γ, x :τ | Γ,X | Γ, Y≈∇Xσ

Judgments.
Γ cxt Γ is a wellformed context.
Γ ` X pos σ Variable X appears positively in σ
Γ ` X neg σ Variable X appears negatively in σ
Γ ` X only pos in σ All occurrences of X in σ are positive.
Γ ` τ : type τ is a wellformed type.
Γ ` ρ ≈ ∇Xσ ρ is an approximation of ∇Xσ.
Γ ` ρ ≤ σ ρ is a subtype of σ.

Approximations.
(Y≈∇Xσ) ∈ Γ

≈Y
Γ ` Y n ≈ ∇Xσ

≈∇
Γ ` ∇Xσ ≈ ∇Xσ

Subtyping.

ρ ∈ {µXσ, νXσ}
≤Base

Γ ` ρ ≤ ρ

(Y≈µXσ) ∈ Γ
≤Y µ1

Γ ` Y n ≤ µXσ

(Y≈µXσ) ∈ Γ n ≤ m
≤Y µ2

Γ ` Y n ≤ Ym

(Y≈νXσ) ∈ Γ
≤Y ν1

Γ ` νXσ ≤ Y n
(Y≈νXσ) ∈ Γ n ≤ m

≤Y ν2
Γ ` Ym ≤ Y n

Γ ` σ1 ≤ ρ1 Γ ` ρ2 ≤ σ2
≤→

Γ ` ρ1 → ρ2 ≤ σ1 → σ2

Γ ` ρ1 ≤ σ1 Γ ` ρ2 ≤ σ2 ? ∈ {+,×}

Γ ` ρ1 ? ρ2 ≤ σ1 ? σ2
≤?

Γ ` ρ ≈ ∇Xσ Γ ` [ρ/Y]τ ≤ τ ′
≤∀L

Γ ` (∀Y≈∇Xσ. τ) ≤ τ ′
Γ, Y≈∇Xσ ` ρ ≤ τ

≤∀R
Γ ` ρ ≤ ∀Y≈∇Xσ. τ

Fig. 3. λfixµν : Types and Subtyping.

3 Types

Figure 3 presents types and type related judgments. Most of these are stan-
dard, like wellformedness of contexts and positive and negative occurrences of
variables. A type τ is wellformed (Γ ` τ : type) if it follows the grammar with
the restriction that if τ ≡ ∇Xσ is a (co)inductive type, X may appear only
positively in σ and σ may not contain quantifiers. Approximation types Y n and
bounded quantification ∀Y ≈ ∇Xσ. τ have been explained in the introduction
already. Note that unit and empty type can be defined: 1 = νX.X, 0 = µX.X.

We regard all variables bound in a context as distinct. (Capture-avoiding)
substitution for types is defined as usual and written [ρ/X]σ. Sometimes we
exhibit a free variable in a type σ(X) and write σ(ρ) for the result of substitu-
tion. For approximations we define a special substitution given by the axioms
[Xm/Y]Y n = Xn+m and [∇Xσ/Y]Y n = ∇Xσ plus congruence rules for all
type constructors. The second axiom is justified by the fact that ∇Xσ denotes
a fixed-point which is unaffected by n more iterations.

Subtyping is induced by approximation types. Since the semantics [[Y]] of some
bounded type variable Y ≈ µXσ denotes some subset of [[µXσ]], we introduce the

6

subtyping rule Y ≤ µXσ. Furthermore, since the approximations of an inductive
type form an ascending chain bounded by the fixed-point of the approximation
operator, we can safely add subtyping rules Y i ≤ Y j and Y i ≤ µXσ for all
indices i and j with i ≤ j. Note that two different type variables X 6= Y
are incomparable. Subtyping rules for approximations of coinductive types are
obtained by dualization.

To increase expressivity of subtyping, we have incorporated a reflexivity rule
for base types, congruence rules for sum, product and function types (contravari-
ant on the left!) and rules for quantification. The subtyping relation ≤ is reflexive
and transitive. Since most rules are syntax-directed, it is not hard to come up
with a decision algorithm for subtyping. The only critical rules are the ones for
quantification: rule ≤∀R always has to be applied before ≤∀L. When the rule
≤∀L fires, an approximation ρ has to be guessed. This can be implemented using
existential variables and unification.

Type interpretation and soundness. In the following, we give an interpretation of
types as sets of terms which we will later show to be saturated. Approximations
will be interpreted as iterations Φα of monotonic operators Φ : P(TM)→ P(TM).
To distinguish between approximation from above and below, we define iterates
as Φ∇,α with a tag ∇ ∈ {µ, ν}.

Φµ,0 = ∅∗ Φν,0 = SN
Φµ,α+1 = Φ(Φµ,α) Φν,α+1 = Φ(Φν,α)
Φµ,λ =

⋃
α<λ Φ

µ,α Φν,λ =
⋂
α<λ Φ

ν,α

When clear from the context, we omit the tags µ, ν. To interpret context as
sets of substitutions, let P , Q from here denote sets of terms. Raw substitutions
are given by the grammar θ ::= · | θ, x 7→M | θ,X 7→P | θ, Y 7→ (Φ,∇, α). Note
that approximation variables Y are mapped to a triple consisting of a monotonic
operator Φ, a flag ∇ ∈ {µ, ν} denoting whether Y approximates a least fixed-
point from below or a greatest fixed-point from above, plus an ordinal α denoting
the current iteration. Γ -substitutions θ : Γ are those with dom(θ) = dom(Γ).

Let Γ ` τ : type and θ : Γ . We define the type interpretation [[τ]]θ ⊆ TM by
recursion on τ .

[[σ + τ]]θ = {inlM |M ∈ [[σ]]θ}∗ ∪ {inrM |M ∈ [[τ]]θ}∗

[[σ × τ]]θ = {M | fstM ∈ [[σ]]θ, sndM ∈ [[τ]]θ}
[[σ → τ]]θ = [[σ]]θ → [[τ]]θ [[X]]θ = θ(X)

[[µXσ]]θ = ΦΩµXσ,θ ΦµXσ,θ(Q) = {foldM |M ∈ [[σ]](θ,X 7→Q)}∗

[[νXσ]]θ = ΦΩνXσ,θ ΦνXσ,θ(Q) = {M | unfoldM ∈ [[σ]](θ,X 7→Q)}

[[Y n]]θ = Φα+n where θ(Y) = (Φ,∇, α)

[[∀Y≈∇Xσ. τ]]θ =
⋂
α[[τ]](θ, Y 7→(Φ∇Xσ,θ,∇, α))

The “introduction-based” semantics of + and µ has to be saturated explicitely
(note the ∗), which is not necessary for “elimination-based” constructions (→,
×, and ν). The semantics of (co)inductive types ∇Xσ are defined as iterates

7

of operators at stage Ω, which is a (greatest) least fixed-point iff the semantics
[[τ]] is monotonic for each substitution θ, i.e., monotonic in every variable that
occurs positively and antitonic in every variable that occurs negatively. To make
this observation precise, we define inclusion for substitutions. Let Γ ` τ : type.
Then Γ `τ θ1 ⊆ θ2 is defined to hold iff θ1 and θ2 are Γ -substitutions and

– θ1(X) ⊆ θ2(X) for all X with Γ ` X pos τ ,
– θ1(X) ⊇ θ2(X) for all X with Γ ` X neg τ , and
– θ1(Y) = θ2(Y) for all (Y≈∇Xσ) ∈ Γ .

Lemma 1 (Soundness of Subtyping). If Γ ` ρ ≤ σ and Γ `ρ θ1 ⊆ θ2 then
[[ρ]]θ1 ⊆ [[σ]]θ2.

Proof. By induction on Γ ` ρ ≤ σ.

By reflexivity of subtyping, this lemma entails monotonicity of all types which,
again, entails soundness of our fixed-point construction. By simple induction
proofs we also establish that substitution for types and approximations is sound.
Finally, we show is that types are interpreted as saturated sets. To this end, we
define the semantical version θ ∈ [[Γ]] of θ : Γ .

· ∈ [[·]]
M ∈ [[τ]]θ θ ∈ [[Γ]]

(θ, x 7→M) ∈ [[Γ, x :τ]]

P ∈ SAT θ ∈ [[Γ]]

(θ,X 7→P) ∈ [[Γ,X]]

α ordinal θ ∈ [[Γ]]

(θ, Y 7→(Φ∇Xσ,θ,∇, α)) ∈ [[Γ, Y≈∇Xσ]]

Lemma 2 (Saturatedness). If Γ cxt then for all θ ∈ [[Γ]] and all X the set
θ(X) is saturated. If Γ ` τ : type then for all θ ∈ [[Γ]] it holds that [[τ]]θ ∈ SAT .

4 Continuous Types

In this section, we will identify a set of legal result types τ(Y) for corecursion
(see Sect. 1). The key requirement on τ is continuity. An operator Φ is continuous
if for all families Pα (α ∈ I) of term sets it holds that

⋂
α∈I

Φ(Pα) ⊆ Φ

(⋂
α∈I

Pα

)
.

In the following we will motivate why continuity is a necessary condition on τ .
Consider the typing rule for corecursion specialized to streams.

Y≈Stream, g :τ(Y) `M : τ(Y 1)

fixνg.M : ∀Y≈Stream. τ(Y)

Let S(Q) = {M ∈ TM | hdM ∈ [[Nat]] and tlM ∈ Q} be the semantical op-
erator to construct the set of streams. Then [[Stream]] =

⋂
α<ω S

α. Hence, the

8

corecursion rule for streams can be proven sound by transfinite induction upto
ω. In the limit case ω, we can use the induction hypothesis for all smaller stages,
i.e., we can assume

fixνg.M ∈
⋂
α<ω

[[τ]](Sα) to show fixνg.M ∈ [[τ]]
(⋂
α<ω

Sα
)

= [[τ]]([[Stream]]).

Obviously, we require [[τ]] to be continuous.

A grammar for continuous types. We introduce a new judgment Γ ` X cont τ ,
meaning that τ is continuous in the variables X.

Γ `X cont Xi

X 6∈ FV(τ)

Γ `X cont τ

Γ `X only pos in σ Γ `X cont τ

Γ `X cont σ → τ

Γ `X cont σ, τ

Γ `X cont σ + τ

Γ `X cont σ, τ

Γ `X cont σ × τ
Γ,X `X, X cont σ

Γ `X cont ∇Xσ
(Y≈∇Xσ) ∈ Γ Γ `X cont ∇Xσ

Γ `X cont Y n

Γ, Y≈∇Xσ `X cont τ

Γ `X cont ∀Y≈∇Xσ. τ
For function types to be continuous, the domain just needs to be monotonic
and the range continuous. Fixed-points are continuous if the respective operator
is continuous and (of course) monotonic. Surprising is the fact that least fixed-
points are continuous, which requires that union preserves continuity. Let Φ be
the operator of an inductive type. Then

⋂
α

⋃
β<λ

Φβ(Pα) ⊆
⋃
β<λ

Φβ

(⋂
α

Pα

)

does not hold simply by set-theoretic means, even if Φ is continuous. In our
semantics however, an intersection can be pulled into a union. Informally this
may be explained as follows:

Consider polymorphic lists List(X) with operator L(A)(Q) = {nil} ∪ {a ::
l | a ∈ A, l ∈ Q}. Note that for some fixed set A, L(A)n denotes the nth
approximant to [[List]](A). Recall that S was defined as the operator for streams.
We say a stream s has goodness n if s ∈ Sn. Let M be some list of streams with
the following property: At the same time, let M be a list of length m0 of streams
of goodness 0, a list of length m1 of streams of goodness 1, . . . a list of length
mn of streams of goodness n, Formally, M ∈ L(Si)mi for all i. Since a list
can only have one length, all mi must be equal. Hence mi = m0 for all i, and⋂

n[[List]](Sn) =
⋂
n(
⋃
m(L(Sn))m) =

⋂
n(L(Sn))m0

⊆ (L(
⋂
n S

n))m0 = (L([[Stream]]))m0 ⊆ [[List]]([[Stream]])

This example shows that List(A) is continuous in A. To generalize this result for
all inductive types, we make the following general observation that new inductive
data is only generated by successor iterates:

9

Lemma 3 (Successor Iterates are Sufficient). If foldM ∈ ΦαµXσ,θ then
foldM ∈ Φβ+1

µXσ,θ for some β < α.

Now we give a formulation of the above explained independence result for in-
ductive types µY σ with a free variable X.

Lemma 4 (Independence). Let [[σ(X,Y)]] be continuous in the variables X
and Y and Φ(P)(Q) = {foldM | M ∈ [[σ]](X 7→ P, Y 7→Q)}∗. Furthermore, let
(βα) a sequence of ordinals and Pα a sequence of sets of terms. Then⋂

α

(Φ(Pα))βα ⊆ Φ(
⋂
α

Pα)β0

This lemma is proven by induction on β0 and can be generalized to continu-
ous types σ(X, Y) by defining intersection on substitutions θ. It then yields
soundness of syntactic continuity.

Theorem 1 (Soundness of cont). Let Γ ` τ : type. If Γ `X cont τ , then [[τ]]
is continuous in X.

As a side product of our considerations, we notice that all strictly positive coin-
ductive types are continuous. Thus, their fixed-point is reached at iteration ω.

Types for infinite objects. Can all continuous types be used for fixν-definitions?
Given our reduction semantics, the answer is no. Sums, inductive and coinductive
types may be continuous, but they do not provide the necessary guardedness.
For example, let

map0 = map (λx.0 :: x) : ∀Y≈Stream.List(Y)→ List(Y 1)

Then M = fixνg.map0 g could be ascribed type ∀Y≈Stream. List(Y). But unfold-
ing of M diverges: unfoldM −→β unfold(map0M) −→β unfold(map0 (map0M))
−→β . . . Similar examples can be found for types with + and ν. What remains
as legal types for fixν, are function space and product. By a judgment Y legalν τ ,
we give a grammar for these types.

Y legalν Y

Y only pos in σ Y legalν τ

Y legalν σ → τ

Y legalν σ Y legalν τ

Y legalν σ × τ

Examples for legal types τ according to this grammar which are not of the form
τ(Y)→ Y (τ monotone), like Y → Y → Y and Nat× Y , have been given in the
introduction (Fibonacci streams).

5 Co- & Paracontinuous Types

As we have answered for fixν, we can ask for the recursive function constructor
fixµ: Which types τ(Y) would be legal in the rule

Y≈µXσ, g :τ(Y) `M : τ(Y)

fixµg.M : ∀Y≈µXσ. τ(Y)

10

This rule would be proven sound by transfinite induction on the approximations
Φα of the inductive type µXσ. For limit steps λ, we may assume

fixµg.M ∈
⋂
α<λ

[[τ]](Φα) to show fixµg.M ∈ [[τ]](
⋃
α<λ

Φα).

We call such types τ(Y), which permit this inference, paracontinuous. Obviously
paracontinuous are types of the form Y → τ(Y) for Y only pos in τ . However,
this does not include the most precise type for, e.g., the maximum function
max : ∀Y ≈ Nat. Y → (Y → Y). Here Y occurs negatively in Y → Y , but the
type is still paracontinuous. On our journey to identify paracontinuous types
syntactically, we will first consider cocontinuity, the concept dual to continuity.

Cocontinuity. An operator Φ : P(TM)→ P(TM) is called cocontinuous, if for all
chains P (with Pα ⊆ P β for α < β) it holds that

Φ(
⋃
α

Pα) ⊆
⋃
α

Φ(Pα)

In the following we will identify the types τ for which the semantics [[τ]] is
cocontinuous. Let us first consider products.

Lemma 5 (Products preserve Cocontinuity). Let Γ ` σ(X), τ(X) : type.
If [[σ]] and [[τ]] are cocontinuous and monotonic in X, so is [[σ × τ]].

Proof. Assume M ∈ [[σ × τ]](
⋃
α P

α). Then by definition, fstM ∈ [[σ]](
⋃
α P

α)
and sndM ∈ [[τ]](

⋃
α P

α). Since σ and τ are cocontinuous by assumption, there
are ordinals α, β such that fstM ∈ [[σ]](Pα) and sndM ∈ [[τ]](P β). Now let γ =
max(α, β). Since P is a chain and [[σ]] and [[τ]] are monotonic, fstM ∈ [[σ]](P γ)
and sndM ∈ [[τ]](P γ). We conclude M ∈ [[σ × τ]](P γ).

Thus, products are cocontinuous because the binary maximum always exists.
Since function types and coinductive types can be viewed as infinite products,
they are not cocontinuous in general. For example, λx.x ∈ List→

⋃
α<ω L

α, but
it does not inhabit List → Lα for any α < ω. We expect that the same holds
for quantification. Sums and inductive types are trivially cocontinuous, provided
they are monotonic. Hence, we can give a grammar for cocontinuous types via
a judgment Γ `X cocont τ .

Γ `X cocont Xi

X /∈ FV(τ)

Γ ` X cocont τ

Γ `X cocont σ, τ

Γ `X cocont σ + τ, σ × τ

Γ,X `X, X cocont σ

Γ `X cocont µXσ

(Y≈µXσ) ∈ Γ Γ `X cocont µXσ

Γ `X cocont Y n

Note that Γ `X cocont τ implies Γ `X only pos in τ . The grammar describes
polynomial interleaved (nested) inductive types, which includes, e.g., natural
numbers, lists and finitely branching trees, i.e., almost all inductive types used
in practical programming. Furthermore all of these types are continuous and
close at ω.

11

Lemma 6 (Soundness). If Γ ` X cocont τ , then [[τ]] is cocontinuous and
monotonic in X.

Proof. By induction on Γ `X cocont τ , using Lemma 5.

Paracontinuity. The considerations at the start of Sect. 5 suggested a definition
of paracontinuity immediately. However, to make it work, we have to strengthen
it a little.

An operator Φ is paracontinuous if for all chains P it holds that

for all α0 :
⋂
α0≤α

Φ(Pα) ⊆ Φ(
⋃
α

Pα).

Obviously all monotonic operators are paracontinuous. For function types, the
domain has to be cocontinuous.

Lemma 7 (Paracontinuous Function Types). If [[τ]] is paracontinuous in
X and [[σ]] is cocontinuous and monotonic in X, then [[σ → τ]] is paracontinuous
in X.

Proof. Fix some α0 and assume M ∈
⋂
α0≤α[[σ → τ]](Pα) and N ∈ [[σ]](

⋃
α P

α).
Since σ is cocontinuous, N ∈ [[σ]](P β) for some β. Let γ = max(α0, β). Now,
since Pα is a ascending chain, we can exploit the monotonicity of [[σ]] to infer
N ∈ [[σ]](Pα) for all α ≥ γ. By assumption, M N ∈ [[τ]](Pα) for all α ≥ γ.
Finally, since τ is paracontinuous, M N ∈ [[τ]](

⋃
α P

α).

For types σ(X,Y) which are continuous in Y , fixed-point formation ∇Y σ
preserves paracontinuity in X. The case of inductive types is especially interest-
ing, since it makes again use of the Independence Lemma.

Lemma 8 (Paracontinuous Inductive Types). If [[σ(X,Y)]] is paracontin-
uous in X and continuous and monotonic in Y , then [[µYσ]] is paracontinuous
in X.

Proof. By transfinite induction on the stages of [[µYσ]], using Lemma 4.

For coinductive types νY σ the proof is quite similar, but can be done without
Lemma 4. The proven lemmata can be generalized to paracontinuity in several
variables X.

We give a grammar for paracontinuous types by the judgment Γ `X para τ .

Γ `X para Xi

X 6∈ FV(τ)

Γ `X para τ

Γ `X cocont σ Γ `X para τ

Γ `X para σ → τ

Γ `X para σ, τ

Γ `X para σ + τ, σ × τ

Γ,X ` X cont σ Γ,X `X, X para σ

Γ `X para ∇Xσ
(Y≈∇Xσ) ∈ Γ Γ `X para ∇Xσ

Γ `X para Y n

Γ, Y≈∇Xσ `X para τ

Γ `X para ∀Y≈∇Xσ.τ

12

Theorem 2 (Soundness). Let Γ ` τ : type. If Γ ` X para τ then [[τ]] is
paracontinuous in X.

Proof. By induction on Γ `X para τ , using Lemmata 7 and 8.

Note that Γ ` X cont τ implies Γ ` X para τ . A non-paracontinuous type
is τ(Y) = Stream(Y) → Bool (acknowledgment: John Hughes). A function
“double” which checks whether a stream has duplicate elements would be to-
tal for streams of numbers bounded by some α < ω (returning always true) but
not for streams of arbitrary natural numbers α = ω.

As for continuous types we raise the question: Are all paracontinuous types
legal result types for the recursion constructor fixµ? Again, the answer is no. Our
reduction semantics only permits types Y → τ(Y) for Y para τ , which is still a
great improvement over Y only pos in τ .

Typing (τ and all types in Γ closed):
Γ `M : τ

(Lambda-calculus with products and sums +) Folding.

Γ `M : [∇Xσ/X]σ

Γ ` foldM : ∇Xσ
(Y≈∇Xσ) ∈ Γ Γ `M : [Y

n
/X]σ

Γ ` foldM : Y
n+1

Unfolding.
Γ `M : ∇Xσ

Γ ` unfoldM : [∇Xσ/X]σ

(Y≈∇Xσ) ∈ Γ Γ `M : Y
n+1

Γ ` unfoldM : [Y
n
/X]σ

Fixed-Points.

Γ, Y≈µXσ, g :Y → τ(Y) `M : Y
1 → τ(Y

1
) Γ ` Y para τ(Y)

Γ ` fixµg.M : ∀Y≈µXσ. Y → τ(Y)

Γ, Y≈νXσ, g :τ(Y) `M : τ(Y
1
) Γ ` Y legalν τ(Y)

Γ ` fixνg.M : ∀Y≈νXσ. τ(Y)

Subsumption.
Γ `M : σ Γ ` σ ≤ τ

Γ `M : τ

Γ, Y≈∇Xσ `M : τ

Γ `M : ∀Y≈∇Xσ. τ

Fig. 4. λfixµν : Typing rules.

6 Typing and Soundness

Figure 4 displays the typing rules of λfixµν . We excluded polymorphism, hence
terms are only assigned closed types. By this we mean that τ contains no free
type variables X, whereas approximations Y n of fixed-point types are permitted.

The rules for lambda-calculus, sums and products are omitted since they are
standard. For wrapping (fold) and unwrapping (unfold) (co)inductive types there

13

are two rules each, one rule for the fixed-point and one dealing with approxima-
tions Y n+1, keeping track of the stage. The rules for (co)recursion carry the side
conditions developed in the previous sections. Furthermore, we have rules for
subsumption (which includes ∀-instantiation) and ∀-introduction independent
of a fix∇.

Reduction is type preserving, I have shown this for a slightly simpler sys-
tem [2]. The proof of soundness of typing (implying strong normalization) is
similar to Barthe/Giménez [7], although I developed it independently following
Abel/Altenkirch [3]. Due to lack of space I can only give a sketch.

Let the application Mθ of a substitution θ to a term M be defined as ex-
pected.

Lemma 9 (Soundness for fixµ). Let Γ ` Y para τ , θ ∈ [[Γ]] a substitution and
Φ = ΦµXσ,θ. Assume Mθ′ ∈ [[Y 1 → τ(Y 1)]]θ′ for all θ′ ∈ [[Γ, Y ≈ µXσ, g : Y →
τ(Y)]]. Then

fixµg.Mθ ∈
⋂
α<Ω

Φα → [[τ]](θ, Y 7→(Φ, µ, α)).

Proof. By transfinite induction on α. The base case holds since Φ0 contains
no canonical terms. The step case makes use of saturatedness, the ind. hyp. and
the assumption on M . The limit case follows by paracontinuity.

The soundness of fixν requires a little more work. First we give a judgment
E[•] ∈ [[τ (ρ]]θ that types some evaluation contexts.

• ∈ [[ρ(ρ]]θ
E[•] ∈ [[τ (ρ]]θ N ∈ [[σ]]θ

E[•N] ∈ [[(σ → τ)(ρ]]

E[•] ∈ [[τ1 (ρ]]

E[fst •] ∈ [[τ1 × τ2 (ρ]]

E[•] ∈ [[τ2 (ρ]]

E[snd •] ∈ [[τ1 × τ2 (ρ]]
The linear arrow (is not a first-class type constructor, rather some notation.
It is motivated by the fact that evaluation contexts E have exactly one hole •.
Lemma 10. Let Γ ` Y legalν τ and some θ ∈ [[Γ]]. Assume that for all E[•] ∈
[[τ (Y]]θ, E[M] ∈ [[Y]]θ. Then M ∈ [[τ]]θ.

Proof. By induction on Γ ` Y legalν τ .

Lemma 11 (Soundness of fixν). Let Γ ` Y legalν τ , substitution θ ∈ [[Γ]] and
Φ = ΦνXσ,θ. Assume Mθ′ ∈ [[τ(Y 1)]]θ′ for all θ′ ∈ [[Γ, Y≈νXσ, g :τ(Y)]]. Then

fixνg.Mθ ∈
⋂
α<Ω

[[τ]](θ, Y 7→(Φ, ν, α))

Proof. By transfinite induction on α. Note that the assumption implies G ≡
fixνg.Mθ ∈ SN. The base case follows by Lemma 10 since Φ0 = SN, and the limit
case is a consequence of continuity of [[τ(Y)]]. The step case makes crucial use of
Lemma 10, since we consider unfoldE[G] −→β unfoldE[Mθ′] for an appropriate
extension θ′ of θ and all E[•] ∈ [[τ (Y]](θ, Y 7→Φα+1). The r.h.s. can be shown
to be in the semantics by assumption, so the l.h.s. as well by saturation, which
entails the goal. ut

14

Theorem 3 (Soundness of Typing). Γ `M : τ , θ ∈ [[Γ]] imply Mθ ∈ [[τ]].

Soundness, proved by induction on Γ ` M : τ , now directly entails strong
normalization (choose some θ which keeps all term variables fixed).

References

1. Andreas Abel. Specification and verification of a formal system for structurally
recursive functions. In TYPES ’99, vol. 1956 of LNCS, pages 1–20. Springer, 2000.

2. Andreas Abel. Termination checking with types. Technical Report 0201, Institut
für Informatik, Ludwigs-Maximilians-Universität München, 2002.

3. A. Abel and T. Altenkirch. A predicative strong norm. proof for a λ-calculus with
interleaving inductive types. In TYPES ’99, vol. 1956 of LNCS. Springer, 2000.

4. Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recur-
sion. Journal of Functional Programming, 12(1):1–41, January 2002.

5. Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization.
PhD thesis, University of Edinburgh, November 1993.

6. Roberto M. Amadio and Solange Coupet-Grimal. Analysis of a guard condition in
type theory. In FoSSaCS ’98, volume 1378 of LNCS. Springer, 1998.

7. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termi-
nation of recursive definitions. Math. Struct. in Comp. Sci., 2002. To appear.

8. Thierry Coquand. Infinite objects in type theory. In TYPES ’93, volume 806 of
LNCS, pages 62–78. Springer, 1993.

9. Eduardo Giménez. Codifying guarded definitions with recursive schemes. In
TYPES´94, volume 996 of LNCS, pages 39–59. Springer, 1995.

10. Martin Hofmann. Non strictly positive datatypes for breadth first search. TYPES
mailing list, 1993.

11. John Hughes and Lars Pareto. Recursion and dynamic data-structures in bounded
space: Towards embedded ML programming. In ICFP’99, pages 70–81, 1999.

12. John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In POPL’96, pages 410–423. ACM Press, 1996.

13. INRIA. The Coq Proof Assistant Reference Manual, version 7.0 edition, April 2001.
14. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle

for program termination. In POPL’01. ACM Press, 2001.
15. David McAllester and Kostas Arkoudas. Walther Recursion. In CADE-13, volume

1104 of LNCS. Springer, 1996.
16. Nax Paul Mendler. Inductive types and type constraints in the second-order

lambda calculus. Annals of Pure and Applied Logic, 51(1–2):159–172, 1991.
17. Lars Pareto. Types for Crash Prevention. PhD thesis, Chalmers University of

Technology, 2000.
18. Frank Pfenning and Carsten Schürmann. Twelf - a meta-logical framework for

deductive systems. In CADE-16, volume 1632 of LNAI. Springer, 1999.
19. Brigitte Pientka. Termination and reduction checking for higher-order logic pro-

grams. In IJCAR 2001, volume 2083 of LNAI, pages 401–415. Springer, 2001.
20. Randy Pollack. The Theory of LEGO. PhD thesis, University of Edinburgh, 1994.
21. Christophe Raffalli. Data types, infinity and equality in System AF2. In CSL ’93,

volume 832 of LNCS, pages 280–294. Springer, 1994.
22. Alastair J. Telford and David A. Turner. Ensuring streams flow. In AMAST ’97,

volume 1349 of LNCS, pages 509–523. Springer, 1997.
23. Hongwei Xi. Dependent types for program termination verification. Journal of

Higher-Order and Symbolic Computation, 15:91–131, 2002.

15

