
Strong Normalization and
Equi-(co)inductive Types

Andreas Abel?

Department of Computer Science, University of Munich
Oettingenstr.67, D-80538 München, Germany

abel@tcs.ifi.lmu.de

Abstract. A type system for the lambda-calculus enriched with recur-
sive and corecursive functions over equi-inductive and -coinductive types
is presented in which all well-typed programs are strongly normalizing.
The choice of equi-inductive types, instead of the more common iso-
inductive types, in�uences both reduction rules and the strong normal-
ization proof. By embedding iso- into equi-types, the latter ones are
recognized as more fundamental. A model based on orthogonality is con-
structed where a semantical type corresponds to a set of observations,
and soundness of the type system is proven.

1 Introduction

Theorem provers based on the Curry-Howard-Isomorphism, such as Agda, Coq,
Epigram, or LEGO are built on dependent types and use inductive and coin-
ductive types to formalize data structures, object languages, logics, judgments,
derivations, etc. Proofs by induction or coinduction are represented as recursive
or corecursive programs, where only total programs represent valid proofs. As
a consequence, only total programs, which are de�ned on all well-typed inputs,
are accepted, and totality is checked by some static analysis (in case of Coq),
or ensured by construction (in case of Epigram), or simply assumed (in case of
LEGO and the current version of Agda).

Hughes, Pareto, and Sabry [16] have put forth a totality check based on sized
types, such that each well-typed program is already total. Designed originally
for embedded systems it has become attractive for theorem provers because of
several advantages: First of all, its soundness can be proven by an interpretation
of types as sets of total programs, as noted by Giménez [13]. Since soundness
proofs for dependent types are delicate, the clarity that sized types o�er should
not be underestimated. Secondly, checking termination through types integrates
the features of advanced type systems, most notably higher-order functions,
higher-order types, polymorphism, and subtyping, into the termination check

? Research supported by the coordination action TYPES (510996) and thematic net-
work Applied Semantics II (IST-2001-38957) of the European Union and the project
Cover of the Swedish Foundation of Strategic Research (SSF).

without extra e�ort. Some advanced examples of what one can do with type-
based termination, but not with syntactical, �term-based� termination checks,
are given in other works of the author [4, 3, 2]. And last, type-based termination
is just (a) sized inductive and coinductive types with subtyping induced by the
sizes plus (b) typing rules for recursive and corecursive functions which ensure
well-foundedness by checking that sizes are decreased in recursive instances.
Due to this conceptual simplicity it is planned to replace the current term-based
termination check in Coq by a type-based one; in recent works, sized types have
been integrated with dependent types [9, 10].

Dependently typed languages, such as the languages of the theorem provers
listed above, need to compare terms for equality during type-checking. In the
presence of recursion, this equality test is necessarily incomplete.1 A common
heuristics is to normalize the terms and compare them for syntactic equality. In
general, these terms are open, i. e., have free variables, and normalization takes
place in all term positions, also under binders. This complicates matters consid-
erably: Although a function is total in a semantical sense and terminates on all
closed terms under lazy evaluation, it will probably diverge on open terms under
full evaluation.2 Hence, unfolding recursion has to be sensibly restricted during
normalization. In related work [13, 8], inductive types are given by constructors,
and a recursive function is only unfolded if its �recursive� argument, i. e., the
argument that gets smaller in recursive calls, is a constructor.

We take a more foundational approach and consider a language, Fω̂, with-
out constructors. Programs of Fω̂ are just λ-terms over constants fixµ

n and fixν
n

which introduce recursive and corecursive functions with n leading �parametric�,
i. e., non-recursive arguments. A recursive function fixµ

n s t1 . . . tn v with body s,
parametric arguments ti and recursive argument v is unfolded if v is a value,
i. e., a λ-abstraction or an under-applied, meaning not fully applied, (co)recursive
function. A corecursive function fixν

n s t1 . . . tn is unfolded if it is in evaluation
position, e. g., applied to some term. In this article, we prove that this strategy is
strongly normalizing for programs which are accepted by the sized type system.

For now, Fω̂ does not feature dependent types�they are not essential to
studying the operational semantics, but cause considerable complications in the
normalization proof. However, Fω̂ has arbitrary-rank polymorphism, thus, ele-
mentary data types like unit type, product type and disjoint sum can be de�ned
by the usual Church-encodings. Inductive types are not given by constructors;
instead we have least �xed-point types µaF which denote the ath iteration of
type constructor F . Semantically µ0F is empty, µa+1F = F (µaF), and for limit
ordinals λ, µλF denotes the union of all µaF for a < λ. It may help to think
of the size index a as an strict upper bound for the height of the inhabitants of
µaF , viewed as trees. Dually, we have sized coinductive types νaF , and a denotes

1 And one would not expect that this test succeeds for the equation f (fix (g ◦ f)) =
fix (f ◦ g) given arbitrary (well-typed programs) f and g.

2 Consider the recursive zero-function zero x = match x with 0 7→ 0 | y + 1 7→ zero y. If
applying zero to a variable triggers unfolding of recursion, normalization of zero will
diverge.

2

the minimum number of elementary destructions one can safely perform on an
element of νaF , which is, in case of streams, the minimum number of elements
one can read o� this stream.

With sum and product types, common inductive types can be expressed
as µaF for a suitable F ; their constructors are then simply λ-terms. However,
there is a design choice: equi-inductive types have µa+1F = F (µaF) as a type
equation in the system; iso-inductive types stipulate that µa+1F and F (µaF)
are only isomorphic, witnessed by a folding operation in : F (µaF) → µa+1F
and an unfolding operation out : µa+1F → F (µaF). The iso-approach has been
taken in previous work by the author [3] and seems to be more common [12,
6, 19, 7], since it has a simpler theory. We go the foundational path and choose
the �equi� �avor, which has consequences for the operational semantics and the
normalization proof: since there are less syntactical �clutches� to hold on, more
structure has to be built in the semantics.

Overview. In Section 2 we present System Fω̂ with typing rules which only accept
strongly normalizing functions. In Section 3 we motivate the reduction rules of
Fω̂ which are a�ected by equi-(co)inductive types. By embedding iso- into equi-
inductive types in Section 4, we justify that equi-types are more fundamental
than iso-types. We then proceed to develop a semantical notion of type, based
on strong normalization and orthogonality (Section 5). Finally, we sketch the
soundness proof for Fω̂ in Section 6 and discuss some related work in Section 7.

2 System Fω̂

Like in System Fω, expressions of Fω̂ are separated into three levels: kinds, type
constructors, and terms (objects). Figure 1 summarizes the �rst two levels. In
contrast to the standard presentation, we have a second base kind, ord, whose in-
habitants are syntactic ordinals. Canonical ordinals are either snı = s (s . . . (s ı))
(notation: ı + n), the nth successor of an ordinal variable ι, or ∞, the closure
ordinal of all inductive and coinductive types of Fω̂. In spite of the economic
syntax, expressions of kind ord, which we will refer to as size expressions, se-
mantically denote ordinals up to the ωth uncountable (see Sect. 5.3). We use the
metavariable a to range over size expressions and the metavariable ı to range
over size variables. The metavariable X ranges over type constructor variables,
which includes size variables.

Another feature of Fω̂ are polarized kinds [27, 5, 1]. Function kinds are labeled
with a polarity p that classi�es the inhabiting type constructors as covariant
(p = +), contravariant (p = −), or non-variant (p = ◦), the last meaning mixed
or unknown variance. Inductive types are introduced using the type constructor
constant

µκ : ord
+→ (κ +→ κ) +→ κ.

We write µκ aF usually as µa
κF and drop index kind κ if clear from the con-

text. The underlying type constructor F : κ
+→ κ must be covariant�otherwise

3

Syntactic categories.

p ::= + | − | ◦ polarity

κ ::= ∗ | ord | pκ → κ′ kind

κ∗ ::= ∗ | pκ∗ → κ′∗ pure kind

a, b, A, B, F, G ::= C | X | λX :κ. F | F G (type) constructor

C ::= → | ∀κ | µκ∗ | νκ∗ | s | ∞ constructor constant

∆ ::= � | ∆, X :pκ polarized context

The signature Σ assigns kinds to constants (κ
p→ κ′ means pκ → κ′).

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ
◦→ ∗) +→ ∗ quanti�cation

µκ∗ : ord
+→ (κ∗

+→ κ∗)
+→ κ∗ inductive constructors

νκ∗ : ord
−→ (κ∗

+→ κ∗)
+→ κ∗ coinductive constructors

s : ord
+→ ord successor of ordinal

∞ : ord in�nity ordinal

Notation.
∇ for µ or ν
∇a for ∇a

∀X :κ. A for ∀κ(λX :κ. A)
∀XA for ∀X :κ. A
λXF for λX :κ. F

Ordering and composition of polarities.

p ≤ p ◦ ≤ p +p = p −− = + ◦p = ◦ pp′ = p′p

Inverse application of a polarity to a context.

p−1� = �
+−1∆ = ∆
−−1(∆, X :pκ) = (−−1∆), X : (−p)κ

◦−1(∆, X :◦κ) = (◦−1∆), X :◦κ
◦−1(∆, X :+κ) = ◦−1∆
◦−1(∆, X :−κ) = ◦−1∆

Kinding ∆ ` F : κ.

kind-c
C :κ ∈ Σ

∆ ` C : κ
kind-var

X :pκ ∈ ∆ p ≤ +

∆ ` X : κ

kind-abs
∆, X :pκ ` F : κ′

∆ ` λX :κ. F : pκ → κ′
kind-app

∆ ` F : pκ → κ′ p−1∆ ` G : κ

∆ ` F G : κ′

Fig. 1. Fωb: Kinds and constructors.

4

divergence is possible even without recursion (Mendler [21])�and κ must be a
pure kind, i. e., not mention ord. The last condition seems necessary to de�ne a
uniform closure ordinal for all inductive types, meaning an ordinal ∞ such that
µ∞F = F (µ∞F). Inductive types are covariant in their size argument; the sub-
typing chain µaF ≤ µa+1F ≤ µa+2F ≤ · · · ≤ µ∞F holds. Dually, coinductive
types, which are introduced by the constant

νκ : ord
−→ (κ +→ κ) +→ κ,

are contravariant, and we have the chain ν∞F ≤ · · · ≤ νa+2F ≤ νa+1F ≤ νaF .
Type constructors are identi�ed modulo βη and the laws s∞ = ∞ and ∇a+1F =
F (∇aF), where ∇ is a placeholder for µ or ν, here and in the following. Type
constructor equality is kinded and given by the judgement ∆ ` F = F ′ : κ for
a kinding context ∆. Exept β and η, we have the axioms ∆ ` s∞ = ∞ : ord
and ∆ ` ∇sa

κ F = F (∇a
κ F) : κ for wellkinded F and a : ord. Similarly, we have

kinded higher-order subtyping ∆ ` F ≤ F ′ : κ induced by ∆ ` a ≤ s a : ord and
∆ ` a ≤ ∞ : ord. Due to space restrictions, the rules have to be omitted, please
�nd them in the author's thesis [2, Sect. 2.2].

Figure 2 displays terms and typing rules of Fω̂. Besides λ-terms, there are
constants fixµ

n to introduce functions that are recursive in the n + 1st argument,
and constants fixν

n to introduce corecursive functions with n arguments. The
type A(ı) of a recursive function introduced by fixµ

n must be of the shape

∀X. A1 → · · · → An → µıF 0 G0 → · · · → µıFm Gm → C,

where the Ai are contravariant in the size index ı, C is covariant, and the F j and
Gj do not mention ı. This criterion is written as A fixµ

n-adm. (More precisely,
a function of this type is simultaneously recursive in the arguments n + 1 to
n + m + 1, but we are only interested in the �rst recursive argument.) Note
that if the variance conditions were ignored, non-terminating functions would
be accepted [3]. The type of a corecursive function fixν

n s with n arguments has
to be of the form

∀X. A1 → · · · → An → νıF G

where the Ai are again contravariant in ı and F and G do not mention ı (criterion
A fixν

n-adm).
Basic data types like unit, product, and sum can be added to the system, but

we de�ne them impredicatively (see Figure 2) since minimality of the system is
a stronger concern in this work than e�ciency. Some examples for sized types
are:

Nat : ord
+→ ∗

Nat := λı. µıλX. 1 + X

List : ord
+→ ∗ +→ ∗

List := λıλA. µıλX. 1 + A×X

Tree : ord
+→ ∗ −→ ∗ +→ ∗

Tree := λıλBλA. µıλX. 1 + A× (B → X)

Stream : ord
−→ ∗ +→ ∗

Stream := λıλA. νıλX.A×X

A rich collection of examples is provided in the author's thesis [2, Sect. 3.2].

5

Syntactic categories.

Var 3 x variable

Tm 3 r, s, t ::= x | λxt | r s | fixµ
n | fixν

n term (n ∈ N)
Val 3 v ::= λxt | fix∇n | fix∇ns t (where |t| ≤ n) value (∇ ∈ {µ, ν})
Eframe 3 e(_) ::= _ s | fixµ

n s t1..n _ evaluation frame

Ecxt 3 E ::= Id | E ◦ e [Id(r) = r, (E ◦ e)(r) = E(e(r))] evaluation context

Cxt 3 Γ ::= � | Γ, x :A | Γ, X :pκ typing context

Well-formed typing contexts.

cxt-empty � cxt
cxt-tyvar

Γ cxt

Γ, X :◦κ cxt
cxt-var

Γ cxt Γ ` A : ∗
Γ, x :A cxt

Typing Γ ` t : A.

ty-var
(x :A) ∈ Γ Γ cxt

Γ ` x : A
ty-abs

Γ, x :A ` t : B

Γ ` λxt : A → B

ty-app
Γ ` r : A → B Γ ` s : A

Γ ` r s : B
ty-sub

Γ ` t : A Γ ` A ≤ B : ∗
Γ ` t : B

ty-gen
Γ, X :◦κ ` t : F X

Γ ` t : ∀κF
ty-inst

Γ ` t : ∀κ F Γ ` G : κ

Γ ` t : F G

ty-rec
Γ ` A : ord → ∗ A fix∇n-adm Γ ` a : ord

Γ ` fix∇n : (∀ı :ord. A ı → A (ı + 1)) → A a
∇ ∈ {µ, ν}

Impredicative de�nition of unit, product, and sum type.

1 := ∀C. C → C : ∗
× := λAλB∀C. (A → B → C) → C : ∗ +→ ∗ +→ ∗
+ := λAλB∀C. (A → C) → (B → C) → C : ∗ +→ ∗ +→ ∗

Reduction t −→ t′: Closure of the following axioms under all term constructors:

(λxt) s −→ [s/x]t

fixµ
ns t1..n v −→ s (fixµ

ns) t1..n v if v 6= fixν
n′s′ t1..n′

e (fixν
ns t1..n) −→ e (s (fixν

ns) t1..n) if e 6= fixµ
n′s

′ t1..n′ _

Fig. 2. Fωb: Terms and type assignment.

6

3 Operational semantics

In this section, the reduction rules for recursive and corecursive functions are
developed. It is clear that unrestricted unfolding of �xed points fix s −→ s (fix s)
leads immediately to divergence. In the literature on type-based termination
with iso-inductive types one �nds the sound reduction rule fixµ

ns t1..n (in r) −→
s (fixµ

ns) t1..n (in r), which requires the recursive argument to be a canonical in-
habitant of the inductive type. Since the canonical inhabitants for equi-inductive
types can be of any shape, we liberalize this rule to

fixµ
ns t1..n v −→ s (fixµ

ns) t1..n v, (1)

where v is a value; in our case a λ-abstraction, or an under-applied (co)recursive
function.

Elements of a coinductive type should be delayed by default, they should only
be evaluated when they are observed, or forced, i. e., when they are surrounded
by a non-empty evaluation context e. A candidate for a reduction rule is

e (fixν
ns t1..n) −→ e (s (fixν

ns) t1..n). (2)

It is easy to �nd well-typed diverging terms if less than n arguments t1..n are
required before the �xed-point can be unfolded.

Evaluation contexts e(_) are either applications _ s or recursive functions
fixµ

n s t1..n _. The second form is necessary because, before reduction (1) can
be performed, the recursive argument has to be evaluated, hence, must be in
evaluation position. However, we run into problems if a corecursive value is
in a recursive evaluation context, e. g., fixµ

0 (λxx) (fixν
0 (λzy)). Such a term can

be well-typed3 if we use types like µλX. νλY.A. Depending on which �xed-
point we unfold we get completely di�erent behavior: the recursion fixµ

0 can be
unfolded ad in�nitum, the term diverges. If we unfold the corecursion fixν

0 , we
arrive at fixµ

0 (λxx) y, which is blocked. Another bad example is fixµ
0s (fixν

0s) with
s = λzλxx. If we unfold recursion, we arrive at the normal form fixν

0s. Otherwise,
if we �rst unfold corecursion, we obtain fixµ

0s (λxx) which has normal form λxx;
the calculus is not locally con�uent.

In this article, we restore acceptable behavior in the following way: A corecur-
sive value inside a recursive evaluation context should block reduction, terms like
fixµ

0 s (fixν
0 s′) should be considered neutral, like variables. The drawback of this

decision is that types like νıλX. List X (non-wellfounded, but �nitely branching
trees) are not well-supported by the system: Applying the List-length function to
such a tree, like fixν

0λx.singletonList(x), will not reduce. This seems to be a high
price to pay for equi-(co)inductive types; in the iso-version, such problems do not
arise. However, as we will see in the next section, even with these blocked terms,
the equi-version is able to completely simulate reduction of the iso-version, so
we have not lost anything in comparison with the iso-version, but we can gain
something by improving the current reduction strategy in the equi-version.

3 Note that fixµ
0λxx : (µaλXX) → C and fixν

0λxx : νaλXX.

7

4 Embedding Iso- into Equi-(co)inductive Types

Why are we so interested in equi-inductive types, if they cause us trouble? Be-
cause they are the more primitive notion. Strong normalization for iso-inductive
types can be directly obtained from the result for equi-inductive types, since
there exists a trivial type and reduction preserving embedding. Let Delayκ be
de�ned by recursion on the pure kind κ as follows:

Delay∗ (A) := 1 → A
Delaypκ→κ′ (F) := λX :κ. Delayκ′(FX)

Then we can de�ne iso-inductive µκ and iso-coinductive νκ types in Fω̂ as follows:

∇κ := λıλF :κ.∇ı
κ Delayκ(F)

in∇(t) := λzt where z 6∈ FV(t) out∇(r) := r ()

Now inµ(t) is a non-corecursive value for each term t, and outν(_) is an applica-
tive evaluation context, so we obtain in Fω̂ the reductions typical for iso-types:

fixµ
ns t1..n (inµ(r)) −→ s (fixµ

ns) t1..n (inµ(r))
outν(fixν

ns t1..n) −→ outν(s (fixν
ns) t1..n).

The reverse embedding, however, is not trivial. Since in the equi-system, folding
and unfolding of inductive types can happen deep inside a type, equi-programs
are not typable in the iso-system without major modi�cations. Only typing
derivations of the equi-system can be translated into typing derivations of the iso-
system. Thus, we consider equi-systems as more fundamental than iso-systems.

5 Semantical Types

A strongly normalizing term t ∈ SN is a term for which each reduction sequence
ends in a value or a neutral term. A neutral term has either a variable in head po-
sition, or, in our case, a blocking fixµ-fixν combination. We de�ne SN inductively,
extending previous works [15, 28, 17] by rules for (co)recursive terms (see Fig-
ure 3). Rule sn-roll is sound, but not strictly necessary; however, it simpli�es
the proof of extensionality (see lemma).

Safe reduction t B t′ is a variant of weak head reduction which preserves
strong normalization in both directions. In particular, SN is closed under safe
expansion (rule sn-exp). This works because we require s ∈ SN in rule shr-β.

Lemma 1 (Properties of SN).

1. Extensionality: If r x ∈ SN then r ∈ SN.
2. Closure: If r ∈ SN and r B r′ or r C r′ then r′ ∈ SN.
3. Strong normalization: If r ∈ SN then there are no in�nite reduction sequences

r −→ r1 −→ r2 −→
4. Weak head normalization: If r ∈ SN then r B r′ and r′ ∈ SNe ∪ Val.

8

Strongly normalizing evaluation contexts E ∈ Scxt.

sc-id

Id ∈ Scxt
sc-app

E ∈ Scxt s ∈ SN

E ◦ (_ s) ∈ Scxt
sc-rec

E ∈ Scxt s, t1..n ∈ SN

E ◦ (fixµ
ns t1..n _) ∈ Scxt

Strongly normalizing neutral terms r ∈ SNe.

sne-var
E ∈ Scxt

E(x) ∈ SNe
sne-fix

µ
fix

ν E ∈ Scxt s, t, s′, t′ ∈ SN

E(fixµ
ns t1..n (fixν

n′s′ t′1..n′)) ∈ SNe

Strongly normalizing terms t ∈ SN.

sn-sne
r ∈ SNe

r ∈ SN
sn-abs

t ∈ SN

λxt ∈ SN
sn-fix

t ∈ SN

fix∇nt ∈ SN
|t| ≤ n + 1

sn-exp
r B r′ r′ ∈ SN

r ∈ SN
sn-roll

s (fixν
ns) t ∈ SN

fixν
ns t ∈ SN

|t| ≤ n

Safe reduction t B t′ (plus re�exivity and transitivity).

shr-β
s ∈ SN

E((λxt) s) B E([s/x]t)
shr-rec

v 6= fixν
n′s′ t′1..n′

E(fixµ
ns t1..n v) B E(s (fixµ

ns) t1..n v)

shr-corec

e 6= fixµ
n′s

′ t′1..n′ _
E(e(fixν

ns t1..n)) B E(e(s (fixν
ns) t1..n))

Fig. 3. Strongly normalizing terms.

Alternatively, one can take 3. as the de�ning property of SN and from this
prove 1., 2., and the sn- and sne-rules in Figure 3. Property 4. holds then also,
but only because there are no �junk terms� like 0 (λxx) in our language which
block reduction but are neither neutral nor values.

In the remainder of this section, we prepare for the model construction for
Fω̂ that will verify strong normalization. As usual, we interpret types as sets A
of strongly normalizing terms, where A is closed under safe expansion. In the
iso-case, we could interpret a coinductive type C := [[νa+1F]] as {r | out r ∈
[[F (νaF)]]}, or in words, as these terms r whose canonical observation out r is
already well-behaved. A corecursive object, say fixν

0s can enter C by the safe
expansion out (fixν

0s) B out (s (fixν
0s)) provided that s (fixν

0s) ∈ C already. In the
equi-case, however, a canonical observation is not available, we have no choice
than to set the interpretation of C to the semantical type [[F (νaF)]]. How can
now fixν

0s enter C? The solution is that each semantical type A is characterized by
a set of evaluation contexts, E , such that t ∈ A i� E(t) ∈ SN for all E ∈ E . This
characterization automatically ensures that A is closed under safe reduction and
expansion. Now fixν

0 s enters C through the safe expansion E(fixν
0s)BE(s (fixν

0s)).
Formally, this will be proven in Lemma 5. In the following, we give constructions

9

and properties of semantical types. Due to lack of space, the presentation is
rather dense, more details can be found in the author's thesis [2].

5.1 Orthogonality

We say that term t is orthogonal to evaluation context E,

t ⊥ E :⇐⇒ E(t) ∈ SN.

We could also say t behaves well in E. A semantical type A is the set of terms
which behave well in all E ∈ E , where E is some set of strongly normalizing
evaluation contexts. The space of semantical types is called SAT.

E⊥ := {t | t ⊥ E for all E ∈ E}
A⊥ := {E | t ⊥ E for all t ∈ A}
SAT := {E⊥ | {Id} ⊆ E ⊆ Scxt} saturated sets

N := Scxt⊥ ⊃ SNe neutral terms

S := {Id}⊥ s.n. terms

A := A⊥⊥ closure

A → E⊥ := {Id, E ◦ (_ s) | E ∈ E , s ∈ A}⊥ function space⋂
A :=

⋂
A for A ⊆ SAT in�mum⋃

A :=
⋃

A for A ⊆ SAT supremum

The greatest semantical type is S = SN; the least semantical type N contains all
terms which behave well in all good contexts, including the variables and even
more, all safe expansions of strongly normalizing neutral terms. But due to rule
sne-fix

µ
fix

ν , also some corecursive values inhabit N , e. g., fixν
0λzy.

Lemma 2 (Properties of saturated sets).

1. Galois connection: A⊥ ⊇ E ⇐⇒ A ⊆ E⊥. This implies A ⊆ A⊥⊥, A ⊆
B =⇒ A⊥ ⊇ B⊥, and A⊥⊥⊥ = A⊥, and the same laws for Es.

2. Biorthogonal closure: If A ⊆ S then {Id} ⊆ A⊥ ⊆ Scxt and A⊥⊥ ∈ SAT.
3. De Morgan 1:

⋂
i∈I E⊥i = (

⋃
i∈I Ei)⊥.

4. De Morgan 2:
⋃

i∈I E⊥i ⊆ (
⋂

i∈I Ei)⊥.
5. Reduction/expansion closure: If t ∈ E⊥ and t B t′ or t C t′ then t′ ∈ E⊥.
6. Normalization: If t ∈ A ∈ SAT then either t ∈ N or t B v.
7. Function space: If A ⊆ S and B ∈ SAT then A → B ∈ SAT.
8. In�mum and supremum: If A ⊆ SAT then

⋂
A ∈ SAT and

⋃
A ∈ SAT.

In general, the inclusion in law De Morgan 2 is strict; thus, taking the orthogonal
seems to be an intuitionistic rather than a classical negation.

Lemma 3 (Abstraction and application). Let B ∈ SAT.

1. If Var ⊆ A and r s, [s/x]t ∈ B for all s ∈ A, then r, λxt ∈ A → B.
2. If r ∈ A → B and s ∈ A then r s ∈ B.

The proof of 1. uses extensionality (Lemma 1) to show r ⊥ Id from r x ∈ B.

10

5.2 Recursion and corecursion, semantically

In this section, we characterize admissible types for recursion and corecursion in
our semantics and prove semantical soundness of type-based termination. Let O
denote some initial segment of the set-theoretic ordinals.

The semantic type family A ∈ O → SAT is admissible for recursion on the
n + 1st argument if

adm-µ-shape there is an index set K and there are
B1, . . . ,Bn, I, C ∈ K × O → SAT such that for all α ∈ O,

A(α) =
⋂

k∈K(B1..n(k, α) → I(k, α) → C(k, α)),
adm-µ-start I(k, 0) ⊆ N for all k ∈ K, and
adm-µ-limit

⋂
α<λA(α) ⊆ A(λ) for all limits λ ∈ O \ {0}.

In adm-µ-shape, the intersection
⋂

stands for a quanti�cation over types, the
Bi for non-recursive arguments, the I for the recursive argument of inductive
type, and C for the result type.

Lemma 4 (Recursion is a function). Let A ∈ O → SAT be admissible for
recursion on the n + 1st argument. If s ∈ A(α) → A(α + 1) for all α + 1 ∈ O,
then fixµ

ns ∈ A(β) for all β ∈ O.

Proof. By trans�nite induction on β ∈ O [2, Lemma 3.32].

The soundness of corecursion makes crucial use of our de�nition of a seman-
tical type by a set of evaluation contexts. It also requires that coinductive types
denote the whole term universe S in the 0th iteration (adm-ν-start).

The semantic type family A ∈ O → SAT is admissible for corecursion with n
arguments if

adm-ν-shape for some index set K and B1..n, C ∈ K × O → SAT,
A(α) =

⋂
k∈K(B1..n(k, α) → C(k, α)) for all α ∈ O,

adm-ν-start S ⊆ C(k, 0) for all k ∈ K, and
adm-ν-limit

⋂
α<λA(α) ⊆ A(λ) for all limits λ ∈ O \ {0}.

Lemma 5 (Corecursion is a function). Let A ∈ O → SAT be admissible for
corecursion with n arguments. If s ∈ A(α) → A(α + 1) for all α + 1 ∈ O, then
fixν

ns ∈ A(β) for all β ∈ O.

Proof. By trans�nite induction on β ∈ O [2, Lemma 3.37].

5.3 Lattices and Iteration

The saturated sets form a complete lattice [[∗]] = SAT with least element ⊥∗ := N
and greatest element >∗ := S. It is ordered by inclusion v∗ := ⊆ and has ar-
bitrary in�ma inf∗ :=

⋂
and suprema sup∗ :=

⋃
. Let [[ord]] := [0;>ord] be

an initial segment of the set-theoretic ordinals which is closed under suprema,
such that all (co)inductive types reach their �xpoint at ordinal >ord. An upper

11

bound for the >ord is the ωth uncountable [3], although the true closure ordinal
is probably much smaller, and it would be interesting to �nd out more about
it. With the usual ordering on ordinals, [[ord]] constitutes a complete lattice as
well. Function kinds [[◦κ → κ′]] := [[κ]] → [[κ′]] are interpreted as set-theoretic
function spaces; a covariant function kind denotes just the monotonic functions
and a contravariant kind the antitonic ones. For all function kinds, ordering is
de�ned pointwise: F vpκ→κ′ F ′ :⇐⇒ F(G) vκ′ F ′(G) for all G ∈ [[κ]]. Simi-

larly, ⊥pκ→κ′
(G) := ⊥κ′

is de�ned pointwise, and so are >pκ→κ′
, infpκ→κ′

, and
suppκ→κ′

.

For monotone F ∈ [[κ]] +→ [[κ]] we de�ne iteration from below and above as
usual:

µ0F = ⊥κ

µα+1F = F(µαF)
µλF = supκ

α<λ µαF

ν0F = >κ

να+1F = F(ναF)
νλF = infκ

α<λ ναF
For �xed F , µαF is monotonic in α and ναF is antitonic in α.

6 Soundness

For a constructor constant C :κ, the semantics [[C]] ∈ [[κ]] is de�ned as follows:

[[→]](A,B ∈ [[∗]]) := A → B
[[µκ]](α)(F ∈ [[κ]] +→ [[κ]]) := µαF
[[νκ]](α)(F ∈ [[κ]] +→ [[κ]]) := ναF
[[∀κ]](F ∈ [[κ]] → [[∗]]) :=

⋂
G∈[[κ]] F(G)

[[∞]] := >ord

[[s]](>ord) := >ord

[[s]](α < >ord) := α + 1

We extend this semantics to constructors F in the usual way.
Let θ be a partial mapping from constructor variables to sets. We say θ ∈ [[∆]]

if θ(X) ∈ [[κ]] for all (X : pκ) ∈ ∆. A partial order on valuations is de�ned by
θ v θ′ ∈ [[∆]] :⇐⇒ θ(X) vp θ′(X) ∈ [[κ]] for all (X : pκ) ∈ ∆. Herein, we have
used v− for w, and v◦ for =, and v+ as synonym for v.

Theorem 1 (Soundness of type-related judgements). Let θ, θ′ ∈ [[∆]].

1. If ∆ ` F : κ then [[F]]θ ∈ [[κ]].
2. If ∆ ` F = F ′ : κ and θ v θ′ ∈ [[∆]], then [[F]]θ v [[F ′]]θ′ ∈ [[κ]].
3. If ∆ ` F ≤ F ′ : κ and θ v θ′ ∈ [[∆]], then [[F]]θ v [[F ′]]θ′ ∈ [[κ]].
4. If ∆ ` A fixµ

n-adm, then [[A]]θ is admissible for recursion on the n + 1st arg.
5. If ∆ ` A fixν

n-adm, then [[A]]θ is admissible for corecursion with n arguments.

We extend valuations θ to term variables and say θ ∈ [[Γ]] if θ(X) ∈ [[κ]]
for all (X : pκ) ∈ Γ and θ(x) ∈ [[A]]θ for all (x : A) ∈ Γ . Let LtMθ denote the
capture-avoiding substitution of θ(x) for x in t, simultaneously for all x ∈ FV(t).

Theorem 2 (Soundness of Fω̂). If Γ ` t : A and θ ∈ [[Γ]] then LtMθ ∈ [[A]]θ.

The theorem is proved by induction on the typing derivation [2, Thm. 3.49].
As a consequence, taking θ(x) = x for all (x : A) ∈ Γ and θ(X) = >κ for all
(X :pκ) ∈ Γ , we get t = LtMθ ∈ [[A]]θ ⊆ SN.

12

7 Conclusions

We have presented a type system for termination of recursive functions over
equi-inductive and -coinductive types and shown its soundness by a model based
on orthogonality. All reductions of the corresponding iso-system are simulated,
hence, termination of the iso-system follows as a special case.

Parigot [24] already introduces equi-inductive types to model e�cient recur-
sion schemes in system AF2, second order functional arithmetic. Ra�alli [26]
considers also equi-coinductive types. However, recursion is limited to Mendler-
style (co)iteration [22], preventing a direct implementation of primitive recursive
programs such as factorial. Iteration is but a special case of the recursion scheme
of the present work, which generalizes course-of-value recursion.

Orthogonality has been introduced by Girard for the semantics of linear
logic; it pops up again in Ludics [14]. Parigot has implicitly used orthogonality
to prove strong normalization of second-order classical natural deduction [25].
His work has been extended by Matthes to positive �xed-point types [20]. Lind-
ley and Stark [18] use orthogonality to show strong normalization of the monadic
lambda-calculus and give credit to Pitts. Vouillon and Melliès [30] model recur-
sive types with orthogonality, Vouillon [29] bases subtyping rules for union types
on orthogonality.

Related works on type-based termination include: Hughes, Pareto, and Sabry
[16], who treat �rst-order inductive and coinductive types that close at iteration
ω. Their system is also equi in spirit [23, Ch. 3.10], however, they do not give re-
duction rules but construct a denotational model. Barthe et al. [8] prove strong
normalization for recursive functions over sized inductive types of kind ∗. Al-
though there are no explicit (un)folding operations in and out, the only way to
generate inductive data is via constructors for labeled sums, which is crucially in
the reduction rule for recursion. Thus, the system is iso in disguise, in is merged
into the constructors, and out into case distinction. Blanqui [10] considers type-
based termination for his Calculus of Algebraic Constructions�iso-inductive in
spirit�which subsumes the Calculus of Inductive Constructions (CIC). Barthe,
Gregoire, and Pastawski [9] have extended type-based termination to the CIC.
Xi [31] bases termination on dependent types, albeit only dependencies on in-
teger expressions, which gives him a great �exibility in termination measures.
Since in his system a typing context can become unsatis�able, he only shows
call-by-value normalization of closed programs. Blanqui and Riba [11] manage
to avoid unsatis�able contexts, and thus, recover strong normalization.

In our treatment of equi-(co)inductive types, it is a bit unsatisfactory that
terms like fixµ

0s (fixν
0 s′) are blocked. One could think of allowing both unfoldings,

arriving at a non-con�uent calculus. The techniques described in this paper are
then no longer su�cient to prove strong normalization, but maybe methods used
for normalization of classical logic could be employed.

Acknowledgments. Thanks to my supervisor, Martin Hofmann, and to Ralph
Matthes for supporting my thesis work. Thanks to Lennart Beringer for proof
reading and to the anonymous referees for their insightful and helpful comments.

13

Jérôme Vouillon's excellent article on semantics of union types [29] inspired me
to build a model based on orthogonality. Thanks to Frédéric Blanqui and Colin
Riba for their invitation to LORIA in February 2007 and for discussions which
deepened my understanding of orthogonality, strong normalization, and equi-
inductive types.

References

1. Abel, A.: Polarized subtyping for sized types. In: Grigoriev, D., Harrison, J.,
Hirsch, E. A., eds., Proc. of the 1st Int. Computer Science Symposium in Russia,
CSR 2006, volume 3967 of Lect. Notes in Comput. Sci. Springer-Verlag (2006),
381�392

2. Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Ph.D.
thesis, Ludwig-Maximilians-Universität München (2006)

3. Abel, A.: Semi-continuous sized types and termination. In: Ésik, Z., ed., Computer
Science Logic, 20th Int. Workshop, CSL 2006, 15th Annual Conf. of the EACSL,
volume 4207 of Lect. Notes in Comput. Sci. Springer-Verlag (2006), 72�88

4. Abel, A.: Towards generic programming with sized types. In: Uustalu, T., ed.,
Proc. of the 8th Int. Conf. on Mathematics of Program Construction, MPC '06,
volume 4014 of Lect. Notes in Comput. Sci. Springer-Verlag (2006), 10�28

5. Abel, A., Matthes, R.: Fixed points of type constructors and primitive recursion.
In: Marcinkowski, J., Tarlecki, A., eds., Computer Science Logic, 18th Int. Work-
shop, CSL 2004, 13th Annual Conf. of the EACSL, volume 3210 of Lect. Notes in
Comput. Sci. Springer-Verlag (2004), 190�204

6. Altenkirch, T.: Constructions, Inductive Types and Strong Normalization. Ph.D.
thesis, University of Edinburgh (1993)

7. Altenkirch, T.: Logical relations and inductive/coinductive types. In: Gottlob, G.,
Grandjean, E., Seyr, K., eds., Computer Science Logic, 12th Int. Workshop, CSL
'99, 7th Annual Conf. of the EACSL. Lect. Notes in Comput. Sci., Springer-Verlag
(1999), 343�354

8. Barthe, G., Frade, M. J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termi-
nation of recursive de�nitions. Math. Struct. in Comput. Sci. 14 (2004) 1�45

9. Barthe, G., Grégoire, B., Pastawski, F.: CIC�: Type-based termination of recursive
de�nitions in the Calculus of Inductive Constructions. In: Hermann, M., Voronkov,
A., eds., Proc. of the 13th Int. Conf. on Logic for Programming, Arti�cial Intel-
ligence, and Reasoning, LPAR 2006, volume 4246 of Lect. Notes in Comput. Sci.
Springer-Verlag (2006), 257�271

10. Blanqui, F.: A type-based termination criterion for dependently-typed higher-order
rewrite systems. In: van Oostrom, V., ed., Rewriting Techniques and Applica-
tions (RTA 2004), Aachen, Germany, volume 3091 of Lect. Notes in Comput. Sci.
Springer-Verlag (2004), 24�39

11. Blanqui, F., Riba, C.: Combining typing and size constraints for checking the ter-
mination of higher-order conditional rewrite systems. In: Hermann, M., Voronkov,
A., eds., Proc. of the 13th Int. Conf. on Logic for Programming, Arti�cial Intel-
ligence, and Reasoning, LPAR 2006, volume 4246 of Lect. Notes in Comput. Sci.
Springer-Verlag (2006), 105�119

12. Geuvers, H.: Inductive and coinductive types with iteration and recursion. In:
Nordström, B., Pettersson, K., Plotkin, G., eds., Types for Proofs and Programs
(TYPES'92), Båstad, Sweden (1992), 193�217

14

13. Giménez, E.: Structural recursive de�nitions in type theory. In: Larsen, K. G.,
Skyum, S., Winskel, G., eds., Int. Colloquium on Automata, Languages and Pro-
gramming (ICALP'98), Aalborg, Denmark, volume 1443 of Lect. Notes in Comput.
Sci. Springer-Verlag (1998), 397�408

14. Girard, J.-Y.: Locus solum: From the rules of logic to the logic of rules. Math.
Struct. in Comput. Sci. 11 (2001) 301�506

15. Goguen, H.: Typed operational semantics. In: Deziani-Ciancaglini, M., Plotkin,
G. D., eds., Proc. of the 2nd Int. Conf. on Typed Lambda Calculi and Applications,
TLCA '95, volume 902 of Lect. Notes in Comput. Sci. Springer-Verlag (1995), 186�
200

16. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: Proc. of the 23rd ACM Symp. on Principles of Programming
Languages, POPL'96 (1996), 410�423

17. Joachimski, F., Matthes, R.: Short proofs of normalization. Archive of Mathemat-
ical Logic 42 (2003) 59�87

18. Lindley, S., Stark, I.: Reducibility and >>-lifting for computation types. In: Urzy-
czyn, P., ed., Proc. of the 7th Int. Conf. on Typed Lambda Calculi and Applica-
tions, TLCA 2005, volume 3461 of Lect. Notes in Comput. Sci. Springer-Verlag
(2005)

19. Matthes, R.: Extensions of System F by Iteration and Primitive Recursion on
Monotone Inductive Types. Ph.D. thesis, Ludwig-Maximilians-University (1998)

20. Matthes, R.: Non-strictly positive �xed-points for classical natural deduction. Ann.
Pure Appl. Logic 133 (2005) 205�230

21. Mendler, N. P.: Recursive types and type constraints in second-order lambda cal-
culus. In: Proc. of the 2nd IEEE Symp. on Logic in Computer Science (LICS'87).
IEEE Computer Soc. Press (1987), 30�36

22. Mendler, N. P.: Inductive types and type constraints in the second-order lambda
calculus. Annals of Pure and Applied Logic 51 (1991) 159�172

23. Pareto, L.: Types for Crash Prevention. Ph.D. thesis, Chalmers University of
Technology (2000)

24. Parigot, M.: Recursive programming with proofs. Theor. Comput. Sci. 94 (1992)
335�356

25. Parigot, M.: Proofs of strong normalization for second order classical natural de-
duction. The Journal of Symbolic Logic 62 (1997) 1461�1479

26. Ra�alli, C.: Data types, in�nity and equality in system af2. In: Börger, E., Gure-
vich, Y., Meinke, K., eds., Proc. of the 7th Wksh. on Computer Science Logic, CSL
'93, volume 832 of Lect. Notes in Comput. Sci. Springer-Verlag (1994), 280�294

27. Ste�en, M.: Polarized Higher-Order Subtyping. Ph.D. thesis, Technische Fakultät,
Universität Erlangen (1998)

28. van Raamsdonk, F., Severi, P., Sørensen, M. H., Xi, H.: Perpetual reductions in
lambda calculus. Inf. Comput. 149 (1999) 173�225

29. Vouillon, J.: Subtyping union types. In: Marcinkowski, J., Tarlecki, A., eds., Com-
puter Science Logic, 18th Int. Workshop, CSL 2004, 13th Annual Conf. of the
EACSL, volume 3210 of Lect. Notes in Comput. Sci. Springer-Verlag (2004), 415�
429

30. Vouillon, J., Melliès, P.-A.: Semantic types: A fresh look at the ideal model for
types. In: Jones, N. D., Leroy, X., eds., Proc. of the 31st ACM Symp. on Principles
of Programming Languages, POPL 2004. ACM Press (2004), 52�63

31. Xi, H.: Dependent types for program termination veri�cation. J. Higher-Order and
Symb. Comput. 15 (2002) 91�131

15

