
Structural Recursion over Contextual Objects
Brigitte Pientka and Sherry Shanshan Ruan

School of Computer Science
McGill University
Montreal, Canada

bpientka@cs.mcgill.ca, shanshan.ruan@mail.mcgill.ca

Andreas Abel
Department of Computer Science and Engineering

Chalmers and Gothenburg University
Gothenburg, Sweden
andreas.abel@gu.se

Abstract—A core programming language is presented that
allows structural recursion over open LF objects and contexts.
The main technical tool is a coverage checking algorithm that
also generates valid recursive calls. Termination of call-by-
value reduction is proven using a reducibility semantics. This
establishes consistency and allows the implementation of proofs
about LF specifications as well-founded recursive functions using
simultaneous pattern matching.

I. INTRODUCTION

The logical framework LF [Harper et al., 1993] supports
concise and elegant specifications of formal systems and
proofs based on higher-order abstract syntax (HOAS) where
we model binders in the object language using binders in
LF. This provides a general treatment of syntax, rules and
proofs where both variables and assumptions in the object
language are represented uniformly using LF’s function space
and allows for a smooth treatment of variables together with
discharging and replacing them.

While the elegance of higher-order abstract syntax en-
codings is widely acknowledged, it has been challenging to
reason inductively about LF specifications and formulate well-
founded recursion principles. HOAS specifications are not
inductive in the standard sense, since they violate the positivity
restriction. Despeyroux et al. [1997], Schürmann et al. [2001],
and Despeyroux and Leleu [2001] propose to separate the LF
function space used for representing HOAS from the function
space of computations used for writing proofs about HOAS
representations using the modal necessity 2. Their calculus,
a modal lambda-calculus with a primitive recursive iterator,
allows the representation of proofs as primitive recursive
functions. Hofmann [1999] investigated a categorical explana-
tion for the proposed reasoning principles. These calculi only
handle closed LF objects. As we recursively traverse higher-
order abstract syntax trees, we however extend our context
of assumptions and our LF object does not remain closed.
To tackle this problem, Pientka and collaborators [Pientka,
2008, Cave and Pientka, 2012] propose to pair LF objects
together with the context in which they are meaningful. This
notion is then internalized as a contextual type [Ψ.A] which is
inhabited by terms M of type A in the context Ψ [Nanevski
et al., 2008]. Contextual objects are then embedded into a
computation language which supports pattern matching on
contexts and contextual objects and general recursion. Beluga,
a programming environment based on these ideas [Pientka and

Dunfield, 2010], has been used for a wide range of applications
such as encoding normalization-by-evaluation [Cave and Pien-
tka, 2013] and a type-preserving compiler including closure
conversion and hoisting [Belanger et al., 2013]. However,
Beluga lacks guarantees that a given program is total.

In this paper, we present a dependently typed core language
for reasoning about contexts and contextual objects which in-
stead of general recursion uses a structural recursion principle
for contexts and contextual objects based on a simultaneous
well-founded pattern matching construct. It provides a type-
theoretic foundation for Beluga restricted to well-founded
recursive programs.

Unlike the general matching construct which simply splits a
given object into different cases, it in addition introduces and
assumes valid recursive calls based on a specified invariant.
This dynamic generation of structural recursive calls is in
contrast to a generic induction principle which is statically
derived from the inductive definition as for example in Coq.
Since obviously impossible cases are not even generated, this
reduces the number of necessary cases which need to be
considered in practice. Our type system will not only guarantee
that we are manipulating well-typed objects but also that a
given set of cases is covering and recursive calls are well-
founded. Our coverage and termination analysis builds on
[Schürmann and Pfenning, 2003, Dunfield and Pientka, 2009]
and provides the basis of an interactive theorem prover which
uses the splitting and recursive call generation.

Closely related to our approach is the work by Schürmann
and Pfenning [1998] and Schürmann [2000] where the authors
present a meta-logicM2 for reasoning about LF specifications
and describe the generation of splits and structural recursive
calls. However, M2 does not support higher-order computa-
tions and lacks first-class contexts, i.e., all assumptions live
in an ambient context. This makes it less direct to justify
reasoning with assumptions and less expressive compared
to our core language which naturally supports higher-order
functions and provides a proof language for first-order logic
with contextual LF as a domain.

To establish consistency, we define a call-by-value small-
step semantics for our core language and prove that every
well-typed program terminates. This justifies the interpretation
of well-founded recursive programs in our core language as
inductive proofs. Our proof of normalization follows Tait’s
method of logical relations. Such a proof is missing in the

work by Schürmann.
The remainder of the paper is organized as follows. We

review and summarize contextual LF [Cave and Pientka,
2012] in Section II. We then present the core language in
Section III which includes well-founded recursion principle
and simultaneous pattern matching and illustrate how to write
programs in this language. The operational semantics is given
in Section IV together with the normalization proof are given
in Section V. The rest of the paper is concerned with some
related work, current status and future research directions.

II. BACKGROUND

We review contextual LF which is based on contex-
tual modal types [Nanevski et al., 2008] and its extension
with context variables in [Pientka, 2008, Cave and Pientka,
2012]. We subsequently embed contextual LF objects into a
(dependently-typed) functional language which supports si-
multaneous pattern matching and well-founded recursion over
LF objects.

LF Constants c

LF Variables x, y, z

Parameter Variables p

Meta Variables u

Context Variables ψ, φ

LF Base Types P,Q ::= c · S
LF Types A,B ::= P | Πx:A.B

Heads H ::= c | x | p[σ]

Neutral Terms R ::= H · S | u[σ]

Spines S ::= nil |M S

Normal Terms M,N ::= R | λx.M

Substitutions σ ::= · | idψ | σ,M | σ;H

Variable Substitutions π ::= · | idψ | σ;x

LF Contexts Ψ,Φ ::= · | ψ | Ψ, x:A

Fig. 1. Grammar for Contextual LF

A. Contextual LF

Contextual LF extends the logical framework LF [Harper
et al., 1993] with contextual objects Ψ̂.M of type [Ψ.A].
Expression M denotes an object which may refer to the
bound variables listed in Ψ̂ and has type A in the context
Ψ. The variable list Ψ̂ can be obtained from the context Ψ
by simply dropping the type annotations and keeping only the
declared variable names. We consider only objects in η-long
β-normal form, since these are the only meaningful objects in
LF. Furthermore, we concentrate here on characterizing well-
typed terms; spelling out kinds and kinding rules for types is
straightforward.

∆; Ψ ` h⇒ A Synthesize type A for head h

Ψ(x) = A

∆; Ψ ` x⇒ A

Σ(c) = A

∆; Ψ ` c⇒ A

∆(p) = #Φ.A ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` p[σ]⇒ [σ]A

∆; Ψ ` S : A > P Check spine S against A with target P

∆; Ψ ` nil : P > P

∆; Ψ `M ⇐ A ∆; Ψ ` S : [M/x]B > P

∆; Ψ `M S : Πx:A.B > P

∆; Ψ `M ⇐ A Check normal object M against type A

∆; Ψ, x:A `M ⇐ B

∆; Ψ ` λx.M ⇐ A→ B

∆(u) = Φ.P ∆; Ψ ` σ ⇐ Φ Q = [σ]P

∆; Ψ ` u[σ]⇐ Q

∆; Ψ ` h⇒ A ∆; Ψ ` S : A > P

∆; Ψ ` h · S ⇐ P

∆; Ψ ` σ ⇐ Φ Check substitution σ against domain Φ

∆; Ψ ` · ⇐ · ∆; (ψ,Ψ0) ` idψ ⇐ ψ

∆; Ψ ` σ ⇐ Φ ∆; Ψ `M ⇐ [σ]A

∆; Ψ ` (σ,M)⇐ (Φ, x:A)

∆; Ψ ` σ ⇐ Φ ∆; Ψ ` H ⇒ B B = [σ]A

∆; Ψ ` (σ;H)⇐ (Φ, x:A)

Fig. 2. Bi-directional typing for contextual LF

Normal terms are either lambda-abstractions or neutral
terms which are defined using a spine representation to give
us direct access to the head of a neutral term. Normal objects
may contain ordinary bound variables x which are used to
represent object-level binders and are bound by λ-abstraction
or in a context Ψ. They may also contain contextual variables;
these are meta-variables u[σ] which are placeholders for LF
terms and parameter variables p[σ] which are placeholders
for LF variables. Contextual variables are associated with a
postponed substitution σ which is applied as soon as we
instantiate it. More precisely, a meta-variable u stands for a
contextual object Ψ̂.R where Ψ̂ describes the ordinary bound
variables which may occur in R. This allows us to rename the
free variables occurring in R when necessary. The parameter
variable p stands for a contextual object Ψ̂.H where H must be
either an ordinary bound variable from Ψ̂ or another parameter
variable.

In the simultaneous substitutions σ, we do not make its
domain explicit. Rather we think of a substitution together

2

with its domain Ψ and the i-th element in σ corresponds to the
i-th declaration in Ψ. We have two different ways of building
a substitution entry: either by using a normal term M or a
variable x. Note that a variable x is only a normal term M
if it is of base type. However, as we push a substitution σ
through a λ-abstraction λx.M , we need to extend σ with x.
The resulting substitution σ, x may not be well-formed, since
x may not be of base type and in fact we do not know its type.
Hence, we allow substitutions not only to be extended with
normal terms M but also with variables x; in the latter case
we write σ;x. Expression idψ denotes the identity substitution
with domain ψ while · describes the empty substitution.

As is common, we rely on hereditary substitutions [Watkins
et al., 2003], written as [N/x]B (or [σ]B) to guarantee that
when we substitute a term N for the variable x in the type
B, we obtain a type B′ which is in normal form. Hereditary
substitutions continue to substitute, if a redex is created; for
example, when replacing naively x by λy.c y in the object
x z, we would obtain (λy. c y) z which is not in normal
form and hence not a valid term in our grammar. Hereditary
substitutions continue to substitute z for y in c y to obtain c z
as a final result. For a more detailed description of hereditary
substitution, we refer the reader to Nanevski et al. [2008].

An LF context Ψ is either a list of bound variable declara-
tions

−−−→
x : A or a context variable ψ followed by such a list. We

write Ψ0 for contexts that do not start with a context variable.
We write Ψ,Φ0 or sometimes Ψ,Φ for the extension of context
Ψ by the variable declarations of Φ0 or Φ, resp. The identity
substitution id(Ψ) for a given context Ψ is defined inductively
as follows:

id(·) = · id(ψ) = idψ id(Ψ, x:A) = id(Ψ);x

We require the usual conditions on bound variables, tacitly
apply α−renaming and maintain that contexts declare no
variable more than once. Note that substitutions σ are defined
only on ordinary variables x and not on contextual variables.
We use a special symbol # to indicate the type of a parameter
variable.

We summarize the bi-directional type system for contextual
LF in Figure 2. LF objects may depend on variables declared in
the context Ψ and a fixed meta-context ∆ which contains con-
textual variables such as meta-variables u, parameter variables
p, and context variables ψ. We introduce ∆ more formally in
the next section. All typing judgments have access to both
contexts and a fixed well-typed signature Σ where we store
constants c together with their types and kinds.

A remark on equality checking: When checking A = B we
must take into account η-contraction, because we have two
ways to build substitutions. If x has type Πy:A.B then we
may have written σ;x or σ, λy. x y.

B. Meta-level terms and typing rules

We lift contextual LF objects to meta-objects to have a
uniform definition of all meta-objects. Meta-objects (both
contextual objects Ψ̂.R and contexts Ψ) can be used to
index computation-level types τ (see next section). Just as

∆ ` C : U Check meta-object C against meta-type U

∆ ` · : G
∆(ψ) = G

∆ ` ψ : G

∆ ` Ψ : G ∃Φ0.B ∈ G ∆; Ψ ` σ ⇐ Φ0 [σ]B = B′

∆ ` Ψ, x:B′ : G

∆; Ψ ` R⇐ P

∆ ` Ψ̂.R : Ψ.P

Ψ(x) = A

∆ ` Ψ̂.x : #Ψ.A

∆(p) = #Φ.A ∆; Ψ ` π ⇐ Φ

∆ ` Ψ̂.p[π] : #Ψ.A

∆ ` θ : ∆′ Check meta-substitution θ against domain ∆′

∆ ` · : ·
∆ ` θ : ∆′ ∆ ` C : [[θ]]U

∆ ` θ, C/X : ∆′, X:U

Fig. 3. Typing for meta-objects

types classify terms, context schemas G classify contexts.
For simplicity, we restrict schemas to classify only contexts
containing LF types.1

Context Schemas G ::= ∃Φ0.B | G+ ∃Φ0.B

Meta Types U ::= Ψ.P | #Ψ.A | G
Meta Objects C,D ::= Ψ̂.R | Ψ
Meta Substitutions ρ, θ ::= · | θ, C/X
Meta Contexts ∆ ::= · | ∆, X:U

A consequence of the uniform treatment of meta-terms is
that the design of the computation language is modular and
parametrized over meta-terms and meta-types. This has two
main advantages: First, we can in principle easily extend
meta-terms and meta-types without affecting the computation
language; Second, it will be key to a modular, clean design of
our computation language.

The above definition gives rise to a compact treatment
of meta-context ∆. A meta-variable X can denote a meta-
variable u, a parameter variable p, or a context variable ψ.
Meta substitution C/X can represent Ψ̂.R/u, or Ψ/ψ, or
Ψ̂.x/p, or Ψ̂.p′[π]/p (where π is a variable substitution so that
p[π] always produces a variable). Meta declaration X:U can
stand for u : Ψ.P , or p : #Ψ.A, or ψ : G. Intuitively, as soon
as we replace u with Ψ̂.R in u[σ], we apply the substitution σ
to R hereditarily. The simultaneous meta-substitution, written
as [[θ]], is a straightforward extension of the single substitution.
For a full definition of meta-substitutions, we refer the reader
to Nanevski et al. [2008], Cave and Pientka [2012]. Find the
typing rules for meta-objects summarized in Figure 3.

Theorem 1 (Meta-substitution property):
If ∆′ ` θ : ∆ and ∆; Ψ ` J then ∆′; [[θ]]Ψ ` [[θ]]J .

1In practice, we support a limited notion of Σ-types.

3

Λψ:(ctx).ΛA:(.tp).fn x:[ψ.tmA].let X = x in recT (ψ.X ...) with

| φ:(ctx), B:(.tp), p:(#φ.B) ; ·
.f [φ] [.B] [φ.p ...] 7→ [.z]

| φ:(ctx), B1:(.tp), B2:(.tp), M :(φ, x:tmB1.tmB2) ; f [φ, x:tmB1] [.B2] [φ, x:tmB1.M ... x]

.f [φ] [φ.arr B1 B2] [φ.lamλx.M ... x] 7→ letN = f [φ, x:tmB1] [.B2] [φ, x:tmB1.M ... x]
in [.sucN]

| φ:(ctx), B1:(.tp), B2:(.tp), M :(φ.tm (arr B1 B2)), N :(φ.tmB1) ; f [φ] [φ.arr B1 B2] [φ.M ...], f [φ] [.B1] [φ.N ...]

.f [φ] [.B2] [φ.app (M ...) (N ...)] 7→ letX = f [φ] [.arr B1 B2] [φ.M ...] in
letY = f [φ] [.B1] [φ.N ...] in
letZ = plus [.X] [.Y] in
[.suc Z]

Fig. 4. Counting abstractions and applications in a lambda-term

III. CORE LANGUAGE WITH WELL-FOUNDED RECURSION

In this section, we present the core of Beluga’s compu-
tational language which allows the manipulation contextual
LF objects by means of higher-order functions and primitive
recursion rec over such objects. In terms of proof-theoretical
strength, the language is comparable to Gödel’s T or Heyting
Arithmetic, only that the objects of study are not natural
numbers, but HOAS terms.

Types τ ::= [U] | τ1 → τ2 | ΠX:U.τ
Expressions e ::= y | [C] | fn y:τ. e | e1 e2 | ΛX:U.e | e [C]

| let X = e1 in e2 | recΠ∆.τC with
−→
b

Branches b ::= ∆;−→r . r 7→ e

Pattern r ::= f
−→
[C] [C]

Contexts Γ ::= · | Γ, y:τ

There are three forms of computation-level types τ . The base
types [U] are introduced by wrapped contextual objects [C];
the non-dependent function space τ1 → τ2 is introduced by
function abstraction fn y:τ1. e and eliminated by application
e1 e2; finally, the dependent function type ΠX:U.τ which
corresponds to universal quantification ∀ in predicate logic or
Heyting Arithmetic is introduced by abstraction ΛX:U.e over
meta object variables X and eliminated by application e [C]
to meta objects C. The type annotations on both abstractions
ensure that every expression has a unique type. Note that we
can only index computation-level types τ by meta objects (but
this includes LF contexts!), not by arbitrary computation-level
objects. Thus, the resulting logic is just first-order, although
the proofs we can write correspond to higher-order functional
programs manipulating HOAS objects.

Our language supports simultaneous pattern matching on
meta-objects C using rec-expressions. Note that one cannot
match on a computational object e directly; instead on can
bind it to a meta variable X using let and then match on X .
We annotate the recursor rec with the type of the inductive
invariant Π∆.τ which the recursion satisfies. Since we are
working in a dependently-typed setting, it is not sufficient to
simply state the type U of the scrutinee. Instead, we generalize
over the index variables occurring in the scrutinee, since they
may be refined during pattern matching. Hence, ∆ = ∆′, X:U

where ∆′ exactly describes the free meta-variables occurring
in U . We also give the return type τ of the recursor, since it
might be refined during pattern matching.2

A branch bi is expressed as ∆i.
−→ri .ri0 7→ ei. We explicitly

list all meta-variables occurring in a branch in ∆i. In practice,
they often can be inferred (see for example [Pientka, 2013]).
We also list all valid well-founded recursive calls −→ri , i.e.
rik, . . . , ri1, for pattern ri0. In practice, they can be derived
dynamically as we check that a given pattern ri0 is covering.
We list them here to emphasize these recursive assumptions.

In larger examples, we use the following layout for each of
the branches ∆;~r . r 7→ e:

| ∆ (bound metas) ; ~r (recursive calls)
. r (considered case) 7→ e (body)

The identifier f in call patterns r denotes the local function
that is essentially introduced by rec; this notation is inspired
by primitive recursion in Tutch [Abel, 2002]. Currently, it just
improves the readability of call patterns; however, it is vital
for extensions to nested recursion.

A. Examples

In this section, we give several examples to illustrate how
to program recursively in this language. For better readability,
we write capital letters for meta-variables and adopt Beluga’s
syntax for identity substitutions writing ... instead of [idψ].
All our examples show total programs over intrinsically well-
typed terms which are defined in the logical framework LF by
indexing terms with their corresponding type. We also assume
that we have defined an LF type nat of natural numbers with
the constructors z and suc. Below is a signature, written in
Beluga or Twelf syntax.

tp : type.
bool: tp.
arr : tp→ tp→ tp.

tm : tp→ type.
app: tm (A→ B)→ tmA→ tmB.
lam: (tmA→ tmB)→ tm (arr A B).

Free variables, A and B are implicitly quantified at the
outside. Subsequently, we will omit passing instantiations for
them when using constructors such as app and lam, since they
can be reconstructed [Pientka, 2013].

2This is analogous to Coq’s match as in return with end construct.

4

a) Counting constructors: In Figure 4, we present a
function which counts the number of constructors (abstractions
and applications) in a given term. It naturally has type

T = Πψ:(ctx).ΠA:(.tp).[ψ.tmA]→ [.nat]

where ctx describes the schema ∃A:tp. tmA for contexts
containing declarations x : tmA for some A. After in-
troducing the context variable ψ and the meta-variable A
using Λ-abstraction, we introduce x of type [ψ.tmA] via
a computation-level abstraction. To recurse over x, we first
unbox it using let and bind it to the contextual variable X .
We then split and recurse over (ψ.X ...). There are three cases
we must consider: either X denotes a variable, written as
f [φ] [.B] [φ.p ...], or it stands for a lambda-abstraction, writ-
ten as f [φ] [.arr B1 B2] [φ.lamλx.M ... x], or it describes
an application, written as f [φ] [.B2] [φ.app (M ...) (N ...)].

In the case for lambda-abstraction, we recurse on M , written
as f [φ, x:tmB1] [.B2] [φ, x:tmB1.M ... x]. This recursive
call is justified as φ, x:tmB1.M ... x is considered smaller than
φ.lamλx.M ... x. We define a subterm ordering on contextual
types later. Intuitively, the size of a contextual object is the size
of the context in which it makes sense and the size of the term
which is defined by how many λ-abstractions and applications
it contains.

In the case for application, we have two recursive calls, one
on M , written as f [φ] [.arr B1 B2] [φ.M ...], and the other
on N , written as f [φ] [.B1] [φ.N ...].

May we also write a program which is defined recursively
over ψ.tm bool instead of ψ.tmT ? - The answer is yes. In
such a case, we only generate cases whose patterns have type
ψ.tm bool, i.e., the variable case and the case for applications.
What well-founded recursive calls are generated? In fact none,
since given [φ.app (M ...) (N ...)] we have that M has type
φ.tm (arr B1 bool) and N has type φ.tm B1. Neither of
which is a possible instance of φ.tm bool, the type required
by the invariant.

b) Computing the length of a context: We illustrate
recursion over the context to compute its length by writing a
function of type T = Πψ:(ctx).[.nat]. There are two possible
cases to consider: either ψ is empty or ψ = φ, x:tmB. In the
latter case, φ is smaller than ψ and hence we assume f [φ] as
a well-founded recursive call.

Λψ:(ctx).recT (ψ) with
| · ; ·
.f [·] 7→ [.z]

| φ:(ctx), B:(.tp) ; f [φ]
.f [φ, x:tmB] 7→ letN = f [φ] in [.suc N]

c) Conversion to de Bruijn: The function in Figure 5
converts well-typed lambda-terms to de Bruijn terms of the
same type. The central difficulty lies in returning the position
of a variable in a given context, which is its de Bruijn
index. The example illustrates recursion over elements of
type #ψ.tmA. Note that simultaneously matching on ψ and
#ψ.tmA allows us to split first ψ followed by a split on

#ψ.tmA. The case ψ = · (i.e., ψ is empty) and # · .tmA
is impossible, since there is no variable.

d) Impossible cases: A brief note regarding impossible
cases. If a type is not inhabited, i.e. we cannot generate a
covering set, then this case is impossible, i.e. there is nowhere
to step. Effectively such case is irrelevant during run-time,
but it is proof-relevant. This amounts to writing a recursive
simultaneous match without a body.

B. Well-founded structural subterm order

There are two key ingredients to guarantee that a given
function is total: we need to ensure that all the recursive
calls are on smaller arguments according to a well-founded
order and the function covers all possible cases. We define
here a well-founded structural subterm order on contexts and
contextual objects similar to the subterm relations for LF
objects [Rohwedder and Pfenning, 1996, Pientka, 2005].

To consider also mutual recursive type families, we define
the notion of subordination. Let head(A) denote the head of
a clause A, i.e. the overall return type. A type family a is a
subordinate to a type family a′ (a�∗a′) whenever a canonical
term M :A with hd(A) = a may be used in constructing
a canonical term N :B with hd(B) = a′. If additionally
a′�∗a, we say that a, a′ are mutually recursive. We write
a�∗a′, denoting strict subordination, if a is a subordinate to
a′, but not mutually recursive. Subordination of type families
is the transitive closure of the immediate subordination relation
(a�∗a′) which can be directly read off the signature. If the
type family a (head(A)) is a strict subordinate of the type
family a′ (head(A′)), then a canonical subterm of type A can
never contain a subterm of type A′. Therefore, a term M is
considered smaller than a λ-term (λx.N) if there exists an
arbitrary instantiation T for x s.t. M is smaller than [T/x]N
and the type of T is a strict subordinate to N . An example of
this strict subordination can be found in the representation of
first-order logic, where the objects of type i (individuals) are
a strict subordinate of the objects of type o (propositions).

If the type family a (head(A)) is not a strict subordinate
of the type family a′ (head(A′)), then M is only considered
smaller than λx.N if there exists a parameter y such that
[y/x]N is smaller than M . For a more detailed development of
subordination we refer to R. Virga’s PhD thesis Virga [1999].

Type subordination plays a role in handling the subterm
ordering for λ-abstractions. In a comparison, if the type of
the variable bound by an abstraction is not subordinate to the
type of the other expression, then we can simply substitute the
bound variable with any variable of the same type declared in
the context. We first define an ordering on contexts: Ψ � Φ ,
read as “context Ψ is a subcontext of Φ”, shall hold if all
declarations of Ψ are also present in the context Φ, i.e., Ψ ⊆
Φ. The strict relation Ψ ≺ Φ , read as “context Ψ is strictly
smaller than context Φ” holds if Ψ � Φ but Ψ is strictly

5

Λψ:(ctx).ΛA:(.tp).Λp:(#ψ.tmA).recΠψ:(ctx).ΠA:(.tp).Πp:(#ψ.tmA).[.nat](ψ.p ...) with
| φ:(ctx), B:(.tp) ; ·
.f [φ, x:tmB] [.B] [φ, x:tmB. x] 7→ [.suc z]

| φ:(ctx), B:(.tp), A:(.tp), p:(#φ.tmA) ; f [φ] [.A] [φ. p ...]
.f [φ, x:tmB] [.A] [φ, x:tmB. p ...] 7→ letN = f [φ] [.A] [φ. p ...] in [.shift N]

Fig. 5. Conversion to de Bruijn

shorter than Φ.

Ψ ≺ Φ Context Ψ is strictly smaller than Φ.

Ψ � Φ

Ψ ≺ Φ, x:A

Ψ � Φ Context Ψ is a subcontext of Φ.

Ψ ≺ Φ
Ψ � Φ · � · ψ � ψ

Ψ � Φ

Ψ, x:A � Φ, x:A

Further, we define three relations on contextual objects
Ψ̂.M : a strict subterm relation ≺, an equivalence relation ≡,
and an auxiliary relation �. Our subterm relation is in fact
simpler than the subterm relation employed in the Twelf sys-
tem. To allow mutual recursive definitions and richer subterm
relationships, we can as in Twelf incorporate subordination
information defining the the subterm relations on simple types
in a type-directed manner.

Ψ̂.M ≡ Φ̂.N Equivalence on contextual objects

Ψ̂ ⊆ Φ̂ Φ̂ ⊆ Ψ̂ π is a permutation subst. s.t. M = [π]N

Ψ̂.M ≡ Φ̂.N

Ψ̂.M ≺ Φ̂.N Strict subterm relation on contextual objects

Ψ̂.M � Φ̂.Ni for some 1 ≤ i ≤ n
Ψ̂.M ≺ Φ̂. h ·N1 . . . Nn nil

Ψ̂ ⊂ Φ̂ π is a strengthening substitution π s.t. M = [π]N

Ψ̂.M ≺ Φ̂.N

Ψ̂.M � Φ̂.N Subterm relation on contextual objects

Ψ̂.M ≺ Φ̂.N

Ψ̂.M � Φ̂.N

Ψ̂.M ≡ Φ̂.N

Ψ̂.M � Φ̂.N

Ψ̂.M � Φ̂, x.N

Ψ̂.M � Φ̂.λx.N

Two terms Ψ̂.M and Φ̂.N are structurally equivalent, if they
describe the same term modulo α-renaming. We in addition
require that Ψ̂ and Φ̂ describe the same set of variables and
context variables, i.e. Ψ̂ ⊆ Φ̂ and Φ̂ ⊆ Ψ̂. Ψ̂.M is a strict
subterm of Φ̂.M if either Ψ̂ is a subset of Φ̂ and there
exists a strengthening substitution π to guarantee that M is
syntactically equal to [π]N ; in other words N depends only
on Ψ̂ or if N = h · N1 . . . Nn nil and Ψ̂.M is smaller than
Φ̂.Ni for some 1 ≤ i ≤ n.

We say Ψ̂.M � Φ̂.N , if either Ψ̂.M is strictly smaller than
Φ̂.N , or if they are equivalent, or if N = λx.N ′, we move x to
the context Φ̂ and compare Ψ̂.N with Φ̂, x.N ′. To check our
intuition, consider following example which arose previously:

|ψ, x| = |ψ, x|

ψ, x.M ... x � ψ, x.M ... x

ψ, x.M ... x � ψ.λx.M ... x

ψ, x.M ... x ≺ ψ.lam λx.M ... x

We also note that ψ.p ... ≺ ψ, x.p ... is immediately justified
by noting that ψ ⊂ ψ, x. Using the defined subterm order,
we can easily verify that the recursive calls in the examples
are structurally smaller.

The given subterm relation is well-founded. We define the
measure ||Ψ|| of a ground context Ψ0 or its erasure Ψ̂0 as its
length |Ψ|. The measure ||Ψ̂.M || of a contextual object Ψ̂.M ,
is the measure of Ψ̂ plus the measure ||M || of M .

Measure for erased contexts

|| · || = 0

||Ψ̂, x|| = 1 + ||Ψ̂||

Measure for normal and neutral terms

||h ·M1 . . .Mn nil|| = 1 + max(||M1||, . . . , ||Mn||)
||λx.M || = 1 + ||M ||

Theorem 2 (Order on contextual objects is well-founded):
Let θ be a grounding meta-substitution.

1) If C ≺ C ′ then ||[[θ]]C|| < ||[[θ]]C ′||.
2) If C ≡ C ′ then ||[[θ]]C|| = ||[[θ]]C ′||.
3) If C � C ′ then ||[[θ]]C|| ≤ ||[[θ]]C ′||.

Proof. By mutual structural induction on the relation C ≺ C ′,
C ≡ C ′, and C � C ′. 2

e) Side remark: Our subterm order for contexts and con-
textual objects is very similar to first-order subterm ordering
and is in fact simpler than the structural subterm ordering
on LF terms employed in the Twelf system. In their system,
to establish that [y/x]M � λx:A.M , we need to be able
to compare [y/x]M � [y/x]M , i.e. we must instantiate x
in M with an existing parameter. This is due to the fact
that the order is defined in a shared variable context. In our
case, each contextual object has their own surrounding context
and we compare two LF objects modulo α-renaming. As a
consequence, we believe our order is more straightforward and
natural.

6

C. Coverage

For well-formed recursors (rec∆,X:U.τC with ~b), branches
~b need to cover all different cases for the argument C of type
U . We only take the shape of U into account and generate
the unique complete set U∆`U of non-overlapping shallow
patterns by splitting meta-variable X of type U . If U = Ψ.P
is a base type, then the set U∆`U contains all neutral terms
R = H · P type P in context Ψ where H is a constructor
c, a variable x from Ψ or a valid parameter p[σ], and S is a
spine of fresh meta variables. Such terms R correspond to the
“patterns” in functional programming, but there only H = c
needs to be considered. If U denotes a context schema G, we
generate all shallow context patterns of type G. If U = #Ψ.A
is a parameter type, we take the variables of type A in Ψ.

From U∆`U we generate the complete minimal set C =
{∆i; rik, . . . , ri1.ri0 | 1 ≤ i ≤ n} of possible, non-
overlapping cases where the i-th branch shall have the well-
founded recursive calls rik, . . . , ri1 for the case ri0. For the
given branches ~b to be covering, each element in C must cor-
respond to one branch bi. Our algorithm generalizes previous
work on coverage of LF objects [Dunfield and Pientka, 2009,
Schürmann and Pfenning, 2003]. In the following, we detail
the cases for split type U .

a) Splitting on a contextual type: The patterns R of type
Ψ.P are computed by brute force: We first synthesize a set
H∆;Ψ of all possible heads together with their type: constants
c ∈ Σ, variables x ∈ Ψ, and parameter variables if Ψ starts
with a context variable ψ.

H∆;Ψ = {(∆; Ψ ` c : A) | (c:A) ∈ Σ}

∪ {(∆; Ψ ` x : A) | (x:A) ∈ Ψ}

∪ {(∆,
−−→
X:U, p:#(ψ.B′); Ψ ` p[idψ] : B′) |

Ψ = ψ,Ψ0 and ψ:G ∈ ∆ and ∃
−−−→
x : A.B ∈ G and

lower (ψ.Ai) = (Xi:Ui, Mi) for all i, and

B′ = [
−−→
M/x]B }

See Figure 6. Using a head H of type A from the
set H∆;Ψ, we then generate, if possible, the most gen-
eral pattern H · S whose target type is unifiable with P
in the context Ψ. We describe unification using the judg-
ment ∆; Ψ ` Q + P / (∆′ , θ) . If unification succeeds then
[[θ]]Q = [[θ]]P and ∆′ ` θ : ∆.

The generation of a neutral pattern is accomplished by
the judgement ∆; Ψ ` R : A⇐ P / (∆′, θ, R0) where all
the elements on the left side of / are inputs and the
right side is the output, which satisfies ∆′ ` θ : ∆ and
∆′; [[θ]]Ψ ` R ⇒ [[θ]]A and ∆′; [[θ]]Ψ ` R0 ⇐ [[θ]]P .
Moreover, R0 = [[θ]]R ~M for a list of eta-expanded meta
variables ~M that bring R down to base type. To generate
a neutral term R0 of the expected base type, we start with
head H : A. As we recursively analyze A, we generate all the
arguments H is applied to until we reach an atomic type Q.
If Q unifies with the expected type P , then generating a most

general neutral term with head H succeeds.

U∆`Ψ.P = { (∆′′ ` Φ̂.R : Φ.P ′) | (∆′; Ψ ` H : A) ∈ H∆;Ψ

and ∆′; Ψ ` H : A⇐ P / (∆′′, θ, R)

and Φ = [[θ]]Ψ and P ′ = [[θ]]P }

b) Splitting on a context schema: Spitting a context
variable of schema G generates the empty context and the non-
empty contexts (φ, x:B′) for each possible form of context
entry ∃Φ0.B ∈ G.

U∆`G = { (∆ ` · : G) }
∪ { (∆, φ:G,

−−→
X:U ` (φ, x:[

−−→
M/x]B) : G) |

∃
−−−→
x : A.B ∈ G and

lower (ψ.Ai) = (Xi:Ui,Mi) for all i and
φ a fresh context variable }

c) Splitting on a parameter type: We show how to
generate all variables of type #Ψ.A. Intuitively, only bound
variables x:B from Ψ whose type is unifiable with A inhabit
this type; if the context Ψ contains a context variable ψ : G
we also include all parameter variables of the appropriate type
synthesized from G.

Definition 3 (Generating variable objects):
The set U∆`#Ψ.A contains variables x from Ψ of matching
type plus variables and parameters U spanning from the
context variable ψ in Ψ, if any.

U∆`#Ψ.A = { (∆′; [[θ]]Ψ ` x : [[θ]]A)
| x:B ∈ Ψ and ∆; Ψ ` B + A / (∆′ , θ) }

∪ U

For U , we distinguish two cases.
• Ψ = ψ where ψ:G ∈ ∆:

U =
⋃

(∆′`Φ:G)∈U·`G

U∆′,[[Φ/ψ]]∆`#Φ.[[Φ/ψ]]A

• Ψ = ψ,Ψ0 where Ψ0 is non-empty and ψ:G ∈ ∆.

U = {(∆′, p:#(ψ.[[θ]]A); [[θ]]Ψ ` p[idψ] : [[θ]]A) |
Ψ = ψ,Ψ0 and ψ:G ∈ ∆ and ∃

−−−→
x : A.B ∈ G and

lower (ψ.Ai) = (Xi:Ui, Mi) for all i, and
B′ = [

−−→
M/x]B and ∆; Ψ ` B′ + A / (∆′ , θ) }

Note that unifying B′ and A will not change the context
variable ψ, i.e. θ maps ψ to itself in ∆′. We use this fact in
the definition above and simply write ψ instead of [[θ]]ψ in
declaring the type of p and describing the identity substitution
it is associated with. Note that if Ψ is empty, the type #Ψ.A
is not inhabited and the set U∆`#Ψ.A is empty.

To illustrate, we generate Uψ:ctx,A:(.tp)`#ψ.tm A. Since there
are no bound variables in the context, we split ψ, i.e. Ψ = · and
Ψ, x:tmB. In the first case, we note that UA:(.tp)`#(.tm A) is
empty. In the other case, Uφ:ctx,B:(.tp),A:(.tp)`#(φ,x:tm B.tm A)

contains two elements:

φ:ctx, A:(.tp) ;φ, x:tm A;`x:tm A
φ:ctx, B:(.tp), A:(.tp), p:#(φ.tm A);φ, x:tm B ;`p[idφ]:tm A

7

lower (Ψ.A) = (X:U,M) Generation of a lowered meta variable

lower (Ψ.Π
−−→
x:A.B) = (u : (Ψ,

−−→
x:A.P), λ~x.u[id(Ψ)]) for a fresh meta variable u

∆; Ψ ` R : A⇐ P / (∆′, θ, R0) Lowering of neutral object R : A to R0 : [[θ]]P by appending fresh meta variables.

∆; Ψ ` Q + P / (∆0, θ)

∆; Ψ ` R : Q⇐ P / (∆0 , θ , [[θ]]R)

lower (Ψ.A) = (X:U, M) ∆, X:U ; Ψ ` R M : [M/x]B ⇐ P / (∆0, θ, R
′)

∆; Ψ ` R : Πx:A.B ⇐ P / (∆0, θ, R
′)

`C:U r : τ / r′ Generation of call pattern r′ through extending r by eta-expanded meta variables.

`C:U r [Cn] : [[Cn/Xn]](Π∆0.τ0) / r′ where Cn = η(Xn:Un)

`C:U r : Π(Xn:Un,∆0).τ0 / r
′

U = U0[θ]

`C:U r : ΠX0:U0.τ0 / [[θ]]r [C]

Fig. 6. Lowering of neutral object and generation of call patterns

D. Generation of call patterns

We introduce the operation η(X:U) = C which returns a
proper contextual term C from a meta variable X : U .

η(u : Ψ.A) = Ψ̂.u[id(Ψ)]

η(p : #Ψ.A) = Ψ̂.p[id(Ψ)]
η(ψ : G) = ψ

Definition 4 (Generation of call patterns and recursive
calls): Given ∆0 = ∆, X0:U0, the set C of call patterns is
generated as follows: For each meta-object ∆i ` Ci0 : Ui0 in
U∆`U0 , we generate, if possible, a call pattern ri0 using

`Ci0:Ui0
f : Π∆0.τ0 / ri0

This may fail if Ui0 is not an instance of the scrutinee type U0;
then, the case Ci0 is impossible. Further, for all 1 ≤ j ≤ k,
∆i = Xn:Un, . . . , X1:U1, we generate a recursive call

`Xj :Uj f : Π∆0.τ0 / rij

if η(Xj :Uj) ≺ Ci0. Then ∆i ; rik, . . . , ri1.ri0 is in C.
Definition 5 (Coverage): We say ~b covers ∆0 iff for

every ∆i ; ~ri . ri0 ∈ C where C is the set of patterns
and recursive calls given ∆0, we have one corresponding
bi = ∆i ; ~ri . ri0 7→ ei ∈ ~b and vice versa.

E. Properties of Splitting and Coverage

Theorem 6 (Splitting on meta-types): The set U∆`U of meta-
objects generated is non-redundant and complete.
Proof. U∆`G is obviously non-redundant. U∆`Ψ.A is non-
redundant since all generated neutral terms have distinct heads.
U∆`#Ψ.A is non-redundant, since all declarations in a context
Ψ are distinct. Completeness is proven by cases. We consider
here the three cases of meta-objects.

Case Splitting on contextual type Ψ.P . We need to show
that all closed canonical objects C of type Ψ.P are
covered by the generated splits. Since C is normal,
we know C = Ψ̂.R and R = h M1 . . .Mn s.t. · `
θ : ∆ and ·; [[θ]]Ψ ` R ⇐ [[θ]]P . The set H∆;Ψ is
complete and for all heads h we have h:A ∈ H∆;Ψ.

Moreover, by the properties of unification, ∆; Ψ `
h : A ⇐ P / (∆′ , θ′ , R′) generates the most
general R′ s.t. ∆′; [[θ′]]Ψ ` R′ ⇐ [[θ′]]P . Therefore
there exists a meta-substitution ρ s.t. · ` ρ : ∆′ and
[[ρ]]([[θ′]](Ψ.P)) = [[θ]](Ψ.P) and [[ρ]]R′ = R.

Case Splitting on a context schema G. We need to show
that all closed canonical objects C of type G are
covered by the generated splits. Since C is normal,
it stands for a concrete context which is either
empty or Ψ = x1:B1, . . . , xn:Bn s.t. · ` Ψ : G.
Our splitting definition generates the most general
declarations which are instances of the schema G,
i.e. for all ∃

−−→
x:A.B ∈ G, we generate Ψ′ = ψ, x :

[
−−−−−→
u[idψ]/x]B s.t.ψ:G,

−−−→
u:ψ.A ` Ψ′ : G. Since it is

most general, there exists a meta-substitution ρ s.t.
· ` ρ : ψ:G,

−−−→
u:ψ.A s.t. [[ρ]]Ψ′ = Ψ.

Case Splitting on a parameter type #Ψ.A. We need to
show that all closed canonical objects C of type
#[[θ]](Ψ.A) where · ` θ : ∆ are covered by the
generated splits. Since C is canonical, it must be of
the form C = x1, . . . , xn.xi where 1 ≤ i ≤ n and
·; [[θ]]Ψ ` xi ⇒ A′ s.t. [[θ]]Ai = A′. We distinguish
two cases. If Ψ = x1:A1, . . . xn:An, then xi has type
Ai and our splitting algorithm guarantees that there
exists a most general meta-substitution ∆′ ` θ′ : ∆
s.t. [[θ′]]Ai = [[θ′]]A. Since θ′ is most general, there
exists a grounding meta-substitution ρ s.t. · ` ρ : ∆′

and [[ρ]]([[θ′]]Ai) = A′ = [[θ]]A.
If Ψ = ψ, xi:Ai, . . . , xn:An, we also need to
consider the case where our algorithm generates
for all ∃

−−→
x:A.B ∈ G, ψ:G,

−−−→
u:ψ.A, p:(#ψ.B) `

ψ.p[idψ] ⇒ B, if B unifies with A. As a con-
sequence there is a most general meta-substitution
∆′ ` θ : ∆, ψ:G,

−−−→
u:ψ.A,#p:ψ.B. To generate

closed instances of the form x1, . . . xn.xk where
1 ≤ k < i, we instantiate ψ with x1:A1, . . . xk:Ak
and p with x1, . . . xi−1.xk.

2

8

Theorem 7 (Pattern generation): The set C of call patterns
and recursive calls generated is non-redundant and complete
and the recursive calls are well-founded.
Proof. Using Theorem 6 and the properties of unification.

2

Theorem 8 (Recursive calls are decreasing): Given a set C
of patterns, for each ∆ik; rik, . . . , ri1.ri0 in C, we have that
each recursive calls rij (1 ≤ j ≤ k) is smaller than ri0.
Proof. This is true by construction. 2

F. Computation-level Type System

Our type system for computations performs coverage
checking and verifies well-formed primitive recursions in
the typing rule for rec expressions. We annotate the rec-
expression with the inductive invariant Π∆0.τ0 which is a
closed computation-level type. The intention is that given
∆0 = Xn:Un, . . . , X0:U0, we induct on objects of type
U0 which may depend on Xn, . . . , X1. ∆0 must therefore
contain at least one declaration. The result of the inductive
invariant is τ which also might depend on ∆0. One might
ask whether this form of inductive invariant is too restrictive,
since it seems not to capture, e.g., Π∆.(τ → ΠX:U.τ ′).
While allowing more general invariant and supporting pattern
matching on computation types do not pose any fundamental
issues, we simply note here that above type is isomorphic to
Π(∆, X:U). τ → τ ′ which is treated by our calculus.

In the typing judgement (Figure 7), we distinguish between
the context ∆ for contextual variables from our index domain
and the context Γ which includes declarations of computation-
level variables. Contextual variables will be introduced via Λ-
abstraction. The contextual variables in ∆ are also introduced
in the branch of a rec-expression. Computation-level variables
in Γ are introduced by non-dependent function abstraction.

We will tacitly rename bound variables, and maintain that
contexts declare no variable more than once. Moreover, we
require the usual conditions on bound variables. For example
in the rule for Λ-abstraction the contextual variable X must
be new and cannot already occur in the context ∆. This can
be always achieved via α-renaming. Similarly, in the rule for
function abstraction, the variable y must be new and cannot
already occur in Γ.

Most typing rules should look familiar. We only draw
attention to a few rules; a Λ-abstraction has type ΠX:U.τ if the
body of the abstraction has type τ in the extended meta-context
∆, X:U . A function fn y:τ. e has type τ1 → τ2, if the body e
has type τ2 in the extended computation context Γ, y:τ1. We
have two rules for applications: a non-dependent application
(e1 e2) has type τ , if e1 has type τ2 → τ and e2 has type
τ2. For the dependent application e [C] to be well-typed, e
must have type ΠX:U.τ and c must be a well-typed meta-
object of type U . Note that we drop the computation context
Γ when we transition to type check a meta-object, since meta-
objects cannot refer to computations. The final type for e [C]
is [[C/X]]τ .

Interesting is the rule for recursion: the expression
recΠ∆0.τ0 C with ~b is well-typed under three conditions: First,
the meta-object C we are recursing over has some type U
and moreover, U is an instance of the type specified in the
invariant, i.e. ∆0 = ∆1, X0:U0 and U = [[θ]]U0 for some
meta-substitution θ with domain ∆1. Secondly, all branches
bi are well-typed with respect to the given invariant Π∆0.τ0.
Finally, ~b must cover the meta-context ∆0, i.e., it must be a
complete, non-redundant set of patterns covering ∆0.

Note that we drop the meta-context ∆ and the computa-
tion context Γ when we proceed to check that all branches
satisfy the specified invariant. Dropping ∆ is fine, since we
require the invariant Π∆0.τ0 to be closed. One might object
to dropping Γ; indeed this could be generalized to keeping
those assumptions from Γ which do not depend on ∆ and
generalizing the allowed type of inductive invariant (see our
earlier remark).

For a branch b = ∆′;~r.r0 7→ e to be well-typed with
respect to a given invariant Π∆.τ , we check the call pattern r0

and each recursive call rj against the invariant and synthesize
target types τj (j ≥ 0). We then continue checking the body e
against τ0, i.e., the target type of the call pattern r0, populating
the computation context with the recursive calls ~r at their types
~τ . As members of a context Γ, the ~r are simply fancy names
for variables.

A pattern / recursive call rij = f
−−→
[Cj] intuitively

corresponds to the given inductive invariant Π∆0.τ0, if the
spine

−−→
[Cj] matches the specified types in ∆0 and it has

intuitively the type [[Cjn/Xn, . . . , Cj0/X0]]τ0 which we
denote with τ ′ij .

Lemma 9 (Substitution Lemma):
1) If ∆ ` C : U and ∆′ ` θ : ∆, then ∆′ ` [[θ]]C : [[θ]]U .
2) If ∆; Γ ` e : τ and ∆′ ` θ : ∆,

then ∆′; [[θ]]Γ ` [[θ]]e : [[θ]]τ .
3) If ∆; Γ ` e : τ and ∆; Γ′ ` η : Γ, then ∆; Γ′ ` [η]e : τ .

Proof. By induction on the first typing derivation. 2

IV. OPERATIONAL SEMANTICS

Figure 8 specifies the call-by-value (cbv) one-step reduction
relation e −→ e′; we have omitted the usual congruence
rules for cbv. Reduction is deterministic and does not get
stuck on closed terms, due to completeness of pattern match-
ing in rec. To reduce (recτC with ~b) we find the branch
(∆.rk, . . . , r1.r0 7→ e) ∈ ~b such that the principal argument
C0 of its clause head r0 = f

−−→
[C0] [C0] matches C under

meta substitution θ. The reduct is body e under θ where we
additionally replace each place holder rj for a recursive call
by the actual recursive invocation (recτ [[θ]]Cj with ~b).

Values v shall be boxed meta objects [C] and functions
fnx:τ. e and ΛX:U.e.

Theorem 10 (Subject reduction):
If ·; · ` e : τ and e −→ e′, then ·; · ` e′ : τ .
Proof. By induction on e −→ e′. Case: recτC with

−→
b −→

[recτC′
k with

−→
b /rk, . . . , rec

τC′
1 with

−→
b /r1][[θi]]ei

9

∆; Γ ` e : τ : Computation e has type τ

Γ(y) = τ

∆; Γ ` y : τ
∆ ` C : U

∆; Γ ` [C] : [U]

∆; Γ ` e1 : τ2 → τ ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ

∆; Γ ` e : ΠX:U.τ ∆ ` C : U

∆; Γ ` e [C] : [[C/X]]τ

∆; Γ, y:τ1 ` e : τ2

∆; Γ ` fn y:τ1. e : τ1 → τ2

∆, X:U ; Γ ` e : τ

∆; Γ ` ΛX:U.e : ΠX:U.τ

∆; Γ ` e1 : [U] ∆, X:U ; Γ ` e2 : τ

∆; Γ ` let X = e1 in e2 : τ

∆0 = ∆1, X:U0 ∆ ` C : U U = [[θ]]U0 ∆ ` θ : ∆1 bi : Π∆0.τ0 (for all i)
−→
b covers ∆0

∆; Γ ` recΠ∆0.τ0 C with
−→
b : [[θ, C/X]]τ0

b : Π∆.τ : Branch b has type Π∆.τ

for all 0 ≤ j ≤ k . ∆′ ` rj : Π∆.τ > τj ∆′ ; rk:τk, . . . , r1:τ1 ` e : τ0

∆′; rk . . . r1 . r0 7→ e : Π∆.τ

∆′ ` r : Π∆.τ > τ ′ and ∆′ `
−→
[C] : Π∆.τ > τ ′ : Recursive call r / pattern spine

−→
[C] has type Π∆.τ and target type τ ′

∆′ `
−→
[C] : Π∆.τ > τ ′

∆′ ` f
−→
[C] : Π∆.τ > τ ′

∆′ ` C : U ∆′ `
−→
[C] : [[C/X]](Π∆.τ) > τ ′

∆′ ` [C]
−→
[C] : Π(X:U,∆).τ > τ ′ ∆′ ` nil : τ > τ

Fig. 7. Type system for dependently-typed functional computation language

(fnx:τ. e) v −→ [v/x]e (ΛX:U.e) [C] −→ [[C/X]]e let X = [C] in e −→ [[C/X]]e

∃ unique (∆.rk, . . . , r1.r0 7→ e) ∈ ~b where rj = f
−−→
[Cj] [Cj] such that ∆ ` C .

= C0/θ

recτC with ~b −→ [(recτ [[θ]]Ck with ~b)/rk, . . . , (rec
τ [[θ]]C1 with ~b)/r1][[θ]]e

Fig. 8. Small-step semantics e −→ e′

∃ unique bi=∆i.rk, . . . , r1.r0 7→ ei
where rj=f [Cjn] . . . [Cj1] [Cj0]

∆i ` C
.
= Cj0/θi

C′
j0 = [[θi]]Cj0 by inversion on rule Emrec

·; · ` recΠ∆0.τ0C with
−→
b : τ ′ by assumption−→

b covers ∆0

· ` C : U

U ′ = [[θ]]U0 and τ ′ = [[θ]]τ0
for all i bi : Π∆0.τ0 by inversion on Trec
bi = ∆i; rk . . . r1 . r0 7→ ei by definition
for all 0 ≤ j ≤ k . ∆i ` rj : Π∆0.τ0 > τ ′j
∆i; rk:τ ′k, . . . , r1:τ ′1 ` ei : τ ′0 by inversion on Tb

for 0 ≤ j ≤ k, rj = f [Cjn] . . . [Cj1] [Cj0]

where ∆0 = Xn:Un, . . . , X0:U0

and U ′
j0 = [[Cjn/Xn, . . . , Cj1/X1]]U0

∆i ` Cj0 : U ′
j0 by typing

· ` θi : ∆i by soundness of matching
U ′ = [[θ]]U0 = [[θi]]U

′
j0 by definition

= [[θi]][[Cjn/Xn, . . . , Cj1/X1]]Uj0 by typing
θ = [[θi]](Cjn/Xn, . . . , Cj1/X1) by previous lines
·; · ` recτC′

j with
−→
b : τ ′j by typing

·; · ` recτC′
k with

−→
b /rk, . . . , rec

τC′
1 with

−→
b /r1 : rk:τ ′k, . . . , r1:τ ′1

by typing
·; · ` ei : [[θi]]τ

′
0 by substitution lemma

[[θi]]τ
′
0 = [[θi]][[C1i/X1, . . . , Cni/Xn]]τ0 = [[θ]]τ0 = τ ′

·; · ` ei : τ ′ by previous lines
2

Lemma 11 (Canonical forms): Let v a value.

1) If ·; · ` v : [U] then v = [C].
2) If ·; · ` v : ΠX:U.τ then v = ΛX:U.e.
3) If ·; · ` v : τ → τ ′ then v = fnx:τ. e.

Theorem 12 (Progress):
If ·; · ` e : τ then either e is a value or e −→ e′.
Proof. By induction on ·; · ` e : τ .

Case D =
·; · ` e1 : [U] X:U ; · ` e2 : τ

·; · ` let X = e1 in e2 : τ
·; · ` e1 : [U] by inversion
Either e1 is a value or e1 −→ e′1 by i.h.

If e1 −→ e′1
let X = e1 in e2 −→ let X = e′1 in e2 by reduction

If e1 is a value
e1 = [C] by canonical forms lemma
let X = [C] in e2 −→ [[C/X]]e2 by reduction

Case D = ·; · ` recΠ∆0.τ0C with
−→
b : τ

10

−→
b covers ∆0, · ` C : U , ∆0 = (Xn:Un, . . . , X1:U1, X0:U0),
· ` θ0 : (Xn:Un, . . . , X1:U1), U = [[θ0]]U0, τ = [[θ0]]τ0,
for all i bi : Π∆0.τ0 by inversion

∃ a unique branch bi = ∆i; rik . . . ri1.ri0 7→ ei by coverage

with ri0 = f [Ci0n] . . . [Ci01] [Ci00] s.t. C = [[ρ]]Ci00 and · ` ρ : ∆i

∆i ` C
.
= Ci00 /ρ by unification

for each rij = f [Cijn] . . . [Cij1] [Cij0] where 1 ≤ j ≤ k,

let C′
j = [[ρ]]Cij0

let η′ = [recΠ∆0.τ0C′
k with

−→
b /rk, . . . , rec

Π∆0.τ0C′
1 with

−→
b /r1]

recΠ∆0.τ0C with
−→
b −→ [η′][[ρ]]ei by reduction. 2

V. TERMINATION

In this section, we prove that every well-typed closed
program e terminates (halts) under cbv reduction. Note that
since reduction e −→ e′ is deterministic, e halts if and only
if e′ halts. Termination is proven by a standard reducibility
argument; closely related is Xi [2002]. The setRτ of reducible
closed programs ·; · ` e : τ is defined by induction on the size
of τ in Figure 9. For the size of τ all meta types U shall be
disregarded, thus, the size is invariant under meta substitution
C/X .

Lemma 13 (Expansion closure):
If ·; · ` e : τ and e −→ e′ and e′ ∈ Rτ , then e ∈ Rτ .
Proof. By induction on the size of type τ .

Case Contextual Type [U]
·; · ` e : [U] by assumption
e′ ∈ R[U] by assumption
e′ halts by def. of R[U]

e halts by lemma
e ∈ R[U] by definition of R[U]

Case Meta Abstraction Type ΠX:U.τ
·; · ` e : ΠX:U.τ by assumption
e′ ∈ RΠX:U.τ by assumption
e′ halts by def. of RΠX:U.τ

e halts by lemma
∀C ∈ RU . e′ [C] ∈ R[[C/X]]τ by def. of RΠX:U.τ

e −→ e′ by assumption
e [C] −→ e′ [C] by evaluation rule
· ` C : U by def. of RC
·; · ` e [C] : [[C/X]]τ by typing rule
e [C] ∈ R[[C/X]]τ by i.h. on [[C/X]]τ
e ∈ RΠX:U.τ by definition of RΠX:U.τ Case Function Type
τ1 → τ2
classical proof

2

Lemma 14 (Fundamental Lemma): Assume ∆; Γ ` e : τ .
If · ` θ : ∆ and η ∈ R[[θ]]Γ then [η][[θ]]e ∈ R[[θ]]τ .
Proof. By induction on ∆; Γ ` e : τ .

Case D =
∆, X:U ; Γ ` e : τ

Tmabs
∆; Γ ` ΛX.e : ΠX:U.τ

θ ∈ R∆ and · ` θ : ∆ by assumption and definition of R∆

·; [[θ]]Γ ` [[θ]](ΛX.e) : [[θ]](ΠX:U.τ) by substitution lemma
η ∈ R[[θ]]Γ and ∆; · ` η : [[θ]]Γ by ass. and def. of R[[θ]]Γ

·; · ` [η][[θ]](ΛX.e) : [[θ]](ΠX:U.τ) by substitution lemma
·; · ` ΛX.[η][[θ,X/X]]e : ΠX:[[θ]]U.[[θ,X/X]]τ by subs. prop.
ΛX.[η][[θ,X/X]]e halts by def. of halts

let C ∈ R[[θ]]U be arbitrary
· ` C : [[θ]]U by def. of R[[θ]]U

· ` θ, C/X : ∆, X:U by typing rule
θ, C/X ∈ R∆,X:U by definition of R∆,X:U

η ∈ R[[θ,C/X]]Γ since Γ is independent of X
[η][[θ, C/X]]e ∈ R[[θ,C/X]]τ by i.h.
[η][[C/X]]([[θ,X/X]]e) ∈ R[[C/X]]([[θ,X/X]]τ) by subst. prop.

(ΛX.[η][[θ,X/X]]e) [C] −→ [[C/X]]([η][[θ,X/X]]e)
by evaluation rule
·; · ` (ΛX.[η][[θ,X/X]]e) [C] : [[C/X]]([[θ,X/X]]τ) by typ.
(ΛX.[η][[θ,X/X]]e) [C] ∈ R[[C/X]]([[θ,X/X]]τ) by back. closed
ΛX.[η][[θ,X/X]]e ∈ RΠX:[[θ]]U.[[θ,X/X]]τ

by def. of RΠX:[[θ]]U.[[θ,X/X]]τ

[η][[θ]](ΛX.e) ∈ R[[θ]](ΠX:U.τ) by substitution property

Case D =
∆; Γ ` e : ΠX:U.τ ∆ ` C : U

Tmapp
∆; Γ ` e [C] : [[C/X]]τ

θ ∈ R∆ and η ∈ R[[θ]]Γ by assumption
[η][[θ]]e ∈ R[[θ]](ΠX:U.τ) by i.h.
[η][[θ]]e ∈ RΠX:[[θ]]U.[[θ,X/X]]τ by substitution property
· ` θ : ∆ by definition of R∆

· ` [[θ]]C : [[θ]]U by substitution lemma
[[θ]]C ∈ R[[θ]]U by def. of R[[θ]]U

([η][[θ]]e) [[[θ]]C] ∈ R[[([[θ]]C/X]]([[θ,X/X]]τ) by def. of
RΠX:[[θ]]U.[[θ,X/X]]τ

[η][[θ]](e [C]) ∈ R[[θ]]([[C/X]]τ) by substitution property

Case D =
∆ ` C : U

Tmeta
∆; Γ ` [C] : [U]

θ ∈ R∆ and · ` θ : ∆ by assumption and definition of R∆

·; · ` [[[θ]]C] : [[[θ]]U] by substitution

[[[θ]]C] halts since [C] is a value
[[[θ]]C] ∈ R[[[θ]]U] by definition
[η][[θ]][C] ∈ R[[θ]][U] by substitution property

Case D =
Γ(y) = τ

Tvar
∆; Γ ` y : τ

θ ∈ R∆ and · ` θ : ∆ by assumption and definition of R∆

·; [[θ]]Γ ` [[θ]]y : [[θ]]τ by substitution lemma
·; [[θ]]Γ ` y : [[θ]]τ by substitution property
η ∈ R[[θ]]Γ and [η]y ∈ R[[θ]]τ by assumption and def. of R[[θ]]Γ

[η][[θ]]y ∈ R[[θ]]τ by substitution property

11

Contextual Type R[U] = {e | ·; · ` e : [U] and e halts}
Function Type Rτ ′→τ = {e | ·; · ` e : τ ′ → τ and e halts and ∀e′ ∈ Rτ ′ . e e′ ∈ Rτ}
Dependent Type RΠX:U.τ = {e | ·; · ` e : ΠX:U.τ and e halts and ∀C ∈ RU . e [C] ∈ R[[C/X]]τ}

Computation-Level Context RΓ = {η | ·; · ` η : Γ and η(x) ∈ Rτ for all (x:τ) ∈ Γ}

Fig. 9. Reducibility

Case D =
∆; Γ ` e1 : [U] ∆, X:U ; Γ ` e2 : τ

Tlet
∆; Γ ` let X = e1 in e2 : τ

θ ∈ R∆ and η ∈ R[[θ]]Γ by assumption
[η][[θ]]e1 ∈ R[[θ]][U] by i.h.
·; · ` [η][[θ]]e1 : [[θ]][U] by def. of R[[θ]][U]

[η][[θ]]e1 halts by def. of R[[θ]][U]

[η][[θ]]e1 −→∗ v by progress
·; · ` v : [[θ]][U] by type preservation
·; · ` v : [[[θ]]U] by substitution property
let
v = [C ′] by canonical forms lemma
·; · ` C ′ : [[θ]]U by typing inversion
· ` θ : ∆ by def. of R∆

· ` θ, C ′/X : ∆, X:U by typing rule
θ, C ′/X ∈ R∆,X:U by def. of R∆,X:U

η ∈ R[[θ,C′/X]]Γ Γ is independent of X
[η][[θ, C ′/X]]e2 ∈ R[[θ,C′/X]]τ by i.h.
·; · ` [η][[θ]](let X = e1 in e2) : [[θ]]τ by substitution lemma
let X = [η][[θ]]e1 in [η][[θ,X/X]]e2 −→∗ [η][[θ, C ′/X]]e2

by evaluation rule
let X = [η][[θ]]e1 in [η][[θ,X/X]]e2 ∈ R[[θ,C′/X]]τ

by backward closed
[η][[θ]](let X = e1 in e2) ∈ R[[θ]]τ by substitution property

Case D = ∆; Γ ` recΠ∆0.τ0Cs with
−→
b : τ ′

let τ = Π∆0.τ0

−→
b covers ∆0, ∆ ` Cs : Us, Us = [[θ0]]U0 and τ ′ = [[θ0]]τ0
· ` [[θ]]Cs : [[θ]]Us by subst. lemma
[[θ]]Us = [[θ]][[θ0]]U0 by previous lines

for all i bi : Π∆0.τ by inversion on Trec

∃ a unique branch bi = ∆i; rik . . . ri1.ri0 7→ ei by coverage
with ri0 = f

−−→
[C0] [C0] s.t. [[θ]]Cs = [[ρ]]C0 and · ` ρ : ∆i.

let
−→
[C] = [C0k] . . . [C01] and ∆0 = Xk:Uk, . . . , X1:U1, X0:U0

δi0 = C0k/Xk, . . . C01/X1 s.t. ∆i ` C : [[δi0]]U0 by typing
[[ρ]][[δi0]]U0 = [[θ]]Us = [[θ]][[θ0]]U0 since [[θ]]Cs = [[ρ]]C0

and therefore [[ρ]][[δi0]] = [[θ]][[θ0]]

for each rij = f
−−→
[Cj] [Cj] where 1 ≤ j ≤ k, Cj ≺ C0

by size decreasing thm

∆i ` Cj : U ′j where ∃δij = Cjk/Xk, . . . Cj1/X1 and
U ′j = [[δij]]U0 by typing

for each 1 ≤ j ≤ k, ∆i; · ` recτCj with
−→
b : [[δij]]τ0 by typing

Cj ≺ C by size decreasing thm.

for any grounding meta-substitution θ′ ||[[θ′]]Cj || < ||[[θ′]]C0||
by well-foundedness of ≺
||[[ρ]]Cj || < ||[[ρ]]C0|| by choosing θ′ = ρ
||[[ρ]]Cj || < ||[[θ]]C|| since [[ρ]]C0 = [[θ]]C2 by previous lines

recτ [[ρ]]Cj with
−→
b ∈ R[[ρ]][[δij]]τ0 by inner i.h.

with ρ ∈ R∆i
, · ∈ R· since ||[[ρ]]Cj || < ||[[ρ]]C0||

let C ′j = [[ρ]]Cj and Γ′ =
−−−−−−→
rj :[[δij]]τ0

η′ = [recτC ′k with
−→
b /rk, . . . , rec

τC ′1 with
−→
b /r1]

η′ ∈ R[[ρ]]Γ′ by definition

∆i; Γ′ ` ei:[[δi0]]τ0 by typing

[η′][[ρ]]ei ∈ R[[ρ]][[δij]]τ0 by i.h. with ρ ∈ R∆i
, η′ ∈ R[[ρ]]Γ′

recτ [[θ]]Cs with
−→
b −→ [η][[ρ]]ei by reduction

recτ [[θ]]Cs with
−→
b ∈ R[[ρ]][[δij]]τ0 by backwards closed

recτ [[θ]]Cs with
−→
b ∈ R[[θ]][[θ0]]τ0 since [[ρ]][[δi0]] = [[θ]][[θ0]]

2

Theorem 15 (Termination): If ·; · ` e : τ then e halts.
Proof. Taking both empty meta-context ∆ and empty
computation-level context Γ, we obtain e ∈ Rτ by the
fundamental lemma, which implies that e halts by definition
of reducibility candidates. 2

VI. RELATED WORK

Establishing well-founded induction principles to support
reasoning about higher-order abstract syntax specifications
has been challenging. Due to these difficulties, Gabbay and
Pitts [2002] proposed nominal logic which provides first-class
names and α-renaming together with structural recursion prin-
ciples. This approach is appealing because it gives us direct
access to names of bound variables, however capture-avoiding
substitution is implemented separately. The generation of a
new name and binding names are separate operations and fresh
name generation is an observable effect. As a consequence,
languages such as FreshML [Shinwell et al., 2003] allowed

12

the generation of data which contains accidentally unbound
names. While early work [Gabbay and Pitts, 2002] justified
the structural recursion principles on Fraenkel-Mostowski set
theory, more recently Pitts [2011] describes a calculus of total,
higher-order functions with a structural recursion modulo α-
renaming based on nominal sets [Pitts, 2003].

The key difference between our work and work on nom-
inal calculi lies in the status of names. While in nominal
calculi names have a global status, in our language based
on contextual types we pair every type with its surrounding
contexts giving the system a more fine-grained nature. This
allows us to abstract over contexts and distinguish between
different contexts. As in nominal systems, our bound names
are first-class citizens that can be tested for equality, passed to
functions as arguments and returned as results—albeit for us
they always must be associated with their surrounding context.
Further, this line of work mostly concentrates on simple types
and as such is not suitable to represent proofs about formal
systems by recursive functions. In contrast to the simply
typed foundational nominal calculi, we developed a core
calculus with indexed types, simultaneous pattern matching
and recursion.

Approaches which support higher-order abstract syntax
(HOAS) encodings of formal systems together with proofs
about them fall into two categories: one grounded in proof
theory [McDowell and Miller, 2002, Momigliano et al., 2008,
Gacek et al., 2008, Gacek, 2008] and the other grounded in
type theory [Schürmann and Pfenning, 1998, Pfenning and
Schürmann, 1999, Schürmann, 2000, Schürmann et al., 2001,
2005, Poswolsky and Schürmann, 2008, Licata et al., 2008,
Pientka, 2008, Pientka and Dunfield, 2008, 2010, Cave and
Pientka, 2012].

In the proof-theoretic approaches, we adopt a two-level sys-
tem where we implement a specification logic (similar to LF)
inside either a (higher-order) reasoning logic—the approach
taken in Abella [Gacek, 2008, Gacek et al., 2012]—or type
theory—the approach taken in Hybrid [Momigliano et al.,
2008]. Hypothetical judgments of object logics are modeled
using implication in the specification logic (SL) and parametric
judgments are handled via (generic) universal quantification.
Substituting for an assumption is then justified by appealing
to the cut-admissibility lemma of the SL. To distinguish in
the reasoning logic between quantification over variables and
quantification over terms, Gacek et al. [2008] introduce a
new quantifier, ∇, to describe nominal abstraction logically.
Induction in these systems is typically supported by reasoning
about the height of a proof tree; this reduces reasoning to
induction over natural numbers. Baelde and Nadathur [2012]
propose a uniform approach with least and greatest fixed points
to support inductive reasoning. The cited work however lacks
generic quantification and as such is not powerful enough yet
to support reasoning about HOAS specifications.

In general, the proof-theoretic approach of encoding the SL
inside a reasoning logic is less direct. Although much of this
complexity and indirectness can be hidden in implementations
as demonstrated in Abella, the programs we would obtain

would bear little resemblance to the functional programs we
would expect. Moreover, although ∇ allows the distinction
between generic and universal quantification, the proof-theory
lacks intrinsic support for contexts; contexts are typically
represented inductively as lists. As a consequence, properties
such as the uniqueness of declarations in a context must
be established separately. Our work pushes the boundaries
of the provided infrastructure by treating contexts as first-
class citizens and eliminating the burden on users to manage
and maintain contexts together with their properties explicitly.
More importantly, our reasoning logic, a first-order modal
logic, supports reasoning about HOAS specifications with-
out introducing new logical connectives. The complexity of
working with HOAS specifications is pushed and encapsulated
on the level of contextual objects, i.e., the objects we reason
about. Finally, our logical foundation gives directly rise to a
functional programming language supporting pattern matching
and structural recursion.

From the type-theoretic foundations, our calculus is closely
related to Despeyroux et al. [1997], Schürmann et al. [2001],
Despeyroux and Leleu [2001] where the authors propose a
modal lambda-calculus with iteration to reason about closed
HOAS objects. The key insight in their work is to separate
LF objects from computations using the modal type 2 to
describe closed LF objects. Hofmann [1999] investigated a
categorical explanation for the proposed reasoning principles.
However, this line of work is also restricted to closed objects.
Our work builds on this work allowing open data-objects
and defining simultaneous pattern matching together with
structural recursion.

Closely related to our approach is the work by Schürmann
and Pfenning [1998], Schürmann [2000] where the author
describes a meta-logic M2 for reasoning about LF spec-
ifications and describes the generation of splits and well-
formed recursive calls. However,M2 does not support higher-
order computations. Moreover, the foundation lacks first-class
contexts, but all assumptions live in an ambient context. This
makes is less direct to justify reasoning with assumptions.
Finally, we are not aware of a normalization proof for this
line of work.

VII. CONCLUSION

We developed a core language with structural recursion
for implementing total functions about LF specification. We
describe a sound coverage algorithm which in addition to
verifying that there exists a branch for all possible contexts and
contextual objects, also generates and verifies valid primitive
recursive calls. To establish consistency of our core language
we prove termination using reducibility semantics.

Our framework can be extended to handle mutual recursive
functions: By annotating a given rec-expression with a list of
invariants using the subordination relation, we can generate
well-founded recursive calls matching each of the invariants.
Moreover we believe that adding reasoning principles for
inductive types [Cave and Pientka, 2012] follows well-trodden

13

paths; we must ensure that our inductive type satisfies the
positivity restriction and define generation of patterns for them.

Our language not only serves as a core programming
language but can be interpreted by the Curry-Howard isomor-
phism as a proof language for interactively developing proofs
about LF specifications. In the future, we plan to implement
and design such a proof engine. We also intend to generalize
the valid recursive calls; in this paper we concentrate on
generating primitive recursive calls which are structurally im-
mediately smaller. This notion will be extended to support also
lexicographic orderings and in general well-founded recursion.

REFERENCES

Andreas Abel. Tutch User’s Guide. Carnegie-Mellon Uni-
versity, Pittsburg, PA, 2002. Section 7.1: Proof terms for
structural recursion.

David Baelde and Gopalan Nadathur. Combining deduction
modulo and logics of fixed-point definitions. In LICS’12,
pages 105–114. IEEE CS Press, 2012.

Olivier Savary Belanger, Stefan Monnier, and Brigitte Pientka.
Programming type-safe transformations using higher-order
abstract syntax. In CPP’13, volume 8307 of LNCS, pages
243–258. Springer, 2013.

Andrew Cave and Brigitte Pientka. Programming with binders
and indexed data-types. In POPL’12, pages 413–424. ACM,
2012.

Andrew Cave and Brigitte Pientka. First-class substitutions in
contextual type theory. In LFMTP’13, pages 15–24. ACM,
2013.

Joëlle Despeyroux and Pierre Leleu. Recursion over objects
of functional type. MSCS, 11(4):555–572, 2001.

Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann.
Primitive recursion for higher-order abstract syntax. In
Proceedings of the Third International Conference on Typed
Lambda Calculus and Applications (TLCA’97), pages 147–
163. Springer, 1997. Extended version available as Techni-
cal Report CMU-CS-96-172, Carnegie Mellon University.

Joshua Dunfield and Brigitte Pientka. Case analysis of higher-
order data. ENTCS, 228:69–84, 2009.

Murdoch J. Gabbay and Andrew M. Pitts. A new approach
to abstract syntax with variable binding. FAC, 13:341–363,
2002.

Andrew Gacek. The abella interactive theorem prover (system
description). In IJCAR’08, volume 5195 of LNCS, pages
154–161. Springer, 2008.

Andrew Gacek, Dale Miller, and Gopalan Nadathur. Com-
bining generic judgments with recursive definitions. In
LICS’08, pages 33–44. IEEE CS Press, 2008.

Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-
level logic approach to reasoning about computations. JAR,
49(2):241–273, 2012.

Robert Harper, Furio Honsell, and Gordon Plotkin. A frame-
work for defining logics. JACM, 40(1):143–184, 1993.

Martin Hofmann. Semantical analysis of higher-order abstract
syntax. In LICS’99, pages 204–213. IEEE CS Press, 1999.

Daniel R. Licata, Noam Zeilberger, and Robert Harper. Fo-
cusing on binding and computation. In 23rd Symposium on
Logic in Computer Science, pages 241–252. IEEE Computer
Society Press, 2008.

Raymond C. McDowell and Dale A. Miller. Reasoning with
higher-order abstract syntax in a logical framework. ACM
Transactions on Computational Logic, 3(1):80–136, 2002.

Alberto Momigliano, Alan J. Martin, and Amy P. Felty. Two-
Level Hybrid: A system for reasoning using higher-order
abstract syntax. In LFMTP’07, volume 196 of ENTCS,
pages 85–93. Elsevier, 2008.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka.
Contextual modal type theory. ACM TOCL, 9(3):1–49,
2008.

Frank Pfenning and Carsten Schürmann. System description:
Twelf — a meta-logical framework for deductive systems.
In 16th International Conference on Automated Deduction
(CADE-16), Lecture Notes in Artificial Intelligence (LNAI
1632), pages 202–206. Springer, 1999.

Brigitte Pientka. Verifying termination and reduction proper-
ties about higher-order logic programs. JAR, 34(2):179–207,
2005.

Brigitte Pientka. A type-theoretic foundation for programming
with higher-order abstract syntax and first-class substitu-
tions. In POPL’08, pages 371–382. ACM, 2008.

Brigitte Pientka. An insider’s look at LF type reconstruction:
Everything you (n)ever wanted to know. JFP, 1(1–37),
2013.

Brigitte Pientka and Joshua Dunfield. Programming with
proofs and explicit contexts. In ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming
(PPDP’08), pages 163–173. ACM, 2008.

Brigitte Pientka and Joshua Dunfield. Beluga: A framework for
programming and reasoning with deductive systems (system
description). In IJCAR’10, volume 6173 of LNCS, pages
15–21. Springer, 2010.

Andrew Pitts. Nominal logic, a first order theory of names
and binding. Inf. Comput., 186(2):165–193, 2003.

Andrew Pitts. Structural recursion with locally scoped names.
JFP, 21(3):235–286, 2011.

Adam B. Poswolsky and Carsten Schürmann. Practical
programming with higher-order encodings and dependent
types. In 17th European Symposium on Programming
(ESOP ’08), volume 4960, pages 93–107. Springer, 2008.

Ekkehard Rohwedder and Frank Pfenning. Mode and termina-
tion checking for higher-order logic programs. In ESOP’96,
volume 1058 of LNCS, pages 296–310. Springer, 1996.

Carsten Schürmann. Automating the Meta Theory of Deductive
Systems. PhD thesis, Department of Computer Science,
Carnegie Mellon University, 2000. CMU-CS-00-146.

Carsten Schürmann, Joëlle Despeyroux, and Frank Pfenning.
Primitive recursion for higher-order abstract syntax. TCS,
266(1-2):1–57, 2001.

Carsten Schürmann and Frank Pfenning. Automated theorem
proving in a simple meta-logic for LF. In CADE’98, volume
1421 of LNCS, pages 286–300. Springer, 1998.

14

Carsten Schürmann and Frank Pfenning. A coverage checking
algorithm for LF. In TPHOLS’03, volume 2758 of LNCS,
pages 120–135, Rome, Italy, 2003. Springer.

Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat.
The ∇-calculus. Functional programming with higher-order
encodings. In Proceedings of the 7th International Confer-
ence on Typed Lambda Calculi and Applications (TLCA’05),
volume 3461 of Lecture Notes in Computer Science, pages
339–353. Springer, 2005.

Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay.
FreshML: programming with binders made simple. In
8th International Conference on Functional Programming
(ICFP’03), pages 263–274. ACM, 2003.

Roberto Virga. Higher-Order Rewriting with Dependent Types.
PhD thesis, Department of Mathematical Sciences, Carnegie
Mellon University, 1999. CMU-CS-99-167.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgements and
properties. Technical report, School of Computer Science,
Carnegie Mellon University, Pittsburgh, 2003.

Hongwei Xi. Dependent types for program termination veri-
fication. HOSC, 15(1):91–131, 2002.

15

	Introduction
	Background
	Contextual LF
	Meta-level terms and typing rules

	Core language with well-founded recursion
	Examples
	Well-founded structural subterm order
	Coverage
	Generation of call patterns
	Properties of Splitting and Coverage
	Computation-level Type System

	Operational Semantics
	Termination
	Related Work
	Conclusion

