The Equational Theory of Aperiodic Semigroups Is Decidable in Exponential Time

Martin Huschenbett1 \quad Manfred Kufleitner2

1 TU Ilmenau, Germany
2 Universität Stuttgart & TU München, Germany

AI & Logic Day @ AUT
Auckland, 27th February 2014
Abstract

Due to a result by McCammond (Int. J. Algebra Comput., 2001) it is decidable whether all aperiodic semigroups satisfy some given identity of omega-terms. The respective decision procedure works by computing normal forms, but unfortunately neither its worst-case running time nor the maximal size of the intermediate terms have been estimated. We pursue a different approach and solve the same problem by means of first-order definability of regular languages and an infinite Ehrenfeucht-Fraïssé game on omega-terms. In this way, we obtain an algorithm which decides whether a given identity of omega-terms holds in all aperiodic semigroups and whose running time is exponential in the size of the omega-terms. As a byproduct we develop a framework which allows for seperating the bookkeeping involved in winning strategies for Ehrenfeucht-Fraïssé games on finite words from the actual strategy.
We fix an alphabet Σ.

Algebra is orange.

Logic is purple.
Semigroups and Idempotency

Definition
A semigroup is an algebraic structure S with a single associative binary operation (written as juxtaposition).
An element $u \in S$ is idempotent if $uu = u$.

Examples

- Every group G.
 Only the neutral element is idempotent.
- $\mathcal{P}(X) = 2^X$ with union or intersection, where X is an arbitrary set.
 Everything is idempotent.
- $\Sigma^+ = \text{non-empty words over } \Sigma$ with concatenation (free semigr.).
 There are no idempotents.
- $\{1, \ldots, n\}$ for $n \geq 1$ and with the operation \oplus_n defined by
 \[a \oplus_n b = \min(a + b, n). \]
 Only n is idempotent.
Semigroups and Idempotency

Definition
A semigroup is an algebraic structure S with a single associative binary operation (written as juxtaposition).
An element $u \in S$ is idempotent if $uu = u$.

Fact
Let S be a finite semigroup.

▶ Every $u \in S$ generates a unique idempotent element $u^\omega \in S$:

$\{u^i, \ldots, u^{i+j-1}\}$ forms a subgroup of S with neutral element u^ω.
Aperiodic Semigroups

Definition
A finite semigroup S is aperiodic if $u^\omega u = u^\omega$ for all $u \in S$.

Examples
- The trivial group.
- $\mathcal{P}(X) = 2^X$ with union or intersection, where X is an arbitrary set.
- $\{1, \ldots, n\}$ for $n \geq 1$ and with the operation \oplus_n defined by
 \[
 a \oplus_n b = \min(a + b, n).
 \]

Non-Examples
- Every non-trivial finite group.
- Every finite semigroup containing a non-trivial subgroup.
Aperiodic Semigroups

Definition
A finite semigroup S is aperiodic if $u^\omega u = u^\omega$ for all $u \in S$.

Fact
Let S be a finite semigroup. TFAE:

1. S is aperiodic.
2. For every $u \in S$ there is an $i \geq 1$ such that $u^{i+1} = u^i$.
3. S contains only trivial subgroups.
Equations of \(\omega \)-Terms

Definition
The following are \(\omega \)-terms:

1. \(a \) for every \(a \in \Sigma \),
2. \(t_1 t_2 \ldots t_n \) where \(n \geq 1 \) and \(t_1, t_2, \ldots, t_n \) are \(\omega \)-terms,
3. \((t)^\omega \) where \(t \) is an \(\omega \)-term,
4. nothing else.

Definition
Let \(S \) be a finite semigroup. The \(S \)-semantics of an \(\omega \)-term \(t \) is the induced map \(t^S : S^\Sigma \rightarrow S \) where \(t^S(\overline{u}) \) is obtained from \(t \) as follows:

1. \(a \in \Sigma \) is interpreted by \(u_a \),
2. juxtaposition — the semigroup operation,
3. \(\omega \)-power — generating the idempotent.
Equations of ω-Terms

Definition
Let S be a finite semigroup. The S-semantics of an ω-term t is the induced map $t^S : S^\Sigma \to S$ where $t^S(\bar{u})$ is obtained from t as follows:

1. $a \in \Sigma$ is interpreted by u_a,
2. juxtaposition — the semigroup operation,
3. ω-power — generating the idempotent.

Definition
A finite semigroup S satisfies an equation $t_1 = t_2$ of ω-terms t_1 and t_2 if $t_1^S = t_2^S$.

Examples
Let S be a finite semigroup.

- S satisfies $a^\omega a^\omega = a^\omega$ and $(a^\omega)^\omega = a^\omega$.
- S satisfies $a^\omega a = a^\omega$ if and only if S is aperiodic.
- S satisfies $ab = ba$ if and only if S is commutative.
The Main Result

Theorem (McCammond 2001 + HK 2013)

The following problem is decidable in exponential time:

Input: Two ω-terms t_1 and t_2.

Question: Does every finite aperiodic semigroup satisfy $t_1 = t_2$?

Proof Sketch.

1. Use the correspondence between aperiodic finite semigroups and the class of first-order definable languages.
2. Investigate the infinite Ehrenfeucht-Fraïssé game on labelled linear orderings.
3. Assign to every ω-term t a labelled linear ordering $\llbracket t \rrbracket_\varrho$ and introduce an Ehrenfeucht-Fraïssé game on ω-terms.
4. Show that $t_1 = t_2$ is satisfied by every aperiodic finite semigroup if and only if $\llbracket t_1 \rrbracket_\varrho = \llbracket t_2 \rrbracket_\varrho$.
5. The latter is decidable in exponential time.
The Syntactic Semigroup

Definition
Let $L \subseteq \Sigma^+$ be a language over Σ. The syntactic congruence of L is the binary relation \equiv_L on Σ^+ defined by

$$u \equiv_L v \iff \forall x, y \in \Sigma^*: (xuy \in L \iff xvy \in L).$$

The syntactic semigroup of L is the quotient semigroup $S_L := \Sigma^+ / \equiv_L$.

Theorem (Myhill 1958, Rabin/Scott 1959)
Let $L \subseteq \Sigma^+$ be a language. TFAE:

1. L is regular.
2. The syntactic semigroup S_L of L is finite.
First-Order Logic over Words

Definition
The syntax of first-order logic (FO) over words is given by

\[\varphi ::= x = y \mid x \leq y \mid \lambda(x) = a \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \neg \varphi \mid \exists x \varphi \mid \forall x \varphi \]

where \(x \) and \(y \) are from a fixed infinite set of variables and \(a \in \Sigma \).

Definition
A word \(w \in \Sigma^+ \) is a model of a sentence \(\varphi \in \text{FO} \), in symbols \(w \models \varphi \), if \(w \) satisfies \(\varphi \) under the following assumptions:

1. \(w \) is regarded as a (finite) \(\Sigma \)-labelled linear ordering, e.g.,
 \[\text{ailogic} = a \rightarrow i \rightarrow l \rightarrow o \rightarrow g \rightarrow i \rightarrow c, \]

2. variables \(x, y, \ldots \) range over the positions of \(w \),
3. \(\leq \) is interpreted w.r.t. the linear ordering of positions,
4. \(\lambda \) is interpreted by the labelling map.
First-Order Definable Languages

Definition
Let $\varphi \in \text{FO}$ be a sentence. The language defined by φ is

$$L(\varphi) = \{ w \in \Sigma^+ \mid w \models \varphi \}.$$

Corollary (Büchi/Elgot 1958, Trakhtenbrot 1961)
The language $L(\varphi)$ is regular for every sentence $\varphi \in \text{FO}$.

Theorem (Schützenberger 1965 + McNaughton/Papert 1971)
Let $L \subseteq \Sigma^+$ be a language. TFAE:

1. The syntactic semigroup S_L of L is finite and aperiodic.
2. L is first-order definable, i.e., $L = L(\varphi)$ for some sentence $\varphi \in \text{FO}$.
The Main Result

Theorem (McCammond 2001 + HK 2013)

The following problem is decidable in exponential time:

Input: Two ω-terms t_1 and t_2.

Question: Does every finite aperiodic semigroup satisfy $t_1 = t_2$?

Proof Sketch.

1. Use the correspondence between aperiodic finite semigroups and the class of first-order definable languages.

2. Investigate the infinite Ehrenfeucht-Fraïssé game on labelled linear orderings.

3. Assign to every ω-term t a labelled linear ordering $\llbracket t \rrbracket_\omega$ and introduce an Ehrenfeucht-Fraïssé game on ω-terms.

4. Show that $t_1 = t_2$ is satisfied by every aperiodic finite semigroup if and only if $\llbracket t_1 \rrbracket_\omega = \llbracket t_2 \rrbracket_\omega$.

5. The latter is decidable in exponential time.
Generalised Words

Definition
A generalised word is a non-empty, countable Σ-labelled linear ordering. The set of generalised words with concatenation forms a semigroup.

First-order logic (FO) is straightforwardly extended to generalised words.

Examples

ailogic = $a \rightarrow i \rightarrow l \rightarrow o \rightarrow g \rightarrow i \rightarrow c$,

$(ai)^N = aiaiai \ldots = a \rightarrow i \rightarrow a \rightarrow i \rightarrow a \rightarrow i \ldots \ldots \ldots$,

$a^{-N} = \ldots aaaaa = \ldots \ldots \ldots \rightarrow a \rightarrow a \rightarrow a \rightarrow a \rightarrow a$,

$b^Z = \ldots bbb \ldots = \ldots \ldots \rightarrow a \rightarrow a \rightarrow a \rightarrow a \rightarrow a \ldots \ldots \ldots \rightarrow = b^{-N}b^N$,

$(ab)^Q = \ldots \rightarrow a \rightarrow b \rightarrow \ldots \rightarrow a \rightarrow b \rightarrow \ldots \rightarrow a \rightarrow b \rightarrow \ldots \ldots \ldots \rightarrow$.
The Ehrenfeucht-Fraïssé Game on Generalised Words

Definition
The Ehrenfeucht-Fraïssé game $\text{EF}_n(u, v)$ is as follows:

Players: Spoiler and Duplicator.

Board: Two generalised words u and v.

Rounds: $n \geq 0$.

i^{th} Round: Spoiler chooses a position p_i in u or q_i in v; Duplicator chooses a position q_i in v or p_i in u.

Winner: Duplicator if the sequences $p_1 p_2 \ldots p_n$ (in u) and $q_1 q_2 \ldots q_n$ (in v) are ordered and labelled the same way; Spoiler otherwise.

Theorem (Fraïssé 1954, Ehrenfeucht 1961)
Let u and v be generalised words and $n \geq 0$. TFAE:

1. Duplicator has a winning strategy in $\text{EF}_n(u, v)$.
2. $u \models \varphi$ precisely if $v \models \varphi$, for all sentences $\varphi \in \text{FO}$ with $\text{qd}(\varphi) \leq n$.
The Infinite Ehrenfeucht-Fraïssé Game on Generalised Words

Definition
The infinite Ehrenfeucht-Fraïssé game $\text{EF}_\infty(u, v)$ is as follows:

- **Players:** Spoiler and Duplicator.
- **Board:** Two generalised words u and v.
- **Rounds:** Infinitely many.

ith Round: Spoiler chooses a position p_i in u or q_i in v; Duplicator chooses a position q_i in v or p_i in u.

Winner: Duplicator if the sequences $p_1p_2p_3\ldots$ (in u) and $q_1q_2q_3\ldots$ (in v) are ordered and labelled the same way; Spoiler otherwise.

Question
Let u and v be generalised words. How are the following related?

1. **Duplicator** has a winning strategy in $\text{EF}_n(u, v)$ for every $n \geq 0$.
2. **Duplicator** has a winning strategy in $\text{EF}_\infty(u, v)$.
Definition
The infinite Ehrenfeucht-Fraïssé game $\text{EF}_\infty(u, v)$ is as follows:

 Players: Spoiler and Duplicator.
 Board: Two generalised words u and v.
 Rounds: Infinitely many.
 i^{th} Round: Spoiler chooses a position p_i in u or q_i in v; Duplicator chooses a position q_i in v or p_i in u.
 Winner: Duplicator if the sequences $p_1p_2p_3\ldots$ (in u) and $q_1q_2q_3\ldots$ (in v) are ordered and labelled the same way; Spoiler otherwise.

Example
Consider the generalised words $u = a^Z$ and $v = a^Za^Z$. Then:

1. Duplicator has a winning strategy in $\text{EF}_n(u, v)$ for every $n \geq 0$.
2. Spoiler has a winning strategy in $\text{EF}_\infty(u, v)$.
ϱ-Rational Generalised Words

Definition
The linear ordering $\varrho = \mathbb{N} + \mathbb{Q} \times \mathbb{Z} + (\mathbb{N})$ is

![Diagram](image)

Definition
Let u be a generalised word. The ϱ-power of u is the generalised word u^ϱ which is obtained from ϱ by replacing every position in ϱ with u.

Definition
A generalised word is ϱ-rational if it can be constructed from the finite words using concatenation and ϱ-power.

Example
The words a^Z and $a^Z a^Z$ are **not** ϱ-rational.
The Limit Strategy

Lemma
Let \(u \) and \(v \) be \(\varrho \)-rational generalised words. TFAE:

1. Duplicator has a winning strategy in \(\text{EF}_n(u, v) \) for every \(n \geq 0 \).
2. Duplicator has a winning strategy in \(\text{EF}_\infty(u, v) \).

Proof of \(1 \Rightarrow 2 \).

\[\begin{align*}
\text{Proof of } 1 \Rightarrow 2. \\
\text{Assume the game is in the } i^{\text{th}} \text{ round and Duplicator still has a winning strategies for the next } n \text{ rounds for every } n \geq 0. \\
\text{W.l.o.g., Spoiler chooses a position } p_i \text{ in } u. \\
\text{For each } n \geq 1, \text{ let position } q_i^{(n)} \text{ in } v \text{ be Duplicator’s answer in her winning strategy for the next } n \text{ rounds.} \\
\text{Based on the } \varrho \text{-rationality of } v, \text{ one can define a “limit position” } q_i = \lim_{n \to \infty} q_i^{(n)} \\
\text{such that after choosing position } q_i \text{ in } v, \text{ Duplicator still has winning strategies for the next } n \text{ rounds for every } n \geq 0. \quad \Box
\end{align*} \]
The Infinite Ehrenfeucht-Fraïssé Game on Generalised Words

Definition
The infinite Ehrenfeucht-Fraïssé game $\text{EF}_\infty(u, v)$ is as follows:

- **Players:** Spoiler and Duplicator.
- **Board:** Two generalised words u and v.
- **Rounds:** Infinitely many.

i^{th} Round:
- **Spoiler** chooses a position p_i in u or q_i in v;
- **Duplicator** chooses a position q_i in v or p_i in u.

Winner: Duplicator if the sequences $p_1p_2p_3\ldots$ (in u) and $q_1q_2q_3\ldots$ (in v) are ordered and labelled the same way; Spoiler otherwise.

Theorem (HK 2013)
Let u and v be ϱ-rational generalised words. TFAE:

1. Duplicator has a winning strategy in $\text{EF}_\infty(u, v)$.
2. $u \models \varphi$ precisely if $v \models \varphi$, for all sentences $\varphi \in \text{FO}$.
The Main Result

Theorem (McCammond 2001 + HK 2013)

The following problem is decidable in exponential time:

Input: Two ω-terms t_1 and t_2.

Question: Does every finite aperiodic semigroup satisfy $t_1 = t_2$?

Proof Sketch.

1. Use the correspondence between aperiodic finite semigroups and the class of first-order definable languages.
2. Investigate the infinite Ehrenfeucht-Fraïssé game on labelled linear orderings.
3. Assign to every ω-term t a labelled linear ordering $[t]_\varphi$ and introduce an Ehrenfeucht-Fraïssé game on ω-terms.
4. Show that $t_1 = t_2$ is satisfied by every aperiodic finite semigroup if and only if $[t_1]_\varphi = [t_2]_\varphi$.
5. The latter is decidable in exponential time.
The Infinite Ehrenfeucht-Fraïssé Game on ω-Terms

Definition
The ϱ-semantics of an ω-term t is the generalised word $[t]_\varrho$ obtained from t as follows:

1. $a \in \Sigma$ is interpreted by the one letter word a,
2. juxtaposition —— concatenation,
3. ω-power —— ϱ-power.

Observation
A generalised word is ϱ-rational if and only if it is the ϱ-semantics of some ω-term.

Theorem (HK 2013)
Let t_1 and t_2 be ω-terms. TFAE:

1. Duplicator has a winning strategy in $\text{EF}_\infty([t_1]_\varrho, [t_2]_\varrho)$.
2. The syntactic semigroup S_L of every first-order definable language $L \subseteq \Sigma^+$ satisfies $t_1 = t_2$.
Proof of the Ehrenfeucht-Fraïssé Theorem for ω-Terms

Theorem (HK 2013)

Let t_1 and t_2 be ω-terms. TFAE:

1. Duplicator has a winning strategy in $\text{EF}_\infty([t_1]_\varrho, [t_2]_\varrho)$.
2. The syntactic semigroup S_L of every first-order definable language $L \subseteq \Sigma^+$ satisfies $t_1 = t_2$.

Definition

Let $k \geq 1$. The k-semantics of an ω-term t is the finite word $[[t]]_k \in \Sigma^+$ which is obtained from t almost like the ϱ-semantics except that

3. ω-power is interpreted by k^{th} power.

Lemma

Let t_1 and t_2 be ω-terms, $n \geq 0$ and $k \geq 2^{n+1} - 1$. TFAE:

1. Duplicator has a winning strategy in $\text{EF}_n([t_1]_k, [t_2]_k)$.
2. Duplicator has a winning strategy in $\text{EF}_n([t_1]_\varrho, [t_2]_\varrho)$.
Application of the Ehrenfeucht-Fraïssé Theorem for ω-Terms

Theorem (HK 2013)

Let t_1 and t_2 be ω-terms. TFAE:

1. Duplicator has a winning strategy in $\text{EF}_\infty([t_1]_\varrho, [t_2]_\varrho)$.
2. The syntactic semigroup S_L of every first-order definable language $L \subseteq \Sigma^+$ satisfies $t_1 = t_2$.

Corollary (Schützenberger 1965 + McNaughton/Papert 1971)

The syntactic semigroup S_L of every first-order definable language $L \subseteq \Sigma^+$ is aperiodic.

Proof.

- S_L is finite by the Büchi-Elgot-Trakhtenbrot theorem.
- We have $[a^\omega a]_\varrho = a^\varrho a = a^\varrho = [a^\omega]_\varrho$.
- Duplicator has a winning strategy in $\text{EF}_\infty([a^\omega a]_\varrho, [a^\omega]_\varrho)$.
- S_L satisfies $a^\omega a = a^\omega$, i.e., S_L is aperiodic. \qed
The Main Result

Theorem (McCammond 2001 + HK 2013)

The following problem is decidable in exponential time:

Input: Two ω-terms t_1 and t_2.

Question: Does every finite aperiodic semigroup satisfy $t_1 = t_2$?

Proof Sketch.

1. Use the correspondence between aperiodic finite semigroups and the class of first-order definable languages.
2. Investigate the infinite Ehrenfeucht-Fraïssé game on labelled linear orderings.
3. Assign to every ω-term t a labelled linear ordering $[t]_\varrho$ and introduce an Ehrenfeucht-Fraïssé game on ω-terms.
4. Show that $t_1 = t_2$ is satisfied by every aperiodic finite semigroup if and only if $[t_1]_\varrho = [t_2]_\varrho$.
5. The latter is decidable in exponential time.
The Reduction

Proposition

Let t_1 and t_2 be ω-terms. TFAE:

1. $[t_1]_\varrho = [t_2]_\varrho$.
2. Every syntactic aperiodic finite semigroup satisfies $t_1 = t_2$.
3. Every aperiodic finite semigroup satisfies $t_1 = t_2$.
4. $t_1 = t_2$ can be deduced from the following axioms, where $n \geq 1$:

 \[
 \begin{align*}
 (ab)c &= a(bc) & (a^\omega)^\omega &= a^\omega & (a^n)^\omega &= a^\omega \\
 a^\omega a^\omega &= a^\omega & a^\omega a &= aa^\omega = a^\omega & (ab)^\omega a &= a(ba)^\omega.
 \end{align*}
 \]

Proof.

1 \Rightarrow 2: Follows from the Ehrenfeucht-Fraïssé theorem for ω-terms.

2 \Rightarrow 3: Follows directly from Eilenberg’s variety theorem.

3 \Rightarrow 4: Part of McCammond’s results.

4 \Rightarrow 1: The semigroup of generalised words with ω-power interpreted by ϱ-power also satisfies the axioms (up to isomorphism). \square
The Main Result

Theorem (McCammond 2001 + HK 2013)

The following problem is decidable in exponential time:

Input: Two ω-terms t_1 and t_2.

Question: Does every finite aperiodic semigroup satisfy $t_1 = t_2$?

Proof Sketch.

1. Use the correspondence between aperiodic finite semigroups and the class of first-order definable languages.
2. Investigate the infinite Ehrenfeucht-Fraïssé game on labelled linear orderings.
3. Assign to every ω-term t a labelled linear ordering $\langle t \rangle_\$ and introduce an Ehrenfeucht-Fraïssé game on ω-terms.
4. Show that $t_1 = t_2$ is satisfied by every aperiodic finite semigroup if and only if $\langle t_1 \rangle_\$ = $\langle t_2 \rangle_\$.
5. The latter is decidable in exponential time.
The Isomorphism Problem for Regular Generalised Words

Definition
A generalised word is regular if it can be constructed from the finite words using concatenation, \(\mathbb{N} \)-power, \((-\mathbb{N})\)-power, \(\mathbb{Z} \)-power, \(\mathbb{Q} \)-power and dense shuffle.

Observations
Since \(u^{\varrho} = u^{\mathbb{N}}(u^{\mathbb{Z}})^{\mathbb{Q}}u^{-\mathbb{N}} \) holds for every generalised word \(u \), we obtain:

1. All \(\varrho \)-rational generalised words are regular.
2. The translation from an \(\omega \)-term \(t \) to a regular expressions for \(\llbracket t \rrbracket_{\varrho} \) involves an exponential blow-up.

Theorem (Bloom/Esik 2005)

The following problem is decidable in polynomial time:

Input: Two generalised words \(u \) and \(v \) as regular expressions.

Question: \(u = v \)?
The Isomorphism Problem for Regular Generalised Words

Observations
Since \(u^\varrho = u^N (u^Z)^Q u^{-N} \) holds for every generalised word \(u \), we obtain:

1. All \(\varrho \)-rational generalised words are regular.
2. The translation from an \(\omega \)-term \(t \) to a regular expressions for \(\llbracket t \rrbracket_\varrho \) involves an exponential blow-up.

Theorem (Bloom/Esik 2005)

The following problem is decidable in polynomial time:

- Input: Two generalised words \(u \) and \(v \) as regular expressions.
- Question: \(u = v \)?

Corollary

The following problem is decidable in exponential time:

- Input: Two \(\omega \)-terms \(t_1 \) and \(t_2 \).
- Question: \(\llbracket t_1 \rrbracket_\varrho = \llbracket t_2 \rrbracket_\varrho \)?
The Main Result

Theorem (McCammond 2001 + HK 2013)

The following problem is decidable in exponential time:

Input: Two \(\omega \)-terms \(t_1 \) and \(t_2 \).

Question: Does every finite aperiodic semigroup satisfy \(t_1 = t_2 \)?

Proof Sketch.

1. Use the correspondence between aperiodic finite semigroups and the class of first-order definable languages.

2. Investigate the infinite Ehrenfeucht-Fraïssé game on labelled linear orderings.

3. Assign to every \(\omega \)-term \(t \) a labelled linear ordering \(\llbracket t \rrbracket_\varphi \) and introduce an Ehrenfeucht-Fraïssé game on \(\omega \)-terms.

4. Show that \(t_1 = t_2 \) is satisfied by every aperiodic finite semigroup if and only if \(\llbracket t_1 \rrbracket_\varphi = \llbracket t_2 \rrbracket_\varphi \).

5. The latter is decidable in exponential time.
Extensions and Open Problems

Theorem (HK 2013)

Let $\mathcal{F} \subseteq \text{FO}$ be a fragment of first-order logic satisfying certain natural syntactic closure properties.

Let t_1 and t_2 be ω-terms. TFAE:

1. Duplicator has a winning strategy in $\text{EF}_\infty(\langle t_1 \rangle_\varphi, \langle t_2 \rangle_\varphi)$.
2. The syntactic semigroup S_L of every \mathcal{F}-definable language $L \subseteq \Sigma^+$ satisfies $t_1 = t_2$.

Open Problem

Are the two (equivalent) problems below decidable in polynomial time?

Input: Two ω-terms t_1 and t_2.

Question 1: Does Duplicator have a winning strategy in $\text{EF}_\infty(\langle t_1 \rangle_\varphi, \langle t_2 \rangle_\varphi)$?

Question 2: Does every aperiodic finite semigroup satisfy $t_1 = t_2$?