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Yet Another Formulation of Propositional Threshold Logic

Let PTK* be defined like PT K in [1, 2], but with the rule T}’-right replaced
by the two rules

I = A,A T = T '(As...,4,),A

I' = TP (A, ... ,Ap), A

T = T Y(Asg,... , Ap), A

I' = TP (A, ..., An), A

Ty -rightl :

Ty -right2 :

and T7'-left replaced by the two dual rules

AT = A TP YAg,...,Ay),T = A
TP (A, ... ,A,), I = A

T Az, ... Ap),T = A

TP (A, ..., Ap), I = A

Tp-leftl :

T7-left2

The correctness of PT'K* is obvious, and the completeness follows from
Theorem 1 below and the completeness of PT'K. In the following, we show
that PTK and PTK* are polynomially equivalent, and that the mutual
simulations also respect the depth of proofs. This was claimed without
proof in [3], where PT K* was first defined.

Theorem 1. If P is a proof in PTK, then there is a proof P' in PTK*
of the same end-sequent. The size of P' is linear in the size of P, and the
formula depths of P and P' are the same.

Proof. Each application of the rule T}"-right is replaced by a subproof that is
built as follows: From the second premise we get by weakening the sequent

T = 777 (Ag, ..., An), TP (Asy. . AR), A



and from this and the first premise we get by an application of T}'-right1
T = TP (A1,...,A), T (A, ..., Ay),A .

From this sequent we obtain the conclusion by structural inferences and T}'-
right2. Likewise, each application of T}'-left is replaced by a similar, dual
subproof. The size and depth bounds are obvious. O

Theorem 2. If P is a proof in PTK*, then there is a proof P' in PTK of
the same end-sequent. The size of P’ is polynomial in the size of P, and the
formula depths of P and P' are the same.

Proof. First, each application of the rule 7}'-rightl can be simulated by
Tj-right of PT'K preceded by a weakening, and likewise 77'-leftl can be
simulated using weakening and T}-left.

In [2] it was noted that the sequents
(%) T (Ar, ... Ap) = T (Ar, ..., An)

have proofs in PTK of size polynomial in m. Using these, we can replace
each application of T}-right2 by a subproof constructed as follows: From
the premise of T}'-right2 and an instance of (x) we obtain

I = T 'As,... , An),A
by a cut, and again from the premise of T}-right2 we obtain by weakening
T = A, T} (Asy..., Ay), A .

From these two we obtain the conclusion by T}'-right. A dual proof using
(%) can serve to replace applications of T}'-left2. The size bound holds if we
see the two uses of the premise of T}-right2 as identical, i.e. if the proof is
not tree-like. O

Theorems 1 and 2 together imply that PTK™* enjoys cut-elimination, as
the subproofs used in the proof of Theorem 1 are cut-free. They are also
tree-like, hence Theorem 1 also holds for cut-free and tree-like proofs. The
subproofs used in the proof of Theorem 2 are, as noted, not tree-like, and
use cuts. Hence a question is:

Do cut-free and/or tree-like PT K-proofs polynomially simulate
cut-free / tree-like PT K*-proofs?

Another problem is to improve the size bounds in Theorem 2.



Embedding Unary Cutting Planes into PT K*

A Unary Cutting Planes (C'P*) inequality can be written in the form

n n+m
> owi— Y wmi>k,
i=1 i=n+1
where n,m € N, k € Z and the variables zy,... , T, are not necessarily

distinct. By a result in [2], a CP*-proof can be assumed to use only the
axioms ¢ > 0, —x > —1, addition and division by 2.

For convenience, let T(' (A1, ... ,Ay) for n > 0 stand for T, and T} () with
k > 0 stand for L. Let E denote the inequality above, then its translation
E in PTK is defined as

n+m
T Ty oo Ty Tl - ey Tpbm)
where r := max(k + m, 0).

Theorem 3. Let P be a CP*-proof of an inequality E from the inequalities
Eq,... ,E,. Then there is a PT K*-proof of the sequent

El, N E’
of threshold depth 1 and size O(|P|°W).

This implies that threshold depth 1 PT K*-proofs can p-simulate CP* in
the following sense:

Corollary 4. If A is a tautology in DNF such that - A, written as a set of
C P*-inequalities, has a C P*-refutation of size s, then there is a PT K*-proof
of A of threshold depth 1 and size O(s°1) +|A|).

Proof. Let Abe \/ A /;;, then by the theorem there is a proof in PTK*

i<n jel;
of
\/ Elja--- , \/ Enj == 1
jeJ1 J€Jn
of threshold depth 1 and size O(s°(")). From this, A can be derived trivially
in size O(|A|). O

By Theorem 2, the same holds for PT K in place of PT'K*. To prove Theo-
rem 3, we first derive a series of lemmas. The first lemma is simple and can
be proved by the reader.



Lemma 5. There is a proof in PTK* of the sequent
TP (A,... Ay = T3 (A, ..., Ay)
of threshold depth 1 and size O(n)

Here, as well as in the following lemmas, when we say a proof has threshold
depth 1 we mean that its threshold depth is at most 1 + the maximal
threshold depth of the subformulae A;. In particular, its threshold depth is
1 if the A; do not contain any threshold connectives.

Lemma 6. There is a proof in PTK* of the equivalence

TP (A, A, By,... ,By) < T(Bi,... ,By)

of threshold depth 1 and size O(n).

Proof. Let B abbreviate By, ... ,B,. From the axioms T,g’(é) = T,g‘(g)
and A = A, we get the sequent

T]?if(Aa _'A7 é) = A7 T]?'(E)

by T}'-left2 and then T}”-left1. In the same way using the axiom -4 = -A
we get

T2 (A, —A, B) = —A,T}(B)
using 77'-left1 first and then T}'-left2. From these the sequent in the lemma

follows by a cut. O

Lemma 7. There is a proof in PTK* of the following equivalence, the gen-
eralized De Morgan law

—|T£(A1, c ,An) — Tﬁik+1(—|A1, N 7_‘An)
of threshold depth 1 and size O(n?).

Proof. For the direction from left to right, we have to derive the sequent
Spg == TP (A1, ... Ap), T (2AL,. .., 2 Ay). First, we derive Sy, p:
From the sequents = A;, = A; for 1 < i < n, this is obtained by » -right

followed by v -right. Dually we get Sy, ;.
Now for 1 < k < n, we derive Sy, j, from S, _1  and S;,_1 ;1 as follows: From

= T,?:ll(AQ, ... ,An),TT’::kl_i_l(—'AQ, ...,mA,) and the axiom Ay = Aj,

we derive

A1 — T,?(Al, ,An),TgikJrl(—!Al,... ,—lAn)

4



by T;'-rightl and then T}'-right2. Likewise, from the axiom -4; — -4,
and = T]?_l(AQ, ... ,An),Tg__kl(—'Ag, ..., mAy) we derive

—lA1 — T]?(Al, ,An), #fk+1(_'A1?"' ,—|An) .

From these, Sy, j, is obtained by a cut.

Now a proof for Sy, . is obtained by arranging the sequents S, ;; for 1 <4 <
k and 0 < 5 < n —k in a rectangular matrix, where each sequent is proved
from those to the left and above it, and those in the first row and column
are derived directly. Thus, we get a proof of the direction from left to right
that has O(n?) many sequents and is hence of size O(n?).

The direction from right to left is proved dually. O

Lemma 8. For each permutation m € Sy, there is a proof in PTK* of the
sequent
T]?(Al, e ,An) - T]?(Aﬁ(l), e 7A7r(n))

of threshold depth 1 and size O(n*).

Proof. We start by proving that the sequents

have proofs of threshold depth 1 and size O(n). First, using the axioms
T }(C) = TP} (C) as wellas A => A and B = B we derive

A B, T}A,B,C) = TP(B,A,C)

for each choice of A = A or =4 and B = B or =B, which is easily done.
From these, (x) is obtained by several cuts. This proof uses constantly many
steps, hence is of size O(n).

Next we prove the lemma, for special permutations consisting of one cycle of
the form (pp—1 ... 1): the sequents

(**) T]?(Al, ,An) — T]?(Ap,Al,... ,Apfl,AIH,l,... ,An)

have proofs of threshold depth 1 and size O(n?). Note that the sequent (xx)
is easily derived for £ = n and £ = 1 using structural inferences, and for
p = 2 it is just an instance of the sequent (x) above.

Next we derive (**) from the two sequents

TP Az, Ap) = TP Ay, Agy ooy Ap 1, Apps oL Ay)
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for j = k,k —1 and Ay = A, using first the T}-rules and a cut to add
A; on both sides, and then an instance of () and a cut to swap A; and A,
in the succedent.

Using these, an inductive proof of (x*) can be built as a rectangular matrix
as in the proof of Lemma 7, and like there the size of the resulting proof
will be O(n?).

For the general case, note that any permutation © € S, can be factored into
at most n cycles of the above type, hence we get a proof for a general © by

at most n — 1 cuts from instances of the special case above, which gives a
proof of size O(n?). O

Lemma 9. The rule T} -right2 of PTK'

I = T/ (Ay,... ,A,),A T = T/(By,...,Bn),A
I = T/ (Ar,... ,Ap,Bi,... ,Bn),A

can be simulated in PTK* by a proof of threshold depth 1 and size O(m?(m+
n)4).

Proof. We give a proof of the sequent S, ; defined as
Ti (A, Ap), T (B1,... ,Bm) = TP (A1, ..., An, By, ... ,Bn),

then the claim follows by using cuts. First we derive the sequents Sy, ,
from the axioms T}'(A1,...,4,) = T} (A1,... ,A,) and B; = B, for
1 <¢ < m giving

T]?(Al, ,An),TnT(Bl,... ,Bm) - T]?:_nT(Bma ,B1, Ay, ... ,An)

from which we get S, ,, by Lemma 8. The size of this proof is dominated
by the size of the proof from Lemma, 8, hence it is of size O((m + n)?).

Similarly from T} (A4,... ,A,) = T (A1,... ,A,) and B; = B, we get
le:l(Ala s 7ATL)7B’i = T]Z;—Lj{n(Ala s 7An7B17 s 7Bm)
for each 1 < ¢ < m, hence a v -left yields S, 1. This proof consists of

m subproofs, each using a proof obtained from Lemma 8, so it is of size
O(m(m +n)b).

Now we show how to derive S, from S,, 1 ,_; and S,,_1 4, then a proof
of Sy, is built as in the proof of Lemma 7. First from S, 1, (with the
variables Bs, ..., By,) and By = B; we obtain

T]?(Al, ,An),Tgm(Bl,... ,Bm) - Bl,T]?_l—_l—Em(Al,... ,Ap, By, ... ,Bm)



On the other hand, from Sy,_1 /1 and By = Bj we obtain
Ti(AL,... An), T (By, ... ,Bm), By = T (AL,... ,Ap,By,..., By)

Hence we obtain Sy, by a cut.

The whole proof of Sy, consists of O(m?) many proofs of size O((m +n)?*),
plus O(m) proofs of sequents S;; and S; 1 whose size is negligible, hence its
size is O(m?(m + n)*). O

Proof of Theorem 3. By induction on the number of inferences in P. If this
number is 1, then P consists only of the inequality E, and either £ = E;
for some 1 < i <n, or F is a CP*-axiom x > 0 or —x > —1. In either of
these cases, the claim is trivial. Otherwise, P has a last inference, and we
have to distinguish whether this is an addition or a division inference.

Let the last inference be an addition whose premises are
n n+m 4 p+q
> wi— Y @ >k and yi— >yt
1

=1 i=n-+1 1= i=p+1

and whose conclusion is

s s+t
Z zj — Z zi>k+ 1,
=1 i=n+1

with s =n+p—cand t = m+ g — ¢, where c is the number of cancellations
in the inference. We treat only the case where k+m >0 and £+ ¢ > 0. So
from the translations of the premises we get by Lemma 9

n+m+p-+q
Tk—l—Z—I—m—i—q (a:la sy Ty T4l ey T Pndms YLy - 5 Ypy TYptly e ey _'yp-l—q) :

By Lemma 8 we can sort the arguments such that all possible cancellations
can be made by ¢ applications of Lemma 6. After that the arguments can
be sorted using Lemma 8 such that the result is

s+t
Tl (21, 25y 225y s 25 44)

which is the translation of the conclusion of the addition inference.

For the case of division, suppose we have

T]?n(AlaAlaA27A27' .- 7ATL7ATL) .



We want to derive TFLM (A1, Ag, ..., Ap), so for sake of contradiction, assume
2
_'TFZE](AlaAZ, ..., A;). By Lemma 7, we get
2

Tn

"y (AL~ As A

and adding this to itself using Lemmas 9 and 8, we obtain

T22::72"%'|+2(_'A17 _'Ala _'A27 _'A27 ey _'An7 _‘An) -

Using Lemma 7 again yields

—|T2nﬁ _ (Al,Al,AQ,AQ,... ,An,An) ,
2[2]-1

and since 2[%] —1 < k, we get a contradiction by using Lemma 5. This
argument can be formalized in PTK* using cuts.

By the size and depth bounds for the lemmas used, the whole proof is of
threshold depth 1 and of size polynomial in the size of the proof P. O
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