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Let PTK

�

be de�ned like PTK in [1, 2℄, but with the rule T

n

k

-right repla
ed

by the two rules

T

n

k

-right1 :

� =) A

1

;� � =) T

n�1

k�1

(A

2

; : : : ; A

n

);�

� =) T

n

k

(A

1

; : : : ; A

n

);�

T

n

k

-right2 :

� =) T

n�1

k

(A

2

; : : : ; A

n

);�

� =) T

n

k

(A

1

; : : : ; A

n

);�

and T

n

k

-left repla
ed by the two dual rules

T

n

k

-left1 :

A

1

;� =) � T

n�1

k

(A

2

; : : : ; A

n

);� =) �

T

n

k

(A

1

; : : : ; A

n

);� =) �

T

n

k

-left2 :

T

n�1

k�1

(A

2

; : : : ; A

n

);� =) �

T

n

k

(A

1

; : : : ; A

n

);� =) �

:

The 
orre
tness of PTK

�

is obvious, and the 
ompleteness follows from

Theorem 1 below and the 
ompleteness of PTK. In the following, we show

that PTK and PTK

�

are polynomially equivalent, and that the mutual

simulations also respe
t the depth of proofs. This was 
laimed without

proof in [3℄, where PTK

�

was �rst de�ned.

Theorem 1. If P is a proof in PTK, then there is a proof P

0

in PTK

�

of the same end-sequent. The size of P

0

is linear in the size of P , and the

formula depths of P and P

0

are the same.

Proof. Ea
h appli
ation of the rule T

n

k

-right is repla
ed by a subproof that is

built as follows: From the se
ond premise we get by weakening the sequent

� =) T

n�1

k�1

(A

2

; : : : ; A

n

); T

n�1

k

(A

2

; : : : ; A

n

);� ;
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and from this and the �rst premise we get by an appli
ation of T

n

k

-right1

� =) T

n

k

(A

1

; : : : ; A

n

); T

n�1

k

(A

2

; : : : ; A

n

);� :

From this sequent we obtain the 
on
lusion by stru
tural inferen
es and T

n

k

-

right2. Likewise, ea
h appli
ation of T

n

k

-left is repla
ed by a similar, dual

subproof. The size and depth bounds are obvious.

Theorem 2. If P is a proof in PTK

�

, then there is a proof P

0

in PTK of

the same end-sequent. The size of P

0

is polynomial in the size of P , and the

formula depths of P and P

0

are the same.

Proof. First, ea
h appli
ation of the rule T

n

k

-right1 
an be simulated by

T

n

k

-right of PTK pre
eded by a weakening, and likewise T

n

k

-left1 
an be

simulated using weakening and T

n

k

-left.

In [2℄ it was noted that the sequents

T

m

`

(A

1

; : : : ; A

m

) =) T

m

`�1

(A

1

; : : : ; A

m

)(�)

have proofs in PTK of size polynomial in m. Using these, we 
an repla
e

ea
h appli
ation of T

n

k

-right2 by a subproof 
onstru
ted as follows: From

the premise of T

n

k

-right2 and an instan
e of (�) we obtain

� =) T

n�1

k�1

(A

2

; : : : ; A

n

);� ;

by a 
ut, and again from the premise of T

n

k

-right2 we obtain by weakening

� =) A

1

; T

n�1

k

(A

2

; : : : ; A

n

);� :

From these two we obtain the 
on
lusion by T

n

k

-right. A dual proof using

(�) 
an serve to repla
e appli
ations of T

n

k

-left2. The size bound holds if we

see the two uses of the premise of T

n

k

-right2 as identi
al, i.e. if the proof is

not tree-like.

Theorems 1 and 2 together imply that PTK

�

enjoys 
ut-elimination, as

the subproofs used in the proof of Theorem 1 are 
ut-free. They are also

tree-like, hen
e Theorem 1 also holds for 
ut-free and tree-like proofs. The

subproofs used in the proof of Theorem 2 are, as noted, not tree-like, and

use 
uts. Hen
e a question is:

Do 
ut-free and/or tree-like PTK-proofs polynomially simulate


ut-free / tree-like PTK

�

-proofs?

Another problem is to improve the size bounds in Theorem 2.
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Embedding Unary Cutting Planes into PTK

�

A Unary Cutting Planes (CP

�

) inequality 
an be written in the form

n

X

i=1

x

i

�

n+m

X

i=n+1

x

i

� k ;

where n;m 2 N, k 2 Z and the variables x

1

; : : : ; x

n+m

are not ne
essarily

distin
t. By a result in [2℄, a CP

�

-proof 
an be assumed to use only the

axioms x � 0, �x � �1, addition and division by 2.

For 
onvenien
e, let T

n

0

(A

1

; : : : ; A

n

) for n � 0 stand for >, and T

0

k

() with

k > 0 stand for ?. Let E denote the inequality above, then its translation

^

E in PTK is de�ned as

T

n+m

r

(x

1

; : : : ; x

n

;:x

n+1

; : : : ;:x

n+m

) ;

where r := max(k +m; 0).

Theorem 3. Let P be a CP

�

-proof of an inequality E from the inequalities

E

1

; : : : ; E

n

. Then there is a PTK

�

-proof of the sequent

^

E

1

; : : : ;

^

E

n

=)

^

E

of threshold depth 1 and size O(jP j

O(1)

).

This implies that threshold depth 1 PTK

�

-proofs 
an p-simulate CP

�

in

the following sense:

Corollary 4. If A is a tautology in DNF su
h that :A, written as a set of

CP

�

-inequalities, has a CP

�

-refutation of size s, then there is a PTK

�

-proof

of A of threshold depth 1 and size O(s

O(1)

+ jAj).

Proof. Let A be

W

i�n

V

j2J

i

`

ij

, then by the theorem there is a proof in PTK

�

of

_

j2J

1

�

`

1j

; : : : ;

_

j2J

n

�

`

nj

=) ?

of threshold depth 1 and size O(s

O(1)

). From this, A 
an be derived trivially

in size O(jAj).

By Theorem 2, the same holds for PTK in pla
e of PTK

�

. To prove Theo-

rem 3, we �rst derive a series of lemmas. The �rst lemma is simple and 
an

be proved by the reader.
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Lemma 5. There is a proof in PTK

�

of the sequent

T

n

k

(A

1

; : : : ; A

n

) =) T

n

k�1

(A

1

; : : : ; A

n

)

of threshold depth 1 and size O(n)

Here, as well as in the following lemmas, when we say a proof has threshold

depth 1 we mean that its threshold depth is at most 1 + the maximal

threshold depth of the subformulae A

i

. In parti
ular, its threshold depth is

1 if the A

i

do not 
ontain any threshold 
onne
tives.

Lemma 6. There is a proof in PTK

�

of the equivalen
e

T

n+2

k+1

(A;:A;B

1

; : : : ; B

n

) $ T

n

k

(B

1

; : : : ; B

n

)

of threshold depth 1 and size O(n).

Proof. Let

~

B abbreviate B

1

; : : : ; B

n

. From the axioms T

n

k

(

~

B) =) T

n

k

(

~

B)

and A =) A, we get the sequent

T

n+2

k+1

(A;:A;

~

B) =) A; T

n

k

(

~

B)

by T

n

k

-left2 and then T

n

k

-left1. In the same way using the axiom :A =) :A

we get

T

n+2

k+1

(A;:A;

~

B) =) :A; T

n

k

(

~

B)

using T

n

k

-left1 �rst and then T

n

k

-left2. From these the sequent in the lemma

follows by a 
ut.

Lemma 7. There is a proof in PTK

�

of the following equivalen
e, the gen-

eralized De Morgan law

:T

n

k

(A

1

; : : : ; A

n

) $ T

n

n�k+1

(:A

1

; : : : ;:A

n

)

of threshold depth 1 and size O(n

3

).

Proof. For the dire
tion from left to right, we have to derive the sequent

S

n;k

:==) T

n

k

(A

1

; : : : ; A

n

); T

n

n�k+1

(:A

1

; : : : ;:A

n

). First, we derive S

n;n

:

From the sequents =) A

i

;:A

i

for 1 � i � n, this is obtained by ^ -right

followed by _ -right. Dually we get S

n;1

.

Now for 1 < k < n, we derive S

n;k

from S

n�1;k

and S

n�1;k�1

as follows: From

=) T

n�1

k�1

(A

2

; : : : ; A

n

); T

n�1

n�k+1

(:A

2

; : : : ;:A

n

) and the axiom A

1

=) A

1

,

we derive

A

1

=) T

n

k

(A

1

; : : : ; A

n

); T

n

n�k+1

(:A

1

; : : : ;:A

n

)
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by T

n

k

-right1 and then T

n

k

-right2. Likewise, from the axiom :A

1

=) :A

1

and =) T

n�1

k

(A

2

; : : : ; A

n

); T

n�1

n�k

(:A

2

; : : : ;:A

n

) we derive

:A

1

=) T

n

k

(A

1

; : : : ; A

n

); T

n

n�k+1

(:A

1

; : : : ;:A

n

) :

From these, S

n;k

is obtained by a 
ut.

Now a proof for S

n;k

is obtained by arranging the sequents S

i+j;i

for 1 � i �

k and 0 � j � n� k in a re
tangular matrix, where ea
h sequent is proved

from those to the left and above it, and those in the �rst row and 
olumn

are derived dire
tly. Thus, we get a proof of the dire
tion from left to right

that has O(n

2

) many sequents and is hen
e of size O(n

3

).

The dire
tion from right to left is proved dually.

Lemma 8. For ea
h permutation � 2 S

n

, there is a proof in PTK

�

of the

sequent

T

n

k

(A

1

; : : : ; A

n

) =) T

n

k

(A

�(1)

; : : : ; A

�(n)

)

of threshold depth 1 and size O(n

4

).

Proof. We start by proving that the sequents

(�) T

n

k

(A;B;

~

C) =) T

n

k

(B;A;

~

C)

have proofs of threshold depth 1 and size O(n). First, using the axioms

T

n�2

k�2

(

~

C) =) T

n�2

k�2

(

~

C) as well as A =) A and B =) B we derive

~

A;

~

B;T

n

k

(A;B;

~

C) =) T

n

k

(B;A;

~

C)

for ea
h 
hoi
e of

~

A = A or :A and

~

B = B or :B, whi
h is easily done.

From these, (�) is obtained by several 
uts. This proof uses 
onstantly many

steps, hen
e is of size O(n).

Next we prove the lemma for spe
ial permutations 
onsisting of one 
y
le of

the form (p p�1 : : : 1): the sequents

(��) T

n

k

(A

1

; : : : ; A

n

) =) T

n

k

(A

p

; A

1

; : : : ; A

p�1

; A

p+1

; : : : ; A

n

)

have proofs of threshold depth 1 and size O(n

3

). Note that the sequent (��)

is easily derived for k = n and k = 1 using stru
tural inferen
es, and for

p = 2 it is just an instan
e of the sequent (�) above.

Next we derive (��) from the two sequents

T

n�1

j

(A

2

; : : : ; A

n

) =) T

n�1

j

(A

p

; A

2

; : : : ; A

p�1

; A

p+1

; : : : ; A

n

)
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for j = k; k � 1 and A

1

=) A

1

, using �rst the T

n

k

-rules and a 
ut to add

A

1

on both sides, and then an instan
e of (�) and a 
ut to swap A

1

and A

p

in the su

edent.

Using these, an indu
tive proof of (��) 
an be built as a re
tangular matrix

as in the proof of Lemma 7, and like there the size of the resulting proof

will be O(n

3

).

For the general 
ase, note that any permutation � 2 S

n


an be fa
tored into

at most n 
y
les of the above type, hen
e we get a proof for a general � by

at most n � 1 
uts from instan
es of the spe
ial 
ase above, whi
h gives a

proof of size O(n

4

).

Lemma 9. The rule T

n

k

-right2 of PTK

0

� =) T

n

k

(A

1

; : : : ; A

n

);� � =) T

m

`

(B

1

; : : : ; B

m

);�

� =) T

n+m

k+`

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

);�


an be simulated in PTK

�

by a proof of threshold depth 1 and size O(m

2

(m+

n)

4

).

Proof. We give a proof of the sequent S

m;`

de�ned as

T

n

k

(A

1

; : : : ; A

n

); T

m

`

(B

1

; : : : ; B

m

) =) T

n+m

k+`

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

) ;

then the 
laim follows by using 
uts. First we derive the sequents S

m;m

from the axioms T

n

k

(A

1

; : : : ; A

n

) =) T

n

k

(A

1

; : : : ; A

n

) and B

i

=) B

i

for

1 � i � m giving

T

n

k

(A

1

; : : : ; A

n

); T

m

m

(B

1

; : : : ; B

m

) =) T

n+m

k+m

(B

m

; : : : ; B

1

; A

1

; : : : ; A

n

)

from whi
h we get S

m;m

by Lemma 8. The size of this proof is dominated

by the size of the proof from Lemma 8, hen
e it is of size O((m+ n)

4

).

Similarly from T

n

k

(A

1

; : : : ; A

n

) =) T

n

k

(A

1

; : : : ; A

n

) and B

i

=) B

i

, we get

T

n

k

(A

1

; : : : ; A

n

); B

i

=) T

n+m

k+1

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

)

for ea
h 1 � i � m, hen
e a _ -left yields S

m;1

. This proof 
onsists of

m subproofs, ea
h using a proof obtained from Lemma 8, so it is of size

O(m(m+ n)

4

).

Now we show how to derive S

m;`

from S

m�1;`�1

and S

m�1;`

, then a proof

of S

m;`

is built as in the proof of Lemma 7. First from S

m�1;`

(with the

variables B

2

; : : : ; B

m

) and B

1

=) B

1

we obtain

T

n

k

(A

1

; : : : ; A

n

); T

m

`

(B

1

; : : : ; B

m

) =) B

1

; T

n+m

k+`

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

)
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On the other hand, from S

m�1;`�1

and B

1

=) B

1

we obtain

T

n

k

(A

1

; : : : ; A

n

); T

m

`

(B

1

; : : : ; B

m

); B

1

=) T

n+m

k+`

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

)

Hen
e we obtain S

m;`

by a 
ut.

The whole proof of S

m;`


onsists of O(m

2

) many proofs of size O((m+n)

4

),

plus O(m) proofs of sequents S

i;i

and S

i;1

whose size is negligible, hen
e its

size is O(m

2

(m+ n)

4

).

Proof of Theorem 3. By indu
tion on the number of inferen
es in P . If this

number is 1, then P 
onsists only of the inequality E, and either E = E

i

for some 1 � i � n, or E is a CP

�

-axiom x � 0 or �x � �1. In either of

these 
ases, the 
laim is trivial. Otherwise, P has a last inferen
e, and we

have to distinguish whether this is an addition or a division inferen
e.

Let the last inferen
e be an addition whose premises are

n

X

i=1

x

i

�

n+m

X

i=n+1

x

i

� k and

p

X

i=1

y

i

�

p+q

X

i=p+1

y

i

� `

and whose 
on
lusion is

s

X

i=1

z

i

�

s+t

X

i=n+1

z

i

� k + ` ;

with s = n+ p� 
 and t = m+ q� 
, where 
 is the number of 
an
ellations

in the inferen
e. We treat only the 
ase where k+m � 0 and `+ q � 0. So

from the translations of the premises we get by Lemma 9

T

n+m+p+q

k+`+m+q

(x

1

; : : : ; x

n

;:x

n+1

; : : : ;:x

n+m

; y

1

; : : : ; y

p

;:y

p+1

; : : : ;:y

p+q

) :

By Lemma 8 we 
an sort the arguments su
h that all possible 
an
ellations


an be made by 
 appli
ations of Lemma 6. After that the arguments 
an

be sorted using Lemma 8 su
h that the result is

T

s+t

k+`+t

(z

1

; : : : ; z

s

;:z

s+1

; : : : ;:z

s+t

) ;

whi
h is the translation of the 
on
lusion of the addition inferen
e.

For the 
ase of division, suppose we have

T

2n

k

(A

1

; A

1

; A

2

; A

2

; : : : ; A

n

; A

n

) :
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We want to derive T

n

d

k

2

e

(A

1

; A

2

; : : : ; A

n

), so for sake of 
ontradi
tion, assume

:T

n

d

k

2

e

(A

1

; A

2

; : : : ; A

n

). By Lemma 7, we get

T

n

n�d

k

2

e+1

(:A

1

;:A

2

; : : : ;:A

n

)

and adding this to itself using Lemmas 9 and 8, we obtain

T

2n

2n�2d

k

2

e+2

(:A

1

;:A

1

;:A

2

;:A

2

; : : : ;:A

n

;:A

n

) :

Using Lemma 7 again yields

:T

2n

2d

k

2

e�1

(A

1

; A

1

; A

2

; A

2

; : : : ; A

n

; A

n

) ;

and sin
e 2d

k

2

e � 1 � k, we get a 
ontradi
tion by using Lemma 5. This

argument 
an be formalized in PTK

�

using 
uts.

By the size and depth bounds for the lemmas used, the whole proof is of

threshold depth 1 and of size polynomial in the size of the proof P .
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